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Abstract

In this paper we present a deterministic protocol for routing arbitrary permutations in arbitrary
networks. The protocol isanalyzed in terms of the size of the network and the routing number of the
network. Given anetwork H of n nodes, the routing number of H is defined as the maximum over
al permutations 7 on {1, ..., n} of the minimal number of stepsto route = offlinein H. We show
that for any network H of size n with routing number R our protocol needs O(logz n - R) time
to route any permutation in H using only constant size edge buffers. This significantly improves
al previously known results on deterministic routing. In particular, our result yields optimal deter-
ministic routing protocols for arbitrary networks with diameter Q(+f) or bisection width O(n!~¢),
e > 0 constant. Furthermore we can extend our result to deterministic compact routing. This
yields, e.g., adeterministic routing protocol with runtime O(R logn) for arbitrary bounded degree
networks if only O(logn) bits are available at each node for storing routing information.

Our protocol is acombination of a generalized “routing via simulation” technique with an new
deterministic protocol for routing h-relations in an extended version of a multibutterfly network.
This protocol improves upon all previous routing protocols known for variants of the multibutterfly
network. The “routing viasimulation” technique used here extends a method previously introduced
by the authors for designing compact routing protocols.
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1 Introduction

A fundamental problem in any parallel or distributed system is the efficient communication of data between
processors. Whileit is possible to design a specific routing algorithm for each possible interconnection network,
amuch more general approach isto create a single universal routing algorithm that can be used in any network
[22, 8]. In addition to providing a unified approach to routing in standard networks, universal routing algorithms
are ideally suited to routing in irregular networks that are used in wide-area networks and that arise when
standard networks develop faults.

Whereas several randomized online protocols for arbitrary networks are already known under the condition
that enough space for storing routing information in the nodes and packets is available (see, e.g., [20, 22, 28]),
little is known about how space-efficiency (see, e.g., [30, 25]) or bounded buffers influence the runtime. Further-
more, it is along standing open question for which networks deterministic online protocols can compete with
their randomized counterparts.

In this paper we present a deterministic online protocol that even reaches offline performance for networks
with diameter Q(n¢) or bisection width O(n'~€), ¢ > 0 constant. Moreover, this protocol can be adapted to
compact routing, i.e. the situation that there is only arestricted amount of storage per processor. Our proofs use
adeterministic protocol for routing arbitrary - s-relations in r-replicated s-ary multibutterflies in optimal time
O(log, n), and employ atechnique called “routing via simulation” to use this protocol for deterministic routing
in arbitrary networks.

We mode! an interconnection network as an undirected graph H = (V, E) where V' = [n](= {1,...,n}) is
the set of nodes and each edge in E consists of two links, one in each direction. Each link contains a buffer that
is able to store packets. The maximum number of packets that fit in any such buffer is called the buffer size of
H. The nodes are working according to the multi-port model, that is, in each time step a vertex can send out at
most one packet along each of its outgoing links. We further assume the nodes of H to work synchronously.

A packet consists of its source and destination, additional routing information, and a message. The source
and destination need log n bits, each. Throughout this paper we restrict the routing information to be very small,
namely of length at most O(logn). We assume the messages to have uniform length.

In order to know along which outgoing link to send a packet with a given destination, each processor needs
to have some information about the structure of the network. This information is called routing information.
The goal of efficient compact permutation routing isto design routing protocols that route any permutation fast,
using small buffers and only afew bits of routing information per node and per packet.

1.1 A Mode for Measuring Routing Performance

In order to compare the performance of our online routing protocols with that of offline protocols, we use the
routing number of a network (see, e.g., [2, 27]). This parameter is defined as follows:

Let S, be the set of all permutations on n items. Given a network H with n nodes and a permutation
m € Sy, let R(H, ) be the minimum possible number of steps required to route packets offlinein H according
to 7 (using the multi-port model with unbounded buffers). Then the routing number R(H) of H is defined by

R(H) = %as)iR(H’ ) .
In case that there is no risk of confusion about the graph H we will write R instead of R(H).

For any fixed permutation = € S, routing according to = is necessarily executed by sending the packets
along paths in H. The maximum length of these paths is the dilation of 7, the maximum number of these paths
sharing an edge of H is the congestion of 7. Clearly, if 7 can be routed in time at most R, there must exist a
collection of paths for 7 with dilation and congestion at most R. This leads us to the following remark.



Remark 1.1 Let H be a network of size n with routing number R. Then, for every permutation = € S,, there
is a path collection consisting of paths from node i to node 7 (7), 1 < 7 < n, which has dilation and congestion
at most R.

1.2 The Compact Routing Model

The theory of compact routing deals with questions about how a limited space at the processors and packets for
storing routing information influences the routing performance of networks. Thisis mainly done by investigat-
ing, how space bounds at the processors and packets influence the realization of efficient path systems.

Previously, (apart from very few exceptions) only compact routing models have been used that establish a
relationship between the available space for storing routing information in the nodes and the stretch factor or
the dilation of path systems obeying these space constraints. The stretch factor of a path selection scheme is
defined as the maximum ratio over all pairs of nodes between the length of a route produced by the scheme and
the length of a shortest path between these nodes. It was introduced by Peleg and Upfal in [30] and since then
has been used in alarge body of papers (see, e.g., [11, 12, 3, 4, 9, 10]). The best upper bound so far has been
presented by Awerbuch and Peleg in [4]. They show that, given agraph G of size n with diameter D, for every
k > 1 there exists a path system with stretch factor 164 that requires O(k - n'/* log n. - log D) bits per node and
O(logn) bits per packet for storing routing information. The best lower bounds can be found in [30] and [10].
The dilation of compact path selection schemes has been studied, e.g., in [16, 33, 13].

The drawback of these results is that they do not consider the congestion of a path system contructed by a
scheme and therefore cannot be used to analyze the routing time of protocols using these path systems. So one
improvement of these models could be to not only consider the dilation, but also the congestion of apath system.
We even go further by directly studying the implications of space restrictions on the time for routing arbitrary
permutations in arbitrary networks.

1.3 Previous Results

In terms of universal store-and-forward routing, many investigations have been revolving around the problem
of routing packets along an arbitrary fixed path collection with congestion C' and dilation D. The best time
bounds within this model were obtained by Leighton, Maggs and Rao [23]. They present an optimal O(C + D)
time offline algorithm for routing along arbitrary simple path collections with congestion C and dilation D
that uses constant size link buffers. Meyer auf der Heide and Vocking [28] found an online protocol that
can route n packets along an arbitrary shortcut-free path collection with congestion C' and dilation D in time
O(C+D+1logn), w.h.p.*. They further showed how to use this protocol to design optimal randomized protocols
for arbitrary node-symmetric networks. Recently, Ostrovski and Rabani [29] found a randomized protocol for
arbitrary smple path collections that runs in time O(C + D + log " n), w.h.p., for any constant € > 0, using
buffers of size C'. In [8], Cypher et al. present arandomized protocol for arbitrary simple path collections that
log(C-D) log(C-D) )

runsintime O((D loglogn+C+ lﬁ)gg’f('}go(gcl?%? ) Togoae-y)» W-h-p., and requires buffers of size O (5 w5y

Not many strategies for deterministic routing are known so far. In case of oblivious deterministic routing it
is well-known that, for any network of size n and degree d, there are permutations that require at least Q(\/g )
routing steps[5, 14]. Furthermore, Krizanc showed that for any constant degree network of size n and a constant
number of buffers per link any deterministic source-oblivious strategy realizing all partial permutations requires
Q(n) time [17]. In case of adaptive routing, we know that any deterministic sorting algorithm on a network can
also be used for deterministic permutation routing. There are, e.g., routing algorithms based on AKS sorting
[1] that can be implemented on a constant degree network with runtime © (log n) [19]. Furthermore, the sorting
result in [7] implies that any permutation can be routed deterministically on a hypercube, shuffle-exchange,

*Throughout the paper, the terms “with high probability” and “w.h.p.” mean “with probability at least 1 — n~“” wherea > 0 isan
arbitrary constant.



cube-connected-cyles and butterfly of size n in time O((loglog n ) logn). Simpler schemes with routing time
O(log,n) are known for d-ary multibutterflies [6]. Meyer auf der Heide and Scheideler [26] were the first to
present deterministic compact routing protocols. They showed that for any bounded degree node-symmetric
network with diameter D there is adeterministic protocol for routing any permutation in time O(D log n) with
constant size edge buffersif O(D loglog D) space is available in the nodes and O(log D) space is available in
the packets for storing routing information.

1.4 New Results

The main result of this paper is the design and analysis of a deterministic compact routing protocol that routes
arbitrary permutations in arbitrary networks in time close to the routing number.

Main Theorem: Let H be an arbitrary network with n nodes, maximal degree d and routing number R. Then,
for every s € {2, ..., R}, thereisa deterministic online protocol that routes any permutation in time O(log n -
R), if constant size buffers are available at each edge for storing packets, © ((s+1log R)(d log d+1log s)+1logn)
space isavailable at each node and © (log(s- R)+loglog n) spaceisavailable at each packet for storing routing
information.

The Main Theorem has several implications that are described in the following.

o If R = Q(n°) for some constant ¢ > 0 (this is the case for al graphs with diameter 2(+f) or bisec-
tion width O(n'~¢)), then it is even possible to route deterministically in optimal worst case time (and
average time, see [27]). Such optimal protocols were previously only known for special networks like
d-dimensional meshes and tori [18].

e According to [32] every n-vertex graph of genus g and maximal degree d has bisection width O{/gdn).
Therefore, the Main Theorem yields asymptotically optimal deterministic routing protocols for al net-
workswith g - d = O(n'~¢), e > 0 constant (thisincludes all planar networks with degree O (n!~¢)).

e For every bounded degree node-symmetric network (many standard networks and the best expanders that
have an explicit construction belong to this class[25]) of size n and diameter D, the Main Theorem yields
adeterministic protocol with runtime O(log, n - D) for every s € {2, ..., D}. The previous best protocol
for compact routing in node-symmetric networks is randomized, has runtime O(log, n - D), w.h.p., and
requires O(s - D) space in the nodes for storing routing information [25]. Here, instead, we only need
O((s + log D) log s + logn) space.

e For any bounded degree network of size n with routing number R, O(logn) space sufficesin the nodes to
route any permutation in time O(Rlogn). If R = O(2°8"/1oglogn) the time bound can be improved to
O(Rﬁog—n). Note that the space cannot be reduced below log n per node, since every node at least has
to store its own number.

Our approach to achieve the relationship between routing time and the routing number of a network is an
extension of the “routing via simulation” technique, introduced in [25]:

Consider networks G = (W, F) and H = (V, E) with ¢ := % > 1. (In[25] only ¢ = 1 is considered.)
Partition H into clusters of size ¢ such that each cluster represents a node in G and each pair of nodes within
one cluster has a distance of at most O(c). Furthermore let P be a path collection in H which contains paths
p(Cy, Co) with endpoints in the clusters €} and Cy in H only for pairs {u,v} € F for which C; simulates u
and Cy simulates v. Our strategy to simulate routing in G by H then works as follows:

Suppose, a packet with origin « and destination v travels along the path p; (u, v) in G. In order to smulate

the traversal of an edge {z,y} € F, it chooses the path p(Ci, Cy) with C; simulating = and Cy simulating y .



As guest graph G we use an extension of the s-ary multibutterfly network, called the extended r-replicated
s-ary multibutterfly. The s-ary multibutterfly network was introduced in [6]. For our generalized network we
show the following result.

Theorem 1.2 Given an extended r-replicated s-ary multibutterfly of size n withr > 1 ands > 4,r-s-n
packets, » - s per processor, can be routed deterministically according to some arbitrary r - s-relation in time
O(log,n).

In [6] this time bound is only achieved for routing permutations. As we will see, the extended multibut-
terfly can aso be used for compact routing, since its hierarchical structure allows very space-efficient routing
structures, so that the space necessary for storing Pr dominates the space requirements in the nodes of H.

1.5 Organization of the Paper

In Section 2 anew relation routing protocol for extended r-replicated s-ary multibutterfly networks is described
and analyzed. This is the most involved part of the paper. The “routing via ssmulation” technique will be
presented in detail in Section 3. Furthermore, a(non-compact) deterministic routing protocol will be constructed
using this technique. In Section 4 we show how to transform this protocol into a compact deterministic protocol
for arbitrary networks. Section 5 contains the conclusions and some open problems.

2 Routing in the s-ary Multibutterfly

In this section we prove Theorem 1.2. Before we present the protocol we first describe, how Borodin et al. [6]
defined their s-ary multibutterfly, and what kind of s-ary multibutterfly we need.

2.1 The s-ary Multibutterfly by Borodin et al.

In this section we describe the s-ary multibutterfly asit is defined in [6]. The basic building block of their s-ary
multibutterfly is an s-ary m-splitter.

The s-ary m-splitter (or (s, m)-splitter) is a bipartite graph of degree$ with m input nodes and m output
nodes. In this graph the output nodes are partitioned into/s output sets, each with m/,/s nodes. Every input
node has /s /2 edges to each of the \/s output sets. The edges connecting the input set to each of the output sets
define an expander graph with properties described in [6].

The (elementary) s-ary d-dimensional multibutterfly (s,d)-MBF has d + 1 levels. The vertices at level
0 < i < d— 1 are partitioned into \/s" sets of m; = \/E‘H consecutive nodes. Each of these setsin level i
is an input set of an s-ary m;-splitter. The output sets of that splitter are /s sets of size m;;1 inlevel 7 + 1.
Thus each node in the (s, d)-MBF is the endpoint of at most 2 - § = s edges. Figure 1 shows the structure of a
(16, d)-MBF.

Using the (s, d)-MBF, the following result can be shown. Its proof can be found in [6].

Theorem 2.1 For sufficiently large s, the s-ary multibutterfly of size n can route any permutation fromthe inputs
to the outputs in time O (log, ).

Using techniques in [34], Borodin et al also showed how to extend the s-ary multibutterfly to route any
global permutation in O(log, n) steps.

In the following, we further extend the definition of the s-ary multibutterfly such that it can be used to route
any s-relation in optimal time.
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Figure 1. The structure of a (16, d)-MBF.

2.2 Ther-replicated s-ary Multibutterfly

The basic building block of our (1-replicated) s-ary multibutterfly isan s-ary m-router.

The s-ary m-router (or (s,m)-router) is a bipartite graph with m input nodes and m output nodes. It is a
combination of the following two graphs.

The first graph is called s-ary m-distributor. It is a directed graph with al input nodes as node set. Each
input node is the starting point of s edges numbered from 1 to s. We require the edges to be chosen such that for
alie{l,...,s}theset of all endpoints of the ith edges forms a permutation, and specific expansion properties
described later are fulfilled. This graph will be used to balance the distribution of the packets in the input nodes.

The second graph we need is the s-ary m-splitter. As described above, in this graph the output nodes
are separated into /s output sets, each with m//s nodes. Every input node has \/s/2 edges to each of the
/s output sets. The edges connecting the input set to each of the output sets define an expander graph with
properties we will describe later. This graph will be used to forward the packets to their destinations.

The s-ary d-dimensional multibutterfly (s, d)-MBF hasd + 1 levels. Thenodes at level 0 <1 < d — 1 are
partitioned into /s" sets of m; = \/E‘H consecutive nodes. Each of these sets in level 4 is an input set of an
s-ary m;-router. The output sets of that router are /s sets of size ;1 inlevel ¢ + 1. Thus each node in our
(s,d)-MBF isthe endpoint of at most 2(s + 5) = 3s edges.

For our compact routing protocol we also need the notion of an (s, d, k)-MBF. This multibutterfly is defined
as follows. Let the (s, m, k)-router be a graph with & - m/4/s input nodes and k sets of m/,/s output nodes.
The input nodes are connected by an s-ary & - m /,/s-distributor. The s-ary splitter of such arouter is modified
inaway that every input node has 5. edges to each of the £ output sets. We call such asplitter (s, m, k)-splitter.
For k € {1,...,/s}, the (s,d, k)-MBF can be derived from an (s, d)-MBF by replacing the (s, m)-router at
level O of the (s, d)-MBF by an (s, m, k)-router as shown in Figure 2.

level
0
(s,;mk)-router
1
1 2 k
(sd-1)-MBF (sd-1)-MBF (sd-1)-MBF
d

Figure 2: The structure of an (s, d, k)-MBF.

The r-replicated s-ary multibutterfly (r, s, d, k)-MBF is defined by taking r copies of the (s, d, k)-MBF and
identifying the corresponding nodes. That is, each edge now is able to forward r packets in one time step. As



we will see, this multibutterfly can be used to route any r - s-relation from the top level to the bottom level
in optimal time. We will later describe how to construct an extended (r, s, d, k)-MBF that can even route any
global r - s-relation in optimal time.

For the rest of this section we will now present a proof of Theorem 1.2. Let n denote the number of nodes
in one level of agiven r-replicated s-ary MBF. Consider first the simpler problem of routing rs - n packets, rs
per node at the top level, to the bottom level of the MBF according to some arbitrary rs-relation. In order to do
this time-efficiently we use the following protocol.

2.3 Description of the Simple Protocol

We partition the rs - n messages into 522 batches such that no more than rs - m /522 messages from each batch
traverse any m-router. Batch j has all packets with destinations inthe set {z | z = j — 1 (mod 522)}. For the
purpose of analysis we assume that all batch j packets have been routed before transmitting batch 5 + 1 packets,
and we now concentrate on the routing of one batch.

Nodes at even levels of the MBF transmit in odd phases, nodes at odd levels transmit in even phases (that is,
level Oisactiveinphase,3,...). A phase has three subphases. Consider an (s, m, k)-router in which the input
nodes want to transmit. We assume that no node has more than r - s packets.

The task of the balancing phase is to distribute the packets in such away among the input nodes that there
are only very few nodes with more than =* packets. As we will see, this can be obtained if each input node
sends out itsp < r - s packets along the edges of the m-distributor with numbers 1 to [21 in an arbitrary order.
Note that, according to the definition of the m-distributor, each input node receives at most r - s packets.

The task of the placement phase is to distribute the packets in such a way among the input nodes that there
are only very few nodes having more than 77 packets that have to be sent to the same output set. As we will
see, this can be obtained if the packets are distributed among the s edges of the m-distributor in a specific way,
before sending them out.

The delivery phase consists of three steps. Its task is to send as many packets as possible to output sets
prescribed by their destinations. For each input node, only the first ;7 packets to each of the £ output sets are
declared active. In the first step each input node sends for each output set to which it has messages to transmit
arequest message along all - edges of the m-splitter to that output set. An output node that currently stores at
most 5 packets replies in the second step with aready message to al input nodes that sent arequest to it. In the
third step each input node sends up to r active packets to each node that sent it a ready message.

2.4 Analysisof the Simple Protocol

We first analyze the routing of one batch. Consider an (s, m, k)-router in a phase in which the inputs of that
router are active. Let z (resp. «') be the total number of packets that are stored in the input nodes of that splitter
at the beginning (resp. end) of that phase. Let y be the number of packets stored in output nodes of the splitter
at the beginning of this phase.

Lemma?2.2
400 log s
!
< .
7 (z +y)

Proof. Both the balancing phase and the placement phase require the packets to be distributed among the edges
of the m-distributor in a suitable way. For each input node v, this will be done with the help of an assignment
graph that is defined as follows.

Assume that every packet has one out of ¢ possible colors. The assignment graph A = (B, D4, E4)
is defined as a bipartite undirected graph with node sets Py and D4, and a set of edges E4. Pa = {v;; |
i€{l,...,c},j € {1,...,s}} consists of ¢ - s nodes, s nodes for each color, and D4 consists of s nodes

T

6



representing all s edges leaving v in the m-distributor. Each node in P; has d edges to nodes in D 4. Consider
v to have p; packets with color 4, partitioned into [2:] blocks of size at most . We allow the jth of these blocks
to be assigned only to nodes in the set I'({w; ; }). (For any node set U, I'(U) is defined as the set of all nodes v
that are adjacent to anode v € U.) In case that under this restriction every block can be assigned to a different
node in D4, each block is sent along that edge of the m-distributor that is represented by the node in Dy that
has been assigned to the block. If every input node uses the same assignment graph then, as will be shown in
Proposition 2.8, the edges of the m-distributor can be distributed in such away among the input nodes that, after
sending the blocks of packets along the edges assigned to them, the distribution of the packets among the inputs
is close to be balanced w.r.t any color.

For the balancing phase an assignment graph can easily be constructed. The task of this phase isto distribute
the packets among the input nodes in such a way that there is only a very small portion of packets left that is
stored in nodes with more than %% packets. Hence we need only one color. Consider input v to have p packets,
partitioned into [27] blocks of size at most . Then we simply assign the ;jth edge of the m-distributor to the jth
of these blocks. The underlying assignment graph has degree d = 1. Consider marking the first (at most) 5*
packets in each input node after the balancing phase. Then we are interested in the total number of unmarked
packets. An upper bound for this number will be given in the following proposition.

Proposition 2.3 There exists an s-ary m-distributor such that after the balancing phase at most@g—s un-
marked packets are stored in the input nodes.

Proof. The result follows from Proposition 2.8 withd = 1,c =1,z = and e < % < oo |

For the placement phase it is more difficult to find a suitable assignment graph. The task of the placement
phase isto distribute the packets in such away among the input nodes that there are only very few nodes having
more than 7;° packets that have to be sent to the same output set. Hence we need k colors representing the &
output sets of the (s, m, k)-router. If we only concentrate on assigning edges of the m-distributor to marked

packets, we can prove the following result.

Proposition 2.4 Thereis an assignment graph A of degree 4 such that, for any choice of colors for the at most
52 marked packets stored in an input node, A can be used to assign at most one block of marked packets to each
edge such that the j-th block of color i € {1,...,k} isassigned to an edgein I'({y ; }).

Proof. Consider a fixed input node v. The proof consists of a probabilistic argument. In particular, we show
that for randomly chosen endpoints in D4 for the edges in £4 and suitably chosen d the probability that the
resulting graph A does not fulfill the proposition is smaller than one. Therefore, there exists an assignment graph
A such that the marked packets can be distributed among the edges in such a way that each edge gets at most
one block of packets.

Let p < k denote the number of colors used by the marked packets in v, let 4 be the number of blocks
of marked packets in v assigned to the jth of these p colors. Since each input node stores at most™;* marked
packets, the number ¢ of blocks is at most Z§:1 i; < 5 + p (for each of the p colors there may exist a block
with less than r packets). There are at most (qjl) possihilities for choosing a subset of ¢ — 1 out of s possible
nodesin D 4. The probability that all aternatives for the blocks point to nodes within such a subset is bounded
by (%)d"l . Then the probability that for any choice of colors for the packets thereisa subset S of nodesin P
representing blocks of packets with I'(S) < | S| is bounded above by

p=1 p 1<iy,..,ip<s, Ejij—l S
>0 i<

M=
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In order to simplify the formula, we need the following claim.

Claim 2.5 For a sufficiently large s and d > 4,

() E)= () (5

forallp e {1,...,k} andq € {p,...,s/2 + p}.

Proof. It holds
s <g>d-q . s <q + 1>d(q+1)
q) \s - \g+1 S

d-q d
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whichistrueforal d > 4and g € {p,...,5; — 1}, if s issufficiently large. Hence (7) (%)™ > ( *,)(“ 2=1ydq
fordlge {p+1,...,5; —1}. Incasethat g € {5;,..., 5 + p} and s sufficiently Iarge(recall thatp NO!

)R e () )

Incasethat ¢ = pandp > 1 (the case p = 1 isobviously correct) we get

BT ()

d-p
o) =
p—1 - s—p+1

which is also true. Hence the claim follows. [ |

Let d > 4 and s be sufficiently large (note that £ </s). Then it follows from Claim 2.5 that
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The following result can be shown about matchings in bipartite graphs. Its proof is similar to the proof of the
well-known Matching Theorem by Hall (see [20], p. 191).

Theorem 2.6 Let G = (Vi, V3, E) be an arbitrary bipartite graph with |Vi| < |V4|. Then G contains a
matching of size |V} | if for any subset S C V; it holds that [I'(S)| > |S|.

Using this theorem it follows that the probability is smaller than one that, for randomly chosen endpointsin
D 4 for theedgesin E 4, there exists a coloring of the marked packets such that an assignment of marked packets
tonodesin D 4 as described above is not possible. Thus the proposition holds. |

Let each edge of the distributor represent » channels. Then the unmarked packets will be assigned to those
of ther - s channels that are not used by the marked packets. Although we do not consider the unmarked packets
in the following, it isimportant to let them participate in the placement phase to ensure that after the placement
phase every input node has at most r - s packets. Let us call the first 77> marked packets for each output set that
are stored in each input node after the placement phase active. Then we can prove the following proposition.

Proposition 2.7 There exists an s-ary m-distributor such that at most %—5 marked packets are not active
at the end of the placement phase.

Proof. The result follows from Proposition 2.8 withd =4, c =k <./s,z = amande < 5# <73 [ |

eds

It remains to prove that, for a given assignment graph A, there exists an m-distributor such that the packets
are close to be balanced among the input nodes w.r.t. any color.

Proposition 2.8 Let A be an assignment graph for ¢ colors that has degree d and can be used to assign every
edge of the m-distributor to at most one block of packets of any color in every input node. Consider marking
for each color the first z packets in each input node after the packets have been sent along the edges of the
m-distributor. If there are at most <> packets of each color stored in the input nodes, z > /s/4, € < 52—,

and s sufficiently large, then there exi sts an s-ary m-distributor such that the total number of unmarked packets

is at most
24d - zlog s

z

Proof. We use aprobabilistic proof to show that there is a suitable distribution of the edges of the m-distributor
among the input nodes such that Proposition 2.8 holds.

Consider afixed color v € {1,...,c}. Let 2, denote the number of packets stored in the input nodes that
have color . Let p > z, ¢ = 4, and b; denote the number of input nodes that have at least i blocks of packets
with color ,4 € {q,...,5}. Notethat if an input node has i blocks of packets with color -y then it has at least
f(2) :== (i — 1)r + 1 packets with color ~. Thus the maximal number of input nodes with ¢ > ¢ blocks given z,

and by, ...,b;_; isat most
mln{ ’V‘II"’Y _g(an abi—l)-‘ : bi—l}
T

with g(by,...,bi—1) := f(q) - b q+1 r - bj. Thefollowing claim reveals why the assignment graph is so
important for baJ ancing the packets among the mput nodes.

Claim 2.9 If all input nodes use the same assignment graph A of degree d then the s edges reaching any input
v can be numbered from 1 to s such that a block of packets with color - that arrives at v via edge j implies at
least |2 ' | blocks of packets of color ~ in its origin before the packets have been sent oui.



Proof. Let all input nodes use the same assignment graph. Then it holds that, since for every j € {1,...,s} the
endpoints of the jth edges from all input nodes form a permutation, each input node is the endpoint of s edges
representing the complete node set D4. Consider the edges to be numbered from 1 to s such that if edge e has
alower number then edge ¢ then min{j | e € I'({v,;})} < min{j | ¢ € I'({v,,;})}. Sincethe jth block of

color «y isonly allowed to choose among d nodesin Dy it follows that if ablock of color « reaches anode v via

edge j then its origin must have had at least |2 | blocks of packets with color +. |
With the help of this claim we can prove the following claim.

Claim 2.10 The probability that after the placement phase at least » input nodes have at least p blocks of
packets, each, with color + is bounded by

(m)( m ) <i>ﬂp—7zd> <2ed-x7>¥
U 76555 d p-r-m

Proof. For randomly chosen endpoints of the edges of the m-distributor, the probability that after the placement
phase at least  input nodes have at least p blocks of packets, each, with color -y is bounded by

u

12y,
(T) > R @

MR A bs/dzo’ %§i1<...<ip/2§8j:1
Vith; >b; 41, 9(bg,--s bs/d)Sz»y

Thisformulais derived as follows.
e Thereare (") waysto choose aset U of input nodes of size w.

e If p blocks of packets are sent to input node v, there must exist at least £ blocks that use an edge set
{ir, ... ip/2} € {5,...,s} with numbers chosen as defined in Claim 2.9. This entails a probability of

% that the ¢;th edge is used by ablock with color y. Thus we get that, for each input node v in U, the
probability that it gets at least p blocks of marked packets with color -y is at most

nZy
> I @

; §i1<...<ip/2§8 j=1

M)

Since there is only a limited number of edges that have their origin in nodes with at least ¢ packets of
color +y, the probabilities for the nodes in U are negatively correlated and therefore can be regarded as
independent for an upper bound. This means that we get an overall probability of at most (3.

Because of f(q) - by, + Zj/:dq 417 bj <z (seetheformulafor g above) it holds that

s s/d 1 s/d
> by < d- )b = d(bcﬂr; > T'bj)
=3 '

Jj=q+1

IN
ISH
/N
=l

[~}
+
| =
0
29
|
~
=p
=)l
LQV
N——
IN

Thus we get
1 ) pH/2 bi; /al
3 < 7
® < (p/2)!

il,...,ip/26{g,...,s} j=1

10



1 i bi;.
- H iy e

i1yeelp/2— 16{27 58} J= lp/ge{g,...,s}

1 Z p/12_[1 lij/d) d- Ty
(p/2)! m rem

il,...,ip/g_le{g,...,s} Jj=1

_ ! (d-x7>p/2<<2ed-x7>p/2
= (p/2)!' \r-m ~ \p-r-m '

Using thisin (2) we get that the probability that at least « input nodes have at least p blocks of marked packets,

each, with color  is bounded by
()2, ()
U /) by b0, p-r-m

Vi:biZbS/d,g(bq ..... bs/d)Sz»y

- (™ (m (f)%(%d-%)u'_f.
- U TZI) d p-r-m

Since ¢ = 4, the claim follows. n

Letug., p-p = ‘?;71355 and s be sufficiently large. Then the probability that at least «., , output nodes have
at least p > 2 blocks of marked packets, each, with color -y is bounded by

e ()
Uayp) \7ip7oay) \d porem

f(p/2d)<wn < B,

f(p/2d)|z
Cf%:zd) m m s\? /ev 2vlog s
4vlog s v d m
v=1 p

ETrSMm

4dvlogs

cf(p/2d) ep-m " esm\?/ep\2vlogs
UE::I <4vlogs> <d-v> <E>

ETrSm

p>+/s5/4 cf (p/2d) m\? /m\v1ogs—1) /e, 2vlogs
< — _ b
< L E@E G

v=1

eErsm

ES% cf(p/2d) <1>vlogs - 9

IN

4

2

< 2

v=1 §

Summing over al p = z to s thisyields a probability smaller than 1 if s > 2. Note that for ; > 3 we have

ez clz/2d)—1) _c-flp/2d)
— 12ed-s — 4es -  ders '

Since there exists an m-distributor with v, , - p < 4’”(7}%5 for any distribution of the packets such that the

assignment graph can be applied, at most ‘;d fx(”}og)s input nodes have at least p > ~ blocks of marked packets
after sending them along the edges of the distributor.

11



Let ¢; be the number of input nodes that have exactly 7 blocks of marked packets after sending them along
the edges of the distributor, i € {z,...,s}. Then the total number of unmarked blocks of packets is at most
i, 1-c;. Sincewerequire the ¢; to obey
Xs: . 4d - 2, 1og s
— "~ p-f(p/2d)

foralp >z, Y7 ,i-c; getsmaximal if we set

_ 4d-zylogs
“ T Sf(s2d)
. _ 4d -z log s _ 4d-=zylogs
T -1 f((s—Dj2d) s f(s/2d)
4d - x- log s 4d - x log s

Cs_92 — (S — 2) . f((S _ 2)/2d) a (3 — 1) . f((S — 1)/2d) )

From this we conclude that for a sufficiently large s and 25 > 3 the edges of the m-distributor can be chosen in
such away that at most

, Sip( dzylogs 4z, log s > 5. 4z, log s
=" \pTe2d) " D FG+D2d) T si(s/2d)
s—1
< 7 Zp(le-:leogs_12d-m710gs> ‘ 12d - 2~ log s
= TP r(p +1)2 - 52
_ [z 12d-m7210gs n Xs: 12d-x7210g3-|
[ Tz pertl rp J
24d - x-, log s
B Z
packets with color « are not marked. Summing over al colors yields the proposition. |

Note that we showed above that for randomly distributed edges the m-distributor fails to fulfill the require-
ments of the balancing phase resp. the placement phase with probability at most 2/s. Thus for randomly
distributed edges a single m-distributor fails to fulfill the requirements of both the balancing phase and the
placement phase with probability at most 4/s. Hence for sufficiently large s there exists an m-distributor that
can be used for both the balancing phase and the placement phase.

Next we analyze the delivery phase. Since each input node wants to send at most . - £ = 5 requests, the
edges of the (s, m, k)-splitter can be distributed in such away that each output node has degree$ and therefore
receives at most 5 requests. This ensures that, if an output node stores at most ' packets at the beginning of the
delivery phase, it can accept  new packets from every edge of the (s, m, k)-splitter without having more than
r - s packets afterwards. Since output nodes with more than > packets may cause problems, we need a bound
for the number of packets that can not be sent from the input nodes to the output nodes.

Proposition 2.11 Let y be the total number of packets stored in the output nodes. For all & € {1, ... ,\/s} there
exists an (s, m, k)-splitter for distributing the requests for the active packets in such a way among the outputs
that at most 4??/ active packets fail to be sent to their output sets.

12



Proof. Consider afixed output set Y. Let 3/ be the number of packets stored in its nodes. The proof consists of
a probabilistic argument. In particular, we show that for randomly chosen edges such that each input node has
57 and output node has 5 endpoints the probability is less than one that, for any 3 < <™, there isasubset C
of input nodes (of size dependlng on 3/) such that, for any choice of ;- edges out of the o5 €dges leaving |nput
nodesin Cy, al remaining edges point to output nodes with more than’y packets. Thus there exists a bipartite

graph that restrlcts the number of active packets that fail to reach Y to be at most 7 |Cy|.
L et m be the number of input and output nodes of the splitter and ¢, bethe S|ze of Cy . Then the probability
described above is bounded by

Z (m>( >cy/ (m/k:) ”y}Q Cyl" IR
peycesm 1 ) \"/k

Thisis because the number of ways to choose ¢, out of m input nodes for Cy, is ( ) and the number of ways
y

=

to choose 15 out of the - edges leaving input nodes in G, is bounded by (Sﬁﬁ) . Furthermore there are at

output nodes with more than 22 packets. The number of ways to choose a subset of output nodes such
m/k
y' /(rs/2)) The probability

that one chosen edge from a node in C has its endpoint in such a subset is ¥ '/ (’"/s/ 2 Since we require every
output node to have afixed degree of 3 the probabilities for the ¢,/ - 7 chosen edges to fall into the same subset
of y'/(rs/2) nodes are negatively correl ated and therefore can be regarded as independent for an upper bound.
Thus the probability that al of the ;7 edges chosen for each input in G, belong to a subset of output nodes
with more than % packets is at most (y /(’"/5/2) Yo s/4k et Cy - iE = iys and s be sufficiently large (note that
k < /s). Then the overall probability described above is bounded by

most

rs / 2
that all output nodes with more than 5 packets areincluded is therefore bounded by (

S

c.r / C,
speyicemem, \@') \iF ne) \mk
2em/k s SSN 2z
Sz )\ & z m/k
8
-m

T o)™ (g) (m/ k)

IN
g

IN

A~ I/~ /—~
x| ®

" EN
N

IN
g

] z/2 ES% 2em/k 2
< T (BT () <0
— m
&sm - Thus at most

Hence there exists an (s, m, k)-splitter such that ¢, < % S — 16k for gl f < s

rs rs?
r-s 16ky’

T e = 473/ active packets fail to be sent to Y. Summing over all output sets yields the proposition. |
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From Proposition 2.3, Proposition 2.7, and Proposition 2.11 it follows that the total number of packets stored
in input nodes at the beginning of the phase reduces to at most

, 48zlogs 384xlogs 4y 400 log s
T = + — <
s Vs s NG

packets at the end of the phase assuming that s is large enough. This completes the proof of Lemma2.2. |

(z+y)

Let X! denote the number of packets in level i after the execution of phase ¢. Then the following theorem
can be shown by using a potential function as described in [21] and [34].

Theorem 2.12 There is a deterministic multi-port scheme on an r-replicated s-ary MBF of size N that routes
any r - s-relation from the top level to the bottom level in O(log, N) stepsif s is sufficiently large.

Proof. We analyze the progress of the routing algorithm in terms of a potentia function. Let n be the number
of nodes in each level of agiven (s, d, k)-MBF and w = s'/*/(log s)/2. The potential of a packet after phase ¢
isw’ if after the execution of that phase the packet isin level d — i of the network. (When a packet reaches its
destination its potential is 1.) Let ®(¢) denote the sum of the potentials of the n packets after phase ¢, that is,

d

() = Xjw .

i=0
Clearly ®(0) = rs - n - w?, and routing a batch terminates at the first phase 7 such that ®(7) < r.
Let f(s) = M\/‘g)gs Assume that ¢ and i are even. Then by Lemma 2.2

X< flo)(X+ XPyy) and XPH <X+ X

and after the next phase
X< X o+ X{ 4 f(s)(X] + X[1)

and
XA < F)(XE+ XE + F(s) (X g+ XD3)) -

Plugging these bounds into the potential function and applying the equation

Xt wd*i — w] X Xf+jwd*(i+j)

it
yields
D(t+2) < Yoo (X o+ XP 4 )X+ X)) w4
0<¢<d, 7 even
S FE)(XE + X+ F(3) (XL + X))t
0<i<d, i odd
1 f(s) d—i
< X (o + £6) + L2 pow) Xt
S (G £ + (s ) Xt
0<i<d, i odd
d .
< Y (IO £+ (o)) X
1=0
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Thus the potential function is decreased by at |east

% + f(s)w + f(s) + (f(s)w)? = O(w™)

every two phases, and for 7 = O(log, N), ®(7) < r. Since there are only O(1) batches to route the theorem
follows. ]

We now show how to extend this scheme to route any global r - s-relation in O(log, N') steps. To simplify
the presentation we use a topology with 3N nodes we smply call G(r, s,d, k) for routing r - s - N packets.
G(r,s,d, k) consists of 3d levels of n = k\/Ed_l nodes each and uses edges that can forward r packets in one
step. The first d levels are connected by (s, n, 1)-routers, the second d levels represent the (r, s, d, k)-MBF,
and the last d levels are connected to each other by 5 forward edges between any input  and output ; for all
ie{l,...,n}

Overlapping these three stages and identifying the corresponding nodes yields an N-node topology of depth
d with degree 2(2s + s) +2 - § = Ts, that can simulate one step in G(r, s, d, k) with constant delay. Such a
network is called extended s-ary multibutterfly and denoted by (r, s, d, k)-XBF.

Initialy, al ther - s - N packets reside in the first d levels of G(r, s,d, k). All the final destinations of the
packets are in the nodes of the last d levels. Clearly, there is a path with no more than 3d edges between every
node in the first part and every node in the third part, and this path can be locally computed. A packet initially at
node (¢, =) with destination (¢, ') can take an arbitrary path forward to level d. By bit comparison, the packet is
then led to the node (2d, 2}, and then by the direct edges ((k, «'), (k + 1, z')), the packet reaches its destination.

Each packet p with destination level ¢ is assigned a fixed rank during the routing defined as rank(p) =
q — 2d € [d]. For each node v in G(r, s, d, k), we define the median of v to be the *-largest rank in v if there
are at least 5* packets in v and —1 otherwise.

2.5 Description of the Global Protocol

We partition the rs- N messagesinto 1566 batches such that no morethan rs-m /1566 messages from each batch
that have the same destination level traverse any m-router in the MBF-levels. This can be done by declaring
only those packets to be active at level j if their destination isintheset {z | z = 5 — 1 (mod 1566)}. For the
purpose of analysis we assume that all batch j packets have been routed before transmitting batch 5 + 1 packets,
and we now concentrate on the routing of one batch.

Nodes at even levels of G(r, s, d, k) are active in odd phases, nodes at odd levels are active in even phases.
In one phase, the following routing strategies are performed in the three different parts of G(r, s, d, k):

25.1 OnePhasewithintheFirst d Levels

Consider an n-router whose inputs are active. Let p denote the minimal rank such that the number of packets
with rank > p stored in the input and output nodes of that n-router is at mostﬁrsn. We perform the following
two subphases.

The task of the balancing phase is to distribute the packets in such a way among the input nodes that there
are only very few nodes with more than *;* packets with rank > p. Analogous to Proposition 2.3, this can be
obtained if each input node sendsout itsp < r- s packets along the edges of the s-ary n-distributor with numbers
1to [27 such that packets with higher rank get edges with lower numbers.

The delivery phase consists of four steps. Its task is to approximately sort the packets according to their
destination level (by moving packets with rank > p forward and, maybe, in exchange packets backwards). For
each input node, only the ©3* packets with highest ranks are declared active. In the first step each input node
sends a request message to § suitably chosen output nodes. Each output node sends its median back to all
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input nodes that sent it a request. The input node then distributes its packets among the outgoing links such
that packets with higher rank are preferred and (up to) r packets are sent along a link if their ranks are larger
than the median. If the sum of the packets already stored at an output node and the packets it receives from the
input nodes exceeds r - s then the output node sends in exchange to the new packets old packets back preferring
packets with lower rank.

2.5.2 OnePhasewithin the Second d Levels

Consider an (s, m, k)-router whose inputs are active. Let p be defined for the (s, m, k)-router asfor the n-sorter
above. A phase consists of the following three subphases.

The task of the balancing phase is to distribute the packets in such a way among the input nodes that there
are only very few nodes with more than =5* packets with rank > p. Analogous to Proposition 2.3, this can be
obtained if each input node sendsout itsp < r- s packets along the edges of the s-ary n-distributor with numbers
1 to [2] such that packets with higher rank get edges with lower numbers.

The task of the placement phase is to distribute the packets in such a way among the input nodes that there
are only very few nodes having more than 7 packets with rank > p that have to be sent to the same output set.
Analogous to Proposition 2.4 and 2.7, this can be obtained if al packets stored at input nodes are distributed
among the s edges of the m-distributor with the help of a suitably chosen assignment graph preferring packets
with higher ranks, before sending them out.

The delivery phase consists of four steps. Its task it to send as many packets as possible to output sets
prescribed by their destinations. For each input node, only the first 77 packets to each of the & output sets are
declared active, preferring packets with higher rank. In the first step each input node sends a request message to
o5 Suitably chosen output nodes within each output set to which it has messages to transmit. Each output node
sends its median back to all input nodes that sent it arequest. The input node then distributes its packets among
the outgoing links such that packets with higher rank are preferred and (up to) r packets are sent along alink if
their ranks are larger than the median. If the sum of the packets already stored at an output node and the packets
it receives from the input nodes exceeds r - s then the output node sends in exchange to the new packets old
packets back preferring packets with lower rank.

2.5.3 OnePhasewithinthelLast d Levels

A phase simply consists of forwarding the packets along the s edges for each active node.

2.6 Analysisof the Global Protocol

We first analyze the routing of one batch. Consider a subgraph connecting two levelsin G(r, s, d, k) in a phase
in which the inputs of the subgraph are transmitting messages to the outputs. (For thefirst d levels this would be
an (s, m, 1)-router, for the next d levelsany (s, m, k)-router, and for the last d levels any two consecutive levels
with active upper level.) Let g € [d] befixed. Further let z; (resp. y;) be the total number of packets with rank
q or g + 1 that are stored in the input nodes (resp. output nodes) at the beginning of that phase. Let » (resp. )

be the number of packets with rank > ¢ + 2 stored in the input nodes (resp. output nodes) at the beginning of
this phase. Moreover, let 2/ denote the total number of packets with rank ¢ that are stored in the input nodes at
the end of the phase. Then we can show the following lemma.

Lemma 2.13

, _ 400log s
zr <
NG

(z1+uy1) + 22+ 92 .
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Proof. Theresult trivially holds for the last d levels. Since the routing strategy in thefirst d levelsis similar the
strategy in the second d levels and makes use of (s, m, 1)-routers, it remains to prove the inequality above for

any (s, m, k)-router inthe second d levels, k € {1,...,y/s}.

Lete < ﬁ We have to distinguish between two cases. If 2, + yo > ersm then it immediately follows
from the choice of the packets participating in one batch that # < x5 + y». Suppose in the following that
ZTo + yo < ersm. Thenit holdsthat x; + y1 + z2 + yo < 3ersm < 5%mm. Since the packets with higher
ranks are preferred in our protocol, we can apply Lemma2.2 withz = x; + x5 and y = y; + y» to the protocol
above to get that ' < %g—s(xl + y1 + x2 + y2). Combining both cases yields the lemma. |

Let X! (k) denote the number of packets with rank & in level i after the execution of phase t. Then the
following theorem can be shown by using a potentia function.

Theorem 2.14 Thereisa deterministic multi-port scheme on an extended r-replicated s-ary MBF of size N that
routes any global r - s-relation in O(log, N) stepsif s is sufficiently large.

Proof. Weanalyze the progress of the routing algorithmin terms of apotential function. Letw = 4/%/(log s)/2.
The potential of apacket with rank % after phase ¢ is«/ if after the execution of that phase the packet isin level
2d — i + k of the network. (When a packet reaches its destination its potential is 1.) Let ®(¢) denote the sum of
the potentials of the n packets after phase ¢, that is,

d—12d+k

() = > Xi(kyw

k=0 =0

Clearly ®(0) < rs - N - w?, and routing a batch terminates at the first phase 7 such that ®(7) < 7.

Let f(s) M\/‘g)gs Assume that ¢ and i are even. Then by Lemma2.13
d—1
Xk < F)XPR) + X[ (B) + XP(k+1) + X[ (B + 1)+ Y (X[(0) + X[41(0)
(=k+2
and
Xk < X{(k)+ Xja(k)
And after the next phase
X2 (k) < X (k) + X (R)
< Xio(k) + X (k) + 4
d—1
FEXT (k) + Xy (k) + X{(k+1) + X[ (k+ 1) + Y (X[ + XE(6),
l=k+2
and
d—1
X2k < f(s) (XEHBR) + XEL (k) + X (k+ 1)+ XE (K + 1)) + Z (XEHH O + X (0)
=k+2
< FOIX(R) + Xy (k) + (5)
d—1
F(s) (Xipa(k) + Xipg(k) + X{pn(k+1) + Xj 5 (k+1)) + Z (X2 (0) + Xi15(0) +
l=k+2

Xik+1)+ X (k+1) + f(s) (X, (k+ 1)+
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-1
Xips(k+1) + Xio(k +2) + X{5(k+2)) + Z (X (0) + Xi15(0) ] +

l=k+3
d—1
Z [ X7(0) + X[y (0) +
(=kt2
d—1
F) (X)) + X[ 5 (0) + XE (0 + 1) + X[ 5 (0+1) + (X () + XE () ]
=042

Plugging these bounds into the potential function and applying the equation
Xl (b + 0w = =0 X (k4 0)w?d =)D

yields

(I»(t + 2) < di:l |: Z (4) 2d—itk + Z (5) _w2di+k:|
k=0

) :=° osizzin (“’2 (1) +dz <$>) i
f(s) <1 + %) % + f(s)(w+1) +j§ <E>] +
j_; w‘“’lﬂ +f6e) (wllﬂ w21+j> +§, (%)lﬂ)] X} (k)yw?=itk 4
Z Z (% +f(s)(w+1) +dz (é)) ;
f(s) <1 + %) (1 + F(s)(w? + w) +j§ <$>]> N
j:(l) w21+] I (ziﬂ w11+j> +::: (%)Zﬂ> T mad
SE om0

a1 i1 i
1 1 1 1 J -| t 2d—i+k
w2ti + f(s) (E + m) + : (;) )J - X (k)w .

Thus the potential function is decreased by at |east
L ewen+ Y (L)) +
E—i_ S)lw = w
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d—1 j
f(s) (1+%> (1+f(s)(w2+w) +]Z% <%> > n

5 (# 16 (37 + 1) +:Z: <$>M>

=0

w1t

<

S

every two phases, and for 7 = O(log, N), ®(7) < r. Since there are only O(1) batches to route the theorem
follows. ]

Combining the theorem with the resultsin [34] if s isnot sufficiently large yields Theorem 1.2.

3 The“Routing via Simulation” Technique

In this section we present a very efficient deterministic routing protocol for arbitrary networks H. The idea
of the protocol is that, for any permutation routing problem in H, we route the packets to their destinations
by simulating routing in a suitably chosen extended s-ary multibutterfly embedded in H. For this we use the
simulation strategy described in Section 3.1.

3.1 Network Emulations using 1-Many Embeddings

Consider the problem of simulating one routing step of an arbitrary network G by anetwork H for the case that
the size of GG issmaller than the size of H. We start with describing how to embed G in H. In order to smplify
the construction, let H be a network of size n, and G' be a network of size m with at most n/2 edges. Let
dy,...,d, bethe degree sequence of G, i.e,, d; isthe degree of node i in G. Then> i, d; < n. Our strategy
is to partition the nodes of H into clusters i, ..., C,, such that for all i € {1,...,m} cluster C; consists of
d; nodes representing d; copies of node i in G. For this we choose an arbitrary spanning tree 7" in H. Let
r be an arbitrary node in T'. We mark the nodes in 7" with numbers in {1,...,m} starting with r by calling
Mark(1, true, r):

Algorithm Mark(z, f, v):

1. number of nodes already marked
f: boolean variable indicating whether father has been marked
v: actual node to be considered

if f = falsethen
mark v with the number ¢ obeying 071 d; < i < Y5, d;

sete=141+41
for every son w of v: call Mark(s, true, w)
else

for every son w of v: call Mark(i, false, w)
mark v with the number ¢ obeying >°/"1 d; < i < Y-5_; d;
sete=141+41

return the value of ;

Basically, the algorithm ensures that on a pass downwards through the tree only every second node is marked
such that afterwards on a pass upwards the other half of the nodes can be marked. Consider two nodes marked
asith and (i + 1)st node. Then on a pass downwards, the cases shown in Figure 3 can occur.
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Figure 3: Alternatives for a pass downwards.

On a pass upwards, the cases shown in Figure 4 can occur.
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Figure 4: Alternatives for a pass upwards.

As can be seen, the worst case that can happen with this strategy is that two consecutively marked nodes
have a distance of 3 (by changing from one subtree into another). Hence nodes belonging to a cluster i have
at most a distance of 3d; from each other. Let the nodes of each cluster be connected by an Euler tour along
edgesinT. (An Euler tour in atree is defined as a directed cycle that uses any edge in T' at most once in every
direction.) Then alink is only used by two Euler tours: the Euler tour belonging to that cluster that was built
while traversing that link downwards, and the Euler tour belonging to that cluster that was built while traversing
that link upwards. Hence the following two results hold.

(8@ the Euler tour of cluster i haslength at most 64; for al i € {1,...,m}, and
(b) the maximal number of Euler tours that share the samelink is two.

We further want to simulate every edge in G by a path in H that connects the nodes simulating its endpoints.
Let R be the routing number of H. Since our clustering allows the endpoints of edgesin G to be distributed in
H such that every node in H hasto simulate at most one endpoint, there is a path collection in H for simulating
the edgesin G with congestion at most R and dilation at most R (see Remark 1.1).

Consider now the problem of simulating an arbitrary routing step in G. Clearly, any routing step can be
extended to the situation that along every edge in G a packet has to be sent. This event can be simulated in the
following way by H.

e Moving the packets to the nodes simulating the endpoints of the edges they want to use in G: This can
be done by sending the packets along an Euler tour connecting the nodes of the respective cluster in T'.
Because of (b) this can be coordinated among the clusters deterministically intime O(max d;) using only
constant size buffers.

e Moving the packets along an edge in G: This can be done by sending the packets along the paths sim-
ulating edges in G. Since these paths have congestion at most R and dilation at most R, this can be
done deterministically in time O(R) using only constant size buffers by applying the offline protocol by
Leighton et al. [23].

If we restrict the maximum degreein G to be O(R), we get the following result.
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Lemma 3.1 Any network H of size n with routing number R can simulate any routing step in a network G with
degree O(R) and O(n) edgesin O(R) steps, using only constant size buffers.

3.2 A Deterministic (Non-Compact) Routing Protocol

Consider an arbitrary network H of size n with routing number R. In a preprocessing phase, we embed an
extended R-ary multibutterfly of size approximately n/R in H such that every node in the multibutterfly is
simulated by approximately R nodesin H. According to Lemma 3.2 such a multibutterfly exists.

Lemma3.2 For any /s,n > 2 thereexist k € {1,...,+/s} and d > 1 such that the number m of nodes in the
(s,d, k)-XBF isbounded by n/2 < m < n.

Proof. According to the definition of the extended multibutterfly, the number of nodes in the (s, d, k)-XBF is
d-k:-\/Ed_l. Choosed > 1andk € {1,...,/s} insuch away that the number m of nodes gets maximal under
the restriction that m < n. We distinguish between two cases.

o k< s Thend-(k+1)-/s" " > nandtherefored - k- /54" > %d-(k—kl)-\/gd_l > n/2.

o k=5 Then(d+1)-1-/5">nandtherefored-k-/s" ' > L(d+1) 5" >n/2.

N

Thisyields the lemma. |

In the following, we assume that there exists an R-ary multibutterfly that has exactly n/R nodes. In this
case we want to assign exactly R nodes of H to any node of the multibutterfly. (If thisis not possible, then
Lemma 3.2 implies that an R-ary multibutterfly can be chosen such that we need clusters of size at most 2R to
assign all nodes in H to nodes of the multibutterfly.) In order to partition the nodes of H into clusters of size
R, we choose an arbitrary spanning tree T'in H and apply the clustering strategy on T" described in Section 3.1.
L et the nodes of each cluster be connected by an Euler tour along edgesin T'. This ensures that

(a) every Euler tour has alength of at most 6 R, and
(b) the maximal number of Euler tours that share the samelink is two.

Further we distribute the paths simulating edges of the multibutterfly among the nodes in H in such away that
every node is the endpoint of at most some constant number of paths and simulates at most one in- and outgoing
edge for each distributor and splitter. If we now want to route any permutation in H, we can transform thisinto
the problem of routing any R-relation in the R-ary multibutterfly. Hence, in order to route a permutation in H,
we can choose to perform a deterministic step-by-step simulation of routing an R-relation in the multibutterfly.
With this strategy we can prove the following result.

Theorem 3.3 Let H be an arbitrary network of size n with routing number R. Then there is a deterministic
online protocol that routes any permutation in time O(logp n - R), using only constant size buffers.

Proof. Each step of the multibutterfly can be ssmulated in the following way in H.

e Assigning XBF-edgesto the packets:
In case that we have to simulate a balancing phase, this can be done by first sorting the packets in the nodes
of each cluster according to their rank (note that the rank of a packet depends on its destination level in
the XBF, see Section 2.5). Since only a constant number of Euler tours share the same link, this can be
done in time O(R) with constant size buffers, using Odd-Even Transposition Sort [15]. Afterwards, for
alie{1,..., R} the packet with ith largest rank is sent along the Euler tour of its cluster until it reaches
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the node that simulates edge 7 of the R distributor edges leaving that cluster. Clearly, this can also be
coordinated among the clustersin time O(R).

In case that we have to simulate a placement phase, we again first sort the packets in the nodes of each
cluster according to their rank. As noted above, this takes O(R) steps. Next the R /2 packets with highest
ranks have to be assigned to suitably chosen distributor edges. For this, the nodes first count how many
of these packets want to be sent to any of the at most v/R output sets. Using this information, the nodes
compute which packet to forward along which distributor edge. (Note that this can be done by each node
with the help of an algorithm presented by Vazirani [36] that runs in O(R/?) timeto find an assignment

of packets to edges. Since a calculation step can be usualy performed much faster than a communication
step, we will not consider the time for computing such an assignment.) This information is used to
distribute the packets among the nodes of the cluster. Clearly, the counting and distribution of packets can
be performed in O(R) steps for every cluster, using only constant size buffers.

In case that we have to simulate the first step of a delivery phase, we generate a request packet for each
node simulating the endpoint of a splitter edge. After all answers of the requests are received (for this
we need the routing strategy below), the packets in each cluster are first sorted according to the output
set they want to reach and their rank, and then delivered among the nodes that received a positive answer,
preferring packets with higher rank. Asabove, the sorting and distribution of the packets can be performed
in O(R) steps for every cluster, using only constant size buffers.

e Moving each packet along its assigned XBF-edge:
According to the definition of the routing number, the edges of the XBF can be ssimulated by a path
collection in H with congestion O(R) and dilation at most R. Since at most one packet is sent along each
of these paths, there is an offline protocol according to [23] that routes packets along these paths in time
O(R) using only constant size edge buffers.

Combining these results with Theorem 1.2 yields the theorem. |

It remains to show how to extend this protocol to a deterministic compact routing protocol.

4 Deterministic Compact Routing

In this section we present a compact deterministic routing protocol for arbitrary networks H. For this let us
recall the general approach of the routing via simulation technique.

Let H be an arbitrary network of size n with routing number R. Suppose, we want to simulate a network
G of sizem = O(n/R) and degree s = O(R) by H. In order to simplify the description, let us assume in
the following that m = n/R. Let H be partitioned into clusters of size R as described in Section 3.1, each
representing a node in G. Furthermore let £ represent the set of all Euler tours connecting the nodes of the
clusters and P be a path collection in H which contains for each edge {u, v} in G a path from the cluster
representing « to the cluster representing v. In the following, we want to show how to design compact routing
structures for £, P¢, and the offline protocol for simulating one routing step in G'.

4.1 Selecting Suitable Routing Paths

In order to route packets between two nodes within a cluster, we simply send them along the corresponding
Euler tour as it was done in the deterministic non-compact protocol. It remains therefore to show the existence
of routing paths for P with low congestion and dilation. For this we need the following lemma.

Lemma4.1l There exists a smple path collection in H for simulating all edges in G with dilation at most R
and congestion O(s + log R).
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Proof. We distinguish between three cases. If s > R then choose each node in H to be the endpoint of at most
[s/R| paths. Thus the problem of establishing a path for each edge in G reduces to the problem of finding an
efficient path collection for an arbitrary [s/R|-relation routing problem. Because of the definition of R, there
exists asimple path collection for any such problem with congestion at most R - [s/R] and dilation at most R.

Consider now the case that log R < s < R. Then we want to show with the help of the Lovasz Local Lemma
(see [AES92], p.55) that there exists asimple path collection 7 in H with congestion O(s) and dilation at most
R.

Lemma4.2 (Lovasz) Let Aq,..., A, beaset of “bad” events, each A4; occuring with probability at most p
and depending on at most b other eventsin {4;,..., A, }. Ifep(b+ 1) < 1, then with probability greater than
zero no bad event occurs.

For any connection that has to be established between any cluster GG and Cy, | R/s] pairs {u,v} of nodes
are chosen as candidates, u € C1, v € Cy. These candidates can be chosen such that each node belongs to at
most one candidate. Hence there exists a collection of simple paths, one for each candidate, with congestion at
most R and dilation at most R. Now consider the random experiment of choosing randomly for each connection
one of the | R/s| paths representing its candidates and eliminating the rest. We associate a bad event to each
edgeein H. The bad event for edge e isthat more than & surviving paths contain e (k will be determined later).
In order to show that there is away of choosing the candidates such that no bad event occurs, we need to bound
the dependence b among the bad events and the probability p of each individual bad event occurring.

The dependence calculation is straightforward. Whether or not a bad event occurs depends solely on the
selection of the candidates that pass through the corresponding edge. Since at most R candidates pass through
an edge, and each of these candidates belongsto aset of | R/s| candidates for aconnection, each having alength
of at most R, the dependence b of the bad eventsisat most R - | R/s]| - R.

Next we compute the probability of each bad event. Let p be the probability of the bad event corresponding

to edge e. Then . .
r< (1) () < (&)

Since s > log R, for k > 4e- s the product ep(b + 1) islessthan 1, and thus, by the Lovéasz Local Lemma, there
isachoice of candidates such that the congestion is O(s).

If s < log R then we choose [log R/s]| random paths from the candidates for any connection to survive and
eliminate the rest. Similar to above, we can show with the help of the Lovasz Local Lemmathat thereisachoice
of candidates such that the congestion is O(log R). ]

4.2 Design of Compact Routing Tables

In this section we present a method to design compact routing tables for storing £ and R, in the nodes in H.
First we consider the problem of storing Pg.

Lemma 4.3 Let d be the degree of H. Then H needs at most O((s + log R)d log d) space in each vertex for
storing Pg.

Proof. Let C' be the congestion and D be the dilation of 7. Clearly, every path in Pg sharesits links with at
most C' - D other paths in P;. Suppose H' = (V', E') is a graph in which each node represents a path in 7;
and nodes .,y € V' are connected with each other if their respective paths share alink in H. Then H has a
degree of at most & = C'- D. Clearly, d’ + 1 colors suffice to color every d'-regular graph in such away that no
two adjacent vertices have the same color. Therefore it is possible to attach numbers to the paths in 72; out of
[C - D + 1] in such away that no two paths in P with acommon link have the same number.
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Let : Pg — [C - D + 1] be the function that assigns a number to all paths in R; such that the condition
above isfulfilled. Then we choose the following strategy to store routing information.

Consider any node v in H of degree d,. Let the edges of v be numbered from 0to d, — 1 and P, be the set
of al pathsin Pg that have their endpoint at v. In order to store 7 we need the following two tables.

o Ty1:Py—[dy] X [C-D+1],p— (e,1p(p)) maps each path in P, to a suitable color and the first edge
e used by thispathin H.

o Tyo: [dy] X [C-D+1] — [dy] U{0} isarranged such that T, »(e, k) contains the edge the path with
number £ entering v viae usesto leave v.

Since s = O(R), the paths in P can be distributed among the nodes in such a way that |7,| is a constant.
Therefore T, ; can be easily implemented with constant lookup time using only O(log(d - C - D)) bits. Further-
more, it takesat most O(d - C - D - log d) bitsto store T, ». This can be improved by using a theorem shown by
Schmidt and Siegel in [31].

Theorem 4.4 For any set of n elements belonging to the universe [1,m], an O(1)-time perfect hash function
can be specified by O(n + log log m) bits.

With the help of a perfect hash function, we can therefore reduce the size of T, » to O(d - C'log d) bitsin
such away that we can still evaluate 7;, » in constant time by afunction that needs O(d - C' + loglog(d - C - D))
bits. Altogether this results in routing tables of size

O(C -dlogd +log(d - C - D)) = O((s + log R)d log d)
per node for storing P, because according to Lemma4.1 wehave D < Rand C' = O(s + log R). |

Consider now the problem of storing the clusters in the nodes of H. For this we can show the following
lemma.

Lemma 4.5 Let d bethe degree of H. Then each node needs at most O(d log d + log R) space to store all Euler
tourstraversing it.

Proof. According to Section 3.1, every Euler tour shares its edges with at most C' = O(R) other Euler tours.
Then C + 1 colors suffice to color the Euler tours in such a way that no two Euler tours with the same color
share an edge. Thus we can choose the following strategy to store routing information.

Consider any node v in H of degree d,. First we have to store in v the color of the Euler tour v belongs
to, and the edge the Euler tour uses to leave v. Thistakes log R + logd + O(1) bits. Furthermore we need the
following table.

o T3 : [dy] x [C + 1] — [d,] isaranged such that T, 3(e, k) contains the next edge the Euler tour with
number & entering v via e usesto leave v.

Clearly, it takes at most O(d - C - log d) bitsto store T, 3. Since the Euler tours have constant congestion, we
can apply perfect hashing techniques (see Theorem 4.4) to reduce the size of 7} 3 to O(d log d) bits in such a
way that we can still evaluate T;, 3 in constant time by a hash function that needs O(d + loglog(d - C)) bits.
Summing over all space requirements yields the lemma. ]

The tables described in Lemma 4.3 and Lemma 4.5 can be used in the following way. Suppose, we want to
send a packet p along apath P in £ or Pg. Let p be currently stored at the endpoint v of P in H. We have to
distinguish between two cases.
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If P isapath connecting two different clusters then we use the tables described in Lemma 4.3. First, p gets
the color ¢ and the first edge e of the path P by accessing 7, ;. The packet chooses to traverse e and stores the
color cinitsrouting information. Let ¢ be the last edge p used so far to reach some node . With the help of
T, 2, € and its actual color, the packet determines the edge it has to traverse next in H. p continues to access
T2 for each node w it visits until it reaches the other endpoint of P (in this case, we have Z; o (¢, ¢) = 0).

If P isa path connecting two nodes within one cluster, we use the table described in Lemma 4.5. Firgt,
v provides p with the color ¢ of the cluster it belongs to and the next edge e of the Euler tour p has follow in
that cluster. The packet chooses to traverse e and stores the color ¢ in its routing information. Let ¢ be the last
edge p used so far, and p be currently stored in node u. With the help of 7;, 3, €’ and its actua color, the packet
determines the edge it has to traverse next along the Euler tour. It continues to access 7, 3 for each node w it
visits until it reaches the other endpoint of P.

4.3 Compact Offline Routing

In order to bound the space requirements for the offline protocol we want to use to smulate arouting step in G
by H, we need the following lemma.

Lemma4.6 Consider an arbitrary simple path collection with congestion C' and dilation D such that the
sources of the paths are digoint and all nodes have degree at most d. Suppose that along each path p packets
have to be sent. Then there exists an offline protocol that can route all packetsintime O(p - C + D) if constant
size buffers are available at each edge and O(d - C' + logp) space is available at each node for storing the
protocol.

Proof. Let the packets be divided into p batches such that each batch contains exactly one packet for every path.
Consider first the case that C' > D. Then we can use the offline protocol described in [23] to route any batch
intime O(C + D) = O(C), using only constant size edge buffers. Hence altogether we need time O(p - C') to
route all packets. Since every batch uses the same collection of paths, we can use the same offline protocol for
every batch. We therefore only need to store in the nodes the offline protocol for one batch and a counter for the
number of batches that have already been routed. Clearly, the counter needs O(log p) space. Every packet waits
at most O(C') time steps in its source before it traverses its first edge. This needs O(log C') space, because we
assume that the sources of the paths are digoint. Since each packet only has to wait a constant number of steps
in any buffer once it has started (see [23]), each edge needs at most O(C') space to coordinate arriving packets
by using atable with entries for every time point of the protocol. An entry is O if no packet arrives at this time
and otherwise contains the number of steps a packet arriving at this time point has to wait. As every node has
degree at most d, ©(d - C + log p) space suffices in each node to execute the offline protocol for all batches.

Consider now the case that C' < D. Let al paths be divided into subpaths of length at least C' and at
most 2C. (If a path has length below C' then it is considered as one single subpath.) Let a subpath be called
intermediate if it is neither the first nor the last subpath of the path it belongs to. We want to choose an edge
in each intermediate subpath such that no edge is chosen more than once. Let us call edges with this property
secure. In order to show that a secure edge can be assigned to every intermediate subpath for any choice of the
subpaths obeying the length constaints above in any path collection, consider the following construction.

Let G = (1, Vi, E) be abipartite graph with V; representing the intermediate subpaths and 5 representing
all edges used by the path collection. A node u € V] is connected to node v € V4 if the subpath representing
u contains the edge representing v. Since each intermediate subpath has length at least C, all nodesin I{ have
degree at least C'. Furthermore, every node in 15 has degree at most C', because every edge is used by at most
C paths and therefore by at most C' subpaths. Hence it holds for every subset U C Y that |I'(U)| > |U].
Otherwise there must exist anode in I'(U) with degree at least C' + 1. From Theorem 2.6 it follows that there
must exist amatching of size |V;| in G. Thusfor each intermediate path a secure edge can be chosen.
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For every path, let its first edge be the secure edge of its first subpath. Consider now the situation that
each secure edge has one packet in its buffer, and every packet has to be sent to the next secure edge (or the
destination) on its respective path. This routing problem has congestion O(C') and dilation O(C'). Hence the
offline protocol described in [23] can be used to route all packets in time O(C'), using only constant size edge
buffers at any time of the execution.

Our goa now isto interpret the secure edges as intermediate destinations, and to send the batches of packets
along these intermediate destinations in a pipelined fashion using the offline protocol above, starting with batch
1-packets followed by batch 2-packets, and so on. If we use this strategy to route the p batches of packets along
their respective paths, the runtime and requirements for the buffer size of the offline protocol above imply that
the overall runtime is bounded by O(p - C + D), using only constant size edge buffers. Anaogous to the case
C > D each node needs O(d - C + log p) space to execute the offline protocol for all batches. |

4.4 A Deterministic Compact Routing Protocol

In this section we finally prove the Main Theorem. Let H be an arbitrary network with » nodes and routing
number R. Given any \/s,n > 2, let G(r,s,n) denote the (r, s, d, k)-XBF whose size n’ is closest to n.
According to Lemma3.2 it holds that n/2 < n' < n.

Let s < R. We partition the nodes of H into |[n/R| clusters of size R using the strategy described in
Section 4.1, each simulating asingle node in G(|£], s, ). If the size of G(|£], s, %) multiplied by R isless
than n then some nodes in H are not assigned to clusters. In this case we only have to increase the size of the
clusters by afactor of at most two.

Let usfirst prove the time bound of the Main Theorem. Since each edge in G(L;RJ ,8, ) has L’—jj channels,
and each node in G(|£],s, %) is simulated by ©(R) nodes in H, the channels can be distributed among the
nodes such that every node is assigned to at most a constant number of channels. If s > log R then each edge
of G(|£],s, %) hasaunique path in H. Otherwise, we partition the channels into [log R/s] sets of equal size
and assign each set to one of the [log R/s| paths simulating an edge in G(L%J,s, %)- Then each step of the
multibutterfly can be simulated in the following way in H.

e Assigning XBF-channelsto the packets:
For thiswe basically use the same strategies as described in Theorem 3.3, with the difference that here we
require the packets to be distributed among nodes simulating endpoints of channels instead of endpoints
of edges.

e Moving each packet along its assigned XBF-channe!:

In order to route the packets along their assigned XBF-channel, consider the packets to be seperated into
batches, each batch representing a different channel number (or a set of different channel numbers such
that there is one for each path in case that s < log R). Since the Euler tours have constant congestion,
it is easy to send the packets batch after batch to the starting point of the path they have to take if for
each XBF-edge the nodes simulating its channels are ordered from channel 1 to channel Li—?'J along their
Euler tour, and for s > log R the node simulating channel 1 represents the starting point of the path
simulating that XBF-edge. (For s < log R we evenly distribute the starting points of the paths simulating
that X BF-edge among the channel numbers.)

As shown above, the edges of the XBF can be simulated by a path collection in H that has dilation at most
R and congestion C' = O(s + log R). Since at most O(}—C‘z) packets are sent along each of these paths,
the congestion of the path collection is bounded by O(R). Hence we can use the strategy described in
Lemma 4.6 to route the packets in batches along the pathsin time O(R), using only constant size buffers.

Combining these results with Theorem 1.2 yields the time bound of the Main Theorem.
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It remains to prove an upper bound for the space necessary to store routing information in the nodes and
packets. Let d bethe degree of H.

Storing the embedding of G(|£], s, %) into H:

It is easy to see that we can choose cluster sizes and numbers for the nodes in H such that we need
O(logn) bits to store afunction 4 in each node telling it that a node with number z in H simulates node
h(z) in G(L%J,s, )

Storing the Euler tours:
According to Lemma 4.5, O(dlog d + log R) bits suffice to store a lookup table in such a way that for
each cluster the packets can be routed along an Euler tour.

Storing the paths simulating edgesin the XBF:
According to Lemma4.3, O((s + log R)d log d) bits suffice to store alookup table for the at most O((s +
log R)d) paths crossing each node.

Storing routing information in the packets:

According to Section 4.2, packets have to be able to store the color of the path they are currently following.
Since Pg; has dilation at most R and congestion O(s + log R), thistakes O(log(s - R)) bits. Furthermore,
they have to store the color of their current cluster, which takes O(log R) bits. Note that the rank of a
packet can be computed with the help of its destination address and ~ and therefore does not need any
additional bits in the packets.

Storing the XBF structure:

Consider anode v in H that is the endpoint of a path simulating an edge in the XBF. If this edge belongs
to adistributor, v needs its number, which takes O(log s) bits. If this edge belongs to a splitter, v needs to
know to which output set it leads. This also takes O(log s) bits. If s < log R, several paths may exist for
each XBF-edge. In this case, we need O(log log R) bits for each path to specify which set of channels it
represents. Hence each node requires O(log(s + log R)) bitsto store the XBF structure.

Storing the offline protocol:
Because the congestion of P is O(s + log R), we need at most O(d(s + log R)) bits in each node to
store the offline protocol.

Storing infor mation about the assignment of paths:
Since the placement phase is the only phase that requires working with a special assignment graph, it
suffices to consider the space requirements for simulating the placement phase.

According to Proposition 2.4, O(sy/s log s) space is necessary to store the assignment graph of an s-ary
XBF. This can be distributed among the nodes of a cluster such that each node needs at most O (/s log s)

space for storing a part of that assignment graph. Further each node needs O(,/s log s) space to store the
number of packets in its cluster that have to be sent to any of the,/s output sets. Given a fixed number
of packets to each of these output sets, each node that stores nodes of the assignment graph representing
one block of size L%J of these packets sends out packets containing information about edges adjacent to
these nodes. Since nodes in the assignment graph representing blocks of packets have constant degree,
the number of bits necessary to store information about edges adjacent to any such node of the assignment
graph is at most O(log s). Hence at most O(s) packets have to be sent along the Euler tour to inform
all nodes of the respective cluster about the subgraph of the assignment graph for which a maximum
matching has to be found. Storing this subgraph requires O(slog s) bits in each of the nodes. Using
Vazirani’s algorithm [36], it further takes O(s log s) space to compute a maximum matching.

Combining all space requirements yields the space bounds of the Main Theorem.
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5 Conclusions

The aim of this paper isto show that it is possible to design asymptotically very efficient protocols for compact
deterministic routing. We hope that this result will ignite research in the areas of compact and deterministic
routing to find not only asymptotically, but also practically efficient protocols. Another open problem is whether
the results presented here can still be improved asymptotically. It would furthermore be interesting to prove
stronger lower bounds for both areas, since there still is a significant gap between the best known upper and
lower bounds for the runtime of deterministic and compact routing protocols.
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