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Abstract

In this paper we present routing algorithms that are uni-
versal in the sense that they route messages along arbitrary
(simple) paths in arbitrary networks. The algorithms are
analyzed in terms of the number of messages being routed,
the maximum number of messages that must cross any edge
in the network (edge congestion), the maximum number of
edges that a message must cross (dilation), the buffer size,
and the bandwidth of the links. We present two main re-
sults, both of which have applications to universal store-
and-forward routing and universal wormhole routing. Our
results yield significant performance improvements over all
previously known universal routing algorithms for a wide
range of parameters, and they even improve many time
bounds for standard networks. In addition, we present adap-
tations of our main results for routing along shortest paths
in arbitrary networks, and for routing in leveled networks,
node-symmetric networks, edge-symmetric networks, expan-
ders, butterflies, and meshes.

1 Introduction

A fundamental problem in any parallel or distributed system
is the efficient communication of data between processors.
While it is possible to design a specific routing algorithm for
each possible interconnection network, a much more general
approach is to create a single universal routing algorithm
that can be used in any network [LMR94, GO93]. More pre-
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cisely, a universal routing algorithm specifies a protocol for
sending n messages along any n (simple) paths in any net-
work. In addition to providing a unified approach to routing
in standard networks, universal routing algorithms are ide-
ally suited to routing in irregular networks that are used in
wide-area networks and that arise when standard networks
develop faults. Furthermore, universal routing places no
restrictions on the pattern of communication that is being
implemented (such as requiring that it form a permutation).

Most parallel and distributed systems utilize either store-
and-forward or wormhole routing. In store-and-forward rout-
ing, each message can cross a single link in unit time. The
store-and-forward model is a standard model which has been
widely used to study routing and other problems in parallel
computers (see, e.g., [L92]). In wormhole routing, messages
are sent as worms, each of which consists of a sequence of
fixed size units called flits. The length of a worm is the
number of flits that it contains. The first flit is called the
head and the remaining flits are called the body of the worm.
During routing, a worm occupies a contiguous sequence of
edges along its path, one flit per edge*. Wormhole routing is
an extremely popular strategy for data movement in parallel
computers and is used in a variety of machines including the
Intel Paragon, CRAY T3D, MIT J-Machine, and Stanford
DASH.

In this paper we will present on-line universal algorithms
for both store-and-forward and wormhole routing. The in-
terconnection network will be modeled as an undirected
graph G = (V, E') where each edge in E consists of two links,
one in each direction. The routing problem will be defined
by specifying a path collection P, which is a multiset of paths
in G. A path collection is simple if no path contains the same
edge more than once, and it is a shortest path collection if all
paths are shortest paths in G. The routing problem consists
of routing one message along each of the paths in P. Each
node in V contains an injection buffer and a delivery buffer.
Initially, each message is stored in the injection buffer of its
source. Once a message reaches its destination, it is stored
in the destination’s delivery buffer. The routing algorithm
operates in discrete, synchronous time steps.

When the store-and-forward routing model is used, it will

*It should be noted that circuit-switched routing can be viewed as
a special case of wormhole routing in which the length of each worm
is at least as large as the distance between the worm’s source and its
destination.



be assumed that each link has a link buffer of size A. Each
packet must be stored in the buffer associated with a link
prior to crossing the link. At most one packet can cross a link
in unit time. When the wormhole routing model is used, it
will be assumed that every worm is of length L. At most one
flit from each of B different worms can cross a link in unit
time. While many papers on wormhole routing assume that
the parameter B (which we call the link bandwidth) equals
one, most parallel machines that support wormhole routing
multiplex several worms over each link in order to prevent
deadlocks and/or improve performance [DS87, D90]. Fur-
thermore, the use of optical links with extremely high band-
widths (see [SM93]) and their ability to support ATM-based
B-ISDN networks with multiple virtual channels per link in-
dicate that link bandwidths greater than one will become
increasingly common in the near future. None of our worm-
hole routing algorithms ever delays worms that encounter
congestion. As a result, our algorithms can operate without
any buffers for delayed flits (which is a significant advantage
when optical links are used, as the flits do not have to be
converted to and from electronic form for buffering).

Regardless of the switching mode being used, the follow-
ing parameters will be used to analyze the performance of
the routing algorithms. The parameter n will denote the
number of messages being sent. The parameter C, called
the congestion, is defined as the maximum number of paths
in P that cross any link. The parameter D, called the dis-
tance or dilation, is defined as the length of the longest path
in P.

1.1 Previous Results

In terms of universal store-and-forward routing, the best
time bounds were obtained by Leighton, Maggs and Rao
[LMR94]. They presented an optimal O(C + D) time off-
line algorithm for arbitrary simple path collections that uses
constant size link buffers [LMR94]. Unfortunately, there is
a significant gap between this algorithm and the best known
on-line algorithm, which requires buffers of size O(log(nD))
and takes O(C + Dlogn) time steps, w.h.p.", for the same
problem [LMRO4]. Better results are known for shortest
path collections. Meyer auf der Heide and Vécking gave an
on-line algorithm for routing along arbitrary shortest paths
that takes time O(C + D + logn), w.h.p., which is optimal
for routing in bounded degree networks [MV95]. However,
their algorithm requires buffers of size C.

Many results have been obtained for store-and-forward
routing in specific networks or classes of networks. Valiant
showed that any permutation can be routed in O(log N)
time, w.h.p., in an N-node hypercube [V82]. Pippenger
presented an algorithm for routing any permutation in a
variant of the log N-dimensional butterfly in O(log N) time,
w.h.p., using constant size buffers [P84]. Leighton, Maggs,
Ranade and Rao presented an algorithm for routing in an
arbitrary leveled network [LMRR94] with an arbitrary path
collection in time O(C + D + logn), w.h.p., using constant
size buffers, and they created optimal algorithms for per-
mutation routing in meshes, hypercubes, butterflies, and
shuffle-exchange networks [LMRR94]. Hot-potato routing
algorithms, in which packets are never buffered due to con-
gestion, have been presented for two-dimensional tori and

TThroughout the paper, the terms “with high probability” and
“w.h.p.” mean “with probability at least 1 — n~%” where a > 0 is
an arbitrary constant.

hypercubes [FR92|, higher-dimensional tori [MW95], and
arbitrary node-symmetric networks [MS95]. Simulations of
hot-potato routing on various networks have also been per-
formed in [AS92, GH92, M89].

In the area of universal wormhole routing, Greenberg
and Oh created a randomized algorithm for arbitrary sim-
ple path collections in networks with link bandwidth 1 that
requires time O(C - D - £+ C - L - Llogn), w.h.p., where
¢ = min{D, L} [GO93]. This algorithm does require the
ability to buffer blocked worms.

A number of results are also known for wormhole routing
on specific networks. In [BRST93] Bar-Noy et al. present
a randomized wormbhole routing protocol for the m by m
mesh that routes any permutation in O(L - m) steps, w.h.p.,
without buffering. Felperin, Raghavan and Upfal gave an
algorithm for routing N worms, one per processor, from the
top row to random destinations in the bottom row of a log N-
dimensional butterfly network in O(Llog N - min{L, log N})
time, w.h.p., [FRU92]. Ranade, Schleimer and Wilkerson
improved this result by showing that ¢ - N worms of length
log N, q per processor, can be routed from the top row
to random destinations in the bottom row in O(glog? N -
loglog N) steps [RSW94]. Furthermore, they showed that
Q(qlog® N/(loglog N)?) steps are necessary for this task.
Both of these results for wormhole routing on butterflies re-
quire the ability to buffer blocked worms [FRU92, RSW94].

1.2 New Results

In this section we present two theorems that have many con-
sequences for both store-and-forward and wormhole routing.

Main Theorem 1: Given any simple path collection in a
network with bandwidth ©(log(C - D)/loglog(C - D)), there
exrists an on-line packet routing algorithm that requires

logn - loglogn
0 <Dloglogn+0+ log log(C - D)

time, w.h.p., without buffering.
Main Theorem 2: Given any simple path collection in a

network with bandwidth B < logn, there exists an on-line
wormhole routing algorithm that requires

O(L.C~D1/B+(D+L)1ogn>
B

time for worms of length L, w.h.p., without buffering.

It should be noted that, in case of routing to random des-
tinations in some given network, the proof of Main Theorem
2 can easily be modified to show that it suffices to choose
C to be the ezxpected congestion, i.e. the maximum over all
edges of the expected number of worms that pass an edge
(rather than an upper bound on the congestion that holds
w.h.p.).

In the following we present applications of the main the-
orems to various path collections and networks, including
node-symmetric networks, edge-symmetric networks, and
arbitrary bounded degree expanders.

Definition 1.1 A graph G = (V, E) is node-symmetric if
for any pair u,v of vertices in G there erists an automor-
phism ¢ : V. — V mapping u to v such that for the graph



Gy = (V,Ep) with E, = {{p(z),¢(y)} | {z,y} € E} it
holds that G, = G.

Definition 1.2 A graph G = (V,E) is edge-symmetric if
for any pair e, e’ of edges in G there exists an automorphism
¢ : E — E mapping e to €' such that for the graph G, =
(V,E,) with E, = {p(e) | e € E} it holds that G, = G.

Definition 1.3 A graph G = (V, E) is an expander if for
any subset U C V with |U| < a|V]| it holds that |[{v € V|
Ju € U : {u,v} € E} > (1 + B)|U| for some constants
a,>0.

1.2.1 Applications to Store-and-Forward Routing

The techniques used for Main Theorems 1 and 2 yield the
following results for store-and-forward routing. The algo-
rithms are analyzed in terms of n, the number of packets
being routed, C, the congestion of the path collection, D,
the dilation of the path collection, and A, the buffer size.
The following result is a corollary of Main Theorem 2 that
is obtained by setting L = 1 and simulating link bandwidth
with buffers.

Corollary 1.4 Given any simple path collection, there ez-
ists an on-line store-and-forward routing algorithm that re-
quires O(C - DY 4 Dlogn) time, w.h.p.

This result is optimal if C > Dlogn and A > log D,
while the previous best bound was optimal only if C' >
Dlogn and A > log(nD) [LMR94]. Further improvements
can be obtained for C' < Dlognloglog(C - D)/log(C- D) by
using Main Theorem 1.

Corollary 1.5 Given any simple path collection in a net-
work, there exists an on-line store-and-forward routing algo-
rithm that requires

logn - loglogn
Dlogl
O(( oglogn + C + Tog log(C' - D)

log(C - D)
"loglog(C - D)

time, w.h.p., and uses buffers of size O(log(C-D)/ loglog(C-
D)).

This result significantly improves both the buffer require-
ments and the running time for universal store-and-forward
routing over a wide range of parameters. For example, if
C = D = logn, Corollary 1.5 yields a routing time of
O(log n(log log n)?/ log log log n), w.h.p., using buffers of size
O(loglog n/logloglog n). In contrast, the fastest previously
known algorithm for this problem requires O(log2 n) time,
w.h.p., and uses buffers of size O(log n) [LMR94]. Applying
random walk techniques created by Broder et al. [BFU92],
this result immediately yields the following corollary.

Corollary 1.6 For any bounded degree expander with n pro-
cessors, n packets, one per processor, can be routed on-line
to random destinations in

0 log n(loglog n)*
logloglogn

time, w.h.p., using buffers of size O(loglogn/logloglogn).

The following two theorems provide bounds for store-
and-forward routing in arbitrary shortest path collections.
In the case of shortest path collections, Theorem 1.7 pro-
vides the first nontrivial tradeoff between routing time and
buffer size, and Theorem 1.8 yields stronger bounds than
those given by Corollary 1.5.

Theorem 1.7 Given any shortest path collection, there ex-
ists an on-line store-and-forward routing algorithm that re-
quires

. py/A
O (w .(C+D+10gn)>

time, w.h.p.

Theorem 1.8 Given any shortest path collection in a net-
work, there ezists an on-line store-and-forward routing algo-
rithm that requires

log(C - D)

0 <(C +D)- log log(C - D)

+ (D + log n) log log n)
time, w.h.p., and uses buffers of size O(log(C-D)/ loglog(C-
D)).

If every processor in a node-symmetric network sends a
packet to a random destination, then the expected conges-
tion is bounded by the diameter [MV95]. Thus, applying
Theorem 1.8 to these networks yields the following result.

Corollary 1.9 Given any node-symmetric network of size
n and diameter D = Q(log n), there ezists an on-line store-
and-forward routing algorithm that routes n packets, one per
processor, to random destinations in

log D
D.-| ——— +1logl
O< <loglogD+ og ogn))
time, w.h.p., and uses buffers of size O(log D/ loglog D).

1.2.2 Applications to Wormhole Routing

Any algorithm for routing worms of length L in a network
with link bandwidth B, congestion C, and dilation D, re-
quires at least Q(L - C/B + D + L) time. This is because
there is at least one worm of length L which has to travel
distance D, and there is at least one edge of bandwidth B
which has to transmit L - C flits. Thus, the wormhole rout-
ing result of Main Theorem 2 is optimal for B > log D and
L-C > (D+ L)logn or for B > logn. Even for band-
width 1, Main Theorem 2 improves upon previous best up-
per bounds for a wide range of parameters. For example,
it C = D = logn and B = 1, Main Theorem 2 requires
O(log®n) time, w.h.p., while the previous best algorithm
for this problem required O(log* n) time, w.h.p. [GO93].

Applying Main Theorem 2 to node- and edge-symmetric
networks gives the following results.

Corollary 1.10 Given any node-symmetric network of size
n and diameter D, there exists an on-line wormhole routing
algorithm that routes n worms, one from each processor, to
random destinations in

o (L -D'*YB L (D4 L) logn>

B

time, w.h.p., without buffering.



Corollary 1.11 Given any edge-symmetric network of size
n, diameter D, and degree A, there exists an on-line worm-
hole routing algorithm that routes n worms, one from each
processor, to random destinations in

L-DY*YB (D4 L)logn
O< AB " B

time, w.h.p., without buffering.

This is because the expected congestion in the above
corollaries can be bounded by D and D/A, respectively
[MV95, MS95]. Applying random walk techniques intro-
duced in [BFU92] yields the following corollary.

Corollary 1.12 Given any bounded degree expander of size
n, there erists an on-line wormhole routing algorithm that
routes n worms, one from each processor, to random desti-

nations in
o (LlogIH/B n + log? n>

B
time, w.h.p., without buffering.

Applying Main Theorem 2 to the d-dimensional mesh
with side length m (that is, with N = m? processors) yields
O(5(g-L-m- (m-d)YZ +(m-d+L)-d-logm)) time, w.h.p.,
for routing ¢- N worms, one from each processor, to random
destinations. This is because the expected congestion is at
most g-m. A more careful analysis, tailored to meshes, gives
the following improvement.

Theorem 1.13 Given a d-dimensional mesh of side length
m with N = m? nodes, there ezists an on-line wormhole
routing algorithm that routes q - N worms, q from each pro-
cessor, to random destinations in

O<q-L-m~d1/B+(m~d+L)-dlogm)
B

time, w.h.p., without buffering.

Theorem 1.13 is optimal for B > logd, ¢ > d - logm/m,
and q - L > d*>logm. Thus, this result generalizes the re-
sults obtained by Bar-Noy et al. for the 2-dimensional mesh
[BRST93].

The next theorem presents upper and lower bounds for
wormhole routing on the d-dimensional butterfly network.
We consider the problem of routing worms from the inputs
on level 0 to the outputs on level d such that each of the
N = 2% inputs has to send ¢ worms to randomly selected
outputs. Each worm has to follow the unique shortest path
from its input to its output node.

The upper bound is the same as we would obtain by
applying Main Theorem 2 and the fact that the expected
congestion is at most q. But whereas the algorithm used for
proving Main Theorem 2 uses random ranks for priorities
and assigns random delays (as in, e.g., [RSW94]), here we
require neither random ranks nor delays. In particular, we
give fixed, explicitly defined priorities to the worms. For
bandwidth B = 1, the upper bound improves that given in
[RSW94] by a factor of logd, although our algorithm does
not buffer the worms during the routing. For bandwidth
B > loglog N, ¢ > log N and ¢ - L > log” N, our algorithm
is optimal.

The lower bound holds for any algorithm that moves the
worms from the inputs to the outputs along their unique
shortest paths without delaying them, even if off-line routing
is allowed. It extends the lower bound from [RSW94] to
arbitrary bandwidth, and shows that our upper bound is
nearly optimal.

Theorem 1.14 Let N = 2¢. Given a d-dimensional butter-
fly network without buffers, routing gN worms, q from each
input, to random outputs

a) can be done by a deterministic on-line algorithm in

0 ¢-L-log!/B N+(L+log N)-log N
B

time, w.h.p., and

b) needs

Q q-L-logl/B N-(loglogN)fz/B
B

time, w.h.p., for ¢ <log® N for any fized a > 0.

Finally, we present a result which is well suited for worm-
hole routing in leveled networks with short worms. In lev-
eled networks it can easily be guaranteed that worms collide
only with their heads. As a consequence, the result of Main
Theorem 1 can also be applied to worms of length L > 1,
which gives the following corollary.

Corollary 1.15 Given any leveled network with depth D,
there exists an on-line wormhole routing protocol requiring
bandwidth B = O(log(C - D)/loglog(C - D)), that routes n
worms from the highest to the lowest level in

logn - loglogn
L Dlogl —_— =2
O< < oglogn+C + log log(C'- D)

time, w.h.p., without buffering.

For example, when D > logn and C > Dloglogn,
Corollary 1.15 yields a routing time of O(L - C'), which is
only a factor of log C'/loglog C away from the lower bound.

1.3 Organization of the Paper

The algorithms that yield Main Theorems 1 and 2 are pre-
sented and analyzed in Sections 2 and 3, respectively. Proofs
of the remaining theorems are given in Section 4.

2 Proof of Main Theorem 1

2.1 Routing Algorithm 1

Routing Algorithm 1 routes packets (worms of length L = 1)
using bandwidth B = ©(log(C - D)/loglog(C - D)). The
idea behind this algorithm is that each packet chooses a
random delay independently from the other packets. After
waiting this amount of time, a packet tries to route along
its prescribed path to its destination without waiting. We
define the following rule in case of collisions between packets:

Contention resolution rule:

If more than B packets attempt to use the same link
during the same time step, then all of them are dis-
carded.



The routing algorithm consists of k£ + 1 rounds (the param-
eters k, C; and B will be determined later).

Routing Algorithm 1:
all n packets are declared active
for r = 0 through k do:

e forward pass: for each active packet, send
2" copies of it with random startup delays in
[Cr] ={0,1,...,C — 1}, route the copies ac-
cording to the contention resolution rule above

e backward pass: successful packets become in-
active via acknowledgments

Clearly, the forward pass of round r requires O(C, + D)
steps. The backward pass can be organized in such a way
that acknowledgments of successful copies are not delayed
or discarded by running the forward pass in reverse order.
A packet becomes inactive if it receives an acknowledgment
of at least one of its copies.

2.2 Analysis of Algorithm 1

Definitions: A packet’s route consists of the (at most D)
edges that it must cross. A siteis an ordered pair (e, s) where
e is an edge and s is a step in the forward pass (of the round
currently being considered). A packet’s sites consist of the
sites (e, s) where e is an edge on the packet’s route. Given
any packet p, p’s conflicting packets consist of the packets
with routes which intersect p’s route (including p itself). A
packet’s region consists of the sites of its conflicting packets.
A packet p aims for a site (e, s) if p selects a random delay
such that it will be present in edge e at step s of the forward
pass, provided that it is not discarded before reaching edge
e. Note that whether or not a packet aims for a site is
strictly a function of its starting time and its path, and is
independent of the starting times of other packets. A packet
p is discarded at a site (e, s) if p attempts to enter edge e
at step s but is discarded because of edge contention. Note
that if y packets are discarded at a site (e, s), then at least
y > B packets aim for site (e, s).

We will begin by analyzing the forward pass of round
0. We will set Cp = C and B = 10In(C - D)/ Inln(C - D).
Consider any packet p and mark any m sites in p’s region.
Let the random variable X denote the number of distinct
packets that aim for any of the marked sites. Note that the
expected number of packets which aim for any one site is at
most one (because at most C' packets can have the possibility
of aiming for the site, and the probability that such a packet
does aim for the site is 1/C'). Therefore, E(X) < m.

Because X is the sum of independent Bernoulli trials, we
can use a Hoeffding-Chernoff bound to bound the probabil-
ity that X is larger than B - m:

Prob(X > B-m) < (e/B)B-m — o mB(nB-1)
Note that there are at most

(C’ -D?*(C + D)) < <eC -D*(C + D)>m< (3 1n(C-D)+1)

m m -

different ways of marking m sites in p’s region. Therefore,
the probability that more than B - m distinct packets aim
for any set of m sites in p’s region is at most

6171,(3 In(C-D)+1—B(ln B—1))

Let m = (a+2)Inn/2In(C - D). Because

InB-1 = In(10/e) +Inln(C - D) —InlnIn(C - D)
(1/2)Inln(C-D)+1 ,

A%

we have

6171,(3 In(C-D)+1—B(ln B—1)) < nf(a+2).

Note that if more than B - m packets are discarded at
sites in p’s region, then more than B - m distinct packets
must aim for some set of m sites in p’s region. (This can
be argued as follows: Let z be the number of sites in p’s
region at which packets were discarded. If z < m, let S be
a set of any m sites including these z sites. If z > m, let
S be a set of any m of these z sites and note that more
than B packets were discarded at each of them. Therefore,
|S| = m, more than B - m packets were discarded at sites
in S, each of these discarded packets aimed for the site at
which it was discarded, and these discarded packets must be
distinct because a packet can only be discarded once.) As
a result, the probability that more than B - m packets are
discarded at sites in any packet’s region is at most p @+,
We will say that round 0 succeeded iff for every packet p,
at most B-m = 5(a+2)Inn/Inln(C - D) of p’s conflicting
packets were not successfully delivered to their destinations.

Now consider round 1. It is identical to round 0 in terms
of the number of (copies of) packets that are discarded, ex-
cept it has congestion at most 2B - m (assuming that round
0 succeeded) because two copies are made of each of the
at most B - m packets that were discarded at sites in each
packet’s region, and because the paths are simple, each of
these packet copies can contribute at most one to the con-
gestion of an edge. Therefore, we will set Ci = 2B - m
and an analysis identical to the analysis of round 0 shows
that the probability that more than B - m packet copies are
discarded at sites in any packet’s region during round 1 is
at most n~(®*Y . Because both copies of a packet must be
discarded in order for the packet to fail to be delivered, it
follows that the probability that there exists a packet p such
that more than B -m/2 of p’s conflicting packets were not
successfully delivered after round 1 is at most n~(@+1),

In general, for any round i, 1 < i < k, we will set C; =
2B - m. We will say that round ¢ succeeded iff for every
packet p, at most B - m/2" of p’s conflicting packets were
not successfully delivered to their destinations during the
first ¢ rounds. Using an analysis identical to that given for
round 1, it follows that for any round i, 1 < i < k, if all
rounds j < ¢ succeeded then the probability that round 3
fails is at most n~ TV, Setting k = log(B - m) + 1 =
O(log log n), it follows that if all k+1 rounds 0. .. k succeed,
then every packet has been successfully delivered, and this
happens with probability at least 1 — k/n®T! > 1 —n™2.

Finally, note that the algorithm requires link bandwidth
of B = O(log(C - D)/loglog(C - D)) and takes 2(C + D) +
2k(C1 + D) = O(Dloglogn + C + log nloglog n/ loglog(C -
D)) time, w.h.p. This completes the proof of Main Theorem
1.



3 Proof of Main Theorem 2

3.1 Routing Algorithm 2

In the following we prove Main Theorem 2. The idea of
our protocol here is that each worm w; chooses uniformly
and independently from the other worms a random rank
r; € [R] ={0,...,R —1} (R will be specified later) and a
random delay d; € [D]. We define the following rule:

Contention resolution rule:

If more than B worms attempt to use the same link
during the same time step, then those B with lowest
rank win. Ties in rank are broken according to an
arbitrary total order on the worms. If a worm loses
with its k-th flit at a link, the flits from £k to L are
discarded when reaching this link. The flits 1 to k—1
continue the routing.

Our protocol then works as follows.

Routing Algorithm 2:

all n worms are declared active and choose random
ri € [R] and d; € [D]

repeat

e forward pass: Each active worm w; waits for
d; steps. Then it is routed along its path, obey-
ing the contention resolution rule above.

e backward pass: For each worm that com-
pletely reached its destination during the for-
ward pass, an acknowledgment is sent back to
the source. Upon receipt of the acknowledg-
ment, the source declares the worm inactive.

until no worm is active

Clearly, the forward pass only needs 2D + L steps, since
after 2D + L steps all worms that did not fail have com-
pletely reached their destinations. These worms are called
successful. Whether a worm was successful can easily be de-
tected at its destination by counting the number of flits of
the worm that arrive.

In the backward pass, the forward pass is run in reverse
order, except that only the heads of successtul worms par-
ticipate. Therefore, no collisions can occur in the backward
pass, and 2D steps suffice to send all acknowledgments back.

3.2 Analysis of Algorithm 2

In the following we prove an upper bound for the number of
rounds required by the protocol that holds w.h.p. For this,
we use a delay sequence argument.

Definition 3.1 An (s, B)-delay sequence consists of

(1) s-B+1 delay worms w1, ... ,ws.B+1 such that during
the forward pass of round i > 1, worm w;.p+1 is pre-
vented from using a link by worms w(;_1)B41,- .. ,Wi-B;

(2) s-B+1 integer keys r1,. ..
Srs-B+l SR—]..

,Ts-B+1 such that 0 < r; <

We say that a delay sequence is active if rank(w;) = 7;
for1<i<s-B+1.

Lemma 3.2 If the routing takes more than s rounds, there
exists an active (s, B)-delay sequence.

Proof. In the following we will give a construction for
such a delay sequence. If the routing takes more than s
rounds then there is a worm w,.p4+1 that has not completely
reached its destination in round s. In such a case there must
have been worms w(,_1yp41,... ,ws.B that prevented ws.p+1
from using some link in round s. According to the rout-
ing protocol, wis_1)B+1,--. ,ws-B can be chosen such that
rank(ws—1)p+1) < ... < rank(ws.p) < rank(ws.py1). But if
w(s—1)B+1 Was still active in round s, there must have been
WOTmS W(s_2)B+1,--- ,W(s—1)p il round s —1 that prevented
W(s—1)B+1 from using some link, where rank(w(s_2)p+1) <

. < rank(w(s—1)p) < rank(w—1)p4+1). Continuing this
argument back to round 1 yields the lemma with r; :=
rank(w;), 1 <i<s-B+1. ]

Lemma 3.3 The number of different active (s, B)-delay se-
quences 1S at most

B\s 5B+R
n-(D-C7) (s-B+1>

Proof. We count the number of possible choices for the
components:

e There are at most n - (D - C?)® choices for the delay
worms. This is because there are at most n possibil-
ities to determine the worm ws.p+1, and if w;. 41 is
fixed, there are at most D - C® choices for the worms
W(i—1)B+1,--- wi-p for 1 <4 <s.

e There are ((S'B:_';);"IR_I) possibilities to choose the r;’s
such that 0 <71 < - <rspy1 < R-1.

Multiplying these terms yields the lemma. | |
Lemma 3.4 Let { = min{2L, D}, B < logn, and R >

max{4el-C-D Y8 (a41)logn}. Then the above routing
protocol completes the routing of all n worms in

. pl/B
max{4ee C-D (a+1)logn}

D-B ’ B
rounds with probability 1 —n™* for every a > 0.

Proof. Since each worm determines a rank and chooses
a random delay, and the contention resolution scheme of
the above routing protocol requires that in any active delay
sequence the worms have to be pairwise distinct, the prob-
ability that a particular (s, B)-delay sequence is active is at

most R~"B+V(¢/D)* B Therefore, if we choose

4el-C - D' (a+1)logn
B-D ' B

TZIII&X{

and R =T - B then

Prob(the routing takes more than T’ rounds)

Lemma 3.2

Prob (a (T, B)-delay sequence is active)

Lemma 3.3 T-B+R\ . _ N8B
= _AB\T (T-B+1) (_)
< Do) (T-B+1>R D

< (oD T ler-B+R)\H
= D R(T-B+1)



- et.C-DYE(T . B+R)\""
= " T-B-D-R
R=TB 2¢¢-C-DYB\"P
- "\"T-B D
4ee.c.DY/B (af1)logn
” f'D n2~ T8 ” SB n ¢ .

This yields Main Theorem 2.

4 Proofs of Theorems in Section 1

4.1 Proof of Theorem 1.7

Consider routing n packets along a shortest path collection
with congestion C and dilation D in a network with buffer
size A. Each packet P; gets two random ranks: the first
rank r¢ is chosen as in Section 3, and the second rank r{ is
chosen as in the growing rank protocol in [MV95]. The new
protocol then works as follows

for each packet P;, choose random ranks r¢ and rd,
all n packets are declared active
repeat

e forward pass: route packets according to the
growing rank protocol in [MV95], in case of
overfull buffers use the contention resolution
rule of Section 3

e backward pass: successful packets become in-
active via acknowledgments

until no packet is active

(From [MV95] we know that the growing rank protocol
requires at most O(C' + D + logn) time, w.h.p. Using the
proof of Main Theorem 2 it can be shown that O(4(C -

DY 4 log n)) rounds suffice to route all packets, w.h.p.
This completes the proof of Theorem 1.7.

4.2 Proof of Theorem 1.8

Routing Algorithm 1 can be modified to yield improved per-
formance for arbitrary shortest path collections. First, it
is adapted to create a store-and-forward routing algorithm
that satisfies the conditions of Corollary 1.5. In particu-
lar, each step of the wormhole routing algorithm with band-
width B now requires B time units and uses buffers of size
B. The routing occurs in stages, each of which corresponds
to a step in the wormhole routing algorithm and requires B
time units. We redefine the notion of a site to be an ordered
pair consisting of an edge and a stage.

Next, the random delays are selected from different
ranges. Specifically, Cop = C and for 1 < r < k, C, =
240¢* (o + 2) log n. Finally, the lengths of the stages (and
thus the sizes of the buffers being used) is changed after
round 0. Specifically, the algorithm uses stages of length
B = 10In(C - D)/Inln(C - D) in round 0, and of length
B’ =1 in all other rounds. The analysis of round 0 is iden-
tical to that of Algorithm 1, so it follows that after round 0

the probability that any packet has more than B-m conflict-
ing packets that were not successfully delivered is at most
(et

Now consider round 1. Note that during round 1 each
active packet has at most 2B - m conflicting packet copies
(assuming that round 0 succeeded) because two copies are
made of each of the at most B - m packets that were dis-
carded at sites in that active packet’s region. Let ¢ = C1 =
240¢* (o + 2) logn, y' = 10(a + 2)logn, and y = 8[y'/8].
Consider any active packet copy in round 1 and let Y be the
set of its at most 2B-m < y conflicting packet copies. Let U’
be the set of packet copies in Y that are discarded in round
1 at a site at which at least one other packet copy in Y is
discarded. Let V be the set of packet copies in Y that are
discarded in round 1 at a site at which at least one packet
copy not in Y is discarded. Let ' = |U’| and v = |V| and
note that at most u’ + v packet copies in Y are discarded in
round 1.

We will first bound the probability that v > y/4. We
will require the following definitions.

Definitions: Two packet copies collide if they both at-
tempt to pass through the same link during the same stage.
A (u, s)-configuration consists of:

e aset U C U’ where |U| = u,

e a partition of U into s nonempty, disjoint subsets called
groups,

e a designation of one packet copy per group as the rep-
resentative of the group, and

e an assignment of a random delay to each packet copy
in U.

A (u, s)-configuration is active if, given the assigned random
delays, every nonrepresentative packet copy collides with its
representative.

Note that if v’ > y/4, there must exist a set of packets
copies U C U’, where |U| = u = y/4, and a set of sites S,
where 1 < |S| < u/2, such that every packet copy in U was
discarded at one of the sites in S. As a result, it is possi-
ble to construct a (u, s)-configuration, where 1 < s < u/2,
by grouping the packet copies in U according to the sites
at which they were discarded, arbitrarily selecting a repre-
sentative from each group, and recording the random de-
lays. Furthermore, note that this (u, s)-configuration must
be active, as all of the packet copies within each group were
discarded at the same site. Therefore, if u' > y/4, there
must exist an active (u, s)-configuration where v = y/4 and
1 < s < u/2. We will now bound the probability that such
an active configuration exists.

Note that there are at most (’;’) different ways of select-
ing the representatives, and once the representatives have
been chosen, there are at most (uzs) s“7% different ways
of selecting the nonrepresentatives and grouping them with
representatives.

Also, note that in any shortest path collection, if packet
copies p1 and p» collide when they have random delays di
and d2, respectively, then they will not collide when they
have delays d; and ds, respectively, for any ds # d». There-
fore, once we have selected the random delays of the repre-
sentatives, there is at most one way to set the random delays
of the nonrepresentatives in order to make the configuration
active. Thus there are a total of at most
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active (u, s)-configurations. Finally, the probability that a
given (u, s)-configuration occurs is (1/q)*. Therefore, the
probability that there exists an active (u, s)-configuration,
given any fixed values of the parameters v and s where 1 <
s < wu/2,is at most
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Let f(s) = (4deu/s)*(8es/q)" ° and g(s) =In f(s). Note
that g(sg = sln(4eu/s) + (u — s)In(8es/q) and ¢'(s) =
In(qu/2s%) +u/s — 2. Because q > e’s, ¢g'(s) > In(q/4s) > 0
and g(s) and f(s) are maximized when s = u/2 = y/8. As
a result, the probability that there exists an active (u,s)-
configuration, where v = y/2 and 1 < s < u/2, is at most

u/2

Sam=@er ()7 -6 (%)

Because g > 32¢%u, it follows that f(u/2) < (1/e)*/? <
(1/n)>*? and that the probability that u' > y/4 is at most
(y/8)(1/n)>+.

Now we will bound the probability that v > y/4. Select
an arbitrary packet copy p € Y. Packet copy p has at most
y conflicting packet copies that are not in Y, and for each
of these conflicting packet copies the probability that p will
collide with it is at most 1/q (because regardless of the ran-
dom delay selected by the conflicting packet copy, there is at
most one random delay that p can select to cause such a col-
lision). Therefore, the probability that p is in V' is at most
y/q. We can view the selection of a random delay for each
packet copy in Y as being a Bernoulli trial with probability
of success at most y/q (where success is defined as being
in the set V), and these trials are independent. Therefore,
the expected number of successes is at most y>/q, and the
probability of at least y/4 successes is at most (4ey/q)¥/*.
Because g > 24e’y, the probability that v > y/4 is at most
(1/6€)¥/* < (1/m)t0le+2)

Combining these results, it follows that the probability
that more than y/2 packet copies in Y are discarded in round
1 is at most (1/n)*"'. The remaining analysis is analogous
to that given in Section 2.

4.3 Proof of Theorem 1.13

Let us choose the following routing strategy on a d-dimen-
sional mesh with side length m. Given a random destination
chosen independently and uniformly from the set of nodes,
each worm chooses a random startup delay in [d - m] and af-
terwards is first routed according dimension 1, then accord-
ing to dimension 2 and so on, until it reaches its destination.

In the following, A denotes an arbitrary linear array of
length m in one dimension of the mesh. Let E(A) be the
expected number of worms that want to use links of A.
Because of symmetry reasons, for uniformly and indepen-
dently chosen destinations, E(A) is the same for each linear
array A. (Note that this argument is not true if we con-
sidered links instead of linear arrays.) Since the total num-
ber of linear arrays used by worms is at most ¢ - IV - d and
the number of linear arrays is d - m?¢~!, E(A) is at most
q-N-d/(d-m? ') = g-m. Replacing the edge congestion by
this array congestion in the proof of Main Theorem 2 yields
the upper bound in Theorem 1.13.

4.4 Proof of Theorem 1.14
4.4.1 Proof of Part (a)

Suppose the ¢N worms, ¢ per processor, have to be sent
to random destinations. Let ¢ := min{L,log N}. Then
the worms can be given delays such that the routing can
be viewed as divided into |log N/¢] independent passes in
which every input has to send out at most ¢’ = [¢/|log N/¢]]
worms. Therfore, we have to show that there exists a rank
allocation such that each pass takes O(% (g’ - log'/B N +
log N)) rounds of time 2log N + L — 1, w.h.p. In the follow-
ing we do not only show the existence but also describe a
specific allocation that ensures the above routing time.

The ith worm (0 < ¢ < ¢') starting at node (Ziog N—1, - - ,
zo) on level 0 is assigned rank i - N + (zo,... ,Tiog N—1)2-
Thus, the rank of a worm is essentially the bit-reversal num-
ber of its input node plus an offset. In the following we
identify a worm with its rank. (Note that the ranks of all
worms participating in the same phase are distinct.)

For an integer m > 1 with binary representation (... ,ma2,
mi, mop), we define

6(m) :=max{i <log N | (mi_1,... ,mo) =0} .

Suppose wi < ... < wpy1 are B + 1 worms. Then there are
only N- (|_2mi“{5(“’2_“’1)"" ’5(“’3“_“’1)}_1])3 ways to choose
the destinations of the worms such that all B + 1 routing
paths share an edge, i.e. the worms can not reach their
destination altogether in the same round. This is because
any two worms w and w' can not use the same edge before
level log N — §(|w' — w]).

Now, consider an arbitrary worm w; with some fixed
destination, and let m be an arbitrary integer. Then the
number of possibilities to choose B worms ws, ... ,wp+1 and
their destinations such that w1 < w2 < ... <wp <wp+1 =
w1 +m and such that all B + 1 routing paths share an edge
is at most

Z g(min{d(wa—w1),....8(wp —w1),8(m)}—1)-B

W W
w1<wo<...<wi4+m
§(m)—1

m —i(B—1) o(i—1)B
< E 2 -2
- (B — 1> — *
i=

Z 9=i(B=1)  o(s(m)=1)-B
i=5(m)

(B"ﬁ 1) 20 (1)

IN



Now we are able to estimate the number of (s, B)-delay
sequences. For this purpose we have to count the number
of ways to choose s- B + 1 worms wi,... ,ws.p+1 and their
destinations such that 0 < w1 < w2 < ... < wg.By1 <
¢'N and such that for every 1 < i < s, the routing paths
of the worms w;.p+1,wi-B+2,... , Wit+1).B4+1 share an edge.
Of course, there are at most ¢’ N? possibilities to choose
w; and its destination. Define R := ¢'N, and let m; :=
wi-B+1 —W(i—1).B+1. Then it follows by repeatedly applying
inequation 1 that the number of (s, B)-delay sequences is at
most

v ()

myma... macIN, i=1

> mic

I nr2 R
S anN '<s(B—1)>

> H 96(m:)

mq,... ,mse]NJr =1
> misn
~
~~

=:A; R

We now show by induction on s that As g < log® N- (I:)
For s = 0, this inequality trivially holds. For s > 1, we have

R—1 s—1
Asr = Z 98 (ms) Z H25(mi)
ms=1 my,mg,...,me_1eN, =1
ZmiSR—ms—l
R—1

m=1
R—1
< 95(m)  Joet=1 N . <R—m>
< 1 «_1 ) S
R—1
< log°N (R m)
s—1
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Therefore, the probability that a worm is still active after

2¢-q -log*’? N + (a + 2)log(¢'N)
- B
q -log'’? N +log N
- o . )

T

rounds can be bounded by

A2 R T R ~TB
qN (T(B—l)) log™ N (T) N

TB
JN? (26-q'N-log1/BN>

IN

TB-N
< (¢ N

This yields part (a) of Theorem 1.14.

4.4.2 Proof of Part (b)

Consider m > 7BN/log N arbitrary worms. We first bound
the probability P that all these worms can be routed simul-
taneously, i.e. they can arrive at their random destinations
in L consecutive time steps. In the following we say the
worms collide if more than B of them want to travel through
the same edge.

In order to cope with dependencies between the collision
probabilities on different levels we use an idea from Ranade
et al. [RSW94] which is to divide the butterfly into many
small subbutterflies. Let k := [loglog N] and K = 2¥. Then
the first k levels consists of N/K small distinct butterflies.
We denote the number of worms starting in the ith of these
butterflies by m;.

We first estimate the probabibility P; that the m worms
do not collide in one of the 2K edges on level k + 1 incident
to the K output nodes of the ith small butterfly, under the
assumption B+ 1 < m; < 2KB. Let e1,...,e2x denote
these edges on level k 4 1. Further, let E; denote the event
that more than B worms want to travel along the edge e;,
and let E]' denote the event that exactly B 4+ 1 worms want
to travel along this edge. Then

Prob(E;) >  Prob(Ej)
m; 1\ B+ 1 \mim Bt
= t e 1 s ——
<B+1> (2K) ( 21()
B+1
B+1>5mi m; 3—(mi—B-1)/2K
= 2K (B +1)

m;

V'S

KB mi B+1 I
2K (B +1) ' ’

and therefore,

2K
P, < Prob (/\ ﬂE])
J

j=1
2K j—1 2K
I prob <ﬂE]- A ﬂEg> < [ Prob(=E;)
j=1 (=1 j=1

ms B+1 s
< (“(m) 3 >

< exp(-m T (B+1)TPY L (6K) )
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Now we can bound the probability P that the m worms
do not collide in level k£ + 1. If there is at least one small
butterfly in which more than 2K B worms start, then it is
P = 0. Otherwise,

N/K
P< H P;
i
N/K
Sexp| = | Yom | B)TE . (6K)
T

Let ¢ denote the number of small butterflies in which more



than B + 1 worms start, and define

pA BN _ 6

! _ . —_ — —

m = Z; m; > m 78 > -

mlzz_B+1
Then it is
N/K N/K
Z . Z ﬂ, B+1 N (6_m)B+1
o .\ ="\
mlz>_B+1 mlz>_B+1

Thus, we can conclude

B+1
P < exp<—£(67—’Z) ~(B+1)(B“)-(6K)B>

(<N/K
L e (6 () P mP T (B4 )
We can repeat this argument to obtain upper bounds for
the probability of having no collisions in the levels 2k + 2,
3k + 3, 4k + 4 and so on. Since we obtain all these bounds
by using only information regarding the k levels in front of
the respective collision level, we may multiply these prob-
abilities to obtain an upper bound on the probability that
the worms do not collide on their way through the whole
butterfly. Thus,

logNJ

(exp (=(6/7) - (TN) ™% - mP+L . (B 4+ 1)~ (B+D)) %55

log N - mB+1
Sexp | — B Bt1
3loglog N - (TN)B - (B +1)B+

Therefore, the probability that there exists a set of

5 1/B
m> TN (3(a+2)log log N (B+1)B+1>

log N
worms that can be routed simultaneously is

Nlog* N oxp [ — log N - m®+!
m P 3loglog N - (TN)B - (B + 1)B+!

< exp <m <(a + 1) loglog N—

log N - mB+1
3loglog N - (TN)B . (B +1)B+!
< exp(—m) .

As a consequence, the routing takes at least time

LNlog® N
L _ | .

log N o L(log N)*
m

log®log N

with probability exp(—m). This proves part (b) of Theo-

rem 1.14.
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