
Simple Competitive Request Scheduling Strategies�

Petra Berenbrink, Marco Riedel, and Christian Scheideler
Department of Mathematics and Computer Science

Paderborn University, 33095 Paderborn, Germany

email: �pebe, barcom, chrsch�@uni-paderborn.de

Abstract

In this paper we study the problem of scheduling real-time requests
in distributed data servers. We assume the time to be divided into
time steps of equal length called rounds. During every round a
set of requests arrives at the system, and every resource is able to
fulfill one request per round. Every request specifies two (distinct)
resources and requires to get access to one of them. Furthermore,
every request has a deadline of �, i.e. a request that arrives in round
� has to be fulfilled during round ����� at the latest. The number
of requests which arrive during some round and the two alternative
resources of every request are selected by an adversary. The goal
is to maximize the number of requests that are fulfilled before their
deadlines expire.

We examine the scheduling problem in an online setting, i.e.
new requests continuously arrive at the system, and we have to de-
termine online an assignment of the requests to the resources in
such a way that every resource has to fulfill at most one request
per round. We study both global (i.e. centralized) and local (i.e.
distributed) scheduling strategies. In order to measure the perfor-
mance of our scheduling strategies we apply competitive analyses.
Previously, no non-trivial bounds have been known for the compet-
itive ratio of scheduling strategies in our model. We present (partly
matching) upper and lower bounds for several simple scheduling
strategies.

1 Introduction

Recently, the progress in storage medium and communication tech-
nologies made it possible to store an enormous amount of data in
distributed data servers. The stored information can be made ac-
cessible to many clients simultaneously in applications like video-
on-demand, tele-teaching or online transaction processing. In order
to have these applications running information often has to be sent

� Authors supported in part by the DFG-Sonderforschungsbereich 376 “Massive
Parallelität: Algorithmen, Entwurfsmethoden, Anwendungen”, by the EU ESPRIT
Long Term Research Project 20244 (ALCOM-IT), and by the DFG-Graduiertenkolleg
“Parallele Rechnernetzwerke in der Produktionstechnik”, GRK 124/2-96

under hard real-time assumptions.
In this paper we study the problem of scheduling real-time re-

quests in distributed data servers. Such a server consists of a set of
disks (called resources in the following) and a set of clients which
are connected to the disks via a network. If a client wants to access
a data item stored on one of the disks, it will issue a request. It is
well known (see e.g. [MSF98, Kor97]) that an effective strategy to
avoid hot spots at the disks is to have two copies of every data item
which are stored on different disks. As the data server now has two
possible options for choosing the disk that has to fulfill the request,
it can perform a kind of load balancing among the disks.

In our model we assume a data server to work in synchronized
rounds, and every resource can fulfill one request per round. Every
request has a deadline that limits the rounds which can be used in
order to fulfill the request. If a request cannot be processed before
its deadline, it is canceled. Thus, the goal of a data server is to max-
imize the number of requests which are fulfilled before their dead-
lines expire. The number of requests arriving during some round
and the two alternative resources of every of these requests are se-
lected by an adversary. The advantage of choosing an adversarial
model is that results within this model do not depend on particu-
lar probabilistic assumptions. This is important since there might
sometimes be high correlations among the requested data items for
applications such as video-on-demand. This might cause a set of re-
quests to appear much more frequently within a short time interval
than would be the case under idealized probabilistic assumptions.

We examine the scheduling problem in an online setting, i.e.
new requests are continuously injected into the system and we have
to determine online an assignment of the requests to the resources
in such a way that every resource has to fulfill at most one re-
quest per round. This means that decisions have to be taken with-
out any knowledge about future requests. We examine both lo-
cal and global assignment strategies. In the global case the on-
line algorithm is allowed to find the assignment using the whole
set of information about the requests which are currently in the
system. This can be regarded as having one central instance tak-
ing the assignment decisions. In the local case the decisions have
to be taken locally at the clients and/or resources. Therefore, the
resources/clients may have to gather information concerning the
request situation at other resources. Gathering information from
other clients or resources is expensive, since this requires commu-
nication, and therefore the gathering should be minimized.

To measure the performance of our scheduling strategies we
make use of competitive analyses. The main idea of a competitive
analysis is to compare the quality of the solution computed by the
online algorithm with the solution of an optimal offline algorithm
which knows the whole sequence of requests in advance.

1.1 Known results

The previous work that is related to our model can be divided into
three topics: At first we very briefly state some results from the area
of balls-into-bins games and graph matching. Then we give brief
short survey of online scheduling results, especially about bipartite
matching problems in online settings.

In the area of balls-into-bins games and related allocation proc-
esses it is well-known that the choice of one of several alternative
resources can be very profitable for the distribution of the requests.
In the case of balls-into-bins games the problem is to distribute
� balls across � bins, and thereby minimize the maximum load
of the bins. It is well-known that if each ball randomly chooses
one bin and � � �, it will be likely that one of the bins re-
ceives ����� �� ��� ��� �	 balls. Karp, Luby, and Meyer auf der
Heide [KLM92] have been the first to showed that using several
copies for every data item instead of one leads to an exponen-
tial improvement of the maximum load. They used the approach
of several copies to construct fast distributed algorithms for the
simulation of parallel random access machines (PRAMs) on dis-
tributed memory machines (DMMs). Azar et al. [ABKU94] study
the problem of assigning requests to resources in a sequential set-
ting, i.e. the requests arrive one by one. They show that, if every
data item has � copies and � � �, there is a simple strategy that
ensures a maximum load of
���� ��� �� ��� �	 with high prob-
ability. They also present results for the case of � significantly
larger than �. Much work has been done to analyze balls-into-bins
games in its different flavors. For sequential balls-into-bins games
see [Mit96, CS97, Mit97, Czu98, CFM�98]. For parallel balls-
into-bins games see [ACMR95, Ste96, BMS97, ABS98].

Graph matching is a fundamental topic in graph theory. Let
� � ��	
	 be a graph with nodes � and undirected edges

without multi-edges or self-loops. A matching of � is a subset
� �
, such that the edges of � are not adjacent. Many algo-
rithms which calculate matchings have been developed in the past.
Please consult e.g. [LP86] for the history of matching algorithms.
Simple methods with time complexity ���
�	 can be used to cal-
culate maximal matchings. The so far fastest algorithm known so
far for finding a maximum cardinality matching is by Micali and
Vazirani [MV80] which has a time complexity of ���
�

�
�� �	.

In the area of online scheduling there is a vast amount of litera-
ture. [Sga98] gives an encyclopedic survey. The study of bipartite
matching problems in online settings has been initiated by Karp,
Vazirani and Vazirani in [KVV90]. Their model distinguishes be-
tween a ‘known’ and an ‘unknown’ partition. Nodes of the un-
known partition are revealed as the time passes and an online algo-
rithm can put at most one edge of a just revealed node in the online
matching. The simple GREEDY algorithm is an optimal determinis-
tic online algorithm for this problem. It achieves a competitive ratio
of 2. The key contribution of [KVV90] is the construction and anal-
ysis of an optimal randomized algorithm, called RANKING, which
is
��
� �	 � ����-competitive. Various extensions and variants
of this problem have been studied later. A comprehensive survey
and further references can be found in [KP98].

A different online variant of the bipartite matching problem is
introduced in [Rie99]. It is also motivated by a scheduling problem
and is called online request server matching problem. The two par-
titions of the graph represent unit size requests and unit time inter-
vals of a server, and an edge connects a request with a future service
time. In contrast to our model, every request is allowed to specify
an arbitrary set of edges. Each time step, one request is revealed
and for the node representing the next time interval of the server a
matching edge is determined. The author presents an optimal de-
terministic, 1.5-competitive online algorithm. Our model was first

introduced in [MBLR97]. However, there the authors present only
fairly simple and apparent bounds.

1.2 Our Model

In this section we present our scheduling model and the notation
we need to describe and analyze our scheduling strategies.

We have a set �� � � � 	 �� of � resources working in synchro-
nized rounds. Every resource can fulfill one request per round.
During every round, a set of uniform requests arrives. Every of
these requests specifies two alternative resources and requires to
access one of them. Furthermore, every request has a deadline of
� which means that a request that arrives in round � cannot be ful-
filled later than in round � � � � �. The aim is to maximize the
number of requests that are fulfilled before their deadlines expire.
We assume that the number of requests arriving during some round
and their alternative resources are generated by an adversary.

The scenario above can be modeled as a bipartite graph
� � �� � �	
	. The set � � ���	 ��	 � � �� represents the se-
quence of requests (which are generated by the adversary), ordered
by 1) their entry round, and 2) a request identifier which num-
bers the requests arriving at the system during the same round.
� � �����	 ����	 � � � 	 ����	 ����	 ����	 � � � 	 ����	 � � �� represents the
set of time slots of the resources. Time slot ���� represents the �th
resource during the �th round. Every node of the bipartite graph
representing request �� � � is directed (i.e. it has an edge) to the

 	 � nodes of � which represent the time slots of the two alterna-
tive resources of �� in which the request can be fulfilled. That is,
if �� arrives at round � and specifies the two resources �� and ��,
the node representing �� will be directed to the nodes representing
����	 ������	 � � � 	 �������� and ����	 ������	 � � � 	 ��������.

A matching � of a graph is a subset of edges such that no two
edges of � are adjacent. A node incident to an edge of � is called
matched and all others are called free. A maximal matching �MAX

is a matching which cannot be enlarged by an additional edge with-
out destroying the matching property. A graph may have several
different maximal matchings and, especially, maximal matchings
of different cardinality. A maximum cardinality matching �MCM is
a matching of maximum size, i.e. for all matchings �� of � it holds
��MCM�
 � �� �.

Since a resource can fulfill at most one request per round, every
solution to our scheduling problem can be modeled as a matching
in the corresponding graph � � �� � �	
	: For every request ��
that is scheduled by resource �� at time �, the matching contains
the edge connecting �� with ����. In the following, we will say that
this matching is the matching induced in � by the given solution.
An optimal solution to the scheduling problem corresponds to a
maximum matching in �.

In general, an online algorithm � cannot compute a maximum
matching in � because it does not know the whole graph � in ad-
vance. � can only work on a subgraph �� of � in round �. The
node set of �� consists of all nodes in � belonging to time slots
������ with � � � � � and � � � � �� �, and all nodes represent-
ing requests revealed up to round � without requests that have been
already fulfilled or have expired deadlines. All edges of � which
connect these two sets of nodes build the edge set of ��. During
every round �, � performs three steps:

1. Delete requests of which the deadline has expired and receive
new requests.

2. Determine a matching on ��. Here we will investigate dif-
ferent strategies.

3. Fulfill all requests scheduled at time slots ����, � � � � �.

In order to compare the solution computed by an online algo-
rithm with an optimal solution, we compare a fixed maximum car-
dinality matching in � with the matching in � induced by the on-
line algorithm. An efficient way to do this is to use augmenting
paths:

Let ��	�	 denote a matching � �
 in a graph � � ��	
	

and let � �
 � � . A path (resp. circuit)
 in ��	�	 will
be called alternating if every node of
 (except of the two end
nodes if
 is a path) has one edge in � �
 and one edge in
� �
 . For any two matchings �� and �� in �, let �� ���

be the graph consisting of all nodes � of � and the edges ��� �
��	� ��� ���	 (symmetric difference). All components of that
subgraph are paths and circuits which are alternating for ��	��	
and ��	��	, because a node meets at most two edges in �����:
one in �� ��� and one in �� ���. Thus, every last node of a
path is free (i.e. unmatched) either for �� or ��.

An alternating path
 in ��	�	 connecting two free nodes
contains one more edge of � than of � . This means that � �

is a matching of � that is larger by one than � . Such a path is
called augmenting. A matching � is not of maximum cardinality
if, and only if ��	�	 contains an augmenting path.

In the case of our graph � and a given matching � (computed
by an online algorithm �) an augmenting path
 of order � has
structure
 � �� - ������ - �� - ������ - � � � - �	 - ������ . For
� � � � �, �� represents a request and ������ represents round ��
at resource ��� .
 starts with an unmatched request �� having ���
as alternative resource and ends with a time slot ������ not matched
by � . For
 � � � � it contains requests �� that are matched
to ����������

by � and have ��� as alternative resource. The size
of � increases by one when all request nodes of
 are matched
to their opposite time slots in
 , i.e. the time slots which are not
matched in � . As an augmenting path of order � contains exactly
� nodes representing resources and � nodes representing time slots,
� only fulfills � � � requests, but an optimal strategy is able to
fulfill each of the � requests.

As it has been already stated in the introduction we will use
competitive analyses. Let ��� be an optimal offline algorithm
for a payoff maximization problem. For any input sequence �, we
denote by perf
��	 the performance of the algorithm � and by
perf�����	 the performance of��� respectively. �will be called
�-competitive if there is a constant � such that

�� � perf�����	 � � 	 perf
��	 � � �

The infimum over all values � such that A is �-competitive is
called the competitive ratio of A. This analysis is independent of a
stochastic model for the inputs and gives performance guarantees.
On the other hand this kind of worst case analysis may sometimes
be unrealistically pessimistic.

1.3 New Results

In this section we present our new results. In the first part we sum-
marize our upper and lower bounds on the competitiveness of sim-
ple, global online strategies. In the second part we summarize our
results for local online strategies.

Global Strategies

As the algorithms presented in this section are only roughly
defined, they can be seen as a whole class of algorithms. Thus, in
the following we will likewise use the name ‘strategy’ instead of
‘algorithm’. We consider the following strategies:

��� : For every round �, choose any maximal matching in ��

with the property of 1) every request that is already matched to
some time slot ����� , �

�
 �, in ���� is also matched to this time
slot in �� and 2) a maximum number of requests generated at � is
scheduled in ��. Thus, no rescheduling of requests is allowed once
they are scheduled.

�������� : For every round �, choose any maximum matching be-
tween all nodes representing requests not yet fulfilled and all nodes
representing time slots of the current round. All nodes that belong
to later time steps are not considered.

��� 	
�
��� : For every round �, choose any maximal matching
in �� with the property that 1) every request that is already matched
to some time slot ����� , �

�
 �, in ���� is also matched to this time
slot in �� and 2) the function � �

����
��� ���� 	 �� � �	��� is

maximized. �� denotes the number of matched nodes representing
time slots ������ with � � � � �. � ensures that the new re-
quests are assigned to the resources in such a way that the number
of scheduled requests per resource is as balanced as possible.

��
��� : For every round �, choose any maximum matching in
�� with the property of 1) a maximum possible number of requests
is scheduled at round � and 2) all previously scheduled requests
remain scheduled (but are allowed to be moved to other time slots).

�	
�
��� : For every round �, choose any maximum matching in
�� with the property of 1) the function � defined in �	
 ��
���� is
maximized and 2) all previously scheduled requests remain sched-
uled (but are again allowed to be moved to other time slots).

Table 1 summarizes our results for these strategies. The lower
bounds are shown in Section 2 and the upper bounds are shown in
Section 3. � denotes an arbitrary online strategy.

Local Strategies

Within the scope of local strategies we assume that every new
request does not know anything about other requests and their al-
ternative recourses at the beginning. In order to make reasonable
decisions, the requests and resources are allowed to communicate
with each other. During these communication rounds the resources
and requests can exchange fixed size messages. With exchanging
messages we mean that the requests can send a message to the re-
sources and receive a message as the response to their message.
This approach is also used in balls-into-bins games where, during
each communication round, each ball is allowed to exchange mes-
sages with some bins (see [ACMR95]). We assume that the band-
width of the system is sufficiently large such that up to � messages
can reach a resource in each communication round. If more than
� messages are sent to a resource in one communication round, it
receives only � of them (selected according to the LDF (latest dead-
line first) rule). The senders of the other messages will be informed
that their messages failed.

We measure the performance of our local strategies in terms of
communication rounds. This is reasonable as the time to exchange
information in a distributed system usually by far dominates the
time of internal computations. Our aim is to find strategies that
have a good competitive ratio and only require a constant number
of communication rounds.

In Section 3.2 we present a local variant of the �	
 algorithm,
called �
���
 	
 that only requires two communication rounds. Fur-
thermore we show that �
���
 	
 is
-competitive.

Algorithm Lower Bound Theorem Upper Bound Theorem
�	

� ��� 2.1
� ��� 3.3

��������
��� for � �

��
� �	 for ���

2.4, 2.2
� ��� 3.3

�	
 ��
����
��� for � �

����
��
	 for � �

2.4, 2.3
��� for � �

��� for � � �

�
�� for � � �

3.4

������ ��� 2.4
��� for � �

����
	��
�� �	 for � �

3.5

���
����

��� for � �

����
	����� �	
for � � ����	 � � ��

2.4, 2.5
��� for � �

���� �	����� �	 for � �

3.6

� ����� for � � ��, � � �� 2.6

Table 1: Upper and lower bounds for the global strategies.

Moreover, we present a local variant of the ������ algorithm,
called �
���
 ����� , that requires 9 communication rounds. We show
that �
���
 ����� has a competitive ratio of at most ���.

2 Lower Bounds

In this section we present lower bounds on the competitive ratio of
the scheduling strategies defined in Section 1.3. The lower bounds
are of existential nature. That is, we show that there are imple-
mentations of the strategies presented in Section 1.3 for which the
lower bounds shown below hold. This indicates which strategies
might have the potential to be efficient in any form of implementa-
tion.

At first we define ‘block(�	 �)’, a basic input structure which
will be used in the following proof. It consists of �	� requests which
are all generated in the same round. The requests are directed to �
different resources ��	 � � � 	 ����: For all � � ��	 � � � 	 ���� there
is a group of � requests directed to �� and ��������� �. All re-
quests can be fulfilled using all possible � time slots of all � re-
sources. Such a block(�	 �) is very dense. Thus, it can block other
requests and break dependencies in a sense that no further gain can
be achieved when a resource involved in the block(�	 �) fulfills
another request. A frequently used structure is block(
	 �) which
consists of
� requests directed to two resources �� and �� (every
request can be fulfilled by both of the two resources).

The first lower bound we present is the one for �	
, which is
not allowed to perform a reallocation.

Theorem 2.1 If the number of resources is at least � the competi-
tive ratio of �	
 is at least
� �

�
.

Proof: The lower bound proof uses a sequence of identical phases,
each consisting of � rounds. For all �
 �, the �th phase starts in
round � 	 � � �. Initially, at round � the adversary generates a
block(
	 �) consisting of requests directed to �� and ��. Then it
generates the same set of requests in the first two rounds of every
phase.

In the first round of the first phase �� and �� are still busy.
During that round (and every first round of a phase) the adversary
generates
� �
 requests divided into two equally sized groups
�� and ��. The requests of �� are directed to �� and ��, and
the requests of �� are directed to �� and ��. In the second round
of every phase the adversary generates a block(
	 �) consisting of
requests which are directed to �� and ��.

The next phase starts one round after the deadlines of the re-
quests in �� and �� expired. Thus, at the beginning of every
phase, resources �� and �� are still busy for one round.

Obviously, the optimal strategy can fulfill every of the ���

requests injected in a phase. �� is fulfilled by �� and �� by ��.
The requests of the block are fulfilled by �� and ��.

�	
, however, can be implemented in a way that the adver-
sary can force �	
 to compute a maximum matching in which ��

is scheduled at �� and �� at ��. Thus, as �	
 is not allowed
to perform a reallocation, it can only fulfill
� of the �� �
 re-
quests. This yields a lower bound on the competitive ratio of at
least ����

��
�
� �

�
.

The next lower bound holds for algorithm ��������, which is
only allowed to compute a maximum cardinality matching on the
part of �� which consists of the nodes representing the current time
slots and the unfulfilled requests connected to them.

Theorem 2.2 For � � �� (� � ��) and at least � available
resources it holds: The competitive ratio of �������� is at least

��
� �	 � ���� for ���.

Proof: The lower bound proof uses a sequence of identical phases,
each consisting of � rounds, and � resources with � � ��. During
every phase the adversary generates � groups ��	 � � � 	�	 of � re-
quests each. The first alternatives of all requests in �� (� � � � �)
are evenly distributed among ��	 � � � 	 �	��, and the second alter-
native of every request in �� is �	����. Set �	 is equivalent to
�	��. Thus, for all � � � � � and � � � � � � �, �� is chosen
as an alternative by ����� �	 requests of the �th request group and
�	���� is chosen as an alternative of all � requests of that group.

All requests of a phase are injected in its first round. The op-
timal strategy schedules every request in �� at ��. Therefore, all
requests (�� in every phase) can be fulfilled.

��������, however, can be implemented in a way that the ad-
versary can force �������� to first fulfill the requests in ��, then
the requests in ��, and so on. This holds since �������� only tries
to maximize the number of requests fulfilled in the current round,
without considering the future. Thus, �������� can only fulfill re-
quests belonging to the first � groups with

��
��� ��������	 � �.

Some simple but lengthy computations yield that �������� can ful-
fill �
��	�
	�� requests per phase for ���. This yields a lower
bound on the competitive ratio of
��
� �	 � ���� for ���.

The previous two lower bounds show that, in order to have an
efficient schedule, it is too restrictive to prohibit the rescheduling of
requests when only choosing any maximum matching for the new

requests, or to compute a maximum matching only for the time
slots belonging to the current round.

Next we examine �	
 ��
����, which tries to distribute the re-
quests among the resources more evenly in order to avoid having
overloaded resources as quickly as the previous two algorithms.
Furthermore, function � used by �	
 ��
���� ensures that the re-
quests are fulfilled as early as possible. Like algorithm �	
, al-
gorithm �	
 ��
���� is only allowed to extend the matching that is
computed during the last round without rescheduling requests.

For the ease of presentation we assume for the next two theo-
rems that � is even. The same bounds also hold for the case � being
odd.

Theorem 2.3 If the number of resources is at least � the competi-
tive ratio of �	
 ��
���� is at least ��

����
.

Proof: The theorem is shown with the help of an infinite sequence
of phases. At round 0 the adversary generates a block(
	 �) consist-
ing of requests which are directed to �� and �� blocking the two
resources for the next � rounds. Round ��
 is the beginning of the
first phase. In this phase, �� and �� are blocked for the next ��

rounds. Every phase starts ��
 � � rounds after the previous one.

At the beginning of the first phase the adversary generates two
request groups �� and ��, each consisting of ��
 requests. The
requests in �� are directed to �� and ��, and the requests in ��

are directed to �� and ��. One round later the adversary generates
a block(
	 �) consisting of requests directed to �� and ��.

The second phase starts at round ���. As in the first phase two
resources (�� and ��) are blocked for the next ��
 rounds. Thus,
we have the same situation as at the beginning of the first phase.
Now �� and �� play the role of �� and ��. �� and �� take over
the part of �� and ��. �� and �� remain empty as �� and �� in the
first phase. This ‘switching strategy’ can be carried on in a round
robin fashion for the next phases.

The optimal strategy can fulfill all
��
	��
 � �� requests in-
jected in every phase. Obviously, an optimal solution has to sched-
ule the block requests at the corresponding resources and the re-
quests in �� and �� at the remaining alternative resources.

As �	
 ��
���� has to balance the number of requests scheduled
at the resources, it schedules the requests in �� and �� at �� and
��. The algorithm is not allowed to reallocate any of the requests.
Thus, only ��
 of the
� block requests (arriving one round later)
can be fulfill. Since altogether �� requests are injected in every
phase, this results in a lower bound on the competitive ratio of at
least ����
� �
	.

The following theorem presents a lower bound on the compet-
itive ratio of ������. However, for � �
 it can also be used for
��������, �	
 ��
����, and ���
����.

Theorem 2.4 If the number of resources is at least � the competi-
tive ratio of ������ is at least ��� for any �

.

Proof: The theorem is shown with the help of an infinite sequence
of overlapping phases, each spanning ���
 rounds. For all �
 �,
phase � starts at round � 	 ����
. Initially, at round � a block(
	 �)
is generated consisting of requests directed to �� and ��.

In the first round of every odd phase the adversary generates
�
requests divided into three groups ��, �� and ��. �� contains
��
 requests directed to �� and ��, �� contains ��
 requests di-
rected to �� and ��, and �� contains � requests directed to �� and
��. After ��
 rounds the adversary generates a block(
	 �) con-
sisting of requests directed to �� and ��. Every even phase works
in the same way as an odd phase with the only difference that the
requests in �� and the block requests are directed to �� and ��.

The optimal strategy can fulfill all �� requests. In every odd
phase it schedules the requests in �� at �� and the requests in ��

at ��. The requests in �� and the block requests can be scheduled
in �� and ��. (A similar strategy works for even phases.)

Nevertheless, ������ can be implemented in a way that it sched-
ules in the first ��
 rounds of each phase the requests in �� and
��. Then it is only able to schedule
� of the �� requests in ��

and the block. This yields a competitive ratio of at least ���.

The previous lower bound indicates that it might be profitable to
compute a maximum matching over the whole known subgraph and
to allow the rescheduling of requests. The next algorithm ���
����

additionally tries to balance the number of requests which have to
be fulfilled at the resources, using the same function as �	
 ��
����.
Like ������, the algorithm ���
���� is allowed to compute a maxi-
mum matching over the whole subgraph �� in round �.

Theorem 2.5 For any � � �� � � with � � �� it holds: The
competitive ratio of ���
���� is at least ����

����
in the limit � ��.

Proof: The theorem is shown by a construction that uses an in-
finite sequence of intervals of
� rounds. Every interval consists
of two phases described below. Requests are only generated at the
beginning of a phase. The key idea is to exploit the property that
���
���� does not have a rule that prefers requests having a heavily
requested resource as a second alternative.

The strategy uses � � ��� �
	��� groups of three resources,
��
�, ��

�, and ��
�, with � � � � � and two additional resources ��

and ���, which are intended to be permanently blocked. Further-
more, we use a structure called ‘block(�	 �)’. block(�	 �) denotes
a block of � requests which are directed to �� and to one other
resource ��

� . Initially, in round � a block(
	 �) is generated and di-
rected to �� and ���. Furthermore, for every group �, a block(�	 �)
is generated for ��

�. Afterwards the following requests are injected
for every group �.

Phase 1 starts in round �. The adversary generates two groups ��

and �� of � requests each. The requests in �� are directed to ��
�

and ��
� and the requests in �� are directed to ��

� and ��. ���
����

can be implemented in a way that it first fulfills the � requests in
�� (in round �	 � � � 	
�� �) and afterwards the requests in �� (in
round
�	 � � � 	 �� � �) by ��

�. Due to the block requests injected
at round �, ��

� is still blocked in rounds �	 � � � 	 ���
. Hence, the
schedule is conform to the balancing rule of ���
����. The requests
in �� are fulfilled after � rounds, where Phase 1 ends.

Phase 2 starts in round
�. The adversary ensures the continuous
blocking of �� and ��� by additional �� requests and generates a
block(�	 �) at ��

�. In the next � rounds ���
���� can only fulfill
altogether � of the requests in �� and the block at ��

�. In round
�� (� rounds after Phase 2 started) the resource ��

� is blocked for
another
�� � rounds. This situation is similar to the beginning of
Phase 1. The adversary therefore starts the next Phase 1 � rounds
after Phase 2 started. This time, ��

� plays the role of ��
�, ��

� be-
comes ��

�, and ��
� remains without new requests as ��

� did before.

Since this strategy is played for � groups, the requests with
alternatives �� and ��� do not influence the competitive ratio if � is
arbitrarily large. Thus it suffices to count the remaining requests.

In the two phases above, ���
���� fulfills
� � � block re-
quests at �� and the � requests in �� and altogether � further
requests from �� and the block at ��. An optimal solution first
fulfills the requests in �� at �� and the requests in �� shortly be-
fore their deadlines expire at �� (in the above example: rounds
��� �	 � � � 	 �� �
). Hence, it can fulfill all block requests. Sum-
ming up these numbers and using the fact that � � ����	�� leads
to a lower bound on the competitive ratio of

��� �

��� �
�

���

��� �
in the limit ���.

Finally, a general lower bound on the performance of any online
algorithm is given. It shows that only a small number of resources
(�
 ��) is necessary to enforce a competitive ratio of almost ���.

Theorem 2.6 If the number of resources is at least ��, � � �, or
� � � every deterministic online algorithm � has a competitive
ratio of at least ��

��
� ������� .

Proof: The theorem is proven by an adversarial strategy which
divides the time into intervals of � rounds, consisting of two phases
each. At first we assume the case � � �. Phase 1 lasts ��� rounds
and Phase 2 lasts
��� rounds. Requests are generated at the begin-
ning of a phase only. The adversary uses ten resources divided into
five groups (called �

�
, �

��
, �

���
, �

��
, and �

�
) with two resources

each.
Initially, in round �, a block(�	 �) of �� requests blocks the six

resources in �
�
, �

��
, and �

���
.

Phase 1 starts in round
��� and ends in round � � �. The ad-
versary injects �� requests in three equally sized groups (they are
called colored with ‘blue’, ‘green’, and ‘red’). The first alternatives
of the requests are evenly distributed among the four resources in
�
��

and �
�

(that is, each of these resources is assigned to exactly
��� requests of each group). The second alternatives are evenly
distributed among the resources in �

�
for the blue requests, in �

��

for the green, and in �
���

for the red requests.

Phase 2 starts in round � and ends in round ��
�����. Obviously,
there exists a colored request group with a maximal number of not
fulfilled requests (e.g. the red group). The adversary generates ��
requests to block that group, i.e. the block requests are directed to
�
��

and �
�

, and to �
���

with red requests only.

The deadlines of colored requests expire at the end of Phase 2.
Now we have a similar situation like at the beginning of Phase 1:
three resource groups are still blocked for the next ��� rounds.
After renaming the resource groups the whole strategy is repeated
with a new Phase 1 starting in round ��
���.

An optimal solution for the request sequence generated by the
adversary fulfills all requests. The resources and time slots which
have to be used to fulfill the block requests are unique. During
Phase 2 two resource groups out of �

�
, �

��
, and �

���
are not blocked.

Each of them fulfills all ���� requests of one color (this color is
unique). Requests of the third color are fulfilled during Phase 1 by
�
��

and �
�

.
For purpose of the analysis of � we assume w.l.o.g. that all

block requests are fulfilled. In Phase 1 at most ���� colored re-
quests are fulfilled by �

��
and �

�
. Therefore, ��� ���� � ����

colored requests are left and an averaging argument yields the exis-
tence of a request group with at least ������ not fulfilled requests.
As such a request group is blocked during Phase 2, we can con-
clude that at least ������ requests are not fulfilled by the online
algorithm � within the two phases.

The number of requests in the input sequence is �� for every
Phase 1 (colored requests) and �� for every Phase 2 (block(�	 �)).
The infinite repetition of this adversarial strategy leads to a lower
bound on the competitive ratio of

���

����
�
�
�
�
�

���

���� �
�
�

�
��

��
� ������� �

In case � � �, the number of rounds of Phase 1 has to be rounded
down to �����. At the same time the number of requests in every
colored group has to be slightly decreased. However, both val-
ues differ from the above described strategy by small and constant

numbers only. With increasing values for parameter � the number
of requests in every phase increases, too. Hence, the influence of
the constant deviation on the result disappears in the limit ���.
Indeed, the adversary asymptotically achieves a lower bound of
����� for the competitive ratio.

A careful analysis and the consideration of slightly different
strategies for the adversary for a few special cases show that a lower
bound of �
��� � ���� for the competitive ratio can be guaranteed
for all values of �.

3 Upper Bounds

In this section we prove upper bounds on the competitiveness of
global and local variants of the scheduling algorithms presented in
Section 1.3. Obviously, the simple Earliest Deadline First (EDF)
strategy is optimal in the case of each request specifying only one
resource. As every resource works independently from the other re-
sources and schedules the jobs in the order of increasing deadlines
(ties are broken arbitrarily), the EDF strategy is a local strategy.

Observation 3.1 If each request has only one alternative the EDF
strategy is �-competitive.

Proof: (sketch) In the following we call a time slot lossy if it is
used by the optimal strategy, but not by EDF.

Clearly, any solution computed by an optimal strategy can be
transformed into a so-called greedy solution in which every request
is scheduled as early as possible, i.e. no time slot remains unused as
long as there are requests which can be scheduled in the time slot.
Then, using an inductive argument, it can easily be shown that for
every round � the total number of active, not yet scheduled requests
in EDF is at least the number of active, not yet scheduled requests
in any greedy optimal solution. This implies that there cannot be a
lossy time slot and EDF executes at least as many requests as any
optimal solution. Thus EDF is 1-competitive.

As it is not difficult to show, this observation also holds for the
case of the requests having different deadlines. From the above
observation it follows that, if every request has two alternative re-
sources, EDF has a competitive ratio of at most 2. In order to show
why this holds we assume the two copies of a request specifying the
alternative resources to be handled as being independent from each
other. As EDF is �-competitive for the copies of the requests and
every request is fulfilled at most twice (i.e. at most one copy per
request is fulfilled by EDF without further gain), the strategy has
a competitive ratio of at most 2. This is also a lower bound, since
there are simple examples for which EDF is exactly 2-competitive.
Hence, the following observation holds.

Observation 3.2 If each request has two alternative resources the
EDF strategy is
-competitive.

Note that the observation will also hold if the requests have
different deadlines. The above observation can be extended to the
case of each request having � � �� alternatives. In this case, EDF
is �-competitive. In the next subsection we present global and local
strategies that have a competitive ratio of less than 2.

3.1 Global strategies

The next theorem shows that �	
 and �������� are better than EDF.

Theorem 3.3 Algorithms �	
 and �������� have a competitive ra-
tio of at most
 � �

�
.

Proof: In the following we only study �	
. The same analysis,
however, holds for ��������.

No request that fails in �	
 is the beginning of an augmenting
path of order � (i.e. an unfulfilled request is directly connected to an
unused time slot), since otherwise the rule of �	
 having to com-
pute a maximal matching is violated. Thus, every augmenting path
is of order of at least
 and we can identify a uniquely scheduled
request lying on the augmenting path of � for every failed request
�. We choose the request connected to the last time slot of the path.
In order to show the theorem it remains to find one more scheduled
request that can be uniquely assigned to ��� failed requests which
are the beginning of augmenting paths. This is done as follows:

Consider any non-empty set � of failed requests that were in-
jected in round �. We build a set of overloaded resources � , be-
ginning with a set � containing all alternative resources of these
failed requests. Then we continue to add resources to � that are
alternatives of requests that are injected in time � and scheduled at
resources in � , until � does not grow any further. Obviously, for
every resource �� � � , �������� must be matched to a request in-
jected at time �. This holds since these resources are overloaded.
Otherwise the �	
 rule is again violated.

Since at most � 	 ��� requests with injection time � can be sched-
uled in � it holds that, if ��� � �� � �	���, even an optimal so-
lution will not be able to schedule all requests injected at time �.
Hence, the number of requests in � that are the beginning of an
augmenting path can be at most ��� �	���. As all resources in �
are overloaded, each of them has to schedule at least one request
with injection time �. None of these requests can be connected to
the last time slot of an augmenting path (even if it belongs to a dif-
ferent group of failed requests), since otherwise the rule that �	

has to compute a maximal matching is violated. Thus we can iden-
tify at least � scheduled requests per � � � failed requests, which
results in a competitive ratio of at most �������		�� �
����.

From the lower bounds section we know that �	
 in general
cannot have a competitive ratio of less than �
� �

�
	. Hence, the re-

sult above is tight for �	
. As it is shown in the following theorem,
�	
 ��
���� has a better competitive ratio than �	
.

Theorem 3.4 Algorithm �	
 ��
���� has a competitive ratio of at
most ��� for � �
, ��� for � � �, and
� �

�
for any � � �.

Proof: (sketch) First we need some definitions. Consider any
non-empty set �� of failed requests that are injected in round �.
We define the set �� of resources overloaded by �� as follows.
We start with a set �� containing all alternative resources of the
requests in ��. Then we continue to add the resources to �� that
are alternatives of requests that are injected in time � and scheduled
at resources in ��, until �� does not grow any further. Every set
������ � � � �� � �� �� with � � �� is called an overloaded group.
Any execution of a request injected in round � at a resource that be-
longs to �� is called an overloaded execution. All other executions
are called normal executions. For any resource �, let �� represent
the union of all overloaded groups over time slots in ����� � � � ���.
Any maximal set of consecutive time slots in �� is called an over-
loaded interval. Two groups � � ������

�
� �� � ��� � �� � ��

and � � ������
�
� �� � ��� � �� � �� with �� � �� therefore will

belong to different overloaded intervals if there is some time slot
����� , �� � �� � ��, that does not belong to any group in ��. For
any overloaded interval covering time slots �� to �� of resource �
for some �� � ��, let time slot ������� denote its head.

Let
 be the set of augmenting paths resulting from some out-
come of �	
 ��
���� and any fixed optimal solution. Obviously, the
first time slot of any augmenting path in
 must lie in some over-
loaded interval. Let the exit slot of an augmenting path be defined

as the last slot it has in an overloaded interval. This time slot can-
not be empty or used by an overloaded execution. Otherwise either
�	
 ��
���� is violated or the chosen exit slot is not the last slot the
augmenting path has in an overloaded interval. Hence, there must
be a normal execution at the exit slot of any augmenting path.

Now we describe as to how to count executions of requests.
First of all, we count all requests executed in overloaded intervals.
These requests, however, do not suffice to prove the bound on the
competitive ratio given in the theorem. To find additional execu-
tions of requests, we take a closer look at overloaded groups.

For any group � ����� � �� � � � �� � ��, let its corre-
sponding fraction be defined as the set of consecutive time slots
from ��������� to �������, where ����� is the last time slot of the
next younger overloaded group. We assign every augmenting path
to the group fraction to which its exit slot belongs. This ensures
that every augmenting path, and therefore every failed request, is
considered in some group fraction. For every group fraction, we
then bound its competitive ratio (in a way that we uniquely assign
scheduled requests to each group fraction and compare this number
with the number of augmenting paths with exit slots in this group
fraction). The maximum competitive ratio over all group fractions
will then be taken as an upper bound of the competitive ratio of the
complete outcome of �	
 ��
����. To bound the competitive ratio,
we distinguish between 3 cases:

Case 1: The group fraction consists of only one time slot.
In this case it only consists of a time slot used by an overloaded
execution. Therefore the group fraction cannot contain the exit slot
of an augmenting path and thus has a competitive ratio of 1.

Case 2: The group fraction consists of two time slots.
If none of the time slots is the exit slot of an augmenting path, we
will obtain a competitive ratio of 1. Otherwise, we can identify one
additional execution for the time slot used by a normal execution
in the same way as in Case 3b. This results in 3 scheduled requests
and therefore in a competitive ratio of at most ���.

Case 3: The group fraction consists of at least three time slots.
Here we will distinguish between two further cases.

Case 3a: Assume that the latest three time slots of the group
fraction are used by at least two overloaded executions. If the size
of the group fraction is �, � � ��	 � � � 	 ��, this results in � execu-
tions of requests and at most ��
 augmenting paths and therefore
in a competitive ratio of at most

�� ���
	

�
�
�

�
�

Case 3b: Assume that only the latest time slot is used by an
overloaded execution. In this case, the previous two time slots are
used by normal executions. Consider any of these time slots and
let it be called ������ . If ������ is not used as an exit slot of some
augmenting path !, we obtain the same bound as in Case 3a. Oth-
erwise, �	
 ��
���� ensures that only the following three subcases
can occur for the time slot, ������ , following ������ in !:

1. ������ is empty and �������� is used. In this case we count
the request scheduled at ��������.

2. ������ is used and �������� is also used. In this case we also
count the request scheduled at ��������.

3. ������ is used and �������� is empty (or not defined). Then the
two requests scheduled at ������ and ������ must have been
injected at the same time, otherwise �	
 ��
���� is violated.
In this case we follow ! to the next time slot, ������ . It can
be shown that, due to the balancing property of �	
 ��
����,

for this time slot again the three subcases above suffice to
be considered. Therefore we finally arrive at a time slot that
either belongs to subcase 1 or subcase 2.

The time slots counted in the subcases above are disjoint, since
they are always one round prior to a time slot belonging to an aug-
menting path. Unfortunately, it is possible that �������� belongs
to an overloaded interval. In this case, however, it must be the
last time slot of an overloaded interval since, according to the def-
inition of the exit slot of an augmenting path, ������ cannot lie in
an overloaded interval. To compensate such an overlap, instead
of counting the request scheduled at �������� we count a differ-
ent request. For this we will either choose the request scheduled
at the head of the corresponding overloaded interval if the head is
not empty, or otherwise any request of the group with earliest time
slots in the interval (which all must be filled with overloaded exe-
cutions). Requests scheduled at heads of overloaded intervals are
counted only once, since none of the scheduled requests counted
previously (within and outside overloaded intervals) can be sched-
uled at a head.

Hence we can identify an additional execution for each of two
normal executions at the latest three time slots of the group fraction.
If the size of the group fraction is �, � � ��	 � � � 	 ��, this results in
� �
 executions of requests and at most � � � augmenting paths
and therefore in a competitive ratio of at most

���
	 � ��� �	

��

�
�

�

��

�

Taking the maximum over all competitive ratios yields a com-
petitive ratio of ����
�
��	
� �����
		 ���� for any �

.

Even better competitive ratios can be shown for ������ and
���
����.

Theorem 3.5 Algorithm ������ has a competitive ratio of at most
����
����

.

Proof: We first show that no request that fails in ������ is the be-
ginning of an augmenting path of order � or
. Again, it holds that
no canceled request is connected to an unused time slot (i.e., there
cannot be an augmenting path of order �). Assume that we have an
augmenting path " - ���� - � - ����� of order 2. The case �� � � is
a contradiction to the rule that the matching computed at round ��

has to be maximum for round ��. The case � � �� is a contradiction
to the rule that ������ computes a maximum matching in round �
because the whole augmenting path is known in that round. Thus,
every augmenting path is of order at least �.

Hence, for every augmenting path we can identify at least two
unique, scheduled requests lying on this path (take the requests con-
nected to the last two time slots of the augmenting path). In order
to show the theorem it remains to find one more scheduled request
that can be assigned to ��� failed requests. This can be done sim-
ilar to the proof of Theorem 3.3. As a consequence, for every set of
��� failed requests at least
����	�� requests can be identified
that are scheduled by ������, which results in a competitive ratio
of at most ����
	��
�� �	.

From the lower bounds section we know that ������ cannot
have a competitive ratio of less than ���. Hence, for � �
 the
result above is tight. For ���
����, we can prove a slightly better
competitive ratio.

Theorem 3.6 Algorithm���
���� has a competitive ratio of at most
��� for � �
 and ������

����
for any � �
.

Proof: (sketch) We use the same notation as in the proof of Theo-
rem 3.4. W.l.o.g. we assume in the following that ���
���� guaran-
tees for every normal execution in some overloaded interval that the
request scheduled there has not been moved since it was scheduled
the last time before it belonged to an overloaded group. It can be
shown that any other outcome can be transformed to such a situa-
tion without changing the number of scheduled requests or creating
augmenting paths of order below 3.

As in the proof of Theorem 3.4, the exit slot of an augmenting
path is defined as the last time slot it has in an overloaded interval.
Again, this slot can only be used by a normal execution. Analogous
to the proof of Theorem 3.5 it can be shown that, even if the exit
slots are declared as the first time slots of the augmenting paths, all
augmenting paths are of order at least 3. We always count the first
two time slots of any augmenting path, starting with the exit slot. In
order to identify further scheduled requests we use the same three
cases as in the proof of Theorem 3.4. Case 1 results in a competitive
ratio of 1.

Case 2: The group fraction consists of two time slots.
If none of the time slots is the exit slot of an augmenting path, we
will obtain a competitive ratio of 1. Otherwise, we can count 3
scheduled requests (two due to the augmenting path) and therefore
will obtain a competitive ratio of at most ���.

Case 3: The group fraction consists of at least three time slots.
Here we will distinguish between two further cases.

Case 3a: Assume that the latest three time slots of the group
fraction are used by at least two overloaded executions. If the size
of the group fraction is �, � � ��	 � � � 	 ��, this results in � execu-
tions of requests and at most � �
 augmenting paths of order at
least 3 and therefore in a competitive ratio of at most

��
���
	

�� ���
	
�

��� �

��

�

Case 3b: Assume that only the latest time slot is used by an
overloaded execution. Then consider the second latest time slot
and let it be called ������ . If ������ is not used as an exit slot of an
augmenting path !, we obtain the same bound as in Case 3a. Other-
wise, the balancing rule of ���
���� together with our assumption
on the rescheduling of normal executions at the beginning of the
proof ensure that only the following two subcases can occur for the
second next time slot, ������ , of !:

1. ������ is empty and �������� is used. Then it can be shown
that �������� is either the last time slot of an overloaded in-
terval, or belongs to an augmenting path of order larger than
3, or can be uniquely counted for !.

2. ������ is used. Then ������ is counted for !.

For subcase 1 we can identify further cases: Let the time slot fol-
lowing ������ in ! be called ������ . If �������� does not belong to
an overloaded interval then it either belongs to an augmenting path
of order larger than 3, or can be uniquely counted for !. Otherwise
�������� is the first time slot of an overloaded interval. Let be the
overloaded group to which �������� belongs. Clearly, the request
scheduled at �������� was injected at the same time as the requests
belonging to overloaded executions in .

If the request scheduled at ���������� was injected at the same
time as the request scheduled at ������ then we can consider the
same subcases as above in case that ���������� is the exit slot of an
augmenting path.

If the request scheduled at ���������� is older, then time slot
�������� must have been used. This slot is either the last time slot

of an overloaded interval, or belongs to an augmenting path of order
larger than 3, or can be counted uniquely for !.

Considering all these cases yields an (amortized) competitive
ratio of �����	������	. (The worst case is reached if half of the
overloaded groups at the beginning of overloaded intervals fall into
Case 3a and the other half has an overloaded interval above ������
and ������ .)

Taking the maximum over all competitive ratios yields the the-
orem.

3.2 Local strategies

In this section we apply the proof techniques for the global strate-
gies above in order to construct fast local strategies with low com-
petitive ratio.

First we present a local variant of the �	
 algorithm, called
�
���
 	
. Assume � to be the current round of the scheduling prob-
lem. As in �	
, all requests generated before � have been scheduled
or failed.

��
�
� �� consists of two communication rounds.

Communication Round 1 Every request injected at time � (in the
following called new request) is sent to its first alternative resource.
If all requests that arrive at some resource �� can be scheduled at
�� without any failure (i.e. they can be matched to nodes ����� with
�� � ��	 � � � 	 ������ that are not yet matched), all of the requests
will be accepted. Otherwise �� only accepts a maximal selection
of requests that can be matched to yet unmatched nodes ����� .

Communication Round 2 All failed requests are sent to their sec-
ond alternative resource. The resources again accept a maximal
selection of requests that can be matched to yet unmatched time
slots.

The following tight bound on the competitive ratio is shown for
�
���
 	
.

Theorem 3.7 If the number of resources is at least 4, the competi-
tive ratio of �
���
 	
 is precisely
 .

Proof: It is easy to check that all requests that fail to be scheduled
by �
���
 	
 must have all of their alternative time slots occupied
by other requests. Otherwise the �
���
 	
 rule is violated. Hence,
as in �	
, every failed request that can be scheduled by an optimal
strategy has an augmenting path of order at least 2. This implies
the upper bound.

An adversarial strategy to show the lower bound divides the
time into intervals of � rounds. New requests are generated in the
first round of every interval only. The adversary uses four resources
��, ��, ��, and ��. It presents three groups of requests ��, ��,
and ��. The � requests in �� are directed to �� and ��, �� con-
tains � requests which are directed to �� and ��, and �� contains

� requests directed to �� and ��. The adversary manages that re-
quests of��, respectively ��, are sent to resource ��, respectively
��, in the first communication round. All of them are accepted.
Simultaneously, the requests of �� are sent to �� within this first
communication round and all of them are rejected. The same hap-
pens in the second communication round because �� has already
accepted a maximal number of requests for the next � rounds.

The optimal solution fulfills all � requests in �� at ��, all �
requests in �� at ��, and �� and �� each fulfill � requests of ��.
Using this strategy in infinitely many intervals therefore yields a
competitive ratio of at least 2 for �
���
 	
.

A comparison of the results of Observation 3.2 and Theorem 3.7
leads to the following conclusion. In contrast to the simple EDF

strategy, �
���
 	
 avoids the multiple service of a single request.
Nevertheless, �
���
 	
 cannot achieve an improvement in a worst
case situation.

Next we present an algorithm, called �
���
 ����� , which has a
better competitive ratio than �
���
 	
. As above, assume that � is
the current round of the scheduling problem.

��
�
� �
��� consists of three phases. We assume that round � to
start with the previously determined scheduling for the time slots
of rounds �	 � � � 	 �� ��
.

Phase 1: This phase works like �
���
 	
 with one difference: all
requests (newly injected and older ones) which are not yet sched-
uled are sent to their resources. This takes two communication
rounds.

Phase 2: Every request which is accepted by a resource at a time
�� � � is sent to its alternative resource. Every resource �� with an
unused current time slot ���� arbitrarily chooses one request and
sends back an acknowledgment. After this first communication
round, every request which receives an acknowledgment sends a
canceling message to its previous resource. Hence, it moves to its
other alternative and decreases its service time from round �� to �.
This phase requires two communication rounds.

Phase 3: Every request " with non-elapsed deadline which is not
yet scheduled is sent to its first alternative resource ����. Phase 1
ensures that this resource has a request � scheduled at round �. Each
of these requested resources selects one of the requests (called ri-
valing in the following) and sends a return message to it including
request �, its alternative resource �� , and a tag for highest priority
which can be used the next time " communicates with ����.

After this first communication round, " sends request � to �� .
Every resource, such as ��, accepts as many requests as it can
schedule and returns acknowledgments.

An acknowledgment received by " implies that request � is
scheduled by �� and can be canceled at ����. In a third communi-
cation round such a successful request " sends a message to ����
to exchange � with " in its schedule. It uses its high priority tag to
ensure that this message is received by ����.

All requests that are still unsuccessful repeat the previously
given steps of this third phase for their second alternative resource,
starting in the third communication round. The overlapping of the
messages in the third communication round does not evoke prob-
lems. As a resource �� receives at most one request with a high
priority tag (this request occupies the first time slot ����), �� can
receive a message for all other �� � time slots.

The whole Phase 3 requires at most 5 communication rounds.
Clearly, the total number of communication rounds required for
�
���
 ����� in each round is at most 9.

Note: It is possible to save one communication round. For this,
it is necessary to increase the maximum number of messages a re-
source can receive in one round to
� �
. In this case, the last
communication round of Phase 2 and the first one of Phase 3 can
be performed simultaneously.

Furthermore, the following upper bound on the competitive ra-
tio is shown.

Theorem 3.8 �
���
 ����� is ���-competitive.

Proof: Phase 1 of the protocol ensures the non-existence of aug-
menting paths of order 1 in the final solution.

This can be shown similar to the proof of Theorem 3.7: As all
not yet scheduled requests are sent to their alternative resources all
of their alternative time slots have to be occupied by other requests.
Note that the priority rule for receiving messages (select messages

according to the latest deadline first rule) ensures that Phase 1 of
�
���
 ����� accepts a maximum number of requests.

Phase 2 and Phase 3 handle augmenting paths of order 2. Let

 � " - ���� - � - ����� be such an augmenting path. In the following
we distinguish two cases � � �� (Phase 2) and � � �� (Phase 3).

Case � � ��: In Phase 2 of round �� request � tries to decrease its
service time by requesting �� , from which it follows that �� cannot
be unused in time slot ��. Note that the following Phase 3 is only
allowed to exchange the request at ����� . Thus, such an augmenting
path cannot exist.

Case � � ��: This case is divided into two subcases: �� � ��	 ����
and �� � �� �. In the first subcase we can, similar to Case � � ��,
exclude the existence of such an augmenting path, whereas this
cannot be guaranteed for the second subcase.

For �� � � request " (or another of "’s rivaling requests) causes
in Phase 3 of round �� that request � is sent to ��. Thus, as ��

receives at least one request, time slot ����� does not remain unused.

For �� � � � � request " (or another of "’s rivaling requests)
causes in Phase 3 of round � that request � is sent to ��. Thus, as
the priority rule ensures that �� receives enough requests which can
be fulfilled by ����� , a request is assigned to ����� . Furthermore, �����
cannot become unused in the next round ��: Phase 1 only assigns
requests, Phase 2 cannot move the request scheduled at ����� to an
earlier time slot, and again Phase 3 only exchanges requests. This
yields a contradiction to the assumption that
 exists.

For subcase �� � � � � the above line of arguments does not
work in one special situation: In round � another request ! is sched-
uled at ����� . Later in Phase 2 of round �� � �� � �	 � � � 	 �� � ��, !
is moved in to its alternative resource �
 and ����� remains unused.
In the following we intend to count the execution of ! to
 .

Request ! cannot be the second request of an augmenting path,
i.e. the following structure does not exist: �" - �
� � - ! - � � � This
holds as �
� � is free directly before the beginning of Phase 2 of
round ��. Then, Phase 2 moves request ! to �
� �. But this leads to a
contradiction to Phase 1 of round �� because the unfulfilled request
�" is sent to �
.

Now the theorem is inferred as follows: Augmenting paths of
order � do not exist. An augmenting path of order 2 with � � �� or
�� � ��	 �� �� does not exist, too.

In case of an augmenting path
 of order two with �� � � � �
we assign a unique request ! to
 . Unfortunately, request ! can
be an element of an augmenting path
� itself. However, we have
shown that it cannot be the second request in this path from which
it follows that
 � is of order at least three.

Sharing the gain of ! among
 and
� yields ��� fulfilled re-
quests for
 . As
� also is of order at least three and ! cannot
be the second request, we can count at least ��� fulfilled requests
for
 �, too. Thus, in the worst case we have ��� requests fulfilled
by �
���
 ����� compared to
�� requests fulfilled by the optimal
solution. This yields a competitive ratio of ���.

References

[ABKU94] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal.
Balanced allocations (extended abstract). In Proceedings of
the 26th Symposium on Theory of Computing, pages 593–602,
1994.

[ABS98] Micah Adler, Petra Berenbrink, and Klaus Schröder. Analyz-
ing an infinite parallel job allocation process. In Proceedings of
the 6th European Symposium on Algorithms, pages 417–428,
1998.

[ACMR95] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher,
and Lars Rasmussen. Parallel randomized load balancing. In
Proceedings of the 27th Symposium on Theory of Computing,
pages 234–247, 1995.

[BMS97] Petra Berenbrink, Friedhelm Meyer auf der Heide, and Klaus
Schröder. Allocating weighted balls in parallel. In Proceed-
ings of the 9th Symposium on Parallel Algorithms and Archi-
tectures, pages 302–310, 1997.

[CFM�98] Richard Cole, Alan Frieze, Bruce M. Maggs, Michael Mitzen-
macher, Andrea W. Richa, Ramesh K. Sitaraman, and Eli Up-
fal. On balls and bins with deletions. In Proceedings of the 2nd
International Workshop on Randomization and Approximation
Techniques in Computer Science, pages 145–158, 1998.

[CS97] Artur Czumaj and Volker Stemann. Randomized allocation
processes. In Proceedings of the 37th Symposium on Founda-
tions on Computer Science, pages 194–203, 1997.

[Czu98] Artur Czumaj. Recovery time of dynamic allocation processes.
In Proceedings of the 10th Symposium on Parallel Algorithms
and Architectures, pages 202–211, 1998.

[KLM92] Richard Karp, Michael Luby, and Friedhelm Meyer auf der
Heide. Efficient PRAM simulations on a distributed memory
machine. In Proceedings of the 24th Symposium on Theory of
Computing, pages 318–326, 1992.

[Kor97] Jan Korst. Random duplicated assignment: An alternative to
striping in video servers. In Proceedings of 5th Multimedia,
pages 219–226, 1997.

[KP98] Bala Kalyanasundaram and Kirk Pruhs. On-line network op-
timization problems. In A. Fiat and G.J. Woeginger, editors,
Online Algorithms: The State of the Art, LNCS 1442, pages
268–280. Springer-Verlag, 1998.

[KVV90] Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani.
An optimal algorithm for on-line bipartite matching. In Pro-
ceedings of the 22nd Symposium on Theory of Computing,
pages 352–358, 1990.

[LP86] L. Lovász and M.D. Plummer. Matching Theory, volume 29 of
Annals of Discrete Mathematics. North-Holland Mathematics
Studies, 1986.

[MBLR97] Burkhard Monien, Petra Berenbrink, Reinhard Lüling, and
Marco Riedel. Online scheduling of continuous media
streams. In C. Freksa, M. Jantzen, and R. Valk, editors, Foun-
dations of Computer Science: Potential-Theory-Cognition,
LNCS 1337, pages 313–320. Springer-Verlag, 1997.

[Mit96] Michael Mitzenmacher. Density dependent jump markov pro-
cesses and applications to load balancing. In Proceedings
of the 36th Symposium on Foundations of Computer Science,
pages 213–222, 1996.

[Mit97] Michael Mitzenmacher. On the analysis of randomized load
balancing schemes. In Proceedings of the 9th Symposium on
Parallel Algorithms and Architectures, pages 292–301, 1997.

[MSF98] R. Muntz, J.R. Santos, and F. Fabbrocino. Design of a fault tol-
erant realtime storage system for multimedia applications. In
Proceedings of the International Computer Performance and
Dependability Symposium, 1998.

[MV80] Silvio Micali and Vijay V. Vazirani. An ��
�

�� � � ���� algo-
rithm for finding the maximum matching in general graphs. In
Proceedings of the 21st Symposium on Foundations of Com-
puter Science, pages 17–27, 1980.

[Rie99] Marco Riedel. Online matching for scheduling problems. In
Proceedings of the 16th Symposium on Theoretical Aspects in
Computer Science, LNCS 1563, pages 571–580, 1999.

[Sga98] Jiřı́ Sgall. On-line scheduling. In A. Fiat and G.J. Woeginger,
editors, Online Algorithms: The State of the Art, LNCS 1442,
pages 196–231. Springer-Verlag, 1998.

[Ste96] Volker Stemann. Parallel balanced allocations (extended ab-
stract). In Proceedings of the 8th Symposium on Parallel Algo-
rithms and Architectures, pages 261–269, 1996.

