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Abstract

All-optical networks promise data transmission rates several orders of magnitude higher than
current networks. The key to high transmission rates in these networks is to maintain the signal in
optical form, thereby avoiding the prohibitive overhead of conversion to and from the electrical form,
and to exploit the large bandwidth of optical fibers by sending many signals at different frequencies
along the same optical link. Optical technology, however, is not as mature as electronic technology.
Hence it is important to understand how efficiently simple routing elements can be used for all-
optical communication. In this paper, we consider two types of routing elements. Both types can
move messages at different wavelengths to different directions. If in the first type a message wants
to use an outgoing link that is already occupied by another message using the same wavelength, the
arriving message is eliminated (and therefore has to be rerouted). The second type can evaluate
priorities of messages. If more than one message wants to use the same wavelength at the same time
then the message with the highest priority wins. We prove nearly matching upper and lower bounds
for the runtime of a simple and efficient protocol for both types of routing elements, and apply our
results to meshes, butterflies, and node-symmetric networks.

1 Introduction

The subject of this paper is to present and analyze a simple protocol for sending messages in an
emerging generation of networks known as all-optical networks [6, 10, 16, 20, 30, 33]. These networks
promise data transmission rates several orders of magnitudes higher than current networks. The key to
high speeds in these networks is to maintain the signal in optical form, thereby avoiding the prohibitive
overhead of conversion to and from the electrical form. (Traditional networks use the electrical form to
switch signals along routes, and to restore signal strength. Signals can be modulated electronically at
a maximum bit rate of about 50 Gbit/s, while the optical fiber bandwidth is about 25 THz [7].) The
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high bandwidth of the optical fiber is utilized through wavelength-division multiplexing: two signals
connecting different source-destination pairs may share a link, provided they are transmitted on carriers
having different frequencies (or wavelengths) of light.

The major applications for such networks are in video conferencing, scientific visualization and
real-time medical imaging, high-speed supercomputing and distributed computing [16, 33, 12]. We
consider routing elements that are capable of directing messages at different wavelengths to different
destinations and detecting collisions of messages. A routing element (or router in short) consists of
wavelength-selective switches and couplers.

The task of the switches is to direct different wavelengths to different directions. Several types of
optical switches have already been developed [19, 5].

The task of the couplers is to combine the signals from many incoming optical fibers into one
outgoing optical fiber. Since we do not want to rely on central control, collisions might occur, that is,
two or more signals from different incoming fibers use the same wavelength. In our design of protocols
we will consider two different strategies to avoid collisions:

e Ifa message that arrives at a coupler uses a wavelength already used by another message traversing
the coupler, the new message is eliminated. This can be realized with the help of detector
arrays that tell the electronic control of the coupler which wavelengths are currently used, and
wavelength-selective filters at each incoming fiber.

e Ifa message that arrives at a coupler uses a wavelength already used by another message traversing
the coupler, the message with higher priority is forwarded and the other suspended. There are
prototypes of all-optical routing elements in which priorities are implemented by giving different
powers to the messages (see, e.g., [21]). However, these routers are more complicated, and
therefore it would be worth knowing whether priorities can improve the routing performance.

We call a coupler using the first rule a serve-first coupler and we call it a priority coupler otherwise.
The following picture illustrates how a 2 x 2 router can be built by switches and couplers.

incoming outgoing
signas signas
switch coupler

Figure 1: A 2 x 2 router.

1.1 The Model

We model the topology of an optical network as an undirected graph G = (V, E) where each node in
V represents a router (that is connected to a processor) and each edge in E represents two optical
links, one in each direction. Each node in V' contains an injection buffer and a delivery buffer. Initially,
each message is stored in the injection buffer of its source. Once a message reaches its destination,
it is stored in the destination’s delivery buffer. During the routing a message cannot be buffered and
therefore has to be either moved forward or eliminated. Since we do not want to convert messages
to and from the electrical form, we do not require the nodes to operate in discrete, synchronous time
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steps. Instead, we just need to assume that the nodes are fast enough to operate correctly according
to one of the collision rules defined above. Hence one time step within our model is defined as the time
some fixed amount of bits (later called flit) of the message needs to traverse a link.

In general, a routing scheme consists of two (not necessarily independent) parts: The first part is
responsible for selecting a path for each message, and the second part is responsible for sending the
messages across their paths. Within our general framework, we assume that some suitable strategy
for the path selection is given. (We will later give examples of how paths can be selected in specific
networks.) The routing problem will be therefore defined by specifying a path collection P, which is a
multiset of paths in G. A path collection is called

e short-cut free if there is no subpath of a path that is shortcut by a subpath of another path in
P, and

e [eveled if levels can be assigned to the nodes in P such that for every path in P every edge leads
from a node in level 7 to a node in level 7 + 1 for some ¢ > 0.

A path collection is, for instance, always short-cut free if there are no two paths in it that meet, separate
and meet again. Since this is mostly the case both in theory and practice, the class of short-cut free
path collections is fairly general.

The problem is to route one message along each of the paths in P in such a way that the time
required to route all messages is minimal. We measure the routing performance of our protocols by

e the number n of paths in P,
e the dilation D of P, that is, the length of the longest path in P, and

e the path congestion C of P, that is, the maximum over all paths p in P of the number of paths
that share an edge with p.

Note that the path congestion should not be mixed up with the commonly used congestion of a path
collection, which is defined as the maximum over all edges e of the number of paths that contain e.

A major problem in all-optical networks is to interpret the address header of messages arriving at
optical switches, since their switching time is still slow compared with the transmission speed in optical
fibers. An approach investigated by AT&T [15, 17] and elsewhere employs a low bit-rate header which
is read on the fly by a photodiode or a contact on a semiconductor amplifier. These electrical bits are
fed to a controller that operates an optical switch that sends the unconverted optical data bits along
the proper path.

A message might occupy several links on its way through the network. We therefore model the
messages as worms, each of which consists of a sequence of fixed size units called flits. We assume that
it takes one time step to send a flit along a link. The length of a worm is defined as the number of
flits it contains. The first flit is called the head and the remaining flits are called the body of the worm.
During the routing, a worm occupies a contiguous sequence of links along its path, one flit per link.

The number of wavelengths a router can handle is called the bandwidth of the router and denoted
by B. As defined for the coupler above, we distinguish between two rules for the router: the serve-first
rule and the priority rule.

1.2 Previous Results

All-optical routing problems have been considered for two basic network models: the non-reconfigurable
or switchless networks, and the reconfigurable networks. In the first class of networks, a fixed set of
wavelengths is assigned to every connection between any input and output of a router, whereas in the
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second class switches are allowed, that is, connections between the inputs and the outputs of a router
can change. There are basically two possible ways of changing connections: either by simply switching
wires or by switching wavelengths (see Figure 2 for an example). The first type of switch is called
elementary switch and the second type is called generalized switch.

wavelength 1. — wavelength 2: - --

b) —+ d -t

Figure 2: An elementary switch with two outputs only allows configurations a) and b), whereas a
generalized switch allows all four configurations.

Clearly, the elementary switch cannot direct different wavelengths arriving at some input to different
outputs, whereas the generalized switch can do this. Figure 3 gives an example of a non-reconfigurable
and an elementary router.

A A A, ><
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inputs outputs elementary switches
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Figure 3: Structure of a switchless (left) and an elementary (right) router.

Almost all papers in the field of all-optical routing deal with the problem of assigning wavelengths
to the paths of the messages such that no two paths use the same wavelength at an edge (i.e., conflicts
among messages cannot occur). In this situation it is important to find networks and path selection
strategies such that the number of wavelengths required is minimal.

The routing strategies developed for the class of non-reconfigurable networks can be separated into
two categories: the single hop strategies and the mult: hop strategies. In a single hop strategy, messages
are not allowed to change their wavelength somewhere along their routing path, while in a multi hop
strategy they are usually allowed to do so for a bounded number of times (each time is referred to as
a hop).

For the class of single hop strategies, Barry and Humblet prove in [3] that, for any network,
permutation routing requires 2(y/n) wavelengths, where n is the number of nodes in the network. They
also show that oblivious permutation routing can be done using [n/2] + 2 wavelengths. Awerbuch et
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al. prove in [1] the existence of a switchless permutation network using O(y/nlogn) wavelengths. They
also show how to construct a switchless permutation network using O(y/n2(1°¢ ")0'8+0(1)) wavelengths.

Multi hop strategies have been considered, e.g., by [8, 9, 37, 13, 14, 22]. Chlamtac et al. [8] study
the problem of establishing multi hop paths for a given static and dynamic set of circuit demands.
In another paper, Chlamtac et al. [9] consider the problem of embedding regular networks into the
original fiber topology. They present bounds on the number of wavelengths required to simulate a
regular topology. Furthermore, algorithms for embedding different regular topologies are described
and their performances are evaluated. Zhang and Acampora [37] follow this line by studying two
heuristic algorithms for embedding the hypercube into a physical fiber topology. Gerstel and Zaks
[13, 14] study layouts for chains, rings, meshes and trees. Kranakis et al. [22] give asymptotically
tight bounds on the number of hops required for the chain and the mesh given the number of available
wavelengths (there expressed as congestion).

Within the field of reconfigurable networks, a number of papers [2, 10, 26] have formulated the
routing problem for both elementary and generalized routers as combinatorial optimization problems.
For networks with w available wavelengths and elementary routers, Barry and Humblet show in [4]
that the number of 2 x 2 routers required to support permutation routing is Q(nlog(n/w?)). Awerbuch
et al. [1] prove the existence of a permutation network using O(n log %%ﬂ) routers and constructed a
permutation network using O(n log(2(l°gw)0'8+o(l) /w?)) routers. When the transmitters are fixed-tuned
and the receivers are tunable, Pieris and Sasaki [31] show that the number of 2 x 2 routers required for
permutation routing is ©(n log(n/w)), and constructed such a network using O(nlog(n/w)) routers.

Pankaj proves in [29] that, if generalized routers are used, Q(logn) wavelengths are required for
permutation routing. He also shows that rearrangeably non-blocking permutation routing® can be
done with O(log® n) wavelengths and wide-sense non-blocking permutation routing! can be done with
O(log®n) wavelengths in popular interconnection networks such as the shuffle exchange network, the
DeBruijn network, and the hypercube. Awerbuch et al. prove in [1] a tight bound of O(logn) for the
number of wavelengths required for both rearrangeable and wide-sense non-blocking networks.

Raghavan and Upfal [32] prove results that establish a connection between the expansion of a
network and the number of wavelengths required for routing on it, considering both elementary and
generalized routers. In [34], Ramaswami and Sivarajan present a lower bound on the blocking probabil-
ity for any so-called routing and wavelength assignment (RWA) algorithm if requests and terminations
of connections arrive at random, and generalized routers are used. They study both the case that
wavelength conversion is allowed and not allowed at the routers.

To our knowledge, nothing has been found out so far about the maximum number of trials to send
a message to its destination given an arbitrary path collection and a fixed bandwidth, if wavelength
conversion is not allowed. In case that wavelength conversion is allowed at every router, Cypher et al.
[11] presented an online protocol that routes messages of length L along any simple path collection with
congestion C and dilation D in time O((L - C - DY/ 4 (D + L) logn)/B), w.h.p.}. However, all-optical
devices for wavelength conversion are still a research topic and might significantly increase the cost of
a router. Therefore we want to show in this paper how far one can get without wavelength conversion.

* “Rearrangeably” means that for any permutation known completely in advance there is a set of paths and an assign-
ment of wavelengths to the paths such that no two paths crossing an edge use the same wavelength.

T “Wide-sense” means that paths can be set up and wavelengths can be selected for the paths one after another so that
it is still possible to connect any unused source with any unused destination in a way that no two paths crossing an edge
use the same wavelength.

1By “with high probability” (or w.h.p. for short) we mean a probability of at least 1 — 1/n* for any constant k > 0.
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1.3 New Results

In this paper we investigate how much time is necessary to route messages to their destinations given
an arbitrary short-cut free or leveled path collection with some fixed bandwidth in case that wavelength
conversion is not allowed.

In order for a protocol to be simple and fast, the processors should avoid any coordination. That is,
the processors should be able to decide locally and without any outside information when and how to
send out their messages. Since messages cannot be buffered during the routing there are basically two
types of local-control strategies for transmitting messages: assigning random initial delays or priorities
to the messages. The following simple routing strategy uses both strategies to send worms along a
fixed path collection using routers with bandwidth B (the parameter T' will be specified later).

Trial-and-Failure Protocol:
all n worms are declared active
for t =1 to T do:

e cach active worm is sent out from its source with random startup delay in some
suitably chosen range [A;] using a random wavelength in [B]

e for every worm that completely reaches its destination, an acknowledgement is sent
back to the source immediately afterwards

e every source that gets back an acknowledgement declares its worm as inactive

Let us call the execution of one for-loop one round. Clearly, round ¢ requires at most A; + 2(D + L)
steps to be sure that either an acknowledgement of a successful worm reaches its source, or the worm
or its acknowledgement has been (partly) discarded. (Note that if we use priority routers it can happen
that worms are only partly discarded.)

Previously, only delay sequence arguments were used to analyze such protocols (see, e.g., [11, 35]).
In this paper we use delay tree arguments that yield much more accurate upper bounds on the runtime.
In particular, we are able to prove the following three results depending on the contention resolution
rule. Their proofs can be found in Section 2 and Section 3. Let o = C’—i—B(% +1)+2and 8= a/C+2.
The first theorem presents a nearly tight analysis of the protocol above for leveled path collections.

Main Theorem 1.1 For any leveled path collection of size n with dilation D and path congestion C
using serve-first routers with bandwidth B the protocol above routes a worm of length L along each of

these paths in time
L-C Llogn
O(T (y/logarﬁ—loglogﬁn) <D+L+ B )),

w.h.p. Furthermore there exists a leveled path collection such that, for any L > 2, the expected runtime

18 bounded by N
L-C
Q (7 (1 /log,, n + loglogg n) (D + L)) .

As we will see later, the upper bound results from choosing T' = O(y/log, n + logloggn) and
Ay = O((LC/(2! +logn) +logn)/B) for all t € {1,...,T}. (The upper bounds below decompose in a
similar way.)

Since in contrast to leveled path collections it can happen in some short-cut free path collections
that worms prevent each other from reaching their destinations, we get a slightly worse result for
arbitrary short-cut free path collections.
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Main Theorem 1.2 For any short-cut free path collection of size n with dilation D and path conges-
tion C' using serve-first routers with bandwidth B the protocol above routes a worm of length L along
each of these paths in time

L-C Llog3/2n
O<?+(logan+loglogﬁn) <D+L+T ,

w.h.p. Furthermore there exists a short-cut free path collection such that, for any L > 2, the expected
runtime is bounded by

L-C
Q <T + (log, 1 + loglogz n)(D + L)) .

As will become clear in the proof of Main Theorem 1.2, for the case L = 1 or there are no directed
loops consisting of less than /log, n subpaths, the upper bound in Main Theorem 1.2 can be reduced
to the upper bound in Main Theorem 1.1. For any other situation, we also obtain this bound if we
replace the serve-first routers by priority routers.

Main Theorem 1.3 For any collection of n short-cut free paths with dilation D and path congestion
C using priority routers with bandwidth B the protocol above routes a worm of length L along each of
these paths in time

L-C Llogn
O(T <q/logan+loglog5n> <D+L+ B )),

w.h.p. Furthermore there is a short-cut free path collection and a strategy for assigning priorities to
the worms such that, for any L > 2, the expected runtime is bounded by

L-C
Q (T (Mlogan + log logg n) (D + L)) .

We will show in Section 2 that the upper bound holds for any assignment of priorities to the worms
such that no two worms with the same priority can meet in one round, whether these priorities are
changed from round to round, chosen randomly, or deterministically.

The main theorems indicate that for short-cut free path collections the priority rule is more powerful
than the serve-first rule. Often, Q(% + D + L) is a lower bound for any protocol using serve-first
or priority routers. In this case the runtime of our protocol is (asymptotically) optimal if C is large
enough compared to D and L. Note that, for instance, for the butterfly network of size N the average
path congestion of permutation routing problems is ©(log? N), whereas its diameter is O(log N).

The upper and lower bounds in Main Theorems 1.1 and 1.3 will be proved in Section 2, and the
upper and lower bound in Main Theorem 1.2 will be given in Section 3. In the following, we describe
some applications of the trial-and-failure protocol.

1.4 Applications

In this section we demonstrate that our protocol can be efficiently applied to routing messages in some
important classes of networks. First let us introduce some terminology. For any n € IN let [n] denote
the set {0,...,n—1}. Given a network of size n, by “routing a function” we always mean that, given a
function f : [n] — [n], send one message from node i to node f (i) for all i € [n]. Furthermore, “routing
a g-function” means routing a function f : [¢] x [n] — [n], i.e., each node is the source of ¢ messages.
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A “random (g-)function” denotes a function that is chosen uniformly at random from the set of all
possible (¢g-)functions. Given a network G, a path system of G is defined as a collection of paths that
contains a path for every pair of nodes in G.

The results presented in the previous section can be applied, e.g., to node-symmetric networks.
This class of networks is defined as follows.

Definition 1.4 A network G = (V, E) is called node-symmetric if for any pair of nodes u,v € V
there exists an isomorphism ¢ : V. — V with ¢(u) = v such that the graph G, = (V,E,) with

By, = {{p(e).¢(y)} | {z.y} € B} is equal to G.

Intuitively, node-symmetry means that a network looks the same from any node. Node-symmetric
networks form a very general class and include most of the standard networks such as the d-dimensional
torus, the wrap-around butterfly, the hypercube, etc. Furthermore, the best expanders that have an
explicit construction are all node-symmetric (see, e.g., [24, 25, 28]). For node-symmetric networks we
can show the following result.

Theorem 1.5 For any bounded degree node-symmetric network of size n with diameter D using pri-
ority routers with bandwidth B there is an online protocol for routing a randomly chosen function in

time )
L-D
O( B +<\/logDn+loglogn> (D+L)>,

w.h.p.

Proof. In [27] it is shown that for every node-symmetric network with diameter D there exists a short-
cut free path system with optimal dilation D and the following property: The expected congestion
caused at any edge e if paths are selected from this system according to a randomly chosen function
is at most D. Using this property together with Chernoff bounds [18] it is easy to show that w.h.p.
a randomly chosen function has a path collection with path congestion O(D? + logn), where n is the
size of the network. Using this in the time bound of Main Theorem 1.3 yields the theorem. |

The previous best time bound for the case B = 1 was O(L - D? + (D + L)logn) [11]. (Note that
for B > 1 the protocols in [11] allow wavelength conversion which we do not allow here.) The result in
Theorem 1.5 can be improved for d-dimensional meshes and tori.

Theorem 1.6 For any d-dimensional mesh of side length n using serve-first routers with bandwidth
B there is an online protocol for routing a randomly chosen function in time

L-d- L-dl
O< gn+(ﬂ+loglogn)<d-n+L+%>>,

w.h.p.

Proof. Using techniques in [11], it is easy to show that there exists a routing strategy for routing a
randomly chosen function that has a path congestion of O(d-n), w.h.p., and in which it cannot happen
that some set of worms eliminate each other. Since the size N of a d-dimensional mesh with side length
n is equal to n?, it follows that

M:o(@):o(\/&),
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where « is chosen as in the main theorems. In case that v/d < loglog N we have that n > N1/loglogN
and therefore loglog N = O(loglogn). This concludes the proof. |

The previous best time bound for the case B =1 was O(L-d-n+ (d-n + L)logn) [11], achieved
with a similar protocol as our protocol. They can only show that, by using priorities, O(logn) rounds
suffice w.h.p. to route all worms. Our result, however, implies that even without priorities all worms
are routed within O(loglogn) rounds, w.h.p., which is an exponential improvement. In case that we
use butterfly networks, we obtain the following result.

Theorem 1.7 For any logn-dimensional butterfly using serve-first routers with bandwidth B there is
a leveled path system such that a randomly chosen q-function can be routed from the inputs to the
outputs in time

L-qlogn logn ( Llogn)
0 L+1
< B * log(qlogn) logn+ —p ’

w.h.p.

For B = 1, this improves for some cases the previous best time bound of O(L - qlogn + (L +
logn)logn) [11].

2 Proof of Main Theorems 1.1 and 1.3

In this section we prove upper and lower bounds on the runtime of our protocol using serve-first routers
in leveled path collections, or priority routers in short-cut free path collections. In order to simplify the
presentation, we will concentrate on serve-first routers in leveled path collections, and note the analogy
to routing with priority routers in short-cut free path collections whenever it is necessary.

So suppose we want to route worms of length L along a collection of n leveled paths with path
congestion C and dilation D, using serve-first routers with bandwidth B. In order to simplify the
analysis we assume that a bandwidth of 2B is given, where B wavelengths are reserved for the messages
and B wavelengths are reserved for the acknowledgements. (Or we could assume that messages and
acknowledgements are sent in separate rounds.) As a further simplification we assume that C covers
both messages and acknowledgements. That is, if ¢ many paths share an edge with path p than we
define p’s path congestion as 2c. In this case both events are covered that either the message following
p collides with other messages or its acknowledgement collides with other acknowledgements. These
assumptions allow us to view a round of the trial-and-failure protocol as simply one forward pass (i.e.,
we can ignore the fact that acknowledgements are sent back).

2.1 The Upper Bound

In this section we want to prove an upper bound for the number 7" of rounds that is necessary to route
all worms using the trial-and-failure protocol with some suitable values of A;. We first want to find a
structure that witnesses a long runtime of the protocol.

Assume that a worm wy is still active after ¢ rounds. Then there must have been a worm w; that
prevented it from moving forward in round ¢. But if wg and w; have been active at round t there
must have been (not necessarily different) worms w9 and ws which prevented wy and w; from moving
forward in round ¢ — 1. Continuing with this argumentation until round 1 we find:

If worm wyq is still active after ¢ rounds then a tree of the form as shown in Figure 4 can be
constructed such that the nodes represent worms and two nodes with a common father correspond to
a collision event.
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level round
0+ +t+1

Figure 4: The witness tree of depth ¢.

Let us call this tree a witness tree of depth t, and denote it by W(t). The following definition
formalizes what kind of embeddings of worms into the nodes of W(t) we only have to consider.

Definition 2.1 Let ¢ be an embedding of worms into the nodes of W(t). A pair of worms (w,w') is
called collision pair if w is embedded in the left son, and w' is embedded in the right son of a common
father in W(t). We call ¢ valid if for every collision pair (w,w’) embedded at level i of W(t) it holds
that

o wH#uw,

e w is also embedded in the father of w and w',

e there is no collision pair (w,w") at level 1 with w' # w", and
e the paths of w and w' share an edge.

A walid embedding is called active if for any collision pair (w,w') embedded at level i of W(t) it holds
that w and w' use the same wavelength and w' prevents w from moving forward in round t — i + 1.

Following the discussion above, we can state the following lemma.

Lemma 2.2 If worm wyq is still active after t rounds then there is an active embedding ¢ of worms
into W(t) that maps wy to the root of W(t).

The above lemma implies that it suffices to find an upper bound for the probability (w.r.t. random
choices for the delays and wavelengths used by the worms) that there is an active embedding ¢ for any
worm wy in order to prove the upper bound in Main Theorem 1.1.

In order to count the number of valid embeddings we introduce the following type of graphs.

Definition 2.3 Let ¢ be a valid embedding. For each level i € {1,...,t} of W(t), let G; = (V;, E;) be
a directed graph whose nodes represent the set of worms embedded in level i and whose edges (w,w")
represent the collision pairs (w,w') in level i. We call the worms in V;—1 old and the worms in V;\ V;—1
new w.r.t. G;.
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We assume G to be the graph consisting only of a single node. Let the set of graphs Go,...,G; be
called valid if they represent a valid embedding into W(t). Clearly, each valid embedding into W(¢) has
a unique valid set of graphs Gy, ..., G}, and vice versa. Thus we can switch between either considering
valid sets of graphs Gy, ..., G, or considering valid embeddings into WW(t) in an arbitrary way.

For any valid embedding ¢ into the witness tree W(t), let m; = |V;| denote the total number of
worms and ¢; = m; — m;_1 denote the number of new worms at level 7. Let C’j be an upper bound
for the path congestion that holds at round j w.h.p. using the protocol above for suitably chosen
Ay, ..., Aj (determined later). Then it holds for the number V' (¢, k) of valid embeddings in W(t) using

k worms:
V(t,k) <n Z H (m 1) Cf - (A my )™l

w.h.p. This formula is derived as follows.
e There are n ways to choose the worm that is embedded in the root of W(t).

e For every level ¢ there are (mll 1) possibilities to choose ¢; old worms that collide with (and
therefore narrow down the choices for) each of the ¢; new worms. Hence afterwards there are at
most Cfi_i_i_l ways w.h.p. to choose the £; new worms.

e For the remaining m;_1 — #; old worms there are at most ¢; + m;_1 possibilities to choose the
worm that prevents it from moving forward.

Before we can proceed with our calculation, we need an upper bound that holds for the path conges-
tion after every round w.h.p. (Lemma 2.4), and an upper bound for the probability that any of the
embeddings counted in V (¢, k) is active (Lemma 2.5).

Lemma 2.4 For all t > 2 it holds that, zf A > 86321 r for all i € {1,. — 1}, then the path

congestion Cy at round t is at most max{2t—_1, O(logn)}, w.h.p.

Proof. The proof will be done by induction. Suppose the path congestion at the beginning of round ¢
is bounded by 2t r > 2alogn for some arbitrary constant o > 1. Let A; > 8e=2=t B2t r be the delay range
in round ¢. Consider any fixed worm w. Let wl, ..,w be the worms participating in round ¢ whose
paths share a link with the path of w, k < 2t I
only if w; fails to reach its destination in round ¢. Then X = Zle X; is a random variable denoting
the path congestion of w after round ¢.

Since we only consider short-cut free paths, it holds for every pair of worms w;, and w;, that
the difference between the time points when their first flits pass an edge remains the same for any
commonly used edge. As there are at most 2L possibilities for the delays of two worms such that they

meet during the routing, and each worm has BA; possibilities to choose a wavelength and a delay, it
holds that

Further let the binary random variable X; = 1 if and

2L
Pr]w;, is (partly) discarded by w;,] < —— .
BA,
Therefore,
Cy - 2L 1
Pr|X; =1 < —
WX=1s 55 <%
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and hence E[X] < M%. Let p = M%. Since the worms choose their delays and wavelengths

independently at random, we can use Chernoff bounds (see [18]) to prove that, for e = 2e — 1,

c

o (1+e)u 1 2e4e-2f—1 1 alogn 1\
> < =13 =z “\n
PriX > (1+¢)u] < (1 —I—e) (2) - (2) (n)

For o > 1, this yields the lemma. |

Hence in the following we can assume that C; = max{%, O(logn)} for all s € {1,...,t}. Next
we bound the probability that any of the embeddings counted in V' (¢, k) is active.

Lemma 2.5 For every valid embedding into o witness tree is holds that the probability that it is an
active embedding for level © > 1 is at most

oL\
<BAt—i+1 )

Proof. As noted above, the probability that a collision pair (w,w’) in level 7 of W(t) is active is at

most =—~—. Let a node in G; be called a root if it has outdegree 0. Then we can prove the following
BA; 41

nice property.

Claim 2.6 For every level i, the connected components in G; are directed trees with new worms as
r001ts.

Proof. Every old worm needs a witness for its collision in round ¢ and therefore cannot be a root. In
contrast, new worms have no witness since they are just introduced as witnesses in round . Furthermore
a connected component cannot have a cycle since

e in leveled path collections using the serve-first rule this would mean that a worm w; is discarded
at level /1 by a worm ws that is successful at that level, and ws is discarded at level 5 > ¢; by a
worm ws that is successful at that level, and so on, until we arrive at a worm w; that is discarded
at level £; > £;_1 by wy. Since w; already fails at level £1 < ¥;, this cannot happen.

e in short-cut free path collections using the priority rule this would mean that a worm w; is
discarded by a worm ws that has a higher priority than w;, and wy is discarded by a worm ws
that has a higher priority than ws, and so on, until we arrive at a worm w; that is discarded by
w1, since it has a higher priority than w;. This, however, is not possible as long as no two worms
with the same rank can meet in a round.

Since every directed tree in G; of size s implies a probability of < (#{Hl)s_l that its edges

correspond to collisions of worms, and since there are exactly ¢; trees in GG;, we obtain a probability of

at most
( 27, >(mz'1+li)13i ( 27, >mi1
BA¢ i1  \BAwig1

that the collisions in level 7 are active. This proves the lemma. |

Therefore the probability P(¢,k) that there exists an active embedding in W(t) is at most

mi—1 =0 mi_1—4L; 2L )mi_l
. T . gl i i—1 i -
P> ( ¢; ) Cirsy - (b mia) <BAt—i+1

t



13

2 PROOF OF MAIN THEOREMS 1.1 AND 1.3
em;_1 mi—1—¢; 3 m;—1—£
/ (gmz‘—l)

We now show how to simplify the formula. In case that ¢; < m;_1/2, we get
— &

m;—1
Z; m;—1
mi_l—Z
)(f +mi71)mi_l_el < 22[ (2m )ml 14
2L )mil

>(£i+mi1)ml < (
< (3emj—1)
and otherwise (that is, m; 1/2 < ¢; < m;_1)

mi—1
¢;
Therefore,
(t,k) < n 226 . (3emy_p)™i-1 b Cf " <7
ll,.z,z;tzo, 11—[1 " BAt—i-i—l
Zili:k—l
8L -C kot bt 6eLm;_q il
< ( ) Y I ( = 1)
BA, 0100l >0, j=1 BA it
Zili:k_l
if all A; are chosen such that AQ > Aé— Furthermore, the following lemma holds. Its proof can be
t —1} then
6eLt\ 3(t—logkl)
pa)
¢; such that Z§:1 l; = k—1.

m;_1—Y;
)=

I i
found in the appendix
Lemma 2.7 If A; > % and Ajy1 < A; for alli € {1
GGLmi 1

¢
H <BAt i+l

max
420,
2tTk=1 possibilities for choosing the /1,

6eLt> 3(t—[log k1)

Clearly, there are (H’;*l) <
Thus, if the requirements of Lemma 2.7 are fulfilled then
<\ k-1
8L-C
(5:k) _n<BA1> BA,
_ (e <6eLt> 3(t=log k1)
- " BA, BA,
For any constant v > 0, let
2 1
by = — 2 +7) el 11
log (2+ 2 (2 +1))
2(2 +v)logn log ko] .
{mem logn}+ 5 (2+1))])

and
T =
J log (ﬁ [max
According to Lemma 2.2 we know that if the routing takes more than T rounds then there is an active
embedding of worms into the witness tree W(T'). Since the number of worms embedded in a level can

only double from level i to ¢ + 1, for any such embedding one of the following two cases must be true
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(1) There is a level ¢ < T so that from level 0 to level ¢t of W(T) k € {ko,...,2ko} different worms
are embedded.

(2) Only k < kg different worms are embedded in W(T).

2
When restricting to these cases, we can set A; = max{ 32%'&, g%gg%, 40e7L- Mogn} +D+Lforallt<T,

where § is a sufficiently large constant depending on « in the proof of Lemma 2.4 and 7y in the formula
A 2

of ky. It is easy to check that in this case the terms 321]3'0’5 and 40 L 91081 i) the formula above ensure

that the A;’s fulfill the requirements of Lemma 2.4 and Lemma 2. 7 and the requirement above that

c C

> Lt

A, = Ao The term ?ﬁg - \was added to the formula of A, to ensure that the first expression in the

formula for T' is bounded by O(,/logsn). Hence it holds that

Pr[The routing takes more than 7" rounds]
< Pr[Case (1) holds] + Pr[Case (2) holds]

2ko
< Z > P(tk) + Z P(T, k)
t= logkok ko
2k - ko ~\ k-1 3 (T—Tlog k1)?
16L - C 16L-C 6eLT &
t=log ko k= ko 1 k=T 1 T
GeLt

since < 1forallt <T. Let us assume w.l.o.g. that C > vlogn, since this does not affect the

upper bound we want to prove. In this case T' < v/2ky. Thus we get together with the formulas for Ay
and A7 that

Pr[The routing takes more than 7" rounds]

T %o 1 ko—l-l—(k—ko)
< -2 +
el (7 +1))

t=log ko k=ko 2+ 2=
3(T—[log k1)
£ () ()
n- = =
=T 2 max{logn, logn} + g (% + 1)
2k (2+7) log n+(k—ko) ko 1\k=1 71\ (2+7)logn
< ¥ th() +Zn-2T<§> (§>
t=log ko k=ko k=T
T 2+ T—2 2+
1 v 1 1 v
< 2@ ) )
t=log ko n n
1 v J—
- 2nY  2nY =0

Therefore the overall runtime is

T
Z (A; +2(D + L))
t=1

T - -
L C C
= O(Z <D+L+E <2t—1+@+logn>>>

t=1
LC Llogn
= —+T|(D+L
0 (K s (041 Hosny)
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w.h.p., which is bounded by

L-C Llogn
O(? (w/logan+loglog5n> <D+L+ 5 )),

where o = C' + B(% +1)+2and =2+ g(% + 1). This completes the proof of the upper bound of
Main Theorems 1.1 and 1.3.

2.2 The Lower Bound

In this section we will prove the lower bound in Main Theorems 1.1 and 1.3. We use a path collection
that consists of the following two types of subcollections.

e Let d = [L51] + 1. The first type consists of n/(2y/logn) structures consisting of v/Iogn paths
of length D that are connected as shown in Figure 5.

0 d 2d 3d 4d #levels
Figure 5: A type-1 structure.

In general, the ith path starts in level (i — 1)d for all 4 > 0. Paths 4 and 7 + 1 have a common
edge from level 7 - d to level 7 -d + 1.

e The second type consists of n/ (2C~’ ) structures each consisting of C identical paths of length D.

We assume that along each of these paths one worm of length L > 2 has to be sent. Our aim is to
show that the expected runtime of our protocol applied to these structures is at least

LC
Q <f + (g/loga n + log logg n) (D + L)) ,

where the \/log, n-term is due to the type-1 structures and the loglogg n-term is due to the type-2
structures.

We first want to compute how long it takes to route all worms in a type-1 structure. In case of
routing along short-cut free paths using priority routers, we assume that the worm traversing path
1 has rank 7, and in case of conflicts worms with higher ranks are preferred. In order to bound the
number of ways to assign delays and wavelengths to the worms such that conflicts occur, we need the
following lemma.

Lemma 2.8 Consider an arbitrary round of the trial-and-failure protocol with delay range A > L.

Suppose that the worms traversing the first i + 1 paths are still active at the beginning of this round.

Then with probability at least (%)l the worms traversing the first i paths are discarded.
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Proof. Let A be the delay range of the round. Further let us denote the worm traversing path j by
wj, and its delay by 6;. Clearly, there are BA ways to choose a wavelength and a delay for w;. In the
following we show that for any delay d; of worm w;, there are at least % ways to assign a delay d;11
to worm w;41 such that w;;; blocks w;.

According to the construction of the type-1 structure, w;; starts { L] 4+ 1 levels after w;. Hence,
if 001 < §; + LLQIJ then w; 1 is at least one level ahead of w; durlng the routing. On the other
hand, if §;41 > 6; — L%J then w;41 is at most L — 1 levels ahead of w; during the routing. Since
{6; — |55, ... 6+ [ 522 )3 N[A] > [ £52] +1 > L5 for A > L, the number of ways to assign delays
to w;4+1 such that w; is blocked by w; 1 is at least %

Thus altogether there are at least BA(%)i ways to choose delays and wavelengths for the worms
such that the worms traversing the first ¢ paths are discarded. Hence this happens with a probability

of at least

BA(LFY) <L—1>i
(BA)#+1  — \2BA

|

Consider now the situation that it takes ¢ + 1 rounds to route the worms traversing the first ¢ + 1

paths in a type-1 structure. This could happen, e.g., if in round 7 only w; ;4,2 is able to reach its

destination, and the worms wy, ..., w;—;4+1 are discarded. According to the lemma above, for L > 2
the probability of such an event is at least

B (i) - U(main) W
U oy = UWesa+n)

where A; > 1 is the delay range for round i. Clearly, the number of time steps necessary for the ¢
rounds is at least Q(>f_; (A; + D+ L)). Given a fixed A = 3>!_; A;, the product in (1) is minimal if
Aj+L=(t—i+1)(A+t-L)/(*5") foralli € {1,...,t}. This is shown in the following lemma. Its
proof can be found in the appendix.

Lemma 2.9 Consider x1,...,1, € Ry withy =", z;. Then, for every a € [0,y], [1,(z; + @)’ is
mazimal if 7; + o =i(y +n-a)/("3") for alli € {1,...,n}.

Let A = A/t. Since there are n/(2y/logn) type-1 structures, and each structure has a probability

of at least
t (L-1)(t+1) t=itl L—1 \"
g<23-2(t—z‘+1)(A+L)> = <4B(A+L)>

to have active worms after ¢ rounds, the expected number of type-1 structures that have active worms
after ¢ rounds is at least

n ( L-1 >t2
2v/logn \4B(A + L)

Note that,

\/—n ( s >t2<1 & t> —log< l°g”>
2v/Iogn \4B(A + L) log(4B(A+L>)

L—1
Hence the expected number of rounds that are needed to route all worms in all type-1 structures is at
least

Q ( logp(a/1+2) n)
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In order to bound the time needed to route all worms in the type-2 structures, we distinguish between

the cases C > 2V1987 and € < 2Vlosn,

Case C < 2Vlogn,

Note that any routing protocol needs at least Q(L—E + D + L) steps to route all worms in a type-2
structure. Therefore the expected number of steps the protocol needs to route all worms is at least

LC _

Since the runtime bound is minimal for some A chosen in O(L—g + D + L), the expected runtime of the

protocol is at least ~
LC
Q <f + y/log, n(D +L)> ,

where a = C‘+B(%+1)+22. Let 8 = a/C+2. Since C' < 2VI198™ it holds that \/log, n < loglog n only if
B(% +1) > 2logn/(loglogn)” 5, ' In this case, however, log 3 = O(log a), that is, V1og, n > loglogg n.
Therefore we arrive at an expected runtime of the protocol of at least

LC
Q (? + (y/loga n + loglogg n> (D + L)>

time steps.

Case C > 2Vlogn,
Let C; be the minimum over all type-2 structures P of the number of worms that are still active in P
after ¢ rounds. Then the following lemma holds. Its proof can be found in the appendix.

Lemma 2.10 For every t > 2 and L(% +2) <Ay, A < A with é/(%)?fl_1 >9lnn it
holds that

w.h.p.

Thus for any L > 2 and A > 1 it holds for the expected number ¢ of rounds to route all worms in
type-2 structures that B
C

<3QB(A+L( 7/B+2)) 2
c

— <9Inn

(L-1)

St >1 141 ¢
= log 08, 9nn |’
32B(A+L(C/B+2))

where v = L . Since C' > 2V198" the expected runtime of the protocol is at least

(L-1)C
LC _
Q 5 + (,/logBLA+2n+loglog7n> (A+D+1L)).
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As is not difficult to see, this bound is minimal for A = O(L—Bé + D + L). Thus we get an expected

runtime of at least ~
LC
Q (f + <\/loga n + loglogg n) (D + L))

time steps, where o = C~’+B(% +1)+2and 8= a/é’ + 2.

3 Proof of Main Theorem 1.2

In this section we prove upper and lower bounds on the runtime of our protocol for short-cut free
path collections using serve-first routers. Hence suppose we want to route worms of length L along
a collection of n short-cut free paths with path congestion C and dilation D, using serve-first routers
with bandwidth B. (We again assume that C covers both messages and acknowledgments.)

3.1 The Upper Bound

In this section we want to prove the upper bound in Main Theorem 1.2. Let the witness tree W(t) be
defined as in Section 2. For any valid embedding ¢ into W(t), let m; = |V;| denote the total number
of worms and ¢; = m; — m;_1 denote the number of new worms at level 2. Furthermore let ¢; denote
the number of old worms that are in a connected component in G; with a new worm. Let C’j be
an upper bound for the path congestion that holds w.h.p. after round j using the trial-and-failure
protocol for suitably chosen Aj,...,A; (determined later). Then it holds for the number V (¢, k) of
valid embeddings in W(t) using k£ worms:

t mi—1

viLk)<n 3 II > <m’ 1) < z> Cltipr - (b c) 0 (miy — )™

01,5020, =1 ¢;=;

Yo ti=k—1
w.h.p. This formula is derived as follows.
e There are n ways to choose the worm that is embedded in the root of W(t).

e For each level i, there are (mz b

o possibilities to choose ¢; old worms that lie in a connected
component in G; with a new worm, and ( ) possibilities to choose ¢; old worms that collide with
(and therefore narrow down the choices for) each of the ¢/; new worms. Therefore afterwards there
are at most thz- 41 ways w.h.p. to choose the /; new worms. For the remaining ¢; — ¢; old worms
there are at most ¢; + ¢; possibilities to choose the worm that prevents it from moving forward.

e For each of the remaining m;_; — ¢; old worms there are at most m;_1 — ¢; ways to determine
the old worm which prevents it from moving forward.

Before we can proceed with our calculation, we need an upper bound that holds for the path
congestion w.h.p., and need an upper bound for the probability that the embeddings counted in V' (¢, k)
are active.

Since the delays and wavelengths are chosen independently and we only consider short-cut free
paths, it holds for every pair of worms w; and w; at round ¢ that

. L
Pr[w; is blocked by w;] < BA,
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Therefore, analogous to Lemma 2.4 we get that, if A; > 4e-L<; for alli € {1,...,t—1}, then the path

B21 B2-T
congestion C; at round ¢ is at most max{2t—_1, O(logn)}, w.h.p.

Next we bound the probability that the embeddings counted in V (¢, k) are active As noted above,
the probability that a collision pair (w,w') in level 7 of W(t) is active is at most 3 A ~—. For every level
1, each connected component in GG; that contains no new worms has a size of at least three This is true
since we only allow the worms to be routed along short-cut free paths and therefore two worms cannot
block each other. Hence there are at most g; < ™3 components with no new worms. Since every
connected component of size s implies a probability of at most (5 Ai o )*~1 that its edges represent
collisions of worms we obtain a probability of at most

( L )((mz'lci)gi) - ( L )
BA; i1 ~ \BA; i1

that these components are active. Note that we can improve this bound if we know that at least k > 3
subpaths of paths in the collection are needed to obtain a directed cycle in G;.

According to Definition 2.1, for every level of a valid embedding every old worm can only have one
witness. Hence each connected component in G; that contains a new worm has exactly one edge less
than its size and therefore must form a tree. Furthermore each new worm lies in a different connected
component. Therefore the probability that the edges of components with new worms represent collisions

of worms is at most
L (Li+ci)—4;
<BAti+1>

Altogether the probability that all collision pairs in level i are active given m; 1 and ¢; is at most

2(m;_—1—¢;)
3

2(m;_1—¢;)

L ci+ 3
(BAtiJrl )

Therefore the probability P(t, k) that there exists an active embedding in W(t) is at most

2(m;—1—¢;)
3

t mi—1 m;i 1 " , | | I ot

Y Y ( )( )q (G ) ey — ey <T>

L1520, 1=1 ¢;=¢; t—i+1
l’ =k—1

In order to simplify this formula, we have to distinguish between two cases. If ¢; < ¢;/2 we get

C'*l'
€\ g o pyeits e\ (3,\%h
<€i> (& +a) = <Ci - &) (261)

< (3eci)ci_£i ,

and otherwise

(ZZ> (&' + Ci)ci_ei < %22&(2@)%_& .
i

Let A; > 285L for all i € {1,...,¢}. Then it holds

2(m;_1—¢;)

mi—1 i+
Z mi_1\ (¢ s B L : 3
EZ i 7 i i—1— C i—1 i .
(f% )(fz')( Feyt i =) (BAH-H)

ci=4;
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 2(mi_1—c;)

mi—1 . mi_1—C; . ci+
em;_1 i i (¢ .y M —es L >
< v e )\ Ci 4 . s i—1—Cq
> E : (mi—l — Ci) <€z> (€ +c;) (mi—1 — ¢;) (BAt—i—I—l

ci=l;

_ . L Li+
< (emj_q)mitT <7BAt '+1>
—1
c;—4;

mg;—1 C‘—Z‘ ot S
Ci ) Nei—; 1 v L > 3
2 (&) (b + i) (emi—1> (BAt—i-i—l

ci=V;

P L £1+
S em;_ mi—1—44 ( >
(emi-1) BA; i1

mg;—1 ._e.
1 \“ b T
162¢; ci—t;
E 5277 (3ec; ) l( ) <7>
32 (3eci) em;_1 BAy_ i1

2(m;—1—¢;)
3

Ci—%

ci=l;
2(m;_1-4;) ) c;—1L
i+ m;—1 it
< (emi—1)mi‘l_zi< L ) Pkl ( 21L ) ’

BAt—H—I ZCi:Zi BAt—z—l—l
2(mi—1 —44)
< 4%( )m1l< ; >li+ 31
Zemi_l 71— (2
BA¢ 41

1 2(mi—1—-¢4;)

t 4
. 1 —0s Al L i 3
Ptk) < n 3 J[4%(emi)™ T 0Ly (ﬁ)

< <4L-C’>k_1 ﬁ (L(emi_l)?’/?)f

< n- E )

BAI £1,..,£¢>0, =1 BAtfiJrl
ly=k—1

if all A; are chosen such that AQI > % Furthermore, the following lemma holds. Its proof can be
found in the appendix.

Lemma 3.1 If BA; > (3e)3Lk%? and Ay < A; for alli € {1,...,t —1} then

2(my_1—4;)

- ﬁ L(em;_,)3/2 f<<13L>t—“°g’”
b0, BA_i1 ~ \BAy

Clearly, there are (t+]i_1) < 2ttk=1 possibilities for choosing the /1, ..., ¢ such that > f_, £; = k—1.
Thus, if the requirements of Lemma 3.1 are fulfilled,

~\ k—1
4L, - C 13L \ 1 [log k]
< t+k—1 ( >
P(t,k) < n(BA1> 2 BA,

8L-C\" " /261 \ ! Nogk]
BA; (BAt>

< n-2k<
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For any constant vy > 0, let

2 1
oo CElgn

log (2+ Z (2 +1))
(24 ) logn
log (maX{QIOgn, log?’/2 } + % (% + 1))

If the routing takes more than 7" rounds then, analogous to Section 2.1, one of the following two cases
must be true:

and
T>

+ ﬂOg k()-' .

(1) There must exist a valid reduced embedding into a witness tree W(t) with ¢ < T and k €
{ko,...,2ko} different worms.

(2) There must exist a valid reduced embedding into a witness tree W(T') with k& < ky different
worms.

It is easy to check (see Section 2.1) that, when restricting to these cases, all requirements above for

. . A . / . .
the A, are fulfilled by setting A; = max{ 16%01, )1961%67;’ (3e)°L gogs ’ “}+ D + L, where § is a sufficiently

large constant depending on « in the proof of Lemma 2.4 and « in the bound of ky. Then we get:

Pr[The routing takes more than 7" rounds]

< Pr[Case (1) holds] + Pr[Case (2) holds]
2ko
< Z > P(t,k) + ZP (T, k)
t=log ko k=ko
T 2ko ko 5\ k-1 T—[log k]
8L-C 8L-C 26L &
< Z n -2k ( ) Z n -2k ( ) < )
t=log ko k=ko Ay k—2 BA, BAr
2%ko k071+(k7k0)
< Z Z n -2k 5 +
t=log ko k=ko 2+ @ )
T—[log k]
2
Zn Qk ( 16C 3/(; D )
log + (3e)3 log n)+B(f+1)
2ko (2+7)logn+(k—ko) ko k—1 (247) logn
1 7) log 0 1 1
< Z Son 2k<§ —|—Zn-2k(§> <§>
t=log ko k=ko k=2
SRS DR D
- 2nY  2nY T "
Therefore the overall runtime is
T
> (Ar+2(D+ L))
t=1
T - -
L (C C
= 0 D+ L — +1log®?
(;( + +B<2t+lgn+0g n

LC Llog3/2n
= —+T|D+ L+ ——
O(B + < +L+ B ;
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w.h.p., which is bounded by
L-C L log?’/2 n
O<?+(logan+loglog5n) <T+D+L s

where « = C + B(2 + 1) + 2 and 8 = a/C + 2.

3.2 The Lower Bound

In this section we will prove the lower bound in Main Theorem 1.2. We use a path collection that
consists of the following two types of subcollections.

e The first type consists of n/6 structures consisting of three paths of length D that are connected
as shown in Figure 6.

path 1

|L/2| edges
Figure 6: A type-1 structure.

e The second type consists of n/(2C) structures each consisting of C' identical paths of length D.

We assume that along each of these paths one worm of length L > 2 has to be sent. (Note that in case
of L = 1 no cycles of colliding worms can occur, that is, we are in a situation of Main Theorems 1.1
and 1.3.) Our aim is to show that the expected runtime of our protocol applied to these structures is
at least

LC
Q (F + (loga n + loglogg n) (D + L)) ,

where the log, n-term is due to the type-1 structures and the logloggn-term is due to the type-2
structures.

We first compute how long it takes to route all worms in a type-1 structure. Consider an arbitrary
round ¢ of the trial-and-failure protocol. Suppose that in a given type-1 structure all three worms are
still active. Then we want to calculate the probability that these three worms block each other in round
i.

Suppose that A; > L. Let the worm traveling along path j € {1,2,3} be called w;. Let d; be the
delay chosen by worm w;. In case that 0; < A; — L%J we get that wy, we, and w3 collide if wo and w3
choose the same wavelength as w; and delays in the range [01, 1 + L%J —1]. In case that §; > A; — {%J,
then w, wy, and ws collide if wy and ws choose the same wavelength as w; and delays in the range
[61—([%] —1),61]. Hence in both cases there are at least [ £ | possibilities for both ws and w3 to choose
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a wavelength and a delay such that w;, w2, and w3 collide. Thus the probability that w;, ws, and w3
collide at round 7 is at least (L%J /(BA;))? if A; > L. Therefore the probability that w;, wo, and w3

collide for ¢ rounds is at least

ﬁ ( L/2] )2

i1 B(Al + L)
for any choice of Ay, ..., Ay > 1. Given a fixed A = 3¢, A; this product yields the smallest probability
if A; = A/t for all i € {1,...,t}. Hence assume that all delay ranges are equal to A = A/t. Since
there are n/6 type-1 structures, and each structure has a probability of at least (m)21t to have
active worms after ¢ rounds, the expected number of type-1 structures that have active worms after ¢

L >2t log(n/6)
— ) <1 & t> -
6 <3B(A +1) 2log (38(@%))

Hence the expected number of rounds that are needed to route all worms is Q(logg(a /1,41y 7). In order
to bound the time needed to route worms in the type-2 structures, we distinguish between the cases

C > 2Vign and ¢ < 2Viesn,

rounds is at least
n

Case C < 2Vlogn, i
Note that any routing protocol needs at least Q(% + D + L) steps to route all worms in a type-2
structure. Therefore the expected runtime of the protocol is at least

LC <
Q<§+log%+2n-(A+D+L)>

%
= Q (gc + (log,, n + loglogz n)(D + L)) ,

where a = C + B(2 + 1) +2 and 8 = o/C + 2.

Case C > 2Vlogn,

This case follows analogous to Section 2.

4 Summary and Open Problems

In case that wavelength conversion is not allowed we presented a very accurate analysis of the perfor-
mance of a simple routing protocol for arbitrary short-cut free path collections. Important questions
that remain are:

e How do the bounds change if arbitrary simple (i.e., loop free) path collections are allowed?

e What is the exact time bound for the runtime of the trial-and-failure protocol if wavelength
conversion is allowed? (The bound presented in [11] seems to be too weak compared to the
bounds obtained in this paper.)

Furthermore it would be interesting to consider cases in which only a few routers can convert wave-
lengths (see, e.g., [23]), or worms are allowed a bounded number of hops (i.e., conversions to and from
electrical form) in the network.
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A Appendix

A.1 Proof of Lemma 2.7

According to Claim 2.6 there must be at least one new worm per level. Thus Y_¢_; m; is minimized if
we set m; =4+ 1 foralli e {l,...,t—[logk|+1}, and m; = 2m,_; for all ¢ > ¢t — [log k] + 1. Then it
holds that ¢; =1 for all i € {1,...,t— [logk] + 1}, and £; = m;_; for all i > ¢t — [log k] + 1. Therefore
we get with A;j11 < A; forallie {1,...,t—1}:

ﬁ <6€Lml 1>mi14i - t“(iE[kPrl( 6eli >i1
i=1 BAt i+1 B =9 BAt,H,l
GeLt\ Lot i GeLt 3(t-Tlogkl)?
< < )

Next we show that for all other distributions of the m; it holds that
ﬁ <66Lmi_1>mi‘l_zi < <6eLt>%(t_ﬂogk1)2 @)
o \BA i ~ \BA;

if all A; > 0Lk,

Consider increasing the number m; of worms at a stage j < ¢ with m; < m,;;; by 1. Then two
terms in the product in (2) change: the (i = j)-term and the (i = j + 1)-term. Before increasing m,

these terms are
6eLm;_ =14 6eLm; ™=t 3)
BA;_ 1 BA;_; ’

and after increasing m; by 1, they change to

Gelom; 1\ "7 (Gelfm 1)) VO
BAt*j‘Fl BAt,j

It holds that (3) > (4)

beLm;_q S <mj + 1> it <6eL(mJ + 1)>2

BAt_]’+1 - m; BAt_]
o Mo 6eL(2mj_1 + 1)
At_]’+1 - BA2 tj
- ’ITLj,l Se. 40€Lm] 1
Arjy1 — BAY
40e’ Lk

<= Ay > B

Since any distribution of the m; can be obtained from the initial distribution above by repeatedly
increasing one of the m; by 1, the lemma follows.
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A.2 Proof of Lemma 2.9

For n = 1, the lemma is trivially true. We will show by complete induction on n that the assumption

. . 1\ r\g
above is also true for n > 1. Suppose that we have already shown that f(y,n) = [T (i(y+na)/("3h)
is the maximal value the product of the (z; + «)* can reach. Then we want to find the z,.1 + « for
which f(y — Zni1,7) - (Tpe1 + @)? ! is maximal. Clearly,

n+1

Fy = ng1m) - (@ne1 + )" = (y = zper +10) 3 - (@00 + @)™ g(n) (5)

where g(n) is a function that only depends on n. Taking the logarithm yields

log ((y ~ Tny1 t ”a)(ngl) (Tptr + )" 'Q(n))
= <n—2i- 1) log(y — Zp41 +na) + (n + 1) log(zp+1 + @) +logg(n) . (6)

Since a maximum of this function is also a maximum for the function in (5), it remains to determine
the maximum of the function in (6). As (6) is a convex function, this can be done by finding the z,1
for which the derivation of (6) is 0.

n+1 1 n n+1 — 0
2 Y—Tppl +NQ Tppr+o

Tp4l + Q@ Y — Tpi1 +NO

n+1 3
n+1 1
@ oo = B, 1+
o e tas O OED
(3

Hence the x; with ¢ < n have to be chosen such that

XZ:(:L“Z +a)=y+ (n+1)a— (n+ 1)(3zn—i2_|—_2()n + 1)) .

According to the induction hypothesis, [T" (z; + )’ is maximal if, for every i € {1,...,n},

i(y — Tpy1 + no)
(n—l—l)
2

(o e ) o)

("3")

i (G y 4 G g 1)a)

r+oa =

From this the lemma follows.
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A.3 Proof of Lemma 2.10

For t = 1, the bound on C, trivially holds. Suppose that the bound above for C, is true for some ¢ > 1.

Then we want to show that, if A, < A and C/( ?’ZBAC)Qt_1 > 9l1nn, then we get

w.h.p. Assume in the following that C/ ( 325 )AC)Qt_1 > 8alnn for some fixed constant o > 1. Consider
any fixed type-2 structure P. Let wy, .. wc be the worms participating in round ¢ that use this type-2
structure, ¢ > C/( 3QB)AC)2FI_1. Further let the binary random variable X; = 1 if and only if w;
fails to reach its destlnatlon in round ¢. Then X = Y ; X; is a random variable denoting the path
congestion at P after round ¢. In order to bound X, we introduce a random variable Y that is defined
as follows:

For every i € {1,...,c}, let §; be the delay of worm w;. Let W = {w/o41,...,wc}. For all
i € {1,...,¢/2}, let the binary random variable Y; be one if and only if there is a worm w; € W

that chooses the same wavelength as worm w; and a delay 6; € [§; — (L — 1),6; — 1]. Furthermore let

Y = Ec/ 2 Y;. We assume in the following that in case of priority routers the priorities of the worms
are chosen in such a way that rank(w;) < rank(ws) < ... < rank(w.). Then the following claim holds
for both serve-first and priority routers.

Claim A.1 For any £ € {0,...,¢c/2} it holds that Y = ¢ implies that X > £.

Proof. Consider any event that results in Y = /. Let us choose any worm w in W that causes some,
say a set W', of the worms w; with i € {0,...,¢/2} to have Y; = 1. Let § be the delay of w. Then
either all worms of W' are discarded because of w or w has been discarded and also at least |W'| — 1
other worms in W', since only one worm with a delay in [0 — (L —1),0 — 1] can survive. In both cases
at least |W'| worms are eliminated. Continuing this argument for the worms w; with ¥; = 1 that have
not been considered yet yields the claim. [ |

Hence Pr[X > /] > Pr[Y > /] or equivalently Pr[X < /] < Pr[Y < /] for all £ € {0,...,¢/2}. It
therefore remains to find an upper bound for Pr[Y" < /] in order to have an upper bound for Pr[X < /].
First, let us bound the probability that ¥; = 1 for any 4. Since A; > L( +2) and ¢ > logn, we get

Ar—1

PrlY;=0] = Y Pr6=d-PrlY;i=0]d =d]
d=0
Ar—1 1

= Z x H (1 — Pr[w causes Y; = 1| §; = d)])
d=0 “twew

B Aili<1_mm{d,L—1}>C/2

= A BA,
L () (2 ()
AT, BA, A, BA,

! <1_L>+<1_£> (1_M>
AN 4BA; Ay 4BA,

IN

IN
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L ¢L-1) oL-1) L o(L—1)
= A aBa? V1T uBa, _Kt<1_ ABA, )
c¢(L—1) N c(L —1)?

ABA, ABA?
< (L —1) .
= 8BA,

Hence,

Thus we get

_ 9. C _ 9 C
( 3zBA~)2t_1*1+2t_1*1+1 ( 39BA )Qt—1

(L-1)C

(L-1)C

Let p = 2@/(%)?*1. In order to apply the Chernoff bounds for Pr[Y" < u/2] we have to show that

the Y; are independent. Let A be the set of all assignments A € ([B]x[A;])¢/? of wavelengths and startup
delays to the worms in W. Since the worms choose wavelengths and startup delays independently at
random, it clearly holds for any assignment A € A and any subset {i1,...,3} C {1,...,¢/2} that

l
PrlYj ... Y, | Al = [] Pr[Y;; | 4]
j=1

and therefore ,
PrY, -...- Y] = [[ Pr[Y;] -
j=1
Hence we can use Chernoff bounds (see [18]) to prove that, for e = 3,

Pr XSL < Pr Yg# gPr[Yg(l—e)]
32BA \2' 1 32BA \2' ! o
((Lfl)é) ((Lq)é)
2 1\¢
< e € /2 < efalnn — (_) )
- - n

Hence for a > 1 the path congestion after round ¢ is bounded by C / (%)ZL1 for all type-2 struc-

tures, w.h.p.
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A.4 Proof of Lemma 3.1

We start with the valid embedding of k& worms in WW(t) that minimizes Y.!_; m;. Clearly, in each level
1 > 1 the number of different worms has to be at least 2. Hence we can choose the distribution m; = 2
foralli € {1,...,t—[logk]|+1}. Then it holds that £, =1 and ¢; =0 foralli € {2,...,t—[logk]+1}.
Therefore we get:

2(mj_1—¢;) _
i—1 BA;_i+1 B i—o BA; 11 — \BA;

In the following we show that for all other distributions of the m,; it holds that

2(mi—1—¢4;)

i L(emi_1)3/2 3 13L %(t—ﬂogk])
— <
100 v <(5a) 7

=1

if BA; > (3e)>LE>/2.

Consider increasing the number m; of worms at a stage j < ¢ with m; < m,;;; by 1. Then two
terms in the product in (7) change: the (¢ = j)-term and the (¢ = j + 1)-term. Before increasing m,
these terms are

2(mj,171j) 2(mjflj+l)
L(em;_1)%/? 3 L(em;)3/? 3 (8)
BA; j11 BA;
and after increasing m; by 1, they change to

2(mj_q1—(4+1) 2((m;+1)—(£j41-1))
L(em;_1)%/? : L(e(m; +1))%/? ° 9)
BA_j1 BA—j '

It holds that

2/3 mj—t; 4/3
8)>(9) o Lem; 1)3/? > mj + 1 T L(e(m; + 1))3/2
BAt,]‘+1 m] BAt,j

Liem; 12\ [ Dle(@m; 1+ 0\
BA;_j11 =° BA_j11
BA¢ j11

3/2
Lmj/f1

= > (3e)?
& BAj11 > (3e)° LK/

Since any distribution of m; can be obtained from the initial distribution above by performing the
action described above again and again, the lemma follows.



