Optimal Wor mhole Routing in the (n,d)-Torus*

Stefan Bock
Department of Economics

Friedhelm Meyer auf der Heide, Christian Scheideler
Department of Mathematics and Computer Science
and Heinz Nixdorf Institute

University of Paderborn, 33095 Paderborn, Germany

Abstract

In this paper we consider wormhole routing in a d-
dimensional torus of sidelength ». In particular, we present
an optimal randomized algorithm for routing worms of
lengthupto O(n/(dlogn)*), one per node, to random des-
tinations. Previous algorithms only work optimally for two
dimensions, or are a factor of log » away from the optimal
running time. As a by-product, we develop an algorithmfor
the 2-dimensional torusthat guarantees an optimal runtime
for worms of length up to O(n/(log n)?) with much higher
probability than all previous algorithms.

1. Introduction

Since communication between several processors re-
quiresalarge portion of the runtime of a parallel algorithm,
itisvery useful to construct efficient algorithmsfor sending
informationin a network.

In this paper we will propose a new wormhole routing
agorithm for the (n, d)-torus. This network is defined as
follows:

Definition 1.1 The (n, d)-torusT'(n, d) consists of a set of
processors P = {(aq, @g—1, @dg—2, . ,a2,a1)| 0 < a; <
n—1Vie{l,.. d}}andaset of edges £ = {{u,v}|
uw € P, 3t Vj e {1, ... ,d}withj # & u; = v; and
(u; + 1) modn = v; }.

Most parallel and distributed systems utilize either store-
and-forward or wormhole routing. In store-and-forward

* email:{stbo,fmadh,chrsch} @uni-paderborn.de, Fax: +49-5251-
603511/606482. Supported in part by DFG-Sonderforschungsbereich 376
“Massive Parallelitéat: Algorithmen, Entwurfsmethoden, Anwendungen”,
by DFG Leibniz Grant Me872/6-1 and by EU ESPRIT Long Term Re-
search Project 20244 (ALCOM-IT).

routing, each message can cross a single link in unit time.
The store-and-forward model isa standard model which has
been widely used to study routing and other problems in
parallel computers. Inwormhole routing, messages are sent
asworms, each of which consists of a sequence of fixed size
units called flits. A flit is defined as the amount of data that
can be sent along a link in one time step. The length of a
worm isthe number of flitsit contains. Thefirst flitiscalled
the head and the remaining flits are called the body of the
worm. During the routing a worm occupies a contiguous
sequence of edges along its path, one flit per edge. This
means that worms are not allowed to be seperated into dif-
ferent parts. In addition to thiswe assume that no processor
inthe network is able to store parts of the worms during the
algorithm. This has the consequence that only the links can
hold the flits.

Wormhole routing is an extremly popular strategy for
data movement in parallel computers and is used in a va-
riety of machines including the Intel Paragon, CRAY T3D,
MIT J-Machine and Stanford DASH. It has several advan-
tages over store-and-forward routing. In store-and-forward
routing, if a b-flit message traverses a path of length d, and
isnever delayed, then it will reach its destinationin bd steps
(assuming that each channel can transmit one flit in each
step). In awormhole router, however, the first flit does not
wait for the rest of the message. It therefore arrives at its
destination after d steps, and the last flit of the message ar-
rives after d + b — 1 steps. The difference intimeis due to
a better utilization of network links by the wormhole router.
In addition to reduced latency, wormhole routing also has
the advantage that it can be implemented with small, fast
switches, and is a redlistic model for optical communica
tion.

Given afunction f : P — P, our (wormhole) routing
problem is to design a protocol that routes n¢ worms, one
from each processor v to its destination f(v). If f ischo-
sen at random we talk about routing a random function; if

f isapermutation we talk about permutation routing. Our
distributed protocol is online, i.e., every processor decides
about the next routing step only based on local information.
We present the first protocol for wormhole routing on the
(n, d)-torus that is optimal also for large, non-constant di-
mension d.

1.1. The Lower Bound

We can formulate the following lower bound for routing
randomly chosen functions:

Remark 1.2 For any routing protocol, the expected time
to route a random function with worms of length L. in the
(n,d)-torusisinQ((L + d)n).

Proof: At first we ask for the expected distance between
the source and the destination for any worm in the network.
Consider an arbitrary nodea = (a4, ag—1, ..., @1). The des-
tination f(a) of the worm starting from « can have a dis-
tanceof 0, 1, 2, .. , n/2 — 1 from a with probability at least
1/n inevery dimension. Thisleadsto the expected distance
Q(n) in every dimension. Since we have d dimensions, we
get an expected total distance of 2(dn).

Furthermore, we can analyse the work that the network
hasto perform. Since, for arandomly chosen function, there
are n? worms of length L that want to travel an expected
distance of Q(dn), the expected number of movements of
flitsalong edges to be executed is at least Q(n¢L - dn) . On
the other hand, the network has at most n?d links, so that
there are (L) parallel steps needed to do the work.

These two lower boundsyield the claimed expected rout-
ingtime. O

1.2. Previous work

Bar-Noy, Raghavan, Schieber and Tamaki [1] present an
agorithm for the (n, 2)-torus which achieves a runtime of
O(k Ln) with probability at least 1 — n=* for any £ > 0.
Cypher, Meyer auf der Heide, Scheideler and Vocking

[2] present an algorithm that reaches the running time

1/ .
O(LrdZttnd+Lidlogn) for routing n wormsof length L,

one from each processor, in a (n, d)-mesh with bandwidth
B. Thisresult isoptimal for L > d%logn and B > logd,
but leads to high time loss if B isequal to 1, which isthe
case in this paper.

Fridetzky [3] shows that it is possible to route a random
function f w.h.p. (w.h.p. means "with high probability”,
i.e., with probability at least 1 — n=¢ for some ¢ > 0) in
time O((L + d)nlogn) inthe (n, d)-mesh.

1.3. New Results

We present the first algorithm for wormhole routing on
(n, d)-tori with runtime O((L + d)n). As shown in Re-

mark 1.2 thisis optimal. We achieve thisresult for every d
and worms of length L aslongas L = O(W)' We
only handle the case of sending worms to random destina-
tions. By using Valiants trick [8] (first send the messages
to random intermediate destinations and from there to the
final destinations) it can be extended to reach the same time
bound aso for arbitrary permutations. As a subroutine of
our agorithm we develop a new algorithm for routing ran-
dom functionson the (n, 2)-torus. It has the same (optimal)
expected runtimeastheonein[1], butismuch morereliable
for moderatesizesof L. Itrunsintime O(Ln+ (kL log n)?)
with probability at least 1 — n =%, for any k£ > 0.

2. Description of the new algorithm

In this section we describe our algorithm for the (n, d)-
torus. We assume that 7. < W’;TW for an arbitrary con-
stant 5 > 0.

2.1. Thestructure of the algorithm

Our agorithm routes every worm to its destination by
seperating this problem into d new subproblems. For every
dimension we want to adjust the actual position of every
worm tothe position of its destinationwithin the dimension.
In particular, we first want to adjust the actual position of
theworm to the position of its destinationwith regard to the
first dimension before we do thisfor the second dimension
and so on. To handle these subproblems we use a new 2-
dimensional algorithm that is used in paralel in the (n,2)-
subtori along dimension ¢ and ¢ + 1 to adjust the position
of the worms in this part of the network to the dimension i
of their destinations. To enable this, our algorithm worksin
6abl batches for suitably chosen constants « and 6. Every

batch consists of % suitably chosen worms such that at
most n/6abL worms start in every cycle. (In the (n,d)-
torus we call a set of n processors with the same valuesin
every dimension except in a particular dimension i a cycle
along dimension ¢). The whole algorithm is seperated into
stages of length kn for some fixed constant % defined |ater.

At the first stage, our new 2-dimensional agorithm is
used to adjust the positionsof thefirst batch of wormsto the
positions of their destinationsin the first dimension within
kn steps, w.h.p., using only links in the first two dimen-
sions. After this the worms of the first batch are in cycles
along dimension 2, and their values in the first dimension
are now equal to the first dimension of their destinations.
In the next stage the same happens for dimensions 2 and 3.
So we can assume that after further kn steps every worm
of this batch has correct values w.r.t. dimensions 1 and 2
and is layed out in an arbitrary cycle along dimension 3.
While the 2-dimensional agorithm starts with the worms
of batch 1 in dimensions 3 and 4, the second batch begins

with dimensions 1 and 2. Perallel to the algorithm in di-
mensions 3 and 4, the positions of the worms participating
inthe second batch are adjusted to the positionsof their des-
tinationsw.r.t dimension 1 by our 2-dimensional algorithm,
using only linksinthe dimensions 1 and 2. Thisleadstothe
basic structure of the algorithm, illustrated in Figure 1.

Dimension:

ﬁ): 1 2 3 4 5 6 7 8 9 10
0 batch 1
batch 1
2kn batch 2 batch 1
batch 2 batch 1
dkn batch 3 batch 2 batch 1

batch 3 batch 2 batch 1

(12abL +d — 3) kn All batches have reached their destination

Figure 1. The mainframe of the algorithm.
(e and b are suitably chosen constants)

Notethat if every 2-dimensional algorithm can copewith
its task in time kn, the worms of different batches never
hinder each other. Thus we can conclude that the whole
agorithm finishes after O((d + L)n) stepsw.h.p.

2.2. The algorithm for (n,2)-subtori

As mentioned above, we use a hew 2-dimensional algo-
rithm in every stage. Although there are optimal protocols
for the wormhole routing problem in the (n, 2)-torusin the
literature, we can not use any of them to cope with our prob-
lem. The reason for thisis that all known algorithms for
the 2-dimensional torus do not guarantee runtime bounds
with sufficiently high probability. As our algorithm for the
(n, d)-torus uses such a protocol more than n~? timesas a
subroutinefor the (n, 2)-subtori, the known algorithms (see
Section 1.2) would fail in performing within a constant fac-
tor of their expected runtime for several of the applications
if d isnon-constant. This would destroy our algorithm for
the (n, d)-torus for non-constant d. So we design a new
algorithm that consists of two phases:

221 Thefirst phase

The first phase (cf. Figure 3) starts with arranging the
worms in dliding diagonals along cycles of dimension i.
Such a dliding diagonal — the concept was first introduced
in[1] —isan arbitrary diagonal of a (n, 2)-subtorusformed
by the heads of worms, that moves in direction of a partic-
ular dimension. (By “in direction” we mean that the value
w.r.t. this dimension will be increased in every step. We
will use “against the dimension” for the oppositedirection.)
The dliding diagonal technique guarantees that only worms
on the same diagonal compete for turning into the next di-
mension, and if two worms collide, they only collide with

their heads. In case of acollision, we will aways prefer the
worm that has aready turned into the new direction, which
means that once the head of a worm is successful in turn-
ing into the new dimension, this worm can not be hindered
anymore.

The analysis will show that there are w.h.p. at most 7~
worms in every cycle along dimension ;. So it is possible
to distribute them in such a way among »/bL diagonals —
which run with distance b in direction of dimension i —
that there are at most n/a worms on every diagonal and at
least & empty places on a diagonal between any two worms.
Thisdistributionisillustrated in Figure 2.

Figure 2. The distribution at the beginning of
the first phase. In this example the parame-
tersaren = 32and a, b = 2.

After the distribution — this takes at most . + n steps
— the first phase begins. In this phase we seperate the 2-
dimensiona torus into blocks of adlogn columns which
we call coarse destinations. The coarse destination of a
worm is that block of columns its real destination column
belongs to. Every worm is supposed to turn only into a
column of its coarse destination. To achieve this the dlid-
ing diagonals move in direction of dimension ¢, and every
worm on these diagonal s that reaches its coarse destination
attempts to turn in direction of dimension ¢ 4+ 1 again and
again until it can turn or al « log nd trialsfail.

Note that, as mentioned above, aworm can only be hin-
dered by the head of a worm which is placed on the same
diagona and is already moving along this column. But if
itis able to use the link in direction of dimension ¢ + 1 it
runsin direction of dimension ¢ + 1 for therest of thisfirst
phase. If dl adlog n trialsfail, the worm runsfurther in di-
rection of dimension ¢, which means that our protocol fails.
The following analysis will show that thisis very improb-
able. But if it happens, and there is a worm that has not
turned after those n + L steps, it will achieve thisin the
next n + L steps. There the same procedure takes place,

1.

Figure 3. The run of the first phase: One di-
agonal reaches a column block (1), where a
worm turns into the next free column (2). Af-
ter thisthe worms that have reached acolumn
of their column block run to the top (3) until
the first phase ends, which happens after a
fixed number of steps. Then they turn to the
left (4) to be subsequently reordered for the
second phase.

but now every unsuccessful worm will attempt to turn into
an arbitrary column. Thisiscertainly successful because of
the fact that there are much more columns than worms that
are placed on the same diagonal. So after al, every worm
runsin direction of dimension ¢ + 1 withits diagonal.

Before we can start with the second phase of the 2-
dimensional algorithm we have to reorder the worms again.
For this all worms first turn against the direction of dimen-
sion ¢ and run in this direction . + adlogn steps. After
this, they turn again in direction of dimension ¢ and run in
thisdirection steps. This means that every worm—we as-
sume the first phase was successful for every worm — stands
with the head in direction of dimension ¢ exactly one block
in front of its coarse destination. Therefore it is at most
2adlogn — 1 and at least one step in front of itsreal des-
tination column. This reordering isillustrated among other
thingsin Figure 5 (2).

2.2.2 The second phase

In this phase (cf. Figure 4) every worm should turn into
its destination column. Therefore we now partition the 2-
dimensional subtorus into blocks of ad/l logn rows. We

Figure 4. The run of the second phase: The
worms run at the beginning of each phase to
the right (1). One of them turns into its desti-
nation column (2). In this column itruns to the
top and turns around at the border of its block
to run downwards (3). Whileit has reached its
destination for this phase the other worms on
the diagonals come back after 2L logn steps

(4).

define the links against the direction of dimension ¢ + 1 as
areservoir for worms, that is, a place where worms that al-
ready reached their correct column can wait until the second
phase is over.

To achieve this the second phase consists of adlogn
rounds. Every round itself has 4Ladlogn + 21 steps. In
the first 2Lad log n steps every diagona runsin direction
of dimension ¢ and every worm that is placed on it tries to
turn into its destination column. If thisis possible it runs
in direction of dimension ¢ + 1 until it reaches the top of
the row block. There it turnsto travel in the opposite direc-
tion. It continues to travel in this way until it reaches the
bottom of this row block or the next link is occupied by an
already waitingworm. The worm waitsin this positionuntil
the end of the second phase and so until the 2-dimensional
algorithm is over. Note that this worm has corrected the
value of its ith dimension, which is illustrated in Figure 5
(4). On the other hand, if it is not able to turn it continues
to travel in direction of the sth dimension. Then after the
first 2Ladlogn steps the diagonals turn around and travel
2Ladlogn + L stepsin the opposite direction. During this
part no worm attemptsto turninto its column. After thisthe

Figure 5. A typical way a worm can take in
the algorithm. After several failed attempts
it reaches the coarse destination (1). There it
runs upwards until the first phase ends. Then
it changes the direction (2) to begin the sec-
ond phase where it fails to turn into the cor-
rect destination column (3), which is reached
at the end (4).

worms turn again in direction of the dimension ¢ for further
L steps. Note that they have reached now the old position
at the beginning of the round. At thismoment the old round
ends and anew begins.

We want to emphasize that during the first half of every
round no worm can be blocked by a worm of a different
diagonal. This can only happen if a reservoir spills over
and therefore no more worm can reach the links against the
directionof dimension i + 1. But the analysiswill show that
thisis very improbable.

3. Analysisof thealgorithm

We will prove the following bound for the efficiency of
our protocol:

Theorem 3.1 For I = O(m) the protocol described
above routes worms of length . to random destinations in
the (n, d)-toruswithintime O((L + d)n), wh.p.

Note that this runtime bound is optima (see Remark
1.2). Further note that this result can be extended to rout-
ing arbitrary permutations by using Valiant'strick (see Sec-
tion 1.3). To prove Theorem 3.1 we have to show that with

high probability every application of the 2-dimensional al-
gorithm copes with itstask intime O(rn). For this, we start
with upper bounding the expected number of worms that
are in the same cycle of the network after a stage. We have
to show that this number is bounded by n/abL, because
we want to work with at most n/bL diagonals per (n, 2)-
subtorus with a most n/a worms each. This is done in
following lemma.

Lemma32 If L < WQLTH)Q for some constant 3 > 0
then, for every constant ¢ > 0, there exists with probabil-
ity at least 1 — -1, no cycle along any dimension on which
more than _z worms of a batch want to be placed after an
arbitrary stage.

Proof: For dimension i = 1 there is nothing to show be-
cause we only allow n/6abL wormsto start in every cycle
along dimension 1. So we can assume in the following that
i is greater than 1. Let us consider an arbitrary fixed cycle
along the ith dimension. Every node in this cycle has the
same value for every dimension except the ¢th. This means
that aworm that isableto reach thiscycle during the routing
hasto start in a processor with the same valuesw.r.t. dimen-
sions: + 1 to d, because the values of these dimensions are
kept unchanged during the first ¢ stages of the algorithm.
Hence the maximum number of worms that can reach this
cycle is ni. Since the first i — 1 dimensions have to be-
come equa to the values of the fixed cycle in order to reach
it and the destinations are chosen uniformly at random, the
probability for any of these wormsfor reaching thiscycleis
1/ni~1. Thisleads to the following estimation:

Prob(There are at least ¢t worms of afixed batch in a fixed
cycle along dimension ¢)

' t _n_
< 62? '1 < (E) bl
- t ni—1 /) —\6

8d?% (log n)?

1 Y 1 (dlogn 1
< (= <(= =(—
<) =G -(@)

for any constant { > 0 dependingon n if ¢ = —+ and
L< ,@(dIZTn)Q for some constant 5 > 0.

Since we have 6ab . batches and there are n*~'d cycles
along an arbitrary dimension, we get:

Prob(There exists acycle on which at least - worms of
an arbitrary batch want to be placed during the routing)

1, 1o, 1

for any constant £ > 0 dependingon {. O

With thislemmawe can now assume that, for every stage
and dimension, n/bL diagonals can be formed per (n, 2)-
torus with at most n/a worms each. Additionally we know
that there are at least « empty places between two worms of
every diagonal. Inthefollowing lemmawe show that inthis
case it is very improbable that a worm cannot turn into its
coarse destination during the first phase of the algorithm.

Lemma3.3 For every constant ¢ > 0 there is a constant
a > 0 such that with probability at least 1 — -, there exists
no column block of size adlogn in which a worm of an
arbitrary batch isnot able to turnintoits coarse destination
during thefirst phase.

Proof: We mentioned above that only the head of a worm
that is placed on the same diagonal and is already moving
along a column of its coarse destination can block a worm
from turning. This leads to the following observation: If a
worm on a particular diagonal in a fixed batch is not able
to turninto its coarse destination, there are at least ad log n
worms on the same diagonal that want to turn into the same
block of columns. The probability of this event can be esti-
mated by:

Prob(During a fixed application of the 2-dimensional
algorithm, there are at least t worms on some fixed
diagonal that want to turn into a particular block of

columns)

a adlogn ! 1) *dlosn 1
< a < | = -
- t n —\2 nod

fort = adlogn.

Again we can estimate the number of these cases.
There are 6abl. batches of worms, each applying the 2-
dimensional algorithm n¢=?(d — 1) times with at most -
diagonals within each application. Furthermore, each of

these diagonals crosses 7+ blocks of columns. This

leadsto the total number of 6ab L -1~ (d — 1) s €
periments. So we can estimate:

Prob(There exists adiagonal in an arbitrary stage where at
least ad log n wormswant to turn into the same block of
columns)

1
—n=2(d - 1)6abl— ——— <

1
< el
- pod bL adlogn — nt

for any constant ¢ > 0 dependingon «. O

Because of the lemma above we can now assume that
every worm has reached its coarse destination after the first
phase of the algorithm. So according to the description of
the algorithm we know that, before the second phase starts,
every worm stands exactly one block of columns in front
of its coarse destination. This means that its value w.r.t.
dimension i is at least one and at most 2ad logn — 1 lower
than the value of its destination in this dimension. So we
can conclude — if we assume, that no reservoir spillsover —
that after ad log n rounds of the second phase every worm
can turn into its destination column. This holds, because
if no reservoir spills over then there are at most adlogn
worms on every diagona that want to move to the same
reservoir. Sowe still have to show that with high probability
no reservoir spillsover.

Lemma3.4 Let us assume that the first phase is always
successful. Then for every constant £ > 0 there exists a
constant o > 0 such that there is with probability at least
1- # no reservoir of size ad /. log n into which more than
ad log n worms want to turn during the second phase.

Proof: Because of the assumption that the first phase has
been successful we can conclude that each worm stands ex-
actly one block in front of its coarse destination. So if we
ask for the number of worms that want to enter a particu-
lar reservoir we can only find candidates in the left neigh-
bouring block of processors consisting of adl logn rows
and ad logn columns. In addition to this the diagonals on
which the candidates are placed still have a distance of 47,
so that we can estimate:

Prob(During the second phase of afixed application of the
2-dimensional algorithm, there are at least ¢ worms that
want to turninto a particular reservoir of size ad log n)

< (adlogn)(adLlognz-) 1 ¢
- adlogn

e\ adlogn 1
< (3) <

fort = adlogn and b sufficiently large.

Again we have to count the number of such cases. For
every of the 6abL batches there are n?~2(d — 1) applica-
tions of the 2-dimensional algorithm to consider. In addi-
tion to this we have to multiply this number with #

.) . alogmn
reservoirs where an overfill can happen. Thisleads usto the
following estimation:

Prob(During the second phase of an arbitrary application
of the 2-dimensional agorithm, there exists a reservoir
which at least «d log n worms attempt to enter)

1 n? 1 1
< —6abl——n 2 (d-1) < —ni< =
= ped ML lognn () < ped!t =

for any constant ¢ > 0 dependingon «. O

With the lemmas above we have shown that with high
probability every worm of an arbitrary batch can turn into
its column during the a.d log n rounds of the second phase.
Hence the total number of steps required by every stage
w.h.p. isbounded by:

n+ L +2n+2L+ dalogn+2L +
Se—— N’ N—————
starting phasel turning&correcting

adlogn (4Ladlogn 4+ 2L) = O(n)

phase 2
if L < W'

It remains to count the number of stages in the whole
algorithm. As mentioned above, at most 12abl + d — 1
stages are necessary if all applicationsof the 2-dimensional
algorithm are successful. Hence the running time of the
whole algorithmis bounded by:

(12¢bL4+d—1)- (kn) +

—_— ——
2d-algorithm

=0((d+L)n)

stages
n—+ L
. R/_/ . .
routing to destination

This proves Theorem 3.1 O0.

It is easy to modify our 2-dimensiona subroutine for
routing random functionsinthe (n, 2)-torus. For thiswe use
abl stagestorouten/abl fixed wormsto their destination.
In every such stage we use our 2-dimensional subroutine
above but with new seperations of our network: In the d-
dimensional algorithm the subroutinesworked on an (n, 2)-
subtorus seperated into row blocks of size adl logn and
column blocks of size ard log n. Now we use the same algo-
rithmwith row blocksof size§ L log n and column bl ocks of
size § log n. After correcting the value w.r.t. thefirst dimen-
sion we route the worms within further n + 1. stepsto their
destination. It is easy to verify that by exchanging a.d log n
with é log n in the proof of Theorem 3.1 the same runtime
bound is achieved for a stage with probability 1 — n~©(),
So within abl, stages we can route al n? worms to their
destination and therefore get the following runtime bound
for our algorithmin the (n, 2)-torus:

bL L +2 2L

abl (n+ L +2n+2L+
stages starting phase 1
Slogn (4L5logn + 2L) +

dlogn+2L +
N —
turning& correcting
n+L)
N——
routing to destination

phase 2

= O(abL(n + L(61logn)?)) = O(Ln + (6L 1ogn)?).
This leads to the following observation:

Observation 3.5 Consider wormhole routing of a random
function with worms of length in the (n, 2)-torus. Then
the runtime of the 2-dimensional algorithm is bounded by
O(Ln + (6L logn)?) with probability 1 — n=°() for any
d > 0.

Note that — if L is of moderate size — this new
2-dimensiona algorithm guarantees the optimal runtime
O(Ln) with much higher probability than the aready
known algorithms (see Section 1.2). The reason for this
is that Ln asymptotically dominates (JLlogn)? for L <
W and so ¢ does not affect the runtime as much asin
the previous a gorithms.

References

[1] A. Bar-Noy, P. Raghavan, B. Schieber, H. Tamaki:
Fast Deflection Routing for Packets and Worms. In
Proc. of the 12th ACM Symp. on Principles on Dis-
tributed Computing, pp. 75-86, 1993.

[2] R. Cypher, F. Meyer auf der Heide, C. Scheideler,
B. Vocking: Universal Algorithms for Store-and-
Forward and Wormhole Routing. In Proc. of the 28th
ACM Symp. on Theory of Computing, pp. 356-365,
1996.

[3] T. Friedetzky: Wormhole Routing auf mehrdimen-
sionalen Gittern. Diploma Thesis at University of
Paderborn (Research group F. Meyer auf der Heide),
1995.

[4] S. Felperin, P Raghavan, E. Upfal: A Theory of
Wormhole Routing in Parallel Computers. In Proc. of
the 33rd | EEE Symp. on Foundationsof Computer Sci-
ence, 1992.

[5] T. Hagerup, C. Rueb: A guided tour of Chernoff
bounds. In Information Processing Letter 33, pp. 305-
308, 1989/90.

[6] F.T. Leighton: Intodruction to Parallel Algorithms
and Architectures: Arrays, Trees, Hypercubes Morgan
Kaufmann Publishers, San Mateo, CA, 1992.

[7] FT. Leighton, B.M. Maggs, S.B. Rao: Universal
packet routing al gorithms (extended abstract). In Proc.
of the 29th Annual Symp. on Foundations of Computer
Science pp. 256-271, 1988.

[8] L.G. Valiant: A scheme for fast paralel communica
tion. In SAM Journal on Computing 11/2 pp. 550-
561, 1982.

