
Distributed Online Service Coordination
Using Deep Reinforcement Learning

Stefan Schneider
Paderborn University, Germany

stefan.schneider@upb.de

Haydar Qarawlus
Paderborn University, Germany

qarawlus@mail.upb.de

Holger Karl
Paderborn University, Germany

holger.karl@upb.de

Abstract—Services often consist of multiple chained compo-
nents such as microservices in a service mesh, or machine
learning functions in a pipeline. Providing these services requires
online coordination including scaling the service, placing instance
of all components in the network, scheduling traffic to these
instances, and routing traffic through the network. Optimized
service coordination is still a hard problem due to many in-
fluencing factors such as rapidly arriving user demands and
limited node and link capacity. Existing approaches to solve
the problem are often built on rigid models and assumptions,
tailored to specific scenarios. If the scenario changes and the
assumptions no longer hold, they easily break and require manual
adjustments by experts. Novel self-learning approaches using
deep reinforcement learning (DRL) are promising but still have
limitations as they only address simplified versions of the problem
and are typically centralized and thus do not scale to practical
large-scale networks.

To address these issues, we propose a distributed self-learning
service coordination approach using DRL. After centralized
training, we deploy a distributed DRL agent at each node
in the network, making fast coordination decisions locally in
parallel with the other nodes. Each agent only observes its
direct neighbors and does not need global knowledge. Hence, our
approach scales independently from the size of the network. In
our extensive evaluation using real-world network topologies and
traffic traces, we show that our proposed approach outperforms
a state-of-the-art conventional heuristic as well as a centralized
DRL approach (60% higher throughput on average) while
requiring less time per online decision (1ms).

I. INTRODUCTION

Services consisting of multiple chained components, each
with its own functionality, occur in various practical contexts.
Examples are network services comprising chained virtual
network functions (VNFs) in network function virtualiza-
tion (NFV) [1], [2], microservices forming a service mesh
in cloud and edge computing [3], [4], or machine learning
functions in a pipeline [5]. In all of these cases, an ongoing
challenge is to provide these services to users by deploying
instances of the service components and routing incoming
traffic through them, taking limited compute and link capac-
ities into account. In particular, service coordination requires
deciding how often to instantiate each component (scaling),
where to place these instances in the network (placement),
which incoming flows1 to schedule to which placed instance
(scheduling), and how to route these flows through the network

1We use the terms flow and request interchangeably here.

(routing). As flows arrive rapidly and demand fluctuates over
time, service coordination needs to adjust at runtime.

While this problem is well studied, existing work mostly
focuses on long-/medium-term planning based on estimated
user demand for an upcoming time interval. Even with recent
advances in traffic forecasting [6]–[8], it is still likely that
in practice, actual user demands differ from the predicted
demand. Hence, any initial plan may no longer work when
confronted with the actual user flows arriving at runtime,
leading to either under- or over-allocation.

Furthermore, existing work typically proposes conven-
tional approaches like solving mixed-integer linear pro-
grams (MILPs) or using heuristic algorithms, which are tai-
lored to specific scenarios by experts and built on rigid
models and assumptions. Operational reality easily diverges
from such constructed scenarios, e.g., flows typically arrive
stochastically without following any rigid pattern or with un-
expected distributions. Then, assumptions may no longer hold
and the proposed approaches could perform much worse than
anticipated or even break completely. Consequently, experts
are required again to understand the problem and adjust the
approach manually in a time-consuming and error-prone way.

Hence, self-learning approaches have been proposed re-
cently for service coordination. These approaches mainly use
(deep) reinforcement learning (DRL) or contextual bandits
to learn service coordination directly from experience rather
than following hand-written rules. The hope is that, in this
way, they can self-adapt to new scenarios or optimization
objectives without human intervention or expertise. Existing
DRL approaches, however, consider either complementary or
simplified subproblems of the full scaling, placement, schedul-
ing, and routing problem. Furthermore, they typically use
centralized DRL approaches, where a single global DRL agent
observes and controls the entire network. Up-to-date global
knowledge of fast-changing information such as demand or
resource utilization as well as central control are unrealistic in
practical large-scale networks.

To address these issues, we propose a fully distributed
self-learning approach that solves the full scaling, placement,
scheduling, and routing problem. We deploy separate DRL
agents at each node in the network making coordination
decisions individually in parallel. These agents are trained
offline in a centralized fashion, leveraging experience from
all agents, and then coordinate services independently online

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

in a fast, distributed fashion. Each agent only observes itself
and its direct neighbors and only has local control of how
incoming flows are processed and forwarded. Hence, our
approach requires neither global knowledge nor centralized
control. In contrast to typical centralized approaches, the size
of observation and action spaces is invariant to the network
size and only depends on the network degree, i.e., maximum
number of neighbors per node. Since the network degree is
typically much smaller than the total number of nodes in
the network [9], our approach scales better to realistic, large-
scale networks. For example, it neither requires nor explicitly
distinguishes different pre-defined tiers like fog/edge/cloud but
works in all kinds of networks. Furthermore, our approach
generalizes to new, unseen scenarios and is also more robust
than typical centralized approaches as there is no single point
of failure. In previous work, we presented a centralized DRL
approach [10] and fully distributed heuristic algorithms [11].
The approach presented here combines the strengths of both
approaches, namely flexibility and self-adaption of DRL and
scalability and speed of distributed coordination. Our evalu-
ation shows that it outperforms both approaches consistently
and significantly. Overall, our contributions are:
• We formally define the service coordination problem of

online scaling, placement, scheduling, and routing.
• To solve the problem, we formalize a Markov-decision

process (MDP) with partial observability and propose
a novel self-learning approach using distributed DRL
agents for scalable service coordination in practice.

• We evaluate our approach on real-world network topolo-
gies and traffic traces, showing its adaptability, general-
ization capabilities, and scalability.

• For reproducibility, we publish our code online [12].

II. RELATED WORK

Existing work mostly proposes conventional optimization
approaches without DRL for solving the service coordination
problem, e.g., in cloud or edge computing [4], [13] or NFV [2].
Many authors [14]–[17] consider offline service coordination
with full a priori knowledge of user demand. Related work
that does consider online coordination [18]–[20] still does
not schedule incoming flows at runtime but assumes traffic
to arrive in fixed intervals and to be known a priori for each
interval. Blöcher et al. [21] do schedule flows dynamically at
runtime but assume a given fixed placement and do not con-
sider routing. In contrast, we propose joint scaling, placement,
scheduling, and routing at runtime in a distributed fashion
without any a priori knowledge.

In previous work [11], we considered scaling, placement,
scheduling, and routing at runtime proposing two fully dis-
tributed algorithms. Similar to our fully distributed DRL
approach proposed here, these algorithms only have local
observations and control, making individual coordination de-
cisions at each node in parallel. In contrast to this previous
work, we now consider flows to have deadlines that bound
their maximum acceptable delay to achieve good Quality
of Service (QoS). More importantly, the algorithms of our

previous work, as well as all other aforementioned approaches,
are hand-written and include built-in assumptions, which may
not hold in practice. In contrast, our proposed model-free DRL
approach does not follow a hand-written algorithm and has
very limited built-in assumptions (e.g., about incoming traffic).
Instead, it learns itself from experience how to deal with
different traffic patterns effectively. We evaluate and compare
our DRL approach against such a heuristic in Sec. V.

Recently, DRL for self-learning coordination has been
proposed [10], [22]–[28]. Zhang et al. [22] focus only on
placement and use tabular Q-learning, which does not support
large and continuous observations or generalization between
observations, limiting practical applicability. Pei et al. [23] rely
on a simulator to test actions and select the best one in each
time step, which would be too slow for online coordination
at runtime with rapidly arriving flows—especially when done
in a centralized fashion. Wang et al. [24] schedule flows
equally to all placed instances, which could lead to high end-
to-end delays and bad service quality. More similar to our
approach, Quang et al. [25] and Xiao et al. [26] dynamically
control individual flows and adjust component placement
accordingly. However, the authors do not consider scaling
or routing. Furthermore, they propose centralized approaches,
assuming global up-to-date knowledge and control of the
entire network. In practice, global knowledge can be achieved
through monitoring but only with some monitoring delay (e.g.,
1 min in Prometheus by default [29]), making it unsuitable for
fast per-flow decisions at runtime. Such expensive centralized
decisions per flow do not scale to large networks and would
be too slow for efficient online scheduling of many rapidly
arriving, time-sensitive flows as considered in our scenario.

Other authors [10], [27], [28] propose centralized DRL ap-
proaches but avoid scalability issues by installing forwarding
rules at all nodes, which are then applied to incoming flows in
a distributed fashion at runtime. These rules are then updated
periodically by the centralized DRL agent. Compared to our
proposed distributed DRL approach, these approaches still
have a number of drawbacks: Xu et al. [27] only consider
traffic engineering but not scaling and placement of service
components. Gu et al. [28] and Schneider et al. [10] consider
neither dynamic routing nor link capacities. Xu et al. and Gu
et al. further require support from a hand-written heuristic.
Moreover, all three approaches optimize coarse-grained rules
that are applied to all incoming flows and do not have fine-
grained control over individual flows. As we show in our
evaluation, such fine-grained control is necessary for precise
load balancing and proper dynamic routing. Our proposed dis-
tributed DRL approach jointly optimizes scaling, placement,
scheduling, and routing. It does not require support from a
heuristic and it can control individual flows efficiently by
distributing decisions over different DRL agents for each node.

To the best of our knowledge, we propose the first dis-
tributed self-learning approach for the online service coor-
dination problem. Compared to existing work, our approach
is more powerful as it includes dynamic scaling, placement,
scheduling, and routing at runtime and it is more efficient due

to its fully distributed architecture.

III. PROBLEM STATEMENT

We consider online service coordination, including scaling,
placement, scheduling, and routing, in a network of geograph-
ically and topologically distributed nodes. In this section,
we formalize the problem’s parameters, decision variables,
and objective. It is our intention here to precisely define
the problem, not to provide a full mathematical formulation
(e.g., as MILP) for feeding into a solver. Note that our
proposed DRL approach is only explicitly aware of a small,
locally observable subset of the problem parameters (defined
in Sec. IV-B1) but can adapt to the scenario at hand through
feedback from its actions.

A. Problem Parameters

We denote the underlying substrate network as undirected
graph G = (V,L). We do not assume the network to be pre-
divided into tiers like fog/edge/cloud but rather require the
coordination scheme to work in all kinds of networks. Each
node v ∈ V has a generic compute capacity capv ∈ R≥0.
Adding more resource types, e.g., to distinguish CPU, mem-
ory, GPU, etc., is straightforward by considering a vector of
capacities per node. Each link l = (v, v′) ∈ L connects two
nodes v, v′ bidirectionally and has a link delay dl ∈ R≥0 as
well as a maximum data rate capl ∈ R≥0, which is shared
in both directions. We denote Lv ⊆ L as the set of outgoing
links at a node v and Vv ⊆ V as set of direct neighbors that
can be reached via these links. Furthermore, V in ⊆ V is the
set of ingress nodes and V eg ⊆ V the set of egress nodes.

At ingress nodes, traffic arrives in the form of many partially
overlapping flows from users requesting services. Each flow
f = (sf , cf , v

in
f , v

eg
f , λf , t

in
f , δf , τf) ∈ F is defined by

• its requested service sf and the currently requested com-
ponent cf ∈ Cs ∪ {∅}, indicating the flow’s progress
within the service (cf. network service header [30]),

• its ingress and egress node vin
f ∈ V in and veg

f ∈ V eg,
• its data rate λf , which traversed instances may change,
• its arrival time tinf and duration δf ,
• its deadline τf (relative to tinf), which is the maximum

acceptable delay for traversing all requested components
and reaching the egress node (more detail later).

A requested service s = (ns, Cs) ∈ S consists of a chain
of ns components Cs = 〈c1, ..., cns〉, which flows need to
traverse in order. Set C contains all components from all
services. After traversing and processing at an instance of a
requested component cf = ci ∈ Cs, a flow directly requests
the next component cf = ci+1 ∈ Cs. After traversing the last
component in the service chain, cf = ∅, indicating that the
flow is fully processed and needs to be routed to its egress.

Components can be instantiated and placed across different
nodes in the network zero, one, or multiple times, where
all instances are identical and independent from each other.
Processing a flow f at an instance of component c incurs
a delay dc. For processing f , each instance of c requires re-
sources rc(λf) relative to the flow’s data rate λf . We assume a

Fig. 1: Message sequence chart for flow f = f1 in Fig. 2

component-specific function rc(λ) is known or can be learned
(e.g., using benchmarking and supervised learning [31]).

Fig 1 illustrates the different delays a flow f experiences
from entering the network at time tinf to leaving it at tout

f , based
on the example of f = f1 in Fig. 2. Arriving at ingress v1, f
traverses an instance of c1, incurring processing delay dc1 . We
assume processing to start directly for incoming flows rather
than waiting for the entire flow to arrive completely before
processing. For simplicity, we do not distinguish processing of
individual packets but model flows as a continuous stream (cf.
fluid approximation [32]). Our approach is neither explicitly
aware of nor tied to these assumptions but adapts to a given
environment through feedback from its actions. After travers-
ing c1, f heads to neighbor v3 for processing c2, adding the
corresponding link delay d(v1,v3). With the flow duration δf
in the example here, the first packets of the flow are already
processed by c2 at v3 while later packets are still at v1. Finally,
end-to-end delay df = tout

f − tinf denotes the time from f ’s
arrival to when it starts departing via the egress. Regarding
QoS, df must be within the maximum acceptable delay τf . We
denote τ tf = τf − (t− tinf) as remaining time from time t until
f ’s deadline. Once τ tf = 0, the flow expired and is dropped
automatically, freeing any currently blocked resources.

B. Decision Variables

To solve the online service coordination problem, scaling,
placement, scheduling, and routing need to be determined
at runtime. We introduce binary decision variable xc,v(t) ∈
{0, 1} to indicate whether an instance of component c is
placed at node v at time t (scaling and placement). An
instance can be placed at multiple nodes, but we assume at
most one instance per component and node. Internally, the
node’s operating system or a system like Kubernetes [33] may
spawn more instances and handle the allocation to the node’s
internal resources, e.g., depending on whether it is a single,
small machine or a large data center. We assume this intra-
node coordination to be transparent and focus on inter-node
coordination.

We introduce another decision variable yf,c,v(t) ∈ Vv ∪{v}
to indicate how incoming flows are scheduled and routed.
Particularly, yf,c,v(t) = v means that flow f requesting

component c at node v and time t is processed locally at
v. This requires xc,v(t) = 1, i.e., an instance of c needs
to be available at v. Processing flow f increases the in-
stance’s resource consumption by rc(λf). The total resource
consumption at a node must not exceed its capacity, i.e.,
rv(t) =

∑
c∈C,f∈F xc,v(t)1{yf,c,v(t)=v}rc(λf) ≤ capv , where

1{yf,c,v(t)=v} is an indicator variable that is 1 if yf,c,v(t) = v
and 0 otherwise. When exceeding this capacity, flows cannot
be properly processed at v and are dropped.

If yf,c,v(t) = v′ ∈ Vv , flow f is not processed locally at
node v but forwarded to neighbor v′ along link l = (v, v′) ∈
Lv . To avoid dropping the flow, the link’s capacity must not be
exceeded, i.e., rl(t) =

∑
f∈F 1{yf,c,v(t)=v′}λf ≤ capl. When

flow f arrives at neighbor v′ at time t′, again, the flow is
either processed locally at v′ or sent to one of its neighbors,
depending on yf,c,v′(t′).

C. Optimization Objective

Our goal is to set xc,v(t) and yf,c,v(t) such that as many
flows as possible are processed successfully. A flow f is
successful after routing from ingress vin

v to egress veg
v while

traversing instances of all components of the requested ser-
vice sf and completing within its deadline τf . Objective of is
the percentage of successful flows and should be maximized:

max of =
|Fsucc|

|Fsucc|+ |Fdrop|
(1)

Maximizing this objective implicitly requires proper scaling
and placement to ensure instances of requested components
are available on a suitable path from ingress to egress. It
also requires scheduling flows to instances at different nodes
to balance load and avoid exceeding compute capacities.
Similarly, link capacities need to be considered during routing.
To ensure QoS and avoid timed-out and dropped flows, flows
need to complete within their deadline. Consequently, flows
with short deadline should be routed via shorter paths.

IV. DISTRIBUTED DRL APPROACH

We propose a fully distributed deep reinforcement learn-
ing (DRL) approach to coordinate services online, maximizing
objective of . We deploy separate DRL agents at each node in
the network, where each agent only has local observations and
control. In Sec. IV-A, we explain how these distributed agents
jointly scale and place services as well as schedule and route
incoming flows at runtime. Sec. IV-B formalizes the partially
observable Markov decision process (POMDP), specifying the
observation and action space as well the reward function for
our DRL approach. Finally, the overall framework for training
and inference is discussed in Sec. IV-C.

A. Joint Scaling, Placement, Scheduling, and Routing

At each node v, a separate DRL agent controls incoming
flows independently from agents located at other nodes. When-
ever a flow f arrives at a node v, v’s DRL agent needs to
decide yf,cf ,v(t), i.e., whether to process the flow locally at an
instance of requested component cf hosted at v or to forward f

Fig. 2: Example with separate DRL agents at each node
coordinating two incoming flows f1, f2.

to a neighbor. By setting yf,cf ,v(t), the agents directly control
flow scheduling and routing.

We jointly derive the scaling and placement from yf,cf ,v(t),
by setting xcf ,v(t) = 1 if yf,cf ,v(t) = v. Hence, if the agent
decides to process f locally at node v, we ensure an instance
of cf is available at v or automatically start a new instance.
Starting a new instance incurs additional component startup
delay dup

cf during which flow f has to wait. Unused instances
of a component cf are removed after a timeout δcf , which can
be configured based on how costly idle instances of cf are.

To illustrate this process, consider the example in Fig. 2.
Here, a flow f1 and, shortly after, another flow f2 arrive
at ingress node v1 and both request service s with Cs =
〈c1, c2〉. Flow f1 has egress veg

f1
= v4 and f2 has egress

veg
f2

= v5. When f1 arrives at v1 at time t1, the node still
has enough free resources to host an instance of cf = c1,
such that v1’s DRL agent decides to process f1 locally, setting
yf1,c1,v1(t1) = v1 and xc1,v1(t1) = 1. When f2 arrives shortly
after at time t2, v1’s resources are already fully utilized such
that v1’s DRL agent decides to forward f2 to its neighbor v2,
setting yf2,c1,v1(t2) = v2. At v2, the corresponding DRL agent
decides to process f2 locally.

In the following, f1 finishes processing c1 at v1, then re-
quests the next component c2, and is forwarded to neighbor v3.
At v3, the corresponding DRL agent decides to instantiate c2
and process f1 locally. Similarly, f2 is sent to process c2 at
v3. After processing, the DRL agent at v3 sends each flow to
its egress node, where the flows depart successfully.

This example illustrates how the distributed DRL agents
coordinate incoming flows individually and in parallel to
the other nodes’ agents. Depending on their own resource
utilization as well as the utilization and location of their
neighbors, they decide for each flow whether to process it
locally or to forward it to a suitable neighbor, setting both
decision variables xc,v(t) and yf,c,v(t) jointly at runtime.

B. MDP with Partial Observability

The complete network state depends on a multitude of
parameters as indicated in Sec. III and cannot be fully observed
by our DRL approach. Instead, each agent only has local and

Fig. 3: Example observations of the DRL agent at node v1 in
Fig. 2. Node vε is a dummy node to ensure a consistent size
of observations across all agents. Parametrization with time t
omitted for simplicity.

partial observations that are realistically available in practice.
To solve the problem using DRL, we formalize the correspond-
ing partially observable Markov decision process (POMDP) as
tuple (O,A,P,R), consisting of observations O, actions A,
typically unknown environment dynamics P , and reward func-
tion R. We define O,A, and R as follows.

1) Observations O: An agent’s observations are restricted
to local information about the incoming flow f , cur-
rent node v itself, and its neighbors. Specifically, O =
〈Ff , RLv , RVv , Dv,f , Xv〉 consists of different parts for flow
attributes Ff , link utilization RLv , node utilization RVv , delays
to egress Dv,f , and available instances Xv . We normalize
all observations to be in range [−1, 1] (or [0, 1]) as detailed
below. Ensuring that all observations are in a similar range
is important for effective training and generalization of deep
neural networks [34]. Otherwise, the DRL agent may become
“blind” to the weak signals of observations with a small
range, which are drowned out by stronger signals of other
observations with much larger ranges.

a) Flow Attributes Ff : Vector Ff = 〈p̂f , τ̂f 〉 consists of
two relevant flow attributes. The progress inside the service
chain of a flow f is indicated by p̂f ∈ [0, 1] (cf. service index
in SFC [30]). It starts at p̂f = 0 when the flow arrives and
progresses towards p̂f = 1 with every traversed component.
With respect to deadlines, the agent observes τ̂f =

τtf
τf
∈ [0, 1],

which is the remaining time to the flow’s deadline normalized
by deadline τf itself (defined relative to flow arrival tinf).
Hence, it starts at τ̂f = 1 and gradually decreases towards
0 over time.

b) Link Utilization RLv : Vector RLv = 〈 rl(t)−λf
maxl′∈Lv capl′

|l ∈
Lv〉 ∈ [−1, 1]∆G contains the free resources on all outgoing
links Lv of node v, normalized by the maximum capacity of
links in Lv . Subtracting the flow’s data rate λf shifts the value
to be ≥ 0 if and only if a link can forward the flow.

To allow combining experiences from all agents (details in
Sec. IV-C), the size of observation and action space needs

to be identical for all agents. Hence, we define |RLv | = ∆G

according to network degree ∆G, i.e., the maximum number
of neighbors in the network. If a node has less than ∆G

neighbors, we add dummy neighbors vε to Vv and set their
link utilization to −1, indicating that they do not exist. Fig. 3
shows the observations of the DRL agent at v1 in the example
network of Fig. 2. Here, a dummy node vε is added to v1’s
two neighbors to match the network degree ∆G = 3.

c) Node Utilization RVv : Similar to RLv , vector RVv =

〈 rv′ (t)−rc(λf)
maxv′′∈V capv′′

|v′ ∈ Vv∪{v}〉 ∈ [−1, 1]∆G+1 contains the free
compute resources at v and its neighbors if they were to pro-
cess the flow at the requested component. Again, we normalize
by the maximum node capacity such that the observation is
in [0, 1] if there are enough resources for processing the flow
and in [−1, 0) otherwise. Here, we divide by the maximum
capacity over all nodes (not just neighbors). While a flow has
to traverse one of the outgoing links, it can be processed on any
node in the network. This normalization helps the DRL agent
to identify nodes with high available absolute resources (not
just relative to the neighborhood). In case flow f is already
fully processed (cf = ∅), we set rcf (λf) = 0. As before,
we ensure |RVv | = ∆G + 1 (including v itself) by adding
observations of rvε(t) = −1 for dummy nodes vε if necessary.

d) Delays to Egress Dv,f : Vector Dv,f =

〈max

{
−1,

τtf−dv,v′,veg
f

τtf

}
|v′ ∈ Vv〉 ∈ [−1, 1]∆G defines

the shortest path delays from current node v to flow f ’s
egress via each neighbor v′ in relationship to the remaining
time τ tf to f ’s deadline. This information helps the agent
forward f to neighbors that are in the direction of its egress
node. If the observation is below 0 for a neighbor v′, there is
no chance that forwarding via v′ will be successful. Assuming
a fixed network topology and link delays, the shortest paths
and their path delays dv,v′,veg

f
can be precomputed and

accessed in constant time during runtime. Again, we pad
Dv,f with −1 to ensure length |Dv,f | = ∆G.

e) Available Instances Xv: Binary vector Xv =
〈xcf ,v′(t)|v′ ∈ Vv ∩ {v}〉 ∈ {0, 1}∆G+1 indicates whether
an instance of requested component cf is currently available
at v and its neighbors. After traversing the last component in
the service, xcf ,v′(t) is always zero. Again, we pad Xv with
−1 to ensure length |Xv| = ∆G + 1.

2) Actions A: The DRL agents take actions whenever a
flow f arrives at their node. The action space {0, 1, ...,∆G} is
the same for all agents depending on the network degree ∆G.
An action a ∈ {0, 1, ...,∆G} by a DRL agent at node v
specifies how to set yf,cf ,v(t). If a = 0, the flow is processed
locally, i.e., yf,cf ,v(t) = v. An action a > 0 sends the flow
to v’s a-th neighbor va ∈ Vv . An action is only valid for
a ≤ |Vv|. If a node has fewer neighbors than ∆G, an action
|Vv| < a ≤ ∆G points to a non-existing neighbor and is
invalid. In this case, flow f is dropped and the agent receives
a high penalty. Based on the observed −1 values for non-
existing dummy neighbors, agents should be aware of which
neighbors really exist and only forward flows there.

If a DRL agent selects a = 0 even though flow f is already
fully processed (cf = ∅), f stays at the node for one time step
and the agent is queried again. Doing so reduces the remaining
time τ tf to f ’s deadline and incurs a small penalty. Based
on this penalty and on observation p̂f (Sec. IV-B1a), agents
should learn to forward processed flows directly to their egress
without keeping them unnecessarily.

3) Reward R: Ultimately, we want the DRL agents to learn
a coordination scheme that processes as many flows success-
fully as possible. Hence, we give a large positive reward of
+10 when a flow completes. Conversely, we penalize the agent
with a reward of −10 when dropping a flow.

Successful completion of a flow requires proper coordina-
tion, taking available neighbors, compute and link resources,
link delays, and flow deadlines into account. Hence, when
starting training with a random policy, it is very unlikely
that a series of random actions leads to a flow completing
successfully. Consequently, rewards of +10 will initially be
very sparse, preventing effective training.

One way to address the challenge of sparse rewards is
through reward shaping [35]. To this end, we add additional
weaker reward signals that indicate whether an action seemed
useful or not—even before a flow is completed or dropped.
Specifically, we give a small positive reward of + 1

nsf
when-

ever a flow successfully traverses an instance, where nsf is
the length of the requested service chain. This encourages the
DRL agents to host component instances and process flows
locally when possible. Furthermore, we give a small penalty of
− dl
DG

whenever a DRL agent sends a flow along a link l. This
penalty corresponds to the link’s propagation delay normalized
by the network’s diameter DG (in terms of path delay). It
encourages the DRL agents to forward flows along fewer
links and links with shorter delays when possible. We give
a similar penalty of − 1

DG
when a DRL agent keeps a flow

(yf,cf ,v(t) = v) that is already fully processed.
These additional rewards help nudge the DRL agents to-

wards a useful policy and can improve training. Yet, it is
important these auxiliary rewards are significantly smaller
than the rewards/penalties for successful and dropped flows.
Otherwise, they limit the agents’ ability to find “creative”
but successful policies. Too strong auxiliary rewards can even
encourage unwanted behavior, e.g., if processing two flows
half-way is more rewarding than fully completing one flow.

C. DRL Service Coordination Framework

As defined in Sec. IV-B, we approach service coordination
through local observations and actions that control incoming
flows for each node. We propose a DRL framework in which
we train offline, combining experience from all nodes in a
logically centralized deep neural network as illustrated in
Fig. 4a. After training converges, this single, central neural
network can make decisions for any node in the network. It
distinguishes different nodes based on different observations
and takes suitable actions accordingly. We can now deploy
separate DRL agents at each network node and copy the neural
network to each of these agents (Fig. 4b). This allows each

Parallel Agents

Parallel Environments

(a) Centralized training (b) Distributed inference

Fig. 4: a) Centralized training procedure with multiple copies
of the network environment and the DRL agent. b) Fully
distributed inference with trained DRL agents at each node.

agent to locally control incoming flows highly efficiently based
only on local observations. While each DRL agent has a copy
of the same neural network and thus follows the same policy,
this policy is trained to distinguish flows at different nodes
and handle them correspondingly.

1) Design Choices: Two natural alternatives to our ap-
proach are either centralized observations and control for all
network nodes at once or distributed training and inference
using different neural networks for each node. A centralized
approach observing and controlling all nodes at once is more
in line with current related work (Sec. II). Yet this would
require a significantly larger observation and action space,
e.g., a concatenation of our observations and actions for each
node, which typically requires more training until convergence.
Furthermore, centralized inference would not scale to large
networks with rapidly incoming flows, where thousands of
decisions may be necessary per millisecond for the network
as a whole. Besides, it would require up-to-date global knowl-
edge, which is not realistically available, but at best partial and
delayed through monitoring. Distributed training and inference
using separate neural networks is a promising alternative
approach, yet makes training challenging. E.g., when training
distributed neural networks, agents at nodes that are seldom
traversed by flows would barely be trained at all, possibly
leading to bad policies for these nodes. Hence, our proposed
centralized training with distributed inference tries to combine
the benefits of both approaches, e.g., by leveraging experience
from all agents, giving us more data for effective training.
To support continuous online training during inference, DRL
agents could update their neural network locally and then
synchronize the gradient updates with all other nodes (cf.
federated learning [36], [37]). Lest online inference is blocked,
training and sharing of updates should happen asynchronously.

However, our approach also comes with the challenge of
properly designing the POMDP such that the trained neural
network can effectively generalize between similar situations
but still distinguish semantically different situations. For ex-
ample, to keep the action space small, action i means selecting
neighbor i, not necessarily node i. Hence, the same action i

Algorithm 1 DRL Training and Inference

1: initialize πθ, Vφ, b . Training
2: l← num. parallel training environments
3: for l environments in parallel do
4: while t ≤ T do
5: if flow f arrives at node v then
6: ot, rt ← adapter.process(f, v, Vv, Lv, G)
7: b

add←−− (ot−1, at−1, rt, ot)
8: at ← πθ(ot)
9: xcf ,v(t), yf,cf ,v(t)← adapter.process(at)

10: if b is full then
11: train Vφ using temporal difference updates [39]
12: train πθ maximizing E[

∑
i γ

ir(ot+i, at+i)]

13: Select best agent (πθ, Vφ) . Inference
14: Deploy a copy πvθ of πθ at each node v ∈ V
15: while t ≤ T do
16: if flow f arrives at node v then
17: ot, rt ← adapter.process(f, v, Vv, Lv, G)
18: at ← πvθ (ot)
19: xcf ,v(t), yf,cf ,v(t)← adapter.process(at)

can lead to very different results when executed by DRL
agents at different nodes. To help the DRL agents distinguish
between different neighbors and selecting a suitable one, our
observations include all relevant information about neighbors’
resources, available instances, and distance to the egress node
(in terms of shortest path delay). This should help the DRL
agents learn to select neighbors with sufficient resources and
towards the egress node—independent from the exact node IDs
and thus generalizing across DRL agents at different nodes.

2) Algorithm: We selected the actor-critic using Kronecker-
factored trust region (ACKTR) algorithm [38] to train our
DRL agents. ACKTR is an extension to the well-known
asynchronous advantage actor-critic (A3C) [39], which is an
on-policy, actor-critic approach leveraging multiple parallel
environment copies during training for more diverse training
data. Similar to trust region policy optimization (TRPO) [40]
and proximal policy optimization (PPO) [41], ACKTR ensures
that the learned policy is updated gradually during training,
avoiding abrupt and potentially destructive changes in the
learned behavior.

Alg. 1 shows the high-level algorithm for centralized offline
training (ln. 1–12) and then for distributed online inference
(ln. 13–19). ACKTR trains two deep neural networks for the
actor πθ and the critic Vφ using mini-batches b. The two
neural networks are initialized randomly and trained over l
parallel copies of the network environment (ln. 1–3). Clearly,
l = 1 if the network environment cannot be duplicated.
Whenever a flow arrives at a node (ln. 5–9), the DRL agent
obtains current observation ot and previous reward rt from the
network through an adapter. It adds the experience to mini-
batch b and selects the next action by passing ot to its actor πθ.
Based on selected action at, the corresponding coordination
decisions are taken as described in Sec. IV-A and IV-B2.

DRL AgentDRL AgentDRL Agent Network

Action-
adapter

Observation-
adapter

Ac
to

r

C
rit

ic

Fig. 5: Implementation consisting of the DRL agent interacting
with the network through action- and observation-adapters.

Once mini-batch b is full (i.e., contains a predefined num-
ber of experiences), critic and actor are trained (ln. 10–12).
Critic Vφ estimates the long-term value Vφ(o) of observing o
and following the current policy. It is trained using bootstrap-
ping and temporal difference as detailed in [38], which is a
standard technique for reinforcement learning [42]. The value
estimate Vφ(o) is necessary to calculate the advantage, i.e.,
the relative value of each action a after observing o, which
is, in turn, needed to train the actor πθ. The actor is trained
to maximize the long-term return, i.e., the discounted (by γ)
sum of future rewards, using the natural gradient method [38].
This training procedure is repeated for a configurable number
of training episodes until the agent converges.

As the random seed used for training can have a significant
impact on convergence [43], we train multiple agents (in
parallel) using k different random seeds. After training, we
automatically select the best agent with the highest reward for
online inference (ln. 13). The neural network of this agent
is copied to each network node to facilitate fast, distributed
inference by a local DRL agent at each node (ln. 14–19).
While offline training can be time-intensive, depending on
the number of training episodes, online inference is very
fast [44]. With a fixed number of hidden units, time and
space complexity for inference is in O(∆G), i.e., linear in
the network degree.

3) Implementation: We implemented a prototype of our
DRL approach as illustrated in Fig. 5 and published it on
GitHub [12]. We built the DRL agent on Tensorflow [45] and
the stable-baselines framework [46] using Python. As
light-weight network simulator, we used coord-sim [47]. To
enable the interaction between the DRL agent and the network,
we implemented the OpenAI Gym interface through adapters.
These adapters interface the network environment to retrieve
relevant observations (e.g., from monitoring data), calculate
the reward during training, and apply the selected actions.

V. NUMERICAL EVALUATION

A. Evaluation Setup

We evaluate our proposed fully distributed DRL approach
and compare its performance against state-of-the-art ap-
proaches in a variety of different scenarios. In Sec. V-B,
we evaluate how well our DRL approach adapts to varying

1 2 3 4 5
Number of Ingress Nodes

0

20

40

60

80

100
Su

cc
es

sf
ul

 F
lo

ws
 [%

]

(a) Fixed Arrival

1 2 3 4 5
Number of Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
ws

 [%
]

(b) Poisson Arrival

1 2 3 4 5
Number of Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
ws

 [%
]

(c) MMPP Arrival

1 2 3 4 5
Number of Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
ws

 [%
]

Dist. DRL
Central DRL
GCASP
SP

(d) Real-World Traffic Trace

Fig. 6: Our distributed DRL approach processes most flows successfully with increasing load at different traffic patterns.

ingress nodes and traffic patterns, comparing the percentage
of successful flows (as defined in Sec. III-C) over T = 20000
time steps. Similarly, we evaluate its adaptability to varying
flow deadlines in Sec. V-C, just by retraining the DRL agent
for each scenario but without changing any hyperparameters
or making manual adjustments. In Sec. V-D, we investigate
how well our DRL approach generalizes to previously unseen
scenarios without any retraining. Finally, Sec. V-E evaluates
the scalability of our approach on large real-world network
topologies.

1) Base Scenario: We consider different variations of a
base scenario using real-world network topology Abilene [9],
which connects 11 cities in the US. We assign compute
resources to nodes randomly uniformly between 0 and 2,
link capacities between 1 and 5, and derive link delay from
the distance between connected nodes. We consider a video
streaming service s with Cs = 〈cFW, cIDS, cvideo〉. While we
successfully tested our approach with multiple services, we
focus on a single service in our evaluation for simplicity. All
components c ∈ Cs have a processing delay of dc = 5 ms
and require resources linear to their load. Flows requesting s
have unit data rate (λf = 1) and length (δf = 1) and dead-
line τf = 100, but we consider scenarios with increasingly
complex flow arrival patterns (Sec. V-B) and varying deadlines
(Sec. V-C). We consider a single egress v8 but vary between
1 and 5 ingress nodes (v1–v5).

2) DRL Hyperparameters: We use the following hyper-
parameter settings for our DRL approach: 1) Deep neural
networks with 2x 256 hidden units (and tanh-activation [49])
for both actor and critic, trained with the RMSprop opti-
mizer [50]. 2) Discount factor γ = 0.99. 3) Initial learning
rate α = 0.25. 4) k = 10 training seeds and l = 4 parallel
training environments (cf. Sec. IV-C). 5) ACKTR-specific
parameters: Entropy loss 0.01, loss on Vφ 0.25, and Fisher
coefficient 1.0, max. gradient 0.5, Kullback-Leibler clipping
0.001. We selected these hyperparameter settings based on the
ACKTR default settings [46] and manual tuning to achieve
good performance across scenarios. Tuning hyperparameters
automatically for each scenario is time and resource-intensive
but could potentially further improve performance.

3) Compared Algorithms: We compare our proposed fully
distributed DRL approach against the following baseline and
state-of-the-art approaches from our previous work, where the
code is publicly available:
• A centralized DRL approach [10], which uses and pe-

riodically updates forwarding rules at all nodes that are
applied to incoming flows at runtime. It handles partial
and delayed observations of the global network state,
which are available via periodic monitoring.

• A fully distributed heuristic algorithm, GCASP [11].
Similar to our proposed approach, each node observes
and controls incoming flows locally.

• A simple greedy baseline, “SP”, which tries to process
all flows along the shortest path from ingress to egress.

4) Experiment execution: We ran experiments on machines
with Intel Xeon W-2145 CPUs and 128 GB RAM. Figures
show the mean and standard deviation over 30 random seeds.

B. Varying Traffic Patterns

We evaluate our fully distributed DRL approach on the
base scenario (Sec. V-A1) with varying flow arrival patterns
and an increasing number of ingress nodes (v1–v5) and thus
increasing load. The simplest pattern we consider is fixed flow
arrival with flows arriving every 10 time steps at each ingress
node. Fig. 6a shows the corresponding percentage of success-
ful flows (legend in Fig. 6d), which naturally decreases with
increasing load and limited node and link capacities. While
all approaches process almost all flows successfully with one
ingress node, only the self-learning DRL approaches achieve
around 100 % successful flows for up to three ingress nodes.
For four and five ingress nodes, our proposed distributed DRL
approach outperforms all other algorithms and successfully
processes up to 35 % more flows than the central DRL ap-
proach. While the central DRL approach relies on shortest path
routing, our distributed DRL approach explicitly optimizes
routing jointly with scaling, placement, and scheduling. In
doing so, it takes link capacities into account and balances
load across different paths to minimize dropped flows. The
simple SP baseline relies on sufficient resources along the
shortest path and thus easily drops flows. Ingress nodes v1–v3

are co-located in the given network such that their shortest
paths to the egress overlap and compete for shared resources.
Ingress v4 and v5 are farther away such that their shortest paths
do not overlap and, instead, allow SP to utilize more resources
for more successful flows. Similar to SP, the fully distributed
heuristic, GCASP, favors processing flows along the shortest
paths but dynamically reroutes flows when necessary, avoiding
bottlenecks and searching for compute resources.

Next, we consider stochastic flow arrival following a Pois-
son process with exponentially distributed inter-arrival times
(mean 10 time steps). Fig. 6b shows the corresponding results.
Here, the central DRL approach performs worse because its
centralized observations are always slightly outdated – as they
would be for any centralized approach in practice! Hence, it
cannot effectively react to small bursts where multiple flows
arrive directly after another. Instead, the same forwarding
rules are applied to all incoming flows, which easily leads
to dropped flows when considering stochastic flow arrival.
In contrast, the fully distributed architecture based on local
observations and control of both our proposed distributed
DRL approach and GCASP lets them control individual flows
quickly at runtime. This allows them to react to short bursts,
distributing individual flows among available resources. Still,
our distributed DRL clearly and consistently outperforms all
other algorithms and is 37 % better than GCASP on average.

Fig. 6c shows very similar results for yet more realis-
tic flow arrival following a Markov-modulated Poisson pro-
cess (MMPP) [51]. The corresponding two-state Markov pro-
cess randomly switches between flow arrival with mean inter-
arrival time 12 and 8 (50 % higher rate) every 100 time
steps with 5 % probability. Our distributed DRL approach
successfully adapts to this traffic pattern and outperforms all
other approaches (GCASP by 39 % on average).

Finally, Fig. 6d shows the results for flows following real-
world traffic traces that are publicly available for the Abilene
network [52]. Here, the central DRL and GCASP lead to
comparable results. Again, our distributed DRL is considerably
better and even increases its lead over both approaches with
60 % higher success rates on average.

C. Varying Deadlines

We now consider the base scenario (Sec. V-A1) with
fixed ingress nodes (v1, v2), Poisson flow arrival and instead
systematically vary flows’ deadlines (τf ∈ {20, 30, 40, 50}).
Fig. 7 shows the resulting percentage of successful flows and
corresponding avg. end-to-end delay of completed flows. With
deadline τf = 20, all flows are dropped since flows need
more than 20 ms to complete, even in the best case where
flows are processed along the shortest paths. Indeed, the SP
heuristic attempts to process all flows along the shortest paths,
leading to a fixed avg. end-to-end delay of 21 ms for deadlines
τf = 30 and above. Further increasing the deadlines does not
increase the percentage of successful flows for SP. In contrast,
the other algorithms exploit increasing deadlines and then
also use longer paths to balance load. Overall, our proposed
distributed DRL approach balances the load more effectively

20 30 40 50
Deadlines f [ms]

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

Dist. DRL
Central DRL
GCASP
SP

(a) Successful Flows

20 30 40 50
Deadlines f [ms]

0

5

10

15

20

25

30

Av
g.

 E
nd

-to
-E

nd
 D

el
ay

 [m
s]

Dist. DRL
Central DRL
GCASP
SP

(b) Avg. End-To-End Delay

Fig. 7: Our distributed DRL adapts to varying flow deadlines.

Algorithms
0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

Dist. DRL (Retr.)
Dist. DRL (Gen., Fixed)
Dist. DRL (Gen., Poisson)
Dist. DRL (Gen., MMPP)
Central DRL (Retr.)
GCASP
SP

(a) Unseen Traffic Patterns

1 2 3 4 5
Number of Ingress Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

Dist. DRL (Retr.)
Dist. DRL (Gen.)
Central DRL
GCASP
SP

(b) Unseen Network Load

Fig. 8: Our distributed DRL generalizes to unseen scenarios.

taking the given deadlines into account, processing more flows
successfully than any other algorithm (21 % more than GCASP
on average).

D. Generalization to Unseen Scenarios

In the previous sections, we evaluate how well our dis-
tributed DRL approach adapts to changing scenarios (traffic
load, traffic patterns, deadlines) just by retraining but with-
out human interaction. Here, we go one step further and
investigate how well our trained DRL agent generalizes to
previously unseen scenarios without any retraining. In practice,
it is important that the DRL agent continues to coordinate
services reasonably even if the scenario suddenly changes.
A new DRL agent may be retrained periodically (or even
continuously) to optimize for the current scenario but until
training convergence, the incumbent DRL agent still has to
coordinate decently. To facilitate generalization, we designed
our observation space to include generally available and useful
information and normalized all values to be in a similar range
(Sec. IV-B1).

Here, we explore generalization to previously unseen traf-
fic patterns with two ingress nodes in the base scenario
(Sec. V-A1). To this end, we train our distributed DRL
approach on fixed flow arrival and test it without retraining on
unseen real-world traces. Similarly, we test generalization of

TABLE I: Real-world network topologies [9].

Network Nodes Edges Degree (Min./Max./Avg.)

Abilene 11 14 2 / 3 / 2.55
BT Europe 24 37 1 / 13 / 3.08
China Telecom 42 66 1 / 20 / 3.14
Interroute 110 158 1 / 7 / 2.87

11 24 42 110
Number of Nodes

0

20

40

60

80

100

Su
cc

es
sf

ul
 F

lo
w

s
[%

]

Dist. DRL
Central DRL
GCASP
SP

(a) Successful Flows

11 24 42 110
Number of Nodes

10
1

10
0

10
1

10
2

R
un

tim
e

[m
s]

Dist. DRL
Central DRL
GCASP
SP

(b) Inference Runtime

Fig. 9: Our distributed DRL scales to large networks.

the DRL agent trained on Poisson and MMPP traffic. Fig. 8a
shows the percentage of successful flows when generalizing
these different DRL agents to unseen trace-driven traffic. For
comparison, the figure also shows the success ratio of the
DRL approach trained and tested on these traces and of the
other algorithms. The success rates of the generalizing DRL
agents (“Gen.” in Fig. 8a) are very close to the performance
of the retrained agent (“Retr.”) and still clearly outperform the
other algorithms, indicating that our proposed distributed DRL
generalizes well to unseen traffic patterns.

Next, we investigate generalization to unseen network loads
by training our distributed DRL on the base scenario with
two ingress nodes (and Poisson traffic) and testing it with 1–5
ingress nodes, representing increasing load. Fig. 8b shows the
resulting successful flows in comparison with a DRL agent that
is retrained for each scenario and with the other algorithms.
Again, the generalizing DRL agent (“Gen.”) processes almost
as many flows successfully as the DRL agent that is retrained
for each scenario (“Retr.”) and still clearly outperforms all
other algorithms.

E. Scalability

Finally, we evaluate the scalability of our distributed DRL
on large real-world network topologies. Specifically, we con-
sider the BT Europe, China Telecom, and Interroute networks
in addition to Abilene [9] (Table I). Particularly the China
Telecom network is highly skewed in terms of node degree,
which influences the size of our observation and action space
(Sec. IV-B). As before, we consider Poisson traffic at two
ingress nodes (with node IDs v1 and v2), one egress (v8) and
randomly uniform node capacities (between 0 and 2) and link
capacities (between 1 and 5).

Fig. 9a shows the resulting percentage of successful flows
on these networks. Despite the large size and node degree
skewness of these networks, our distributed DRL achieves
almost perfect results with close to 100 % successful flows.
In the BT Europe network, link capacities between ingress
and egress are scarce leading to more dropped flows for all
algorithms. SP fails completely on BT Europe (24 nodes) and
Interroute (110 nodes) since there are insufficient resources
on the shortest paths. Our distributed DRL outperforms the
central DRL by 31 % and GCASP by 42 % on average. At the
same time, Fig. 9b (log. scale) shows that the inference time
of our distributed DRL is on the order of 1 ms. In particular,
it is magnitudes faster than the central DRL and, unlike the
central DRL, invariant to the network size.

VI. CONCLUSION

We present a fully distributed self-learning and self-adaptive
DRL approach for autonomous service coordination, i.e., joint
scaling, placement, scheduling, and routing. Our evaluation
shows that our proposed DRL approach adapts to varying sce-
narios with different traffic patterns, load, QoS requirements
(deadlines), and network topologies—without requiring any
expert knowledge or human intervention. It also generalizes
to new, unseen scenarios and scales to large real-world net-
work topologies while making decisions within roughly 1 ms.
Thanks to the fully distributed DRL architecture, our approach
is more flexible, better scalable, and generally more successful
than current state-of-the-art solutions. Overall, we believe that
this makes it a much better approach for autonomous service
coordination in practice.

ACKNOWLEDGMENTS

This work was supported in part by the German Research
Foundation within the Collaborative Research Centre “On-
The-Fly Computing” (SFB 901) and the German Federal
Ministry of Education and Research through Software Campus
grant 01IS17046 (RealVNF).

REFERENCES

[1] J. Halpern and C. Pignataro, “Service Function Chaining (SFC)
Architecture,” Internet Requests for Comments, RFC Editor, RFC 7665,
2015. [Online]. Available: http://www.rfc-editor.org/info/rfc7665

[2] J. G. Herrera and J. F. Botero, “Resource allocation in nfv: A comprehen-
sive survey,” IEEE Transactions on Network and Service Management,
vol. 13, no. 3, pp. 518–532, 2016.

[3] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh:
Challenges, state of the art, and future research opportunities,” in IEEE
Conference on Service-Oriented System Engineering (SOSE). IEEE,
2019, pp. 122–1225.

[4] C.-H. Hong and B. Varghese, “Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algorithms,”
ACM Comput. Surv., vol. 52, no. 5, Sep. 2019. [Online]. Available:
https://doi.org/10.1145/3326066

[5] ITU-T, “Architectural framework for machine learning in future net-
works including IMT-2020 (Y.3172).”

[6] E. I. Vlahogianni, J. C. Golias, and M. G. Karlaftis, “Short-term traffic
forecasting: Overview of objectives and methods,” Transport reviews,
vol. 24, no. 5, pp. 533–557, 2004.

[7] P. Cortez, M. Rio, M. Rocha, and P. Sousa, “Internet traffic forecasting
using neural networks,” in IEEE International Joint Conference on
Neural Networks (IJCNN). IEEE, 2006, pp. 2635–2642.

[8] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in Interna-
tional Joint Conference on Artificial Intelligence, 2018, pp. 3634–3640.

[9] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, 2011.

[10] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, H. Karl,
R. Khalili, and A. Hecker, “Self-driving network and service coordi-
nation using deep reinforcement learning,” in International Conference
on Network and Service Management (CNSM). IFIP/IEEE, 2020.

[11] S. Schneider, L. D. Klenner, and H. Karl, “Every node for itself:
Fully distributed service coordination,” in International Conference on
Network and Service Management (CNSM). IFIP/IEEE, 2020.

[12] H. Qarawlus, “Distributed drl GitHub repository,” https://github.com/
RealVNF/distributed-drl-coordination (December 23, 2020), 2020.

[13] Z. Á. Mann, “Allocation of virtual machines in cloud data centers—a
survey of problem models and optimization algorithms,” ACM Comput-
ing Surveys (CSUR), vol. 48, no. 1, pp. 1–34, 2015.

[14] H. Moens and F. De Turck, “VNF-P: A model for efficient placement of
virtualized network functions,” in International Conference on Network
and Service Management (CNSM). IEEE, 2014, pp. 418–423.

[15] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions,” in Conference on Network
Softwarization (NetSoft). IEEE, 2015, pp. 1–9.

[16] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1–16, 2017.

[17] T.-W. Kuo, B.-H. Liou, K. C.-J. Lin, and M.-J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1562–1576, 2018.

[18] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in IEEE
Conference on Computer Communications (INFOCOMM). IEEE, 2016.

[19] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in IEEE
Conference on Cloud Networking (CloudNet). IEEE, 2015, pp. 255–
260.

[20] S. Dräxler, S. Schneider, and H. Karl, “Scaling and placing bidirectional
services with stateful virtual and physical network functions,” in IEEE
Conference on Network Softwarization (NetSoft). IEEE, 2018, pp. 123–
131.

[21] M. Blöcher, R. Khalili, L. Wang, and P. Eugster, “Letting off STEAM:
Distributed runtime traffic scheduling for service function chaining,” in
IEEE Conference on Computer Communications (INFOCOMM). IEEE,
2020.

[22] Z. Zhang, L. Ma, K. K. Leung, L. Tassiulas, and J. Tucker, “Q-
placement: Reinforcement-learning-based service placement in software-
defined networks,” in IEEE International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 1527–1532.

[23] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, 2019.

[24] X. Wang, C. Wu, F. Le, and F. C. Lau, “Online learning-assisted VNF
service chain scaling with network uncertainties,” in IEEE International
Conference on Cloud Computing (CLOUD). IEEE, 2017, pp. 205–213.

[25] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318–1331, 2019.

[26] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“NFVdeep: adaptive online service function chain deployment with
deep reinforcement learning,” in International Symposium on Quality
of Service, 2019, pp. 1–10.

[27] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE International Conference on Computer Communi-
cations (INFOCOMM). IEEE, 2018, pp. 1871–1879.

[28] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelligent vnf
orchestration and flow scheduling via model-assisted deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, 2019.

[29] Prometheus, “Documentation,” https://prometheus.io/docs/prometheus/
latest/configuration/configuration/ (March 18, 2020), 2020.

[30] P. Quinn, U. Elzur, and C. Pignataro, “Network service header (NSH),”
IETF, Internet Request for Comments RFC 8300, 2018.

[31] S. Schneider, N. P. Satheeschandran, M. Peuster, and H. Karl, “Machine
learning for dynamic resource allocation in network function virtualiza-
tion,” in IEEE Conference on Network Softwarization (NetSoft). IEEE,
2020.

[32] H. Chen and A. Mandelbaum, “Discrete flow networks: Bottleneck
analysis and fluid approximations,” Mathematics of operations research,
vol. 16, no. 2, pp. 408–446, 1991.

[33] Cloud Native Computing Foundation, “Kubernetes: Production-grade
container orchestration,” https://kubernetes.io/ (Jan 31, 2020), 2020.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” ser. Proceedings
of Machine Learning Research, F. Bach and D. Blei, Eds., vol. 37.
Lille, France: PMLR, 07–09 Jul 2015, pp. 448–456. [Online]. Available:
http://proceedings.mlr.press/v37/ioffe15.html

[35] A. Trott, S. Zheng, C. Xiong, and R. Socher, “Keeping your distance:
Solving sparse reward tasks using self-balancing shaped rewards,” in
Advances in Neural Information Processing Systems (NeurIPS), 2019,
pp. 10 376–10 386.

[36] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[37] W. Luping, W. Wei, and L. Bo, “CMFL: Mitigating communication over-
head for federated learning,” in International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2019, pp. 954–964.

[38] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation,” in Advances in neural information processing systems
(NeurIPS), 2017, pp. 5279–5288.

[39] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning
(ICML), 2016, pp. 1928–1937.

[40] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning (ICML), 2015, pp. 1889–1897.

[41] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[42] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[43] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference on
Artificial Intelligence, 2018.

[44] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65–93.

[45] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016, pp. 265–283.

[46] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

[47] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, and S. Uthe,
“Service coordination simulator GitHub repository,” https://github.com/
RealVNF/coord-sim (November 18, 2020), 2020.

[48] O. Tange et al., “GNU parallel – the command-line power tool,” The
USENIX Magazine, vol. 36, no. 1, pp. 42–47, 2011.

[49] B. L. Kalman and S. C. Kwasny, “Why tanh: Choosing a sigmoidal func-
tion,” in International Joint Conference on Neural Networks (IJCNN,
vol. 4. IEEE, 1992, pp. 578–581.

[50] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv preprint arXiv:1609.04747, 2016.

[51] W. Fischer and K. Meier-Hellstern, “The Markov-modulated poisson
process (MMPP) cookbook,” Performance evaluation, vol. 18, no. 2,
pp. 149–171, 1993.

[52] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” Networks, vol. 55, no. 3, pp. 276–
286, 2010.

