
Improved Bounds for Acyclic Job Shop Scheduling

Uriel Feige�

Dept. of Applied Mathematics and Computer Science
Weizmann Institute

76100 Rehovot, Israel

Christian Scheideler�

Heinz Nixdorf Institute and
Dept. of Mathematics and Computer Science

Paderborn University
33095 Paderborn, Germany

Abstract

In acyclic job shop scheduling problems there are � jobs and �machines. Each job is composed
of a sequence of operations to be performed on different machines. A legal schedule is one in
which within each job, operations are carried out in order, and each machine performs at most one
operation in any unit of time. If � denotes the length of the longest job, and � denotes the number
of time units requested by all jobs on the most loaded machine, then clearly �� � �������� is a
lower bound on the length of the shortest legal schedule. A celebrated result of Leighton, Maggs
and Rao shows that if all operations are of unit length, then there always is a legal schedule of length
�����, independent of � and �. For the case that operations may have different lengths, Shmoys,
Stein and Wein showed that there always is a legal schedule of length 	�����
�� �����, where � 	��
notation is used to suppress
��
������ terms. We improve the upper bound to 	����
�� ���. We also
show that our new upper bound is essentially best possible, by proving the existence of instances
of acyclic job shop scheduling for which the shortest legal schedule is of length	���
�� ���. This
resolves (negatively) a known open problem of whether the linear upper bound of Leighton, Maggs
and Rao applies to arbitrary job shop scheduling instances (without the restriction to acyclicity and
unit length operations).

� Email address feige@wisdom.weizmann.ac.il. Incumbent of the Joseph and Celia Reskin Career Development Chair
� Email address chrsch@uni-paderborn.de. Supported in part by the DFG-Sonderforschungsbereich 376 “Massive Parallelität: Al-

gorithmen, Entwurfsmethoden, Anwendungen” and the EU ESPRIT Long Term Research Project 20244 (ALCOM-IT). Research was
done while staying at the Weizmann Institute, supported by a scholarship of the Minerva foundation.

1 Introduction

In job shop scheduling (JSS) problems there are � jobs and � machines. Each job is composed of a sequence of
operations, where each operation has a machine and length (processing time) associated with it. An operation
is scheduled by specifying a time step at which it begins, and then the operation is executed on its respective
machine without interruption for a time period that is equal to its length. A legal schedule is one in which each
operation is scheduled only after all operations preceding it in its job have been completed, and each machine
performs at most one operation at any unit of time. The makespan of a legal schedule is the time by which
all jobs have been completed. For a given JSS instance, let 	 denote the minimum makespan, taken over all
possible legal schedules. Computing 	 is NP-hard. In this paper, we are interested in providing upper and lower
bounds on 	.

We shall concentrate on acyclic job shop scheduling, for which within each job, all operations are performed
on different machines. A known example where acyclic JSS comes up naturally is that of message routing
through a communication network. Each link of the network may be viewed as a machine, and each message
may be viewed as a job. If a path is specified from the source to the destination of a message, traversing a
link along the path can be viewed as an operation. Naturally, paths are acyclic. How should one schedule the
transmissions of messages over links so as to minimize the time until all messages reach their destinations?
If messages cannot be segmented and need to hop from vertex to vertex as a whole, and furthermore, while a
message traverses a link no other message can use this link, then this question is an instance of acyclic JSS.

There are two trivial lower bounds on 	. One of them is the length of the longest job, known as the dilation
�. The other is the load on the most loaded machine, namely, the total number of time units that all jobs
require on this machine, which is known as the congestion � . Clearly, �� � �������� is a lower bound on
	. Surprisingly, Leighton, Maggs and Rao [LMR94] show that for acyclic JSS, if all operations are of unit
length, then in fact 	 � �����, regardless of any other parameter such as � and �. The proof given in [LMR94]
is nonconstructive (does not provide an efficient algorithm for finding a schedule with makespan �����), and
makes repeated use of the Lovász Local Lemma. Attempts to generalize the ����� upper bound to general JSS
(with the assumptions on acyclicity or unit length removed) were unsuccessful. The best upper bounds known
for general JSS are 	 � �����
�� ����

��
�� ��� by Shmoys, Stein and Wein [SSW94], later improved by a

��
�� �� factor by Goldberg, Paterson, Srinivasan and Sweedyk [GPSS97].

Our main results are as follows:

� For acyclic JSS, 	 � ����
�� ��
��
�� ���. This improves previously known upper bounds for acyclic
JSS by a factor of
�� ��
�
��
�� ����.

� There are instances of acyclic JSS for which 	 � ���
�� ��

��
�� ���. This resolves (negatively) the
open question (see, e. g., [SSW94, GPSS97]) of whether the linear upper bound of Leighton, Maggs and
Rao applies to arbitrary job shop scheduling instances. Moreover, this shows that our upper bound for
acyclic JSS is best possible up to a factor of ���
��
�� �����.

Similar to the proof in [LMR94], the proof of our upper bound makes repeated use of the Lovász Local
Lemma. However, the existence of operations of different lengths requires the use of the general version of the
Local Lemma, rather than the uniform version used in [LMR94].

Our upper bound only proves the existence of short schedules. It does not provide an efficient algorithm
for finding them. The main obstacle is the nonconstructive nature of the Local Lemma. There are algorithmic
versions of the Local Lemma [Be91], and they have been used in order to provide a polynomial time algorithm
for finding schedules of length ����� for unit length acyclic JSS [LMR96]. Providing an algorithmic version of
our upper bound is more complicated and is not discussed in this paper. We remark that for general JSS, the
upper bounds of [SSW94, GPSS97] are algorithmic (though provide a weaker guarantee than our upper bound
for acyclic JSS), and that it is NP-hard to approximate 	 within a ratio better than 5/4 [WHH+96] (even for flow

1

shop scheduling, which is a special case of acyclic JSS). In the context of routing, one often seeks an algorithm
that is not only polynomial time, but also distributed. Some work towards providing a distributed algorithmic
version of [LMR94]’s schedule is presented in [LMR94, RT96, OR97].

We point out some additional consequences of our work.

� Preemption provably helps: In preemptive JSS one is allowed to temporarily suspend (interrupt) an
operation on some machine, let the machine perform some other operation, and later resume the original
operation (as if an operation of length � is composed of a sequence of � unit length operations). In some
cases of JSS it makes sense to allow preemption, perhaps at some cost. Previous to our work, there was no
proof that using preemption can significantly reduce the makespan. In Section 3.1 we show an example
where this is indeed the case. More importantly, we are also able to prove a general upper bound of
	 � ����
��
�� ��� for acyclic JSS with preemption. Note that a similar upper bound does not hold if
preemption is not allowed, by our lower bound of 	 � ���
�� ��

��
�� ���.

� Dilation versus congestion: It has been observed that congestion and dilation influence the makespan
differently. For example, Leighton, Maggs and Rao [LMR96] present a distributed algorithm for unit
length acyclic JSS that produces schedules of length ��� ��
�� ��. Our results (see Sections 2 and 3
for details) make similar distinctions between � and �. In particular, if � � ������ for some � � �,
then 	 � �����, even for general JSS.

� Operation lengths that depend only on machine: In a packet routing network, it may well be the case
that all packets are of the same size, but that some links are slower than others (modems of different speeds
on the communication lines). In this case, any two packets take the same time to cross the same link, but
a packet may take more time to cross one link than another link. For acyclic JSS in which operation
lengths depend only on the machine, our upper bound improves to 	 � ����
��
�� ���. (For general JSS,
if operation lengths depend only on the machine, then 	 � ����
�� ��

��
�� ���. This follows from
techniques of [LMR94, SSW94].)

� Operation lengths that depend only on job: Returning to the routing example, consider the case where
each link has the same speed, but messages may be of different length. In this case, different messages
may take different time to cross the same link, but any message takes the same time to cross two different
links. This restriction of acyclic JSS does not seem to help, as in our negative example for which 	 �
���
�� ��

��
�� ���, operation lengths depend only on the job. (Any instance of acyclic JSS can also be
cast as an instance of message routing, though the paths that messages follow from source to destination
may appear to be artificial.) This finding supports the practice of breaking messages into packets. By this
we obtain an instance of unit length acyclic JSS, which by [LMR94] has a makespan of �����. (We note
that we may use here a convenient form of packet routing in which all packets corresponding to the same
message follow the same path and arrive in order.)

� A constant number of operation lengths: If there are only a constant number of different operation
lengths, then we can show that 	 � ����� (the � notation hides a constant that is exponential in the
number of different operation lengths).

Many questions remain open. Here are our favorite ones:

� General JSS: We have not been able to improve the upper bound of 	 � �����
�� ����
�
��
�� ����� for
general JSS. How tight is this upper bound?

� Preemptive JSS: For acyclic JSS with preemption we show that 	 � ����
��
�� ���. We do not know if
this is best possible. Is 	 � �����? For general JSS with preemption we were unable to improve over the

2

previously known upper bound of 	 � ����
�� ��

��
�� ���, nor provide any evidence that 	 � �����
is unachievable.

� Flow shop scheduling: An important special case of acyclic JSS is flow shop scheduling, where ma-
chines are ordered, and within each job, the order in which machines are requested respects the order
of the machines. Previous to our work, the best upper bound known for flow shop scheduling was
similar to that of general JSS, namely 	 � �����
�� ����
�
��
�� �����. Clearly, our upper bound of
	 � ����
�� ��
��
�� ��� for acyclic JSS applies also to the special case of flow shop scheduling. How-
ever, this does not hold for our lower bound of 	 � ���
�� ��

��
�� ���. Can the upper bound for flow
shop scheduling be improved significantly?

1.1 Our results

We assume that the shortest operation length is 1 (this is achieved by scaling), and that all other operation
lengths are a power of 2 (by rounding operation lengths up to the nearest power of 2, loosing a factor of at
most 2 in congestion and dilation). Recall that � and � denote congestion and dilation (respectively), and
that �� � ��������. Let denote the length of the longest operation, and for general JSS, let � denote the
maximum number of time units that one job requests one machine (i. e., the sum of the lengths of the operations
that the job performs on that machine). Hence � � � �������� � ��. In the following, we assume that if

�� � or
��
�� � are smaller than 1, we always round them up to 1.

The following two theorems, which are proved in Section 2, describe our upper bounds on the length 	 of
the shortest legal schedule.

Theorem 1.1 For acyclic job shop scheduling, the following are upper bounds on the makespan:

(1) For any acyclic JSS problem,

	 � �
�
�� ��
��
�� � ����

����	
��������� ������ �

�
�

implying that 	 � ����
�� ��
��
�� ���. Observe that if � � � � � for some � � �, then 	 � ����.

(2) If there are only a constant number of operation lengths (independent of the values of � and �), then
	 � �����.

(3) If operation lengths depend only on the machine on which the operation is performed, then 	 � ��� �
�
��
�� �.

(4) With preemption, 	 � ��� ��
��
�� �.

Theorem 1.2 For general job shop scheduling, the following are upper bounds on the makespan:

(1) For any JSS problem,

	 � �

��
� �� ����

���
�
�� ����

�����

�
�

����
����	
������������ �

�
�

Observe that if � � ����� ��
���� for some � � �, then 	 � ����.

(2) With preemption, 	 � ��� � ��
����

���� � ����
����� ��.

The following two theorems, which are proved in Section 3, describe our lower bounds on 	. For general
JSS, we give a simple explicit construction showing:

3

Theorem 1.3 For any integer � � �, there is an instance of (general) JSS with � jobs, � machines, dilation and
congestion each equal to � � ��
�� ���, such that any legal schedule is of length more than ����� �

��� � �. For
large � this gives 	 � �� and � �
���

��
���.

Using a probabilistic argument, the following result is shown for acyclic JSS.

Theorem 1.4 For a large enough dilation �, there is an instance of acyclic JSS with � � � and 	 �
� ����

�� ��� ���� .

2 The upper bounds

In this section we prove Theorems 1.1 and 1.2. Let us first give a high level overview of our approach and the
new ingredients that it contains compared to [LMR94, SSW94, GPSS97]. For simplicity, consider an instance of
acyclic job shop scheduling with � � � � � � � and operations of varying lengths. The approach of [SSW94]
for handling this instance has two phases:

(1) Use a simple randomized algorithm to construct an intermediate schedule of length ����. This intermedi-
ate schedule may be illegal in the sense that it contains contention conflicts: at certain time steps as many
as � � ��
�� �

��
�� �� jobs may want to operate on the same machine.

(2) Convert the intermediate schedule into a legal schedule of length ����
�� ��.

In [GPSS97], the second phase was improved to give a schedule of length ����
�� �

��
�� ��.
We also follow this two phase approach. In the intermediate schedule we allow for higher contention � �

��
�� �
��
�� ��. However, this contention is distributed evenly over operations of different lengths, where for
each value of �, operations of length � contribute at most ��
��
�� �� to the contention. This allows for a more
efficient implementation of the second phase, which now gives a legal schedule of length essentially �����.

In order to construct our intermediate schedule, we follow the approach of [LMR94]. We start with the
(illegal) schedule of running all jobs in parallel and make a sequence of refinement steps, each time obtaining
a new (illegal) schedule. The feasability of each refinement step is proved using the Lovász Local Lemma.
However, the existence of operations of different lengths (rather than just unit length operations) causes sig-
nificant differences between our refinement steps and those of [LMR94]. We use many more refinement steps
(��
�� �

��
���� rather than ��
��� ��), and we use the general form of the Local Lemma rather than the
uniform (symmetric) version.

In Section 2.1, we give some definitions and establish some notation that is used throughout the proofs of
the upper bounds. Section 2.2 reviews some probabilistic lemmas that we later use. In Section 2.3, we show
how to convert suitable intermediate schedules for any JSS problem into legal schedules. Section 2.4 proves
the existence of an efficient intermediate schedule for general JSS (used in the proof of Theorem 1.2), and
Section 2.5 proves the existence of an efficient intermediate schedule for acyclic JSS (used in the proof of items
(1), (3) and (4) in Theorem 1.1). In Section 2.6, we present the proof of Theorem 1.1 (2).

2.1 Definitions

Our proofs will use the following notation. A �-operation is an operation of length �. We assume that the
shortest operation length is 1 (this is achieved by scaling), and that all other operation lengths are a power of 2
(by rounding operation lengths up to the nearest power of 2, loosing a factor of at most 2 in congestion and
dilation). We use the notation �� ��-operation to denote an operation whose length is not more than �, and
� -operation to denote an operation whose length belongs to the set � .

4

A time interval is composed of consecutive time units. A �-interval denotes a time interval of length �. Some
intervals, called frames, are special. For a frame � , its length �� � is always a power of two, and its starting time
is an integer multiple of �� �. A schedule is called well-structured if every �-operation falls into a frame of length
�.

For a (possibly illegal) schedule, the �� ��-congestion for machine � in time interval � is the sum over all
�� ��-operations that are scheduled to begin execution on � within � , where each such ��-operation contributes
�� to the sum. The � -contention of machine � is the maximum number of � -operations that are scheduled on it
at one time unit (for a legal schedule, the contention of every machine is one).

As the length of the largest operation is , there are at most � �
�� different operation lengths. Par-
tition operation lengths into consecutive sets of cardinality �. These sets are denoted in the following by
��� ��� � � � � ������� � ��	, where set �
 contains all operation lengths from ��
���	 to �
	��. (For acyclic JSS,
we shall later fix � �
��
�� .) We remark that in Section 2.5 we shall use a slightly modified definition for
�
. This modified definition appears in the beginning of Section 2.5.

2.2 Probabilistic tools

In this section, we summarize the main probabilistic tools we will use in our proofs. Let us first recall the general
form of the Lovász Local Lemma (see [ASE92]).

Lemma 2.1 (Lovász) Let ��� � � � � �� be a set of “bad” events with dependency graph �. (That is, �
 is
independent of the set of all events �� with ��� �� �	 �.) Assume that there exist ��� � � � � �� 	 ��� �� with

����
� � �

�

�
����
��� ���

for all �. Then

���
�

��
� �

��

��

��� �
� � � �

that is, with probability greater than zero no bad event occurs.

If all events have a similar probability of being true and roughly the same degree in the dependency graph,
one can use the following uniform (or symmetric) form of the Local Lemma.

Lemma 2.2 Let ��� � � � � �� be a set of “bad” events, each �
 occuring with probability at most � and inde-
pendent of all but at most � other events in
��� � � � � ���. If ���� � �� � �, then with probability greater than
zero no bad event occurs.

Furthermore, we use the general Chernoff-Hoeffding bounds (see [Ho87]).

Lemma 2.3 (Chernoff-Hoeffding) Let ��� � � � ��� 	 ��� �� be independent random variables. Further let
� �

��

���
 and � ����. Then it holds for every � � � that

���� � �� � �� � �
�

��

�� � �����

	���

�

In case of � � � � �, the following bound holds

���� � �� � �� � � �������� �

5

2.3 Transforming suitable illegal into legal job shop schedules

The following lemma describes an intermediate schedule that may be illegal (in the sense that a machine may
need to perform several operations at the same time), but can be transformed into a legal schedule with relatively
short makespan. The lemma holds for general JSS (acyclicity is not required).

Lemma 2.4 Let �� !� "� Æ be nonnegative parameters that may depend on � and �. Assume a well-structured
schedule of length Æ� with the following properties holding for every machine:

� For every set �
, the �
-contention is at most �� !�
�.

� For any frame � , where �� � is a power of �	, the �� �� �
�	�-congestion is at most "�� ��
�.

Then the intermediate schedule can be transformed into

(1) a legal schedule of length 	 � �Æ�#
��

�������#� �� with # � �����!�"��
� for the general
case,

(2) a legal schedule of length 	 � Æ��� � !�� for the case that the operation length depends only on the
machine on which the operation is performed, or

(3) a preemptive schedule of length 	 � �Æ��� � �! � "���.

Assume that Lemma 2.4 is true. Then Theorem 1.1 (1), (3) and (4) would follow if we could prove the
existence of a well-structured schedule for acyclic JSS with

� �
��
���� � � ��
��
�� �� " � ��� ��
��� and !� Æ � ���� �

Theorem 1.2 would follow if we could prove the existence of a well-structured schedule for general JSS with

� �
���� � � �

�
����

���
�
�� ����

�����

�
�
� " � ��� ��
��� and !� Æ � ���� �

Let us first prove Lemma 2.4. In the following, let � denote a schedule that fulfills the requirements of
Lemma 2.4.

2.3.1 Proof of Item 1

The proof extends a technique by Goldberg et al. [GPSS97]. Let us start with partitioning � into frames of
length . By the definition of and the fact that � is well-structured, no operation crosses a frame border. We
will show how to construct a legal schedule for the operations in each frame. Concatenating these schedules
yields a legal schedule for the whole JSS problem.

Consider some fixed frame � . Let � be a rooted complete binary tree with leaves labeled, from left to
right, �� �� � � � � � �, each leaf denoting a time step of the frame. Let $ be a node in � and let %�$� and &�$� be
the labels of the leftmost and rightmost leaves of the subtree rooted at $. For every machine �
, we define '
�$�
to be those operations that are scheduled on �
 in � for precisely the time interval �%�$�� &�$��. Hence each
operation is in exactly one '
�$�. In the following, we will describe a frame scheduling algorithm that produces
a legal schedule for � with makespan �# ����

����	
����� � , where # � ��� ��! � "��
�.
Let us assume in the following that # is a power of two. Mark a node $ if it is at height �� ���
��#� in

� . (If $ is a leaf, then its height is �, the father of $ has height �, and so on.) Eliminating the edges between a
marked node and its children partitions � into a collection of subtrees, each of height (at most)
�� #.

6

Let � � be one of the subtrees of the partition. We move all operations stored in �� from the sets '
�(� to
new sets '�
�(� for every machine �
. Initially, each '�
�$� is empty for all $ 	 � �. We describe a procedure for
building up the sets '�
�$�. At each step of this procedure, �
�$� denotes the time needed to process all operations
currently in '�
�$�. We scan the nodes of � � from the bottom upwards, starting with all nodes at height 0, then
continuing with all nodes at height 1, and so on until the root of �� is reached. For a node (in � � we scan its
operations in an arbitrary order. For each such operation that has to be performed on machine �
 (i. e., this is
an operation belonging to '
�(�) we place it in '�
�)�, where) is a leaf of the subtree of �� rooted at (with the
currently smallest �
�)�. We update the respective '�
�)� and �
�)�. In essence, this procedure amounts to:

Distribute all operations of '
�(� among the '�
�)� of its leaves) such that their �
�)�’s are as balanced as
possible.

We now view � once again as one complete binary tree. For each vertex $ we define ��$� � ���
 �
�$�.
Let the nodes of � be numbered as $�� $�� � � � in the preorder traversal of � . Define *�$�� � �, and for any
� � � let *�$�� �

�
��� ��$��. Run the following scheduling algorithm to produce a schedule �� :

Schedule the operations in '�
�$� on machine �
 consecutively beginning at time step *�$� and concluding
before *�$� � ��$�.

It remains to show that �� is legal and has a makespan of at most �# ����
����	
����� � . Consider any subtree

� � of the partition. Assume the leaves of �� are at height � in � . Clearly, the algorithm for distributing the
operations in the '
�$� among the '�
�$� ensures that all '�
�$� for all nodes in � � are empty except for the leaves
of � �. We want to show by complete induction that for every height + 	
�� � � � �
�� #�, after the algorithm has
distributed all operations in the '
 of nodes of height + in � � among the '�
 of their leaves, ��$� � #�� � ����

for every leaf $ in � �.
For + � �, this assumption follows directly from the contention bound in Lemma 2.4. Now suppose that the

bound on the ��$�’s is true for some + � �. Then we want to show that it also holds for +� �.
Assume in the contrary that the assumption is not true for +� �. Then there must exist a machine �
 and a

node (at height +� � in � � with one of its leaves $ having �
�$� � #�� � ������. Since after the distribution
of operations in nodes of height +, �
�$� still was at most #�� � ����, $ must have an operation from '
�(�. If
this operation cannot be moved to another leaf to decrease the number of leaves) with �
�)� � #�� � ������,
�
�)� must be greater than #�� for all leaves) under (. This, however, induces a total congestion of more than
���� �#�� by the �� �������-operations stored in the subtree of (, which is a contradiction to the contention and
congestion bounds of Lemma 2.4 (two times the contention bound for the largest operations plus the congestion
bound for the rest are sufficient to bound the total congestion in the subtree of (). Hence, the operations can be
distributed in such a way that for all leaves $ it holds

�
�$� � #�� � ������� � #���� �

There are
�� nodes at this height in � . The sum of these ��$�’s is thus at most �# . Each subtree layer
therefore contributes at most �# , and there are ����

����	
����� � layers. Thus,
�

��� ��(�, the makespan of schedule

�� , is at most �# ����
����	
����� � .

To show that �� is legal we observe that by construction, no machine performs more than one operation at
a time. We also need to show that each job performs its operations in order. For this, consider two operations
�� and �� of the same job, where �� follows ��. Then we have that �� finishes before �� begins under � .
Assume (the more difficult case) that � schedules �� and �� within the same frame � . Consider the respective
tree � described above and let nodes $ and (be such that �� 	 '
�$�, �� 	 '��(�. Then $ and (are roots of
disjoint subtrees of � and $ precedes (in the preorder traversal of � . Thus �� finishes before �� begins in �� ,
and the new schedule is feasible.

Concatenating all Æ�
 legal frame schedules yields a legal schedule whose makespan is bounded as de-
scribed in Lemma 2.4(1).

7

2.3.2 Proof of Item 2

For item 2 (operation length depends on machine), observe first that the contention is an integer, and hence
� � !�
� is an integer. Modify the original schedule in a greedy way such that each �-operation on machine
� that started at time � (recall that � is an integer multiple of �) now starts at a time step �� � !�
��� � ��,
where � � � � �� � !�
��, and � is chosen such that no previously considered �-operation on machine � is
scheduled to begin at the same time. Clearly, the length of the new schedule is at most Æ��� � !�
��. The
new schedule is legal for the following reasons. For each job, operations are performed in order, because they
were performed in order in schedule � , and every operation that started at time �� and ended at time �� in � now
starts at time ��� � ���!�
���� and ends at time ��� � ���!�
���� in the new schedule. Furthermore, each
machine performs at most one operation at every unit of time, because all operations in one machine are of the
same length.

2.3.3 Proof of Item 3

Let us divide all operations into the following two sets:

� Set � consists of all �
-operations, where � 	
�� � � � � ������
	 � is odd.

� Set , consists of all �
-operations, where � 	
�� � � � � ������
	 � is even.

We first show that for each of the sets it is possible to produce a (still illegal) schedule �� with contention
�� �! � "��
� such that no operation starts earlier than supposed to start according to � and ends later than
supposed to end according to � . We achieve this by suitably distributing the units of processing among the time
steps, allowing several units of processing from the same operation to be placed at the same time step.

W.l.o.g., let us concentrate on scheduling operations in �. First, let us schedule the ��-operations. Accord-
ing to the contention bound in Lemma 2.4, this can be done with contention � � !�
� without moving the
operations.

Suppose now that for some odd � 	
�� � � � � ������
	 � all ��-operations in � with � � � can be scheduled

with contention � � �! � "��
�. Then we want to show that also the ��-operations in � with � � � can be
scheduled with contention � � �! � "��
�. Let us choose the strategy that we always try to fully exploit this
contention bound, preferring insertions of units of processing from the operation that has to finish next in � .
Suppose that with this strategy there is an operation that cannot be inserted before it ends according to � . We
will show by contradiction that this cannot happen.

Let us choose the first operation, say �, where a bad event happens. Let us go back in time until we reach a
point where a contention of ���!�"��
� could not be fully exploited (or we reach the beginning of �). This
means that all �
-operations that started before could already be inserted. Choose � as the interval that starts at
the first point (forward in time) from this point, where a �
-operation starts in � , and ends where � is supposed
to end in � . Since the starting point of � cannot be later than the time step when � starts in � , the length of � is at
least ��
���	. In fact, we chose � above such that its length is an integer multiple of ��
���	 (which is the smallest
length a �
-operation can have). Since � is well-structured, all units of processing of ��-operations with � � �
that are inserted in � belong to ��-operations that start in � . From the congestion bound in Lemma 2.4 we know
that within such an interval the congestion caused by ��-operations in � with � � � is at most "����� . Hence, if
a contention of �� �! � "��
� does not suffice to insert all �
-operations that end no later than �, then, since
all �
-operations starting before � could be inserted before � , this means that somewhere in � there must have
been a contention among the �
-operations of more than �� !�
�, which contradicts the contention bound in
Lemma 2.4.

Hence, all operations in � can be scheduled with contention ���!�"��
�, and therefore all operations in
� and , can be scheduled with contention �����!�"��
��. Since a schedule of length � that has contention
� can be simulated by a preemptive schedule of length � � � with contention 1, item 3 follows.

8

2.4 An intermediate schedule for general JSS

In this section, we prove the existence of an intermediate schedule that fulfills the requirements of Lemma 2.4
with

� �
���� � � �

�
����

���
�
�� ����

�����

�
�
� " � ��� ��
��� and !� Æ � ���� �

We assume w.l.o.g. that � � �. (If � � � , just use � instead of � as an upper bound on the congestion.)
Since � �
���, all operations (except of the �-operations) are combined into one set �
. Hence, it remains to
show the following lemma.

Lemma 2.5 For any job shop scheduling problem, there exists a well-structured schedule of length ���� such
that for every machine the contention is bounded by

�

��

�
�

���

��
�
� � ����

�����

�
�
 �

Proof. Let us first assume that � � ����, i. e.,
��� � ��
����. Consider, for each job, the random
experiment of choosing a delay independently and uniformly at random from a range of ��� � � ��. Each job
that is assigned a delay of Æ waits for Æ time steps and then is processed by the machines in the prescribed order
until it is completed. We use this random experiment to show with the help of the Lovász Local Lemma that
delays exist such that Lemma 2.5 is satisfied. In order to simplify the proof, let us assume in the following that
� is large enough (in fact, � � � suffices).

Fix a machine �
. We want to bound the probability that the contention among the operations in �

exceeds some limit. For this, let us consider some fixed time step �. Let - be the probability that at least � units
of processing are scheduled on �
 at �. There are at most

��
�

�
ways to choose � units of processing from the

operations for �
. For each such choice, the probability that all � units are scheduled at � is at most ��
��� .
Hence we get with � � ���� � �
������

���� � �������

����� �:

- �
�
�

�

	�
�

�

	�

�
�

��

� ��
	�

�

�
�

�

	� ���� ���� �

�
�
�

�

	 � �������

���

�
��

������	
�����

� ����
�
���

�������
��� � �

���

�
��

������	
�����

�
�
�

�
�
�

�

	� �������

�
�

�����
�

Let us define event �
 to be true if �
 has a contention of at least � at some time step. Since there are at most
�� time steps to consider, the probability � that �
 is true is at most �
�����.

In order to apply the Lovász Local Lemma, we have to bound the dependencies among all these events for
all machines. Whether or not an event becomes true depends solely on the delays assigned to the jobs. Thus,
two events are independent unless some job has operations in both of the corresponding machines. Since every
machine processes at most � operations and each of these operations belongs to a job with at most � other
operations, the dependence � among the events is at most � � �. Hence, ���� � �� � � and therefore, by the
Lovász Local Lemma, there exist delays such that the contention at every machine is bounded by

��
�

�
�

�
������

��
�
� � �������

�����

� � �

��

�
�

���

��
�
� � ����

�����

�
�
 �

9

It remains to transform this schedule into a well-structured schedule. As was shown in [GPSS97], a non-well-
structured schedule can be easily transformed into a well-structured schedule by stretching the makespan by a
factor of two as follows:

For any � and �, operations of length � that start at time � in the original schedule start at a time step that is
the least integer multiple of � that is at least as large as ��. Two operations overlap in the new schedule only if
they overlap in the original schedule.

So for � � ���� the lemma is true. It remains to show what to do if � � ����.

Our strategy will be to make a succession of refinements to an initial schedule '� until we reach a schedule
'
 of length ���� with the property that for every frame of size �� the congestion at any machine is bounded
by ���� � ���. Then we split '
 into frames of size �� and schedule each of them independently as described
above. This yields a final subschedule of length ����� with contention

�

��

�
�

����

��
�
� � ����

�����

�
�
 �

Combining these subschedules into one schedule by executing them one after the other would therefore yield
Lemma 2.5. In order to show how to do the refinements, we need the following lemma.

Lemma 2.6 For any job shop scheduling problem with congestion � , dilation � and � � ����, there exists a
schedule of length ���� such that for any ��-interval the congestion at any machine is bounded by ���� ����.

Proof. The proof uses the Chernoff-Hoeffding bounds and the Lovász local lemma at each refinement step.
Let us start with an initial schedule '�, in which each job is executed at every time step until it is completed.
This initial schedule is as short as possible; its length is only �. Let �� � � and �� � ����
�� ����� �� for
all � � �. Our aim is to show that for all � � � with �� � ����
�� ����� �� ��� there exists a refinement from
schedule '��� to '� such that the congestion at any machine for any ��� -interval is bounded by ���� � ��� �. So
when �� � � or
�� �� � �� for the first time, we reached the situation claimed in the lemma. (The condition
�� � �� was chosen to simplify the presentation of the proof. Basically, our techniques can be used for any
�� � � � �.)

The first step is to assign an initial delay to each job, chosen independently and uniformly at random from
the range ����� � ��, where �� � �. In the resulting schedule, '�, a job that is assigned a delay of Æ waits for
Æ steps and afterwards is processed without waiting again until it is completed. The length of '� is at most ��.
We use the Lovász Local Lemma to show that if the delays are chosen independently and uniformly at random
and �� is sufficiently large, then with nonzero probability the congestion at any machine in any ��� -interval is at
most �� �

�
� �� � ��

��
���� . Thus, such a set of delays must exist.

To apply the Local Lemma, we associate a bad event with each machine. For machine � and time interval
� , we define the congestion of � at � to be the sum of the lengths of those operations on � that start within time
interval � . (Hence, operations that start in an earlier time interval and extend into � are not counted, whereas
for operations that start in � we also count their part that extends into subsequent intervals.) The bad event for
machine � is that there is some ��� -interval with a congestion of more than ��. We bound the dependence �
among the bad events and the probability � that a bad event occurs.

We first bound the dependence. Whether or not a bad event occurs depends solely on the delays assigned to
the jobs that have operations for the corresponding machine. Thus, two bad events are independent unless some
job has operations in both of the corresponding sets. Since each machine processes at most � operations and
each of the corresponding jobs has operations in at most � other sets, the dependence � of the bad events is at
most � ��.

10

Next we bound the probability that a bad event occurs. Consider some fixed machine � and ��� -interval � .
Let � be the number of operations for � . For every � 	
�� � � � ���, let the random variable �
 be the length
of operation � if operation � is started during � and 0 otherwise. Let � �

��

���
. Since the jobs choose their

delays uniformly at random from a range of size ��, we get ����
 �� �� � ���
�� for all � 	
�� � � � ���.
Hence,

���� �

��

��

���
� � �

�
� ��� �

As every job has operations for at most � time steps at � , the �
’s can be grouped together to independent
random variables of value at most �. Thus, we get together with the Chernoff-Hoeffding bounds and � � ��

��
(note that � � � because �� � ��) that

���� � ��� � ��
�
� � �� � ���� � ���

� � �
�
�

��
��

��
�
�
��
���� � ����

�
��� � �

�����
�

For the last inequality we used �� �
���, and �
� �
���

��� for � � � � �. Since for each set there
are at most � � �� � �� many ��� -intervals to consider, the probability that a bad event occurs for machine
� is bounded by � � �
�����. Thus, the product ���� � �� is less than 1 and therefore, by the Lovász
Local Lemma, there is an assignment of delays such that the congestion at every machine in every ��� -interval is
bounded by ��.

We now break schedule '� into frames of length ��� . With each frame we associate those operations that '�
schedules to start within the time interval of the frame. For each job that has at least one operation associated
with the frame, we consider the fragment of the job composed of those operations associated with the frame.
For each frame separately, for each fragment of a job, we choose an additional delay relative to the starting point
of the frame. Schedule '� then results from executing the modified frames one after the other.

To simplify terminology, we treat each fragment of a job as a job by itself. The final schedule will guarantee
that fragments of the same job are scheduled in order. Consider now some fixed ��� -frame � in '�. Let the delays
of the jobs in � be chosen in the range ����� � ��, where �� � ��� � ��� . Hence, the length of the resulting
schedule for this frame is at most ��� � ��� � � �� � �
����

�
� (recall that � � � ��). We use the Lovász

Local Lemma to show that if the delays are chosen independently and uniformly at random and �� is sufficiently
large, then with nonzero probability the congestion in any ��� -interval is at most

�� �

�
� �

�
��

	�
��

��� � ���

	
��� �

�

�

�
� �

�
��

	�
� �

�
��

	�
�

�� ���
����

	
��� �

Thus, such a set of delays must exist.
To apply the Lovász Local Lemma, we associate a bad event with each machine. The bad event for machine

� is that there is some ��� -interval � with a congestion of more than ��. Let � be the number of operations
on � . For every � 	
�� � � � ���, let the random variable �
 denote the length of operation � if operation � is
started during � and 0 otherwise. Let � �

��

���
. Since the jobs choose their delays uniformly at random

from a range of size ��, we get ����
 �� �� � ���
�� for all � 	
�� � � � ���. Hence,

���� �

��

��

���
� � ��

��� � ���
� ��� �

11

Since an event �
 �� � influences the outcome of � by at most �, we get together with the Chernoff-Hoeffding
bounds and � � ��

��
(note that � � �) that

���� � ��� � ��

�
� � �� � ��

��

��� � ���
� ���

�

� �
�
�

��
��

��
��

�

�
��

�

��
���� � �����
�
�� � �����

�
�� �

Since the total number of ��� -intervals to be considered is at most �� � � �� � ���� , the probability that a bad
event occurs for machine � is bounded by

� � ���� � �����
�
�� � �

� �
���
� �

Next we bound the dependence among these events. Clearly, two bad events are independent unless some job
has operations at both of the corresponding machines. Since each machine has at most ���� operations and each
of the corresponding jobs has operations in at most ��� other machines, the dependence � of the bad events is at
most ���

�
� � ��

� �
�
� . Hence, the product ���� � �� is less than 1 and therefore, by the Lovász Local Lemma,

there is some assignment of delays such that the congestion at every machine in every ��� -interval is bounded by
��.

We continue to refine each frame recursively in a way similar to above. That is, for frames of length ��� we
choose delays up to a value of ��� � ����� and bound the congestion in intervals of lengths �����. Eventually, we
reach a value � for which either �� � � or
�� �� � �� (implying that �� is a constant). We end up with a
schedule '� with a total length of at most

��
����
���

�
� �

�

��

	
� ����

and with a congestion �� in each ��� -frame of at most

�

�
� ���

�
� �

�
��

	 ��
���

��
� �

��
��

��
�

�� ���
������

	�
� �

�
�

�
� ���

	
�

which proves Lemma 2.6. ��

This completes the proof of Lemma 2.5. ��

2.5 An intermediate schedule for acyclic JSS

In this section we prove the existence of an intermediate schedule that fulfills the requirements of Lemma 2.4
with

� �
��
���� � � ��
��
�� �� " � ��� ��
��� and !� Æ � ���� �

As in Section 2.4 we assume w.l.o.g. that � � �. Also, we assume that � and
��� are powers of two.
It is not difficult to see that if this is not true, rounding these to the next higher power of two does not affect
the bounds in this section. To simplify subsequent notation, we reverse the order of the �
. That is, for every
� 	
�� � � � � ����

��� ����� the set �
 is defined as
 �
�����

� � � � � �
� ������ �

� and �� �
��. Since there can be at most

�
� many ��-operations on each machine, we will not consider these operations in the following.

12

Lemma 2.7 For any acyclic job shop scheduling problem, there exists a well-structured schedule of length
���� with the following properties holding for every machine:

� For every set �
, the �
-contention is at most ��
��
�� � �
��.

� For every frame � , where �� � is a power of
���, the �� �� �

����-congestion is at most ���� ��
��.

Proof. We will only prove the existence of a non-well-structured schedule with the properties above. As noted
in Lemma 2.5, it can be easily transformed into a well-structured schedule with the same properties.

In case that � ����, we have
��
�� � ��
��
���� and therefore can replace the contention bound
above by ��
��
��� � �
��. If � ����, then we use the same strategy as described for � � ���� in
Lemma 2.5 to create a schedule that can be partitioned into frames of size � with congestion at most ���� � ��,
and continue to schedule each of these frames independently. It therefore suffices to consider the case � ����,
i. e., to show that there exists an intermediate schedule with a �
-contention of ��
��
�����
�� for every �.

Our strategy for constructing an efficient schedule is to make a succession of refinements to an initial sched-
ule '�. In '� each job is executed at every time step until it is completed. This initial schedule is as short
as possible; its length is only �. Unfortunately, as many as � jobs may have to use a machine at a single
time step in '�. In order to refine '� to a schedule '�, each job is assigned a suitable delay from the range
���� � �

���� � ��. Every job that is assigned a delay of Æ waits for Æ time steps and then is processed by the

machines in the prescribed order until it is completed. Hence, the length of '� is bounded by �� � �
���� .

In order to refine '� to '�, each job in '� is again assigned a suitable delay, but this time from the range
��� �

���� � �
���� �

� ��. Each job that is assigned a delay of Æ waits for Æ time steps in addition to the time steps
it is already waiting according to '� and then is processed by the machines in the prescribed order until it is
completed. Hence, the length of '� is bounded by ��.

For the refinement from '� to '�, we break the schedule of '� into frames of length �
���� . Each such

frame �� is considered separately from the other frames, and a subschedule '��� is constructed for it. Then the
subschedules '��� are concatenated back together (with some overlap) to give schedule '�.

Let us describe in a bit more detail how to refine a frame �� to a subschedule '��� . Each operation is
associated with the frame at which it starts. Within each frame, each job is given a suitable delay in the range
��� �

���� �
� �

���
�
� ��. So a job starting at time � in � with delay Æ now starts at time �� Æ in '��� . There is no

simple bound on the length of '��� , due to long operations that start at �� and can extend well into subsequent
frames. We consider the first �

���� � ��
�����

steps of a subschedule to be its main part, and the rest of the steps

as its extension. Note that all �� �
�����

�-operations are guaranteed to be completely processed during the main
part, whatever their delay is. Schedule '� then consists of processing the main parts of '���� '���� � � � one after
the other, letting the extension of a subschedule run in parallel to the main parts of subschedules that follow it.

The rest of the refinements is similar to the refinement from '� to '�, with the difference that, for a refinement
from schedule '��� to schedule '� for some & � �, '��� is broken into frames of size �

�������
and within each

frame, each job is given a suitable delay in the range ��� �
�������

� �
����� � ��. The main part of any resulting

subschedule is considered to be its first �
�������

� ��
�������

steps.

We continue to do these refinements until for the first time, frames of size at most
���� have been refined.
Hence, the number of refinement steps is roughly ����

��� ���� . Our refinements lead to the following claim.

Claim 2.8 For any & � �, the total length of schedule '� is bounded by�
� �

�

���

	���

�� �

13

This claim shows that the length of the final schedule is at most �� (i. e., Æ � �). It remains to prove bounds
on the congestion and contention of the operations. We want to achieve this by considering for each '��� with
& � � (let '��� denote '� and '��� denote '�) the following problems for every machine:

� For every � � & � �, we want to bound the contention caused by �
-operations, and

� for all �� �
�������

�-operations we want to bound the congestion in any �
����� -interval.

For this, let us introduce the following notation. For any time interval � and schedule ', let '�� denote '
restricted to � (that is, '�� only contains operations that start in �). Fix some machine � and schedule '. Then
the �
-congestion ��

 at � is defined as the congestion at � caused by �
-operations in '. ��
�
 denotes the

congestion in ' caused by all ��-operations with � � �. Furthermore, the �
-contention ��
 at � is defined as
the contention at � caused by �
-operations in '.

In order to obtain the properties above, we prove the following claim.

Claim 2.9 After the last refinement we end up with a schedule ' such that for every machine it holds:

(1) For every � � �, ��
 � ���� �
��
����, and

(2) for every & � �, ��		
�� � �� ���

�������
� for every �

�������
-frame � in '.

This implies that � � ��
��
���� and !� " � ����. Therefore, it remains to show Claim 2.9.
Our refinement strategy above was chosen such that for every refinement step & we can basically use the

same analysis for bounding the congestion and contention. Hence, let us consider in the following some fixed
& � �, and let us assume that for all &� � & the claims below have already been shown to be true. Since our
refinement strategy allows us to refine each frame of size �

�������
in '��� independently, let us consider for the

rest of the proof some fixed frame � of this size. Our goal is to refine schedule '���� � '����� to some new
schedule '�� that is then used together with the refined schedules of other frames as described above to construct
some schedule '�.

2.5.1 Bounding the congestion

Let � , '���� and '�� be defined as above. Let �� denote the set of all possible time intervals of length �
���
 �

in

� , and let %
 � �
�������

denote twice the largest possible length of a �
-operation. The following claim bounds

the congestion of '�� in terms of the congestion of '����.

Claim 2.10 Let ����

 � �����
��� �

�����	�

 , and let ��

 � �����
� �
���	�

 . There is a schedule '�� such that

(in addition to the contention bounds stated in Claim 2.12) it holds for every � � & � � and every machine:

(1) If ����

 � %

��

�� then ��

 � �� ��� �

���� ��
�����
�

���� .

(2) If %

��
�� � ����

 � %

��
�� then ��

 � �� ��� ��
����

��
�����
�

���� .

(3) If %

��
�� � ����

 � %

��
�� then ��

 � ��
�����
�

���� �.

(4) If %

��� � ����

 � %

��

�� then ��

 � ��%

����.

(5) If ����

 � %

��� then ��

 � ����

 .

Furthermore, it holds:

14

(6) �����
��� �
���	�
��� � ������
��� �

�����	�
��� and

(7) �
���
� � �

�����
� .

Obviously, Claim 2.10 (7) is always true, as in both cases we sum up the lengths of exactly the same
set of operations. Claim 2.10 (5) and (6) are also true, since the delays for '�� are chosen from the range
��� �

�������
� �

����� � ��. So it remains to prove Claim 2.10 (1)–(4). This will be done later.
Assume that Claim 2.10 (1)–(4) are true. Then we can show the following lemma.

Lemma 2.11 For every �
����� -interval � in '�� and every machine, ����	�

���� � �� ���
����� �.

Proof. Fix some machine � . We start by showing that for every & � � and � � & � � it holds for every
�

���� � -interval � in '�� that

�
���	�

 � �

�
��

����
� %

���

�
�

Let us assume that ��

 � %

��

�� for some � � �. Then we get for every � � & � � � � and every
�

���� � -interval � in '�� with the help of Claim 2.10 (1) that

�
���	�

 �

�
� ��

�
�

���

		� ��

����
�

For �� � � & � �� � and every �
����� -interval � in '��, this yields with Claim 2.10 (2)

�
���	�

 �

�
� ��

�
�

���

		����
� ��

�
�

���

		
��

����
�

and for �� � � & � �� � and every �
����� -interval � in '��, this yields with Claim 2.10 (3)

�
���	�

 �

�
� ��

�
�

���

		����
� ��

�
�

���

		
�

�
��

����

�

� �

�
��

����

�
�

Finally, for �� � � & � � we get with Claim 2.10 (4) that ����	�

 � � �%

����.

So for every & � � and every �
����� -interval � in '��, �

���	�
���� is bounded by

�

����

�
���	�

 �

�

����

�

�
��

����
� %

���

�

�
�

����

�

����

����

 � �
���

�

����

�

�
�

��
���

	

� �

�
� ��

����

	
�

��

15

Hence, for every machine � , the total congestion in '�� caused by �� �
�������

�-operations in frame � is
bounded by

�
����� � �
�
� ��

����

	
� �� �
�� �

�������
�-operations

��
���� � �
�

� ��

������

	
� �� �

����-operations

��

�
� ��

������

	
� �� �
��-operations

� �

�
� ��

������

	
�

The first term in the left hand side comes from Lemma 2.11 together with the fact that there are
roughly �
����� disjoint intervals of length �

���� in frame � . The second term uses Lemma 2.11 and
Claim 2.10 (6), and the third term uses Lemma 2.11, Claim 2.10 (6) and Claim 2.10 (7). Hence, under the
assumption that Claim 2.10 is correct, Claim 2.9 (2) follows. It remains to prove Claim 2.9 (1).

2.5.2 Bounding the contention

In order to bound the contention, we will prove the following claim.

Claim 2.12 There is a schedule '�� such that (in addition to the congestion bounds stated in Claim 2.10)

(1) �
���
��� � ���� �
��
����,

(2) �
���
� � ���

�����
� �, and

(3) �
���

 � ����
 for all � � & � �.

Claim 2.12 (3) is easy to show. Since the total amount of time steps by which the �
-operations move for the
refinements following schedule '
 is bounded by

�
��

�
�

������
� �

��� �

	
�

�

��
�
�

%

���

�

the contention of these operations can at most double afterwards. Suppose that Claim 2.12 (1) and (2) are also
true. Then we can show the following lemma.

Lemma 2.13 After the last refinement, for every � � � and machine, the contention among the �
-operations is
bounded by ���� �
��
����.

Proof. Using Claim 2.12 it follows that, for any & � � and � � &��, the contention among the �
-operations is
bounded by ���� �
��
���� in '�. We mentioned earlier that we want to stop the refinements after for the first
time frames of size at most
���� have been refined, that is, �

�������
�
����. In this case, ���� represents a

set of �-operations with � 	
�� � � � � ��
����, and since their contention is bounded because of Claim 2.12 (1),
the lemma follows. ��

So if Claim 2.12 is true, then Claim 2.9 (1) follows.

16

2.5.3 Proofs of Claim 2.10 and Claim 2.12

Recall that we want to show that on frame � of length �

������ we can refine schedule '���� to obtain
a schedule '�� that satisfies certain bounds on the congestion and contention. Our proof will use the general
form of the Lovász Local Lemma. We associate bad events with each machine. For some fixed machine � ,
�
 denotes the event that the congestion of �
-operations is too high in '��, and ,
 denotes the event that the
contention of �
-operations is too high. We first bound the probabilities for the �
 and ,
 events.

Let us consider some event �
 with � � & � �, denoted by � in the following. We distinguish between the
following two cases:

� ����

 � %

��

��: Consider some fixed �
�������

-interval � in '����. The interval composed of the last
�

���� � time steps of � is called the tail of � . Let all �
-operations on � that start in � be numbered from 1
to .. For every � 	
�� � � � � .�, let the random variable �� be � if operation � is a �-operation and chooses
a delay such that it starts during the tail of � , and 0 if operation � chooses a delay such that it starts either
before or after the tail of � . (Note that all operations that might be processed during the tail of � in '�� start
in '���� during � .) Let � �

��
����� . Since the jobs choose their delays independently and uniformly at

random from a range of ��� �
�������

� �
���� � � ��, we get

����� �� �� � �

����

�
�
���������
�
�����
�

�

��� � �

for every �. Hence, ���� � ����

�
��� � ��. Let � ����

�
��� � �� and Æ �

����
�

 ����

�%

��

����
����. Since the operations considered for � have a length of at most

� � %

�, we get together with the Chernoff-Hoeffding bounds that, for � � �
Æ if �

Æ � � and � � ��Æ �
�

otherwise,

�� �� � �� � �� � � �
����Æ��

�����
�

������
��� � �

��	��

	
�����

�����
�

�� ���

�

�

In this bound, we replace the expression ����

�%

��

��� as follows. Let �� denote the number of
�
-operations on � in the frame � . Since the smallest �
-operations have size %

��� and frame �
has
��� disjoint intervals of size �
�
�� �����, we have that �� � �
��� � ����

 �
�%

���� and
therefore ����

 � �� � %

����. We conclude that for � as defined in the two cases above

��
�
� � �� � ��

�����
�

������

�
� ���	�������� ��� ���

��� �

Let us define the event � to be true if � � �� � ��
�����
�

������ for some �
�������

-interval in '����. Since at

most � �
�������

different �
�������

-intervals have to be considered, we get

����� � ���

�
�

��
� � � ������ ���

� �

�
�

� %

��� � ����

 ��� � %

��

��: Let � , and � be defined as before. Then we get with � � � ����
��� that

���� � �� � �� � �
�

��

�� � �����

	���

� ��� ���� � ��� �

The rest is similar to above to obtain ����� � �
�� .

17

Next we bound the probabilities for the contention events. For some fixed machine � and � 	
&� & � ��,
let us consider the respective event ,
, which we will denote by , in the following.

First, we consider the case that � � & � �. Consider some fixed �
�������

-interval � in '����, and let � denote
its last time step. Let �� denote the set of all ����-operations on � that start in � . (Note that �� contains
all ����-operations that might be processed at time step � in schedule '��.) Since each unit of processing of an
operation in �� has a probability of at most �
� �

�������
� �

����� � to be executed at time �, the probability that

� � ��� � ������ ����
���
����
��
���� operations are executed at time � is bounded by

� ����
���

�

	�
�

�
�������

� �
�����

��

�

� � ����

���

�
�
�� �

����

�
���

�
�

� ��� �

Let us define , to be true if this contention bound is true for the last time step of every �
�������

-interval � in

'����. Using Lemma 2.11 as an inductive hypothesis for refinement step & � �, ����
��� � �� ���

�������
�. Thus,

� � �

�
� ��

������
� �

��� �
��
���

	
� ���
� �
��
���� �

as desired. Since the smallest operations in , have a length of at least %���

���, the total number �� of
����-operations on � within frame � is at most �
��� � ����

����
�%���

���� and therefore,

 ����
��� �

�� � %���

����
��� � �

������
�

Hence, the probability that , is true w.r.t. � is at most ����	������ ����� �� ���

 �. Since at most �
���� time

steps have to be checked to be sure that nowhere in '���� the contention caused by ����-operations exceeds �,
we get

���,� � ���

�
�

�����
� �
���� � ������ ���
�

�
�

The calculations for the case that event , considers ��-operations are similar: If we assume Claim 2.12 (1) to be
true for these operations after refinement step & � � and choose � � ������ ����

�
 �
�������

�
��
����� large
enough, then we end up with the same probability and contention bounds as above.

Next we bound the dependencies among the �
-events and the ,�-events. Whether or not a bad event �

occurs depends solely on the delays assigned to the jobs that have a �
-operation on the respective machine
� . Each of these ��� jobs may have operations that influence up to � other �� on other machines. Hence,
each �
 depends on at most ���� other ��-events. Furthermore, every such job may also have operations that
influence at most
���� ,�-events on other machines. This holds, since schedule '���� is based on a frame of
size �

�������
in '��� and the lengths of the operations influencing ,�-events are at least �

�������
. Hence, the

maximum dependence of an �
-event on ,�-events is bounded by ���
��
��.

Whether or not a bad event ,
 occurs also depends solely on the delays assigned to the jobs that have a
�
-operation on the respective machine � . Since each of these ��� jobs may have operations that influence up
to
���� other ,� , each ,
 depends on at most ���
��

�� other ,�-events. Furthermore, every such job may
also influence up to � ��-events. Hence, the maximum dependence of a ,
-event on ��-events is bounded by
����.

Before we use the Lovász Local Lemma, we state a simple claim

Claim 2.14 For any � � � � �
�, �� � � ����.

18

Proof. Since �� ������ � ���� and �� � � �� ������ if and only if � � � � �
�, the claim follows. ��

Now we are ready to apply the Lovász Local Lemma. We will assume that � is sufficiently large. For every
�
, choose ��� as ��� �

�
�
 , and for every ,
, choose ��� as ��� �

�
�����

. Let � be the dependency graph of
the �
-events and ,�-events. Then it holds for every �
 that

���

�
�����
��

��� ��
 �
�

�����
��
��� ��
 � � �

��

�
�� �

��

	���
� �

�� �

����

	���
���
�

�
�

��
� ������

��� � ������
� ����� � ����
� �

because for ��� �
���� we have

�

��
� ������

��� � ������
� ���� � � �

��

and for ��� �
���� we have

�

��
� ������

��� � ������
� ����� � � � ������

� ����� �

For every ,
 we further get that

���

�
�����
��

��� ��
 �
�

�����
��
��� ��
 � � �

����

�
�� �

��

	��
� �

�� �

����

	��
���
�

�
�

����
� �����

��� � �����
� ����� � ���,
� �

because for ��� �
���� we have

�

����
� �����

��� � �����
� ����� � �

�����

and for ��� �
���� we have

�

����
� �����

��� � �����
� ���� � � �
���� � ������

� ���
� �

Hence, according to the Lovász Local Lemma, there exists a set of delays that fulfills the requirements of
Claims 2.10 and 2.12. So a refinement from '��� to '� is possible as we claimed it, which proves Lemma 2.7.

��

2.6 Proof of Item 2 of Theorem 1.1

As before, let us assume that � � �. In order to simplify the proof, we first consider the situation that there are
only two different operation lengths, � and �, with � � � (recall that w.l.o.g. we can assume that � and
� are powers of 2). Our strategy for constructing an efficient schedule is to successively refine the (possibly
illegal) well-structured schedule '� that runs all jobs in parallel. Let �� � � with �� � �
� be the frame
size to be refined in schedule '� and ��� � with �� �
�� ���� for all � � � be the frame size to be refined in
schedule '� . Our aim is to show that for all � � � with �� � �� there exists a refinement from schedule '���

to a well-structured schedule '� such that the congestion at any machine for any frame of size ��� � is bounded

19

by ���� � �����. (The condition �� � �� was only chosen to simplify the proof.) So when
�� �� � �� for the
first time then the contention among the �-operations must be ���
��. Furthermore, the congestion caused
by �-operations in any �-interval must be bounded by ���� � ��. Our strategy therefore is to break schedule
'� into sub-schedules of length � and continue to schedule each sub-schedule independently, using the same
refinement strategy for the �-operations as before for the �-operations. At the end we want to arrive at a
well-structured schedule of length ���� in which both �-operations and �-operations have a contention of
���
��. This schedule can then be transformed into a legal schedule of length ������ by using the strategy
in the proof of Lemma 2.4 (1).

Let us describe now in detail, how to do the refinements. In the following, set /� � �
� and /� � �
�.
The first step is to assign an initial delay to each job, chosen independently and uniformly at random from

�� � � 	 ��� /� � ���. In the resulting schedule, '�, a job that is assigned a delay of Æ waits for Æ steps and
then is processed without waiting again until it is completed. The length of '� is at most ��. We show that
if the delays are chosen independently and uniformly at random and �� is sufficiently large, then with nonzero
probability the congestion at any machine in any time interval of size ���� starting at an integer multiple of �
is at most �� � �

� �� � ��
��
����� for both �- and �-operations. (Since the delays are multiples of � and '�

is well-structured, we only have to consider these ����-intervals for our refinement step.) Thus, such a set of
delays must exist.

To apply the Lovász Local Lemma, we associate two bad events with each machine. Fix some machine � .
For � 	
�� ��, the bad event ���
 for the
-operations at � is that there is some ����-interval starting at an
integer multiple of � with a congestion of more than ��. For this we have to bound the dependence among the
bad events and the probability that a bad event occurs.

Let us start with bounding the probability. Consider some fixed event ���
, denoted by �, and ����-interval
� . Let �
 be the number of
-operations on � . For every � 	
�� � � � ��
�, let the random variable �� be

if operation � is started in � and 0 otherwise. Let � �

���
����� . Since the jobs choose their delays uniformly

at random from
�� � � 	 ��� /� � ���, we get ����� �
� � ���
/� for all �. Hence,

���� �

���
���

���� � � �

�
� ���� �

Let �� � �
� and �� � �
�. Together with the Chernoff-Hoeffding bounds we get with � � ��
��

(note that
�� � ��) that

���� � ��� � ��
�
� � �� � ���� � ����

�
� �

�
�

��
��

��
�
�
���������

� �
����

����
����

� �����	�� � �

The total number of ����-intervals to be considered is at most �/�. Hence, the probability that a bad event �
occurs is bounded by

�/� � �����	�� � � �/� � ������� ��	�� � � /
��	�� �
� �

Now, we bound the dependencies among the events. Whether or not a bad event ���� occurs depends
solely on the delays assigned to the jobs whose operations influence ����. Since each of the at most �� jobs
regarded by ���� may have operations that influence up to /� other �� ���, each ���� depends on at most ��/�
other �� ���-events. Furthermore, every job associated with ���� may also have operations that influence up
to /� �� ���-events. Hence the maximum dependence of an ����-event on �� ���-events is bounded by ��/�.
Similarly, each ���� depends on at most ��/� other �� ���-events and on at most ��/� other �� ���-events.

20

Now we are ready to apply the Lovász Local Lemma. Recall that, since � � �, �� � /� and �� � /�.
Let �� � /

��	�� �
� and �� � /

��	�� �
� . Let � be defined as the dependency graph of the ����-events and

����-events. Then it holds for every ���� that

��
�

�������������
��� ���

�
�������������

��� ���

� /
��	�� �
�

�
�� /

��	�� �
�

�	� � �
�� /

��	�� �
�

�	� �
� /

��	�� �
� � ���

�������
� 	� � � ���

�������
� 	� �

� /
��	�� �
� � ��� � ���	�� � � �� ������ �

because

/
��	�� �
� � ��/� � � � ��� � /�

�
� �
�� � ��

�
�

which is true for all �� � /�, and

/
��	�� �
� � ��/� � ��
/� � ��� � /�

�
� �
�� � /�

�
�

which is also true since �� � /� � /�. For every ���� we further get that

��
�

�������������
��� ���

�
�������������

��� ���

� /
��	�� �
�

�
�� /

��	�� �
�

�	� � �
�� /

��	�� �
�

�	� �
� /

��	�� �
� � ���

�������
� 	� � � ���

�������
� 	� �

� /
��	�� �
� � ���	�� � � ��� � �� ������ �

because

/
��	�� �
� � ��/� � ��
/� � �� � /� �

which is true, and

/
��	�� �
� � ��/� � � � ��� � /�

�
� �
�� � /�

�
�

which is also true since �� � /� � /�. Hence, there is an assignment of delays to the jobs such that a refinement
from schedule '� to '� is possible such that the congestion at any machine �
 in any ����-interval is bounded
by ��.

Next, we break schedule '� into frames of size ���� and schedule each frame independently. So each frame
can be viewed as a separate scheduling problem where the jobs associated with a frame are those that have
operations scheduled by '� within the frame, and each such job contains only its operations scheduled within
that frame. For each frame, our refinement step will choose for each associated job a suitable initial delay.
Schedule '� then results from executing the modified frames one after the other.

Consider some fixed ����-frame � in '�. Let each job randomly choose an (additional) initial delay in the
range
�� � � 	 ��� ��� � ���. Then the length of the resulting schedule for this frame is at most ���� � ���� �
�� � �

��
�����. It is not difficult to see that we can use the Lovász Local Lemma in a similar way as above to

21

show that if the delays are chosen independently and uniformly at random, then with nonzero probability the
congestion in any ����-interval in � starting at an integer multiple of � is at most

�� �
�

�

�
� �

�
��

	�
� �

�
��

	�
�

�� ���
����

	
����

for both �- and �-operations. Thus, such a set of delays must exist. (The analysis is a combination of the
analysis above and the second refinement step in the proof of Lemma 2.6).

Continuing with the refinements until
�� �� � �� completes the refinements for the �-operations. The
processing of the �-operations is afterwards refined similar to Lemma 2.6. This proves the theorem for two
different operation lengths.

Extending this refinement technique from two different operation lengths to any constant number of opera-
tion lengths by using it again and again from the largest to the smallest operations proves item 2 of Theorem 1.1.

3 Lower Bounds

We first exhibit an instance of general JSS for which it is relatively simple to show that 	 �
���
�� ��

��
�� ���.

3.1 General JSS

Theorem 3.1 For any integers � � � � &, there is an instance of job shop scheduling with � jobs, � machines,
dilation and congestion each equal to � � �&���, such that any legal schedule is of length more than ���� �
���
��� �.

Proof. We describe the JSS instance for arbitrary integers � � � � &. There are � machines. Each job is
composed of repetitions of the sequence of operations ������ � � � ���. For job �, � � � � �, each operation
requires time &
��, and the sequence as a whole is repeated &��
 times. Hence, the length of each job (the
dilation) is &
�� � � � &��
 � �&���, which we denote by �. The congestion (the total demand for any individual
machine) is also �, as each job requires time �
� on each machine.

Fix an arbitrary legal schedule ' for the jobs, without preemption. We shall show that the length of the
schedule must be more than ����� ���

��� �.
Consider two arbitrary jobs, 0
 and 0� . Relative to the schedule ', we define the overlap ���� �� as the

number of time units in which both 0
 and 0� perform operations.

Proposition 3.2 For � � � � � � �,

���� �� � ��� � ��

&��

Proof. During the execution of an operation of 0� on machine � , job 0
 can complete at most �� � operations
(as operations on machine � have to wait). Each operation of 0
 is shorter than the operation of 0� by a factor
of &��
. ��

We now use the first two terms of the exclusion-inclusion formula to bound �'�, the total length of schedule
'. We obtain, �'� � �� ���
������� ��. But

�
�
���

���� �� �
�

���

�
�
��

���� �� �
�

���

�
�
��

��� � ��

&��

�

�
���

��� � ��

& � �
�
��� � ���

& � �

22

Hence, �'� � ����� ���
��� �. ��

Observe that already for the case of three jobs and three machines, when & is sufficiently large we get that
every job and every machine is idle for most of the duration of any legal schedule. Also, when & � �
�� �, then
the length of the shortest schedule is nearly ��, and � �
���

��
���. This proves Theorem 1.3.

If preemption is allowed, then the jobs in the proof of Theorem 3.1 can be scheduled within ���� steps.
This is a consequence of item 3 in Lemma 2.4.

3.2 Acyclic JSS

Here we prove Theorem 1.4, which is a direct consequence of Theorem 3.7 below.
Throughout this section we assume that � is sufficiently large. In order to avoid excessive use of floor and

ceiling notation, we treat all functions of � (such as
���,

�, !�
�
���, etc.) as if they give integer values.

(The effect of rounding fractional values of these functions to the nearest integer is negligible for the purpose of
our lower bound, when � is sufficiently large.) We start with preliminary definitions and a lemma.

Definition 3.3 A bucket configuration ,��� �� is a collection of �� buckets, where each bucket contains � �
�
�
����� of the � machines.

Definition 3.4 A partial cover of job 0 � �
� ��
� � � � � ��
� by bucket configuration ,��� �� is the assign-
ment of the buckets of ,��� �� to nonoverlapping intervals within ��� � � � �!, such that within each interval, all
operations of job J are on machines that are in the respective bucket. Job J avoids bucket configuration ,��� ��
if for any partial cover of J by ,��� ��, the number of operations of J that remain uncovered is at least �
�.

Definition 3.5 A bucket avoiding family of jobs � ����� �� is a collection of �

��� jobs, where each job
contains �! operations and the collection has the following properties:

(1) Each machine participates in at most �!��

��� jobs.

(2) Each job is acyclic.

(3) For any bucket configuration ,��� ��, at least half of the jobs avoid it.

Lemma 3.6 For � sufficiently large, for � � ����
� � �
��
��� � �, and for � � � � �
��
���, there is a

bucket avoiding family of jobs � ����� ��.

Proof. We shall use the term overwhelming (negligible, respectively) to denote a probability that tends to 1
(to 0, respectively) as � tends to infinity.

Consider the following four step randomized procedure for constructing � ����� ��.

(1) For each of the �

��� jobs independently, each of the �! operations in a job is to be executed on a
machine chosen uniformly at random, independently of all other choices.

(2) If there is some machine that participates in more than �!��

��� operations, abort the construction.

(3) If less than !�
�
��� jobs are acyclic, abort.

(4) Leave !�
�
��� acyclic jobs untouched. The total number of operations in the remaining jobs is
�!�
�
���. Globally rearrange these operations within the �
�
��� jobs so that each of these jobs
becomes acyclic. (By item 2 above, each machine participates in at most �!��

��� operations. Observe
that for sufficiently large �, the condition that � � ����

� implies that �!��

��� � �
�
���. Hence,
the rearranging is possible.)

23

First, let us show that the probability that the construction aborts is negligible.
View each operation as a ball and each machine as a bin. Then choosing an operation at random is the same

as putting a ball in a random bin. We have ��!

��� balls and � bins. For � � �
��
��� (as we have in
the lemma), the expected number of balls per bin is at least �
�����, and standard analysis of throwing balls
into bins shows that the probability that some bin contains more balls than twice the expectation is negligible.
Hence, the probability of aborting in step 2 of the construction is negligible.

Consider any particular job. The probability that it has two operations on the same machine is at most�
��

�

�

�, which is less than �
�, as � � ����

� � �. Hence, the expected number of acyclic jobs is at least
"�
�
���, and standard bounds on large deviations show that the probability that step 3 aborts is negligible.

We conclude that with overwhelming probability, the construction does not abort. Observe that in this case,
conditions 1 and 2 of definition 3.5 hold, and it remains to verify that condition 3 holds with high probability.
We shall check a stronger condition after step 1 of the construction, namely, that for any bucket configura-
tion ,��� ��, at least two thirds of the jobs avoid it. This implies that condition 3 holds after step 4 of the
construction, as only one sixth of the jobs are rearranged.

Fix a particular bucket configuration ,��� ��, and consider a job 0 composed of a sequence of �! machines
chosen independently at random. If 0 does not avoid ,��� ��, then �!�� of its operations are covered by the
�� buckets. Hence, there are �� disjoint sequences of 1 � �!���� consecutive operations such that each one of
them is completely covered by one bucket (though the same bucket can cover several such sequences). There
are �! ways of choosing the starting point of a sequence, and for each sequence there is a choice of �� buckets
that may cover it. For a particular starting point and a particular bucket, the probability that all of the 1 random
machines in the sequence are among the ���
�
����� machines in the bucket is �� � �
�������". Hence,
we conclude that the probability that a random job fails to avoid a particular bucket configuration is at most
����!�� � �
�������"��

�
. Substituting back in the value of 1, setting � � � � �
��
���, and using the fact

that � � ����
� , this can be upper bounded by ������ ��� ����2������������

�
� 2����������� , for some � that can

be made arbitrarily close to 1 when � is sufficiently large.
If there are �

��� random jobs as above, the probability that a third of them fail to avoid the bucket

configuration is ��#� ������ for some ! � �. As there are less than ������������ � ����� ���� possible bucket
configurations, the probability that a third of the jobs fail to avoid some bucket configuration is negligible. This
takes care of condition 3 in definition 3.5.

As the randomized construction has overwhelming probability of succeeding, we have shown that a bucket
avoiding family � ����� �� exists. ��

Theorem 3.7 For a large enough �, there is an instance of acyclic JSS, with � machines, less than � jobs,

dilation roughly

�, congestion 3�

��, for which any legal schedule requires at least

�
� ����

�� ��� ���� time steps.
Expressed in terms of dilation (in our case, the congestion is much smaller than the dilation), any legal schedule
has a length of at least � ����

�� ��� ���� .

Proof. Let � be sufficiently large. The instance is composed of 4 � �
���� ��
�
��
���� � families of
jobs, indexed by ��� ��� � � � � �$, where �� � �, and for any � � 4 , �
�� � �
 � �
��
���. The family ��
contains �

��� jobs, where each job has only one operation, the length of each job is

�, and the operations

are all distinct. For � � � � 4 , family �
 is a bucket avoiding family � ��
��� �
���, where the length of each
operation is

�
��� . Hence, family �
 contains �

��� jobs, each job has ��� operations, and the length of

each job is

�.

Lemma 3.8 Any legal schedule for the above jobs is of length at least
�
� ����

�� ��� ���� .

Proof. Fix any legal schedule, and assume that it is of length �

�, where � � ����

�� ��� ���� . We shall derive a
contradiction.

24

For each �
 � �, we define a bucket configuration ,��� �
 � �� by induction relative to the assumed
schedule. Each bucket configuration will be associated with

�
� time steps of the schedule in which the jobs

in family �
 are active, and the time steps associated with different bucket configurations will be disjoint. This
will imply that the schedule must have a length of at least

�
�
�

����
� ��� ���� �

�
���
��
��
���.

Base case: For �� � �, partition the schedule into �� blocks of consecutive time steps, where each block is
of length

�
�. As operations of family �� take

� time units, each operation completely covers at least one

block. As there are �

��� operations in family ��, there is at least one block that is covered by at least �
�	 ����

operations. Take one such block arbirarily and �
�
����� of the machines that cover it. The bucket associated
with �� contains the � ��
�
����� other machines. Note that for any � � �, a sequence of operations of a
job from family �
 can be scheduled at the same time period in which the block corresponding to the �� bucket
was scheduled only if all machines that have operations within the sequence are in the bucket.

Inductive step: Suppose we have already defined the bucket configuration for all �� with � � �. We shall
now define the bucket configuration associated with �
��.

For each bucket in each bucket configuration up to �
, mark on the schedule the time steps corresponding to
the block that created each bucket. These time steps are disjoint (disjointness of these time steps is maintained
by the inductive step). The total number of buckets that we have is � �

�

��� �

�
�� � ��� , and each bucket has
���
�
����� operations. Hence, this can be regarded as (a part of) a bucket configuration ,��� �
�. Recall
that the family �
�� was chosen as a bucket avoiding family � ��
����� �
�. This implies that if the schedule is
legal, at least half of the jobs of this family avoid the bucket configuration ,��� �
�. Hence, at least a quarter
of the operations of the family are performed at time steps that are not covered by previous locations of buckets.
Call these operations good.

Partition now the time steps of the schedule into ������� blocks, each of size

�
�������. Remove any

block that overlaps the location of a previous bucket. Each good operation (which is of length

�
�����)

completely covers one of the remaining blocks. As there are at least ������
�
��� good operations, and each
block can contain at most�
�
��� good operations (this is the number of jobs involved), at least �����
� of the
blocks have �
���
��� � �
�
����� good operations in them. These blocks make the bucket configuration
associated with �
��, where the machines going into each bucket are those machines that do not cover the
respective block. The total number of time steps associated with these buckets is ������
���

�
�������� �

�
�. By construction, the time steps associated with these buckets are disjoint from those associated with
previous buckets. ��

To complete the proof of Theorem 3.7, observe that by construction, jobs are acyclic. The dilation (length
of the longest job) is

�. The total number of jobs is � � 4�

��� � �
�
��
���. The average load

per machine is �

�
� �

�
�
��
���. By condition 1 in Definition 3.5 it follows that the congestion is

at most

�
�
��
���. ��

Remark: For the particular instance of JSS that we construct, Lemma 3.8 is best possible up to constant
factors. Each family of jobs in our instance can be scheduled to require ��

�� time (this follows from the main

result of [LMR94], as all operations within a family are of the same length), and there are ��
���

��
����
families. The constant factors can be improved by tightening parameters of the construction (e. g., making
�
�� � �
 � �
��
���, saying that a job avoids a bucket configuration if almost all of its operations remain
uncovered) and tightening the analysis, giving a lower bound of

�
���
�
��
���, or �
���
�
��
���.

References

[ASE92] N. Alon, J. Spencer, P. Erdős. The Probabilistic Method. Wiley Interscience Series in Discrete
Mathematics and Optimization, John Wiley & Sons, 1992.

25

[Be91] J. Beck. An algorithmic approach to the Lovász Local Lemma. Random Structures and Algorithms
2(4), pp. 343-365, 1991.

[GPSS97] L. A. Goldberg, M. Paterson, A. Srinivasan, E. Sweedyk. Better approximation guarantees for
job-shop scheduling. In Proc. of the 8th Symp. on Discrete Algorithms, pp. 599-608, 1997.

[Ho87] M. Hofri. Probabilistic Analysis of Algorithms: On Computing Methodologies for Computer Al-
gorithms Performance Evaluation, Springer Verlag, 1987.

[LMR94] T. Leighton, B. Maggs, S. Rao. Packet routing and job-shop scheduling in O(congestion + dilation)
steps. Combinatorica 14, pp. 167-186, 1994.

[LMR96] T. Leighton, B. Maggs, A. Richa. Fast algorithms for finding O(congestion + dilation) packet
routing schedules. Technical Report CMU–CS–96–152, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, USA, 1996.

[OR97] R. Ostrovsky, Y. Rabani. Universal ��congestion�dilation�
�����5� local control packet
switching algorithms. In Proc. of the 29th Ann. ACM Symp. on Theory of Computing, pp. 644-
653, 1997.

[RT96] Y. Rabani, E. Tardos. Distributed packet switching in arbitrary networks. In 28th Ann. ACM Symp.
on Theory of Computing, pp. 366-375, 1996.

[SSW94] D. Shmoys, C. Stein, J. Wein. Improved approximation algorithms for shop scheduling problems.
SIAM J. on Comput. 23(3), pp. 617-632, 1994.

[WHH+96] D. Williamson, L. Hall, J. Hoogeveen, C. Hurkens, J. Lenstra, S. Sevastjanov, D. Shmoys. “Short
shop schedules”. Operations Research, 1996.

26

