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Abstract

In this paper we present routing algorithms that are uni�
versal in the sense that they route messages along arbitrary
�simple� paths in arbitrary networks� The algorithms are
analyzed in terms of the number of messages being routed�
the maximum number of messages that must cross any edge
in the network �edge congestion�� the maximum number of
edges that a message must cross �dilation�� the bu�er size�
and the bandwidth of the links� We present two main re�
sults� both of which have applications to universal store�
and�forward routing and universal wormhole routing� Our
results yield signi�cant performance improvements over all
previously known universal routing algorithms for a wide
range of parameters� and they even improve many time
bounds for standard networks� In addition� we present adap�
tations of our main results for routing along shortest paths
in arbitrary networks� and for routing in leveled networks�
node�symmetric networks� edge�symmetric networks� expan�
ders� butter	ies� and meshes�

� Introduction

A fundamental problem in any parallel or distributed system
is the e
cient communication of data between processors�
While it is possible to design a speci�c routing algorithm for
each possible interconnection network� a much more general
approach is to create a single universal routing algorithm
that can be used in any network �LMR�� GO���� More pre�
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cisely� a universal routing algorithm speci�es a protocol for
sending n messages along any n �simple� paths in any net�
work� In addition to providing a uni�ed approach to routing
in standard networks� universal routing algorithms are ide�
ally suited to routing in irregular networks that are used in
wide�area networks and that arise when standard networks
develop faults� Furthermore� universal routing places no
restrictions on the pattern of communication that is being
implemented �such as requiring that it form a permutation��

Most parallel and distributed systems utilize either store�
and�forward or wormhole routing� In store�and�forward rout�
ing� each message can cross a single link in unit time� The
store�and�forward model is a standard model which has been
widely used to study routing and other problems in parallel
computers �see� e�g�� �L����� In wormhole routing� messages
are sent as worms� each of which consists of a sequence of
�xed size units called �its� The length of a worm is the
number of 	its that it contains� The �rst 	it is called the
head and the remaining 	its are called the body of the worm�
During routing� a worm occupies a contiguous sequence of
edges along its path� one 	it per edge�� Wormhole routing is
an extremely popular strategy for data movement in parallel
computers and is used in a variety of machines including the
Intel Paragon� CRAY T�D� MIT J�Machine� and Stanford
DASH�

In this paper we will present on�line universal algorithms
for both store�and�forward and wormhole routing� The in�
terconnection network will be modeled as an undirected
graph G � �V�E� where each edge in E consists of two links�
one in each direction� The routing problem will be de�ned
by specifying a path collection P� which is a multiset of paths
inG� A path collection is simple if no path contains the same
edge more than once� and it is a shortest path collection if all
paths are shortest paths in G� The routing problem consists
of routing one message along each of the paths in P� Each
node in V contains an injection bu�er and a delivery bu�er�
Initially� each message is stored in the injection bu�er of its
source� Once a message reaches its destination� it is stored
in the destination�s delivery bu�er� The routing algorithm
operates in discrete� synchronous time steps�

When the store�and�forward routing model is used� it will

�It should be noted that circuit�switched routing can be viewed as
a special case of wormhole routing in which the length of each worm
is at least as large as the distance between the worm�s source and its
destination�



be assumed that each link has a link bu�er of size A� Each
packet must be stored in the bu�er associated with a link
prior to crossing the link� At most one packet can cross a link
in unit time� When the wormhole routing model is used� it
will be assumed that every worm is of length L� At most one
	it from each of B di�erent worms can cross a link in unit
time� While many papers on wormhole routing assume that
the parameter B �which we call the link bandwidth� equals
one� most parallel machines that support wormhole routing
multiplex several worms over each link in order to prevent
deadlocks and�or improve performance �DS��� D���� Fur�
thermore� the use of optical links with extremely high band�
widths �see �SM���� and their ability to support ATM�based
B�ISDN networks with multiple virtual channels per link in�
dicate that link bandwidths greater than one will become
increasingly common in the near future� None of our worm�
hole routing algorithms ever delays worms that encounter
congestion� As a result� our algorithms can operate without
any bu�ers for delayed 	its �which is a signi�cant advantage
when optical links are used� as the 	its do not have to be
converted to and from electronic form for bu�ering��

Regardless of the switching mode being used� the follow�
ing parameters will be used to analyze the performance of
the routing algorithms� The parameter n will denote the
number of messages being sent� The parameter C� called
the congestion� is de�ned as the maximum number of paths
in P that cross any link� The parameter D� called the dis�
tance or dilation� is de�ned as the length of the longest path
in P�

��� Previous Results

In terms of universal store�and�forward routing� the best
time bounds were obtained by Leighton� Maggs and Rao
�LMR��� They presented an optimal O�C � D� time o��
line algorithm for arbitrary simple path collections that uses
constant size link bu�ers �LMR��� Unfortunately� there is
a signi�cant gap between this algorithm and the best known
on�line algorithm� which requires bu�ers of size O�log�nD��
and takes O�C �D log n� time steps� w�h�p�y� for the same
problem �LMR��� Better results are known for shortest
path collections� Meyer auf der Heide and V�ocking gave an
on�line algorithm for routing along arbitrary shortest paths
that takes time O�C �D � log n�� w�h�p�� which is optimal
for routing in bounded degree networks �MV���� However�
their algorithm requires bu�ers of size C�

Many results have been obtained for store�and�forward
routing in speci�c networks or classes of networks� Valiant
showed that any permutation can be routed in O�logN�
time� w�h�p�� in an N �node hypercube �V���� Pippenger
presented an algorithm for routing any permutation in a
variant of the logN �dimensional butter	y in O�logN� time�
w�h�p�� using constant size bu�ers �P��� Leighton� Maggs�
Ranade and Rao presented an algorithm for routing in an
arbitrary leveled network �LMRR�� with an arbitrary path
collection in time O�C �D � log n�� w�h�p�� using constant
size bu�ers� and they created optimal algorithms for per�
mutation routing in meshes� hypercubes� butter	ies� and
shu�e�exchange networks �LMRR��� Hot�potato routing
algorithms� in which packets are never bu�ered due to con�
gestion� have been presented for two�dimensional tori and

yThroughout the paper� the terms �with high probability� and
�w�h�p�� mean �with probability at least � � n

��� where � � � is
an arbitrary constant�

hypercubes �FR���� higher�dimensional tori �MW���� and
arbitrary node�symmetric networks �MS���� Simulations of
hot�potato routing on various networks have also been per�
formed in �AS��� GH��� M����

In the area of universal wormhole routing� Greenberg
and Oh created a randomized algorithm for arbitrary sim�
ple path collections in networks with link bandwidth � that
requires time O�C � D � � � C � L � � log n�� w�h�p�� where
� � minfD�Lg �GO���� This algorithm does require the
ability to bu�er blocked worms�

A number of results are also known for wormhole routing
on speci�c networks� In �BRST��� Bar�Noy et al� present
a randomized wormhole routing protocol for the m by m
mesh that routes any permutation in O�L �m� steps� w�h�p��
without bu�ering� Felperin� Raghavan and Upfal gave an
algorithm for routing N worms� one per processor� from the
top row to random destinations in the bottom row of a logN �
dimensional butter	y network in O�L logN �minfL� logNg�
time� w�h�p�� �FRU���� Ranade� Schleimer and Wilkerson
improved this result by showing that q �N worms of length
logN � q per processor� can be routed from the top row
to random destinations in the bottom row in O�q log�N �
log logN� steps �RSW��� Furthermore� they showed that
��q log�N��log logN��� steps are necessary for this task�
Both of these results for wormhole routing on butter	ies re�
quire the ability to bu�er blocked worms �FRU��� RSW���

��� New Results

In this section we present two theorems that have many con�
sequences for both store�and�forward and wormhole routing�

Main Theorem �� Given any simple path collection in a
network with bandwidth ��log�C �D�� log log�C �D��� there
exists an on�line packet routing algorithm that requires

O

�
D log log n� C �

log n � log log n

log log�C �D�

�
time� w�h�p�� without bu�ering�

Main Theorem �� Given any simple path collection in a
network with bandwidth B � log n� there exists an on�line
wormhole routing algorithm that requires

O

�
L � C �D��B � �D � L� log n

B

�
time for worms of length L� w�h�p�� without bu�ering�

It should be noted that� in case of routing to random des�
tinations in some given network� the proof of Main Theorem
� can easily be modi�ed to show that it su
ces to choose
C to be the expected congestion� i�e� the maximum over all
edges of the expected number of worms that pass an edge
�rather than an upper bound on the congestion that holds
w�h�p���

In the following we present applications of the main the�
orems to various path collections and networks� including
node�symmetric networks� edge�symmetric networks� and
arbitrary bounded degree expanders�

De�nition ��� A graph G � �V�E� is node�symmetric if
for any pair u� v of vertices in G there exists an automor�
phism � � V � V mapping u to v such that for the graph



G� � �V�E�� with E� � ff��x�� ��y�g j fx� yg � Eg it
holds that G� � G�

De�nition ��� A graph G � �V�E� is edge�symmetric if
for any pair e� e� of edges in G there exists an automorphism
� � E � E mapping e to e� such that for the graph G� �
�V�E�� with E� � f��e� j e � Eg it holds that G� � G�

De�nition ��� A graph G � �V�E� is an expander if for
any subset U � V with jU j � �jV j it holds that jfv � V j
�u � U � fu� vg � Egj � �� � ��jU j for some constants
�� � � ��

����� Applications to Store�and�Forward Routing

The techniques used for Main Theorems � and � yield the
following results for store�and�forward routing� The algo�
rithms are analyzed in terms of n� the number of packets
being routed� C� the congestion of the path collection� D�
the dilation of the path collection� and A� the bu�er size�
The following result is a corollary of Main Theorem � that
is obtained by setting L � � and simulating link bandwidth
with bu�ers�

Corollary ��� Given any simple path collection� there ex�
ists an on�line store�and�forward routing algorithm that re�
quires O�C �D��A �D log n� time� w�h�p�

This result is optimal if C � D log n and A � logD�
while the previous best bound was optimal only if C �
D log n and A � log�nD� �LMR��� Further improvements
can be obtained for C � D log n log log�C �D�� log�C �D� by
using Main Theorem ��

Corollary ��� Given any simple path collection in a net�
work� there exists an on�line store�and�forward routing algo�
rithm that requires

O

��
D log log n� C �

log n � log log n

log log�C �D�

�
�

log�C �D�

log log�C �D�

�
time� w�h�p�� and uses bu�ers of size O�log�C �D�� log log�C �
D���

This result signi�cantly improves both the bu�er require�
ments and the running time for universal store�and�forward
routing over a wide range of parameters� For example� if
C � D � log n� Corollary ��� yields a routing time of
O�log n�log log n��� log log log n�� w�h�p�� using bu�ers of size
O�log log n� log log log n�� In contrast� the fastest previously
known algorithm for this problem requires O�log� n� time�
w�h�p�� and uses bu�ers of size O�log n� �LMR��� Applying
random walk techniques created by Broder et al� �BFU����
this result immediately yields the following corollary�

Corollary ��	 For any bounded degree expander with n pro�
cessors� n packets� one per processor� can be routed on�line
to random destinations in

O

�
log n�log log n��

log log log n

�
time� w�h�p�� using bu�ers of size O�log log n� log log log n��

The following two theorems provide bounds for store�
and�forward routing in arbitrary shortest path collections�
In the case of shortest path collections� Theorem ��� pro�
vides the �rst nontrivial tradeo� between routing time and
bu�er size� and Theorem ��� yields stronger bounds than
those given by Corollary ����

Theorem ��
 Given any shortest path collection� there ex�
ists an on�line store�and�forward routing algorithm that re�
quires

O

�
C �D��A � log n

A
� �C �D � log n�

�
time� w�h�p�

Theorem ��� Given any shortest path collection in a net�
work� there exists an on�line store�and�forward routing algo�
rithm that requires

O

�
�C �D� �

log�C �D�

log log�C �D�
� �D � log n� log log n

�
time� w�h�p�� and uses bu�ers of size O�log�C �D�� log log�C �
D���

If every processor in a node�symmetric network sends a
packet to a random destination� then the expected conges�
tion is bounded by the diameter �MV���� Thus� applying
Theorem ��� to these networks yields the following result�

Corollary ��� Given any node�symmetric network of size
n and diameter D � ��log n�� there exists an on�line store�
and�forward routing algorithm that routes n packets� one per
processor� to random destinations in

O

�
D �

�
logD

log logD
� log log n

��
time� w�h�p�� and uses bu�ers of size O�logD� log logD��

����� Applications to Wormhole Routing

Any algorithm for routing worms of length L in a network
with link bandwidth B� congestion C� and dilation D� re�
quires at least ��L � C�B � D � L� time� This is because
there is at least one worm of length L which has to travel
distance D� and there is at least one edge of bandwidth B
which has to transmit L � C 	its� Thus� the wormhole rout�
ing result of Main Theorem � is optimal for B � logD and
L � C � �D � L� log n or for B � log n� Even for band�
width �� Main Theorem � improves upon previous best up�
per bounds for a wide range of parameters� For example�
if C � D � log n and B � �� Main Theorem � requires
O�log� n� time� w�h�p�� while the previous best algorithm
for this problem required O�log� n� time� w�h�p� �GO����

Applying Main Theorem � to node� and edge�symmetric
networks gives the following results�

Corollary ��� Given any node�symmetric network of size
n and diameter D� there exists an on�line wormhole routing
algorithm that routes n worms� one from each processor� to
random destinations in

O

�
L �D����B � �D � L� log n

B

�
time� w�h�p�� without bu�ering�



Corollary ���� Given any edge�symmetric network of size
n� diameter D� and degree �� there exists an on�line worm�
hole routing algorithm that routes n worms� one from each
processor� to random destinations in

O

�
L �D����B

�B
�

�D � L� log n

B

�
time� w�h�p�� without bu�ering�

This is because the expected congestion in the above
corollaries can be bounded by D and D��� respectively
�MV��� MS���� Applying random walk techniques intro�
duced in �BFU��� yields the following corollary�

Corollary ���� Given any bounded degree expander of size
n� there exists an on�line wormhole routing algorithm that
routes n worms� one from each processor� to random desti�
nations in

O

�
L log����B n� log� n

B

�
time� w�h�p�� without bu�ering�

Applying Main Theorem � to the d�dimensional mesh
with side length m �that is� with N � md processors� yields

O� �
B
�q �L �m � �m �d���B��m �d�L� �d � logm�� time� w�h�p��

for routing q �N worms� one from each processor� to random
destinations� This is because the expected congestion is at
most q �m� A more careful analysis� tailored to meshes� gives
the following improvement�

Theorem ���� Given a d�dimensional mesh of side length
m with N � md nodes� there exists an on�line wormhole
routing algorithm that routes q �N worms� q from each pro�
cessor� to random destinations in

O

�
q � L �m � d��B � �m � d� L� � d logm

B

�
time� w�h�p�� without bu�ering�

Theorem ���� is optimal for B � log d� q � d � logm�m�
and q � L � d� logm� Thus� this result generalizes the re�
sults obtained by Bar�Noy et al� for the ��dimensional mesh
�BRST����

The next theorem presents upper and lower bounds for
wormhole routing on the d�dimensional butter	y network�
We consider the problem of routing worms from the inputs
on level � to the outputs on level d such that each of the
N � �d inputs has to send q worms to randomly selected
outputs� Each worm has to follow the unique shortest path
from its input to its output node�

The upper bound is the same as we would obtain by
applying Main Theorem � and the fact that the expected
congestion is at most q� But whereas the algorithm used for
proving Main Theorem � uses random ranks for priorities
and assigns random delays �as in� e�g�� �RSW���� here we
require neither random ranks nor delays� In particular� we
give �xed� explicitly de�ned priorities to the worms� For
bandwidth B � �� the upper bound improves that given in
�RSW�� by a factor of log d� although our algorithm does
not bu�er the worms during the routing� For bandwidth
B � log logN � q � logN and q � L � log�N � our algorithm
is optimal�

The lower bound holds for any algorithm that moves the
worms from the inputs to the outputs along their unique
shortest paths without delaying them� even if o��line routing
is allowed� It extends the lower bound from �RSW�� to
arbitrary bandwidth� and shows that our upper bound is
nearly optimal�

Theorem ���� Let N � �d� Given a d�dimensional butter�
�y network without bu�ers� routing qN worms� q from each
input� to random outputs

a� can be done by a deterministic on�line algorithm in

O
�
q�L�log��B N��L�logN��logN

B

�
time� w�h�p�� and

b� needs

�
�
q�L�log��B N��log logN����B

B

�
time� w�h�p�� for q � log�N for any �xed � � ��

Finally� we present a result which is well suited for worm�
hole routing in leveled networks with short worms� In lev�
eled networks it can easily be guaranteed that worms collide
only with their heads� As a consequence� the result of Main
Theorem � can also be applied to worms of length L � ��
which gives the following corollary�

Corollary ���� Given any leveled network with depth D�
there exists an on�line wormhole routing protocol requiring
bandwidth B � ��log�C � D�� log log�C � D��� that routes n
worms from the highest to the lowest level in

O

�
L

�
D log log n� C �

log n � log log n

log log�C �D�

��
time� w�h�p�� without bu�ering�

For example� when D � log n and C � D log log n�
Corollary ���� yields a routing time of O�L � C�� which is
only a factor of logC� log logC away from the lower bound�

��� Organization of the Paper

The algorithms that yield Main Theorems � and � are pre�
sented and analyzed in Sections � and �� respectively� Proofs
of the remaining theorems are given in Section �

� Proof of Main Theorem �

��� Routing Algorithm �

Routing Algorithm � routes packets �worms of length L � ��
using bandwidth B � ��log�C � D�� log log�C � D��� The
idea behind this algorithm is that each packet chooses a
random delay independently from the other packets� After
waiting this amount of time� a packet tries to route along
its prescribed path to its destination without waiting� We
de�ne the following rule in case of collisions between packets�

Contention resolution rule�
If more than B packets attempt to use the same link
during the same time step� then all of them are dis�
carded�



The routing algorithm consists of k� � rounds �the param�
eters k� Cr and B will be determined later��

Routing Algorithm ��
all n packets are declared active
for r � � through k do�

	 forward pass� for each active packet� send
�r copies of it with random startup delays in
�Cr� � f�� �� 	 	 	 � Cr 
 �g� route the copies ac�
cording to the contention resolution rule above

	 backward pass� successful packets become in�
active via acknowledgments

Clearly� the forward pass of round r requires O�Cr � D�
steps� The backward pass can be organized in such a way
that acknowledgments of successful copies are not delayed
or discarded by running the forward pass in reverse order�
A packet becomes inactive if it receives an acknowledgment
of at least one of its copies�

��� Analysis of Algorithm �

De�nitions� A packet�s route consists of the �at most D�
edges that it must cross� A site is an ordered pair �e� s� where
e is an edge and s is a step in the forward pass �of the round
currently being considered�� A packet	s sites consist of the
sites �e� s� where e is an edge on the packet�s route� Given
any packet p� p	s con�icting packets consist of the packets
with routes which intersect p�s route �including p itself�� A
packet	s region consists of the sites of its con	icting packets�
A packet p aims for a site �e� s� if p selects a random delay
such that it will be present in edge e at step s of the forward
pass� provided that it is not discarded before reaching edge
e� Note that whether or not a packet aims for a site is
strictly a function of its starting time and its path� and is
independent of the starting times of other packets� A packet
p is discarded at a site �e� s� if p attempts to enter edge e
at step s but is discarded because of edge contention� Note
that if y packets are discarded at a site �e� s�� then at least
y � B packets aim for site �e� s��

We will begin by analyzing the forward pass of round
�� We will set C� � C and B � �� ln�C � D�� ln ln�C � D��
Consider any packet p and mark any m sites in p�s region�
Let the random variable X denote the number of distinct
packets that aim for any of the marked sites� Note that the
expected number of packets which aim for any one site is at
most one �because at most C packets can have the possibility
of aiming for the site� and the probability that such a packet
does aim for the site is ��C�� Therefore� E�X� � m�

Because X is the sum of independent Bernoulli trials� we
can use a Hoe�ding�Cherno� bound to bound the probabil�
ity that X is larger than B �m�

Prob�X � B �m� � �e�B�B�m � e�m�B�lnB���	

Note that there are at most�
C �D��C �D�

m

�
�

�
eC �D��C �D�

m

�m

� em�� ln�C�D����

di�erent ways of marking m sites in p�s region� Therefore�
the probability that more than B � m distinct packets aim
for any set of m sites in p�s region is at most

em�� ln�C�D����B�lnB���� 	

Let m � ��� �� lnn�� ln�C �D�� Because

lnB 
 � � ln����e� � ln ln�C �D�
 ln ln ln�C �D�

� ����� ln ln�C �D� � � �

we have

em�� ln�C�D����B�lnB���� � n������	

Note that if more than B � m packets are discarded at
sites in p�s region� then more than B � m distinct packets
must aim for some set of m sites in p�s region� �This can
be argued as follows� Let z be the number of sites in p�s
region at which packets were discarded� If z � m� let S be
a set of any m sites including these z sites� If z � m� let
S be a set of any m of these z sites and note that more
than B packets were discarded at each of them� Therefore�
jSj � m� more than B � m packets were discarded at sites
in S� each of these discarded packets aimed for the site at
which it was discarded� and these discarded packets must be
distinct because a packet can only be discarded once�� As
a result� the probability that more than B � m packets are
discarded at sites in any packet�s region is at most n�������
We will say that round � succeeded i� for every packet p�
at most B �m � ���� �� lnn� ln ln�C �D� of p�s con	icting
packets were not successfully delivered to their destinations�

Now consider round �� It is identical to round � in terms
of the number of �copies of� packets that are discarded� ex�
cept it has congestion at most �B �m �assuming that round
� succeeded� because two copies are made of each of the
at most B �m packets that were discarded at sites in each
packet�s region� and because the paths are simple� each of
these packet copies can contribute at most one to the con�
gestion of an edge� Therefore� we will set C� � �B � m
and an analysis identical to the analysis of round � shows
that the probability that more than B �m packet copies are
discarded at sites in any packet�s region during round � is
at most n������� Because both copies of a packet must be
discarded in order for the packet to fail to be delivered� it
follows that the probability that there exists a packet p such
that more than B �m�� of p�s con	icting packets were not

successfully delivered after round � is at most n�������
In general� for any round i� � � i � k� we will set Ci �

�B � m� We will say that round i succeeded i� for every
packet p� at most B � m��i of p�s con	icting packets were
not successfully delivered to their destinations during the
�rst i rounds� Using an analysis identical to that given for
round �� it follows that for any round i� � � i � k� if all
rounds j 
 i succeeded then the probability that round i
fails is at most n������� Setting k � log�B � m� � � �
O�log log n�� it follows that if all k�� rounds � 	 	 	 k succeed�
then every packet has been successfully delivered� and this
happens with probability at least � 
 k�n��� � �
 n���

Finally� note that the algorithm requires link bandwidth
of B � O�log�C �D�� log log�C �D�� and takes ��C �D� �
�k�C� �D� � O�D log log n�C � log n log log n� log log�C �
D�� time� w�h�p� This completes the proof of Main Theorem
��



� Proof of Main Theorem �

��� Routing Algorithm �

In the following we prove Main Theorem �� The idea of
our protocol here is that each worm �i chooses uniformly
and independently from the other worms a random rank
ri � �R� � f�� 	 	 	 � R 
 �g �R will be speci�ed later� and a
random delay di � �D�� We de�ne the following rule�

Contention resolution rule�
If more than B worms attempt to use the same link
during the same time step� then those B with lowest
rank win� Ties in rank are broken according to an
arbitrary total order on the worms� If a worm loses
with its k�th 	it at a link� the 	its from k to L are
discarded when reaching this link� The 	its � to k
�
continue the routing�

Our protocol then works as follows�

Routing Algorithm ��
all n worms are declared active and choose random
ri � �R� and di � �D�
repeat

	 forward pass� Each active worm �i waits for
di steps� Then it is routed along its path� obey�
ing the contention resolution rule above�

	 backward pass� For each worm that com�
pletely reached its destination during the for�
ward pass� an acknowledgment is sent back to
the source� Upon receipt of the acknowledg�
ment� the source declares the worm inactive�

until no worm is active

Clearly� the forward pass only needs �D � L steps� since
after �D � L steps all worms that did not fail have com�
pletely reached their destinations� These worms are called
successful� Whether a worm was successful can easily be de�
tected at its destination by counting the number of 	its of
the worm that arrive�

In the backward pass� the forward pass is run in reverse
order� except that only the heads of successful worms par�
ticipate� Therefore� no collisions can occur in the backward
pass� and �D steps su
ce to send all acknowledgments back�

��� Analysis of Algorithm �

In the following we prove an upper bound for the number of
rounds required by the protocol that holds w�h�p� For this�
we use a delay sequence argument�

De�nition ��� An �s� B��delay sequence consists of


�� s �B � � delay worms ��� 	 	 	 � �s�B�� such that during
the forward pass of round i � �� worm �i�B�� is pre�
vented from using a link by worms ��i���B��� 	 	 	 � �i�B�


� s �B�� integer keys r�� 	 	 	 � rs�B�� such that � � r� �
	 	 	 � rs�B�� � R
 ��

We say that a delay sequence is active if rank��i� � ri
for � � i � s � B � ��

Lemma ��� If the routing takes more than s rounds� there
exists an active �s� B��delay sequence�

Proof� In the following we will give a construction for
such a delay sequence� If the routing takes more than s
rounds then there is a worm �s�B�� that has not completely
reached its destination in round s� In such a case there must
have been worms ��s���B��� 	 	 	 � �s�B that prevented �s�B��

from using some link in round s� According to the rout�
ing protocol� ��s���B��� 	 	 	 � �s�B can be chosen such that
rank���s���B��� � 	 	 	 � rank��s�B� � rank��s�B���� But if
��s���B�� was still active in round s� there must have been
worms ��s���B��� 	 	 	 � ��s���B in round s
� that prevented
��s���B�� from using some link� where rank���s���B��� �
	 	 	 � rank���s���B� � rank���s���B���� Continuing this
argument back to round � yields the lemma with ri ��
rank��i�� � � i � s �B � ��

Lemma ��� The number of di�erent active �s� B��delay se�
quences is at most

n � �D � CB�s
�
s �B �R

s �B � �

�
Proof� We count the number of possible choices for the
components�

	 There are at most n � �D � CB�s choices for the delay
worms� This is because there are at most n possibil�
ities to determine the worm �s�B��� and if �i�B�� is
�xed� there are at most D � CB choices for the worms
��i���B��� 	 	 	 � �i�B for � � i � s�

	 There are
�
�s�B����R��

s�B��

�
possibilities to choose the ri�s

such that � � r� � � � � � rs�B�� � R
 ��

Multiplying these terms yields the lemma�

Lemma ��� Let � � minf�L�Dg� B � log n� and R �

maxfe��C �D�����B � ����� log ng� Then the above routing
protocol completes the routing of all n worms in

max

�
e� � C �D��B

D � B
�
��� �� log n

B

�
rounds with probability �
 n�� for every � � ��

Proof� Since each worm determines a rank and chooses
a random delay� and the contention resolution scheme of
the above routing protocol requires that in any active delay
sequence the worms have to be pairwise distinct� the prob�
ability that a particular �s�B��delay sequence is active is at

most R��s�B������D�s�B � Therefore� if we choose

T � max

�
e� � C �D��B

B �D
�
��� �� log n

B

�
and R � T �B then

Prob�the routing takes more than T rounds�

Lemma �	�

� Prob �a �T�B��delay sequence is active�

Lemma �	�

� n�D � CB�T
�
T �B �R

T �B � �

�
R��T �B���

�
�

D

�T �B
� n

�
� � C �D��B

D

�T �B �
e�T �B �R�

R�T � B � ��

�T �B��



� n

�
e� � C �D��B�T �B �R�

T � B �D � R

�T �B

R
T �B
� n

�
�e� � C �D��B

T �B �D

�T �B

T� �e��C�D��B

B�D

� n��T �B
T�

����� logn
B

� n�� 	

This yields Main Theorem ��

� Proofs of Theorems in Section �

��� Proof of Theorem ���

Consider routing n packets along a shortest path collection
with congestion C and dilation D in a network with bu�er
size A� Each packet Pi gets two random ranks� the �rst
rank rdi is chosen as in Section �� and the second rank rgi is
chosen as in the growing rank protocol in �MV���� The new
protocol then works as follows

for each packet Pi� choose random ranks rdi and rgi �
all n packets are declared active
repeat

	 forward pass� route packets according to the
growing rank protocol in �MV���� in case of
overfull bu�ers use the contention resolution
rule of Section �

	 backward pass� successful packets become in�
active via acknowledgments

until no packet is active

 From �MV��� we know that the growing rank protocol
requires at most O�C � D � log n� time� w�h�p� Using the
proof of Main Theorem � it can be shown that O� �

B
�C �

D��A � log n�� rounds su
ce to route all packets� w�h�p�
This completes the proof of Theorem ����

��� Proof of Theorem ���

Routing Algorithm � can be modi�ed to yield improved per�
formance for arbitrary shortest path collections� First� it
is adapted to create a store�and�forward routing algorithm
that satis�es the conditions of Corollary ���� In particu�
lar� each step of the wormhole routing algorithm with band�
width B now requires B time units and uses bu�ers of size
B� The routing occurs in stages� each of which corresponds
to a step in the wormhole routing algorithm and requires B
time units� We rede�ne the notion of a site to be an ordered
pair consisting of an edge and a stage�

Next� the random delays are selected from di�erent
ranges� Speci�cally� C� � C and for � � r � k� Cr �
��e��� � �� log n� Finally� the lengths of the stages �and
thus the sizes of the bu�ers being used� is changed after
round �� Speci�cally� the algorithm uses stages of length
B � �� ln�C � D�� ln ln�C � D� in round �� and of length
B� � � in all other rounds� The analysis of round � is iden�
tical to that of Algorithm �� so it follows that after round �

the probability that any packet has more than B �m con	ict�
ing packets that were not successfully delivered is at most
n�������

Now consider round �� Note that during round � each
active packet has at most �B � m con	icting packet copies
�assuming that round � succeeded� because two copies are
made of each of the at most B � m packets that were dis�
carded at sites in that active packet�s region� Let q � C� �
��e��� � �� log n� y� � ���� � �� log n� and y � �dy���e�
Consider any active packet copy in round � and let Y be the
set of its at most �B �m � y con	icting packet copies� Let U �

be the set of packet copies in Y that are discarded in round
� at a site at which at least one other packet copy in Y is
discarded� Let V be the set of packet copies in Y that are
discarded in round � at a site at which at least one packet
copy not in Y is discarded� Let u� � jU �j and v � jV j and
note that at most u�� v packet copies in Y are discarded in
round ��

We will �rst bound the probability that u� � y�� We
will require the following de�nitions�

De�nitions� Two packet copies collide if they both at�
tempt to pass through the same link during the same stage�
A �u� s��con�guration consists of�

	 a set U � U � where jU j � u�

	 a partition of U into s nonempty� disjoint subsets called
groups�

	 a designation of one packet copy per group as the rep�
resentative of the group� and

	 an assignment of a random delay to each packet copy
in U �

A �u� s��con�guration is active if� given the assigned random
delays� every nonrepresentative packet copy collides with its
representative�

Note that if u� � y�� there must exist a set of packets
copies U � U �� where jU j � u � y�� and a set of sites S�
where � � jSj � u��� such that every packet copy in U was
discarded at one of the sites in S� As a result� it is possi�
ble to construct a �u� s��con�guration� where � � s � u���
by grouping the packet copies in U according to the sites
at which they were discarded� arbitrarily selecting a repre�
sentative from each group� and recording the random de�
lays� Furthermore� note that this �u� s��con�guration must
be active� as all of the packet copies within each group were
discarded at the same site� Therefore� if u� � y�� there
must exist an active �u� s��con�guration where u � y� and
� � s � u��� We will now bound the probability that such
an active con�guration exists�

Note that there are at most
�
y
s

�
di�erent ways of select�

ing the representatives� and once the representatives have
been chosen� there are at most

�
y

u�s

�
su�s di�erent ways

of selecting the nonrepresentatives and grouping them with
representatives�

Also� note that in any shortest path collection� if packet
copies p� and p� collide when they have random delays d�
and d�� respectively� then they will not collide when they
have delays d� and d�� respectively� for any d� �� d�� There�
fore� once we have selected the random delays of the repre�
sentatives� there is at most one way to set the random delays
of the nonrepresentatives in order to make the con�guration
active� Thus there are a total of at most



�
y

s

��
y

u
 s

�
su�sqs �

�
ey

s

�s � eys

u
 s

�u�s
qs

active �u� s��con�gurations� Finally� the probability that a
given �u� s��con�guration occurs is ���q�u� Therefore� the
probability that there exists an active �u� s��con�guration�
given any �xed values of the parameters u and s where � �
s � u��� is at most

�
ey

s

�s � eys

u
 s

�u�s��

q

�u�s

�
�
ey

s

�s� eys

q�u
 s�

�u�s

�
�
ey

s

�s��eys

qu

�u�s

�
�
eu

s

�s��es

q

�u�s

	

Let f�s� � �eu�s�s��es�q�u�s and g�s� � ln f�s�� Note
that g�s� � s ln�eu�s� � �u 
 s� ln��es�q� and g��s� �
ln�qu��s���u�s
 �� Because q � e�s� g��s� � ln�q�s� � �
and g�s� and f�s� are maximized when s � u�� � y��� As
a result� the probability that there exists an active �u� s��
con�guration� where u � y�� and � � s � u��� is at most

u��X
s
�

f�u
�
� �

�
u

�

�
��e�u��

�
eu

q

�u��

�
�
u

�

��
��e�u

q

�u��

	

Because q � ��e�u� it follows that f�u��� � ���e�u�� �
���n���� and that the probability that u� � y� is at most
�y������n�����

Now we will bound the probability that v � y�� Select
an arbitrary packet copy p � Y � Packet copy p has at most
y con	icting packet copies that are not in Y � and for each
of these con	icting packet copies the probability that p will
collide with it is at most ��q �because regardless of the ran�
dom delay selected by the con	icting packet copy� there is at
most one random delay that p can select to cause such a col�
lision�� Therefore� the probability that p is in V is at most
y�q� We can view the selection of a random delay for each
packet copy in Y as being a Bernoulli trial with probability
of success at most y�q �where success is de�ned as being
in the set V �� and these trials are independent� Therefore�
the expected number of successes is at most y��q� and the

probability of at least y� successes is at most �ey�q�y���
Because q � �e�y� the probability that v � y� is at most

���!e�y�� � ���n���������
Combining these results� it follows that the probability

that more than y�� packet copies in Y are discarded in round
� is at most ���n����� The remaining analysis is analogous
to that given in Section ��

��� Proof of Theorem ����

Let us choose the following routing strategy on a d�dimen�
sional mesh with side lengthm� Given a random destination
chosen independently and uniformly from the set of nodes�
each worm chooses a random startup delay in �d �m� and af�
terwards is �rst routed according dimension �� then accord�
ing to dimension � and so on� until it reaches its destination�

In the following� A denotes an arbitrary linear array of
length m in one dimension of the mesh� Let E�A� be the
expected number of worms that want to use links of A�
Because of symmetry reasons� for uniformly and indepen�
dently chosen destinations� E�A� is the same for each linear
array A� �Note that this argument is not true if we con�
sidered links instead of linear arrays�� Since the total num�
ber of linear arrays used by worms is at most q � N � d and
the number of linear arrays is d � md��� E�A� is at most

q �N �d��d �md��� � q �m� Replacing the edge congestion by
this array congestion in the proof of Main Theorem � yields
the upper bound in Theorem �����

��� Proof of Theorem ����

����� Proof of Part 	a


Suppose the qN worms� q per processor� have to be sent
to random destinations� Let � �� minfL� logNg� Then
the worms can be given delays such that the routing can
be viewed as divided into blogN��c independent passes in
which every input has to send out at most q� � dq�blogN��ce
worms� Therfore� we have to show that there exists a rank
allocation such that each pass takes O� �

B
�q� � log��B N �

logN�� rounds of time � logN �L
 �� w�h�p� In the follow�
ing we do not only show the existence but also describe a
speci�c allocation that ensures the above routing time�

The ith worm �� � i � q�� starting at node �xlogN��� 	 	 	 �
x�� on level � is assigned rank i � N � �x�� 	 	 	 � xlogN�����
Thus� the rank of a worm is essentially the bit�reversal num�
ber of its input node plus an o�set� In the following we
identify a worm with its rank� �Note that the ranks of all
worms participating in the same phase are distinct��

For an integerm � � with binary representation �	 	 	 �m��
m��m��� we de�ne

��m� �� maxfi � logN j �mi��� 	 	 	 �m�� � �ig 	

Suppose �� 
 	 	 	 
 �B�� are B � � worms� Then there are

only N �
�
b�minf������������ ����B������g��c

�B
ways to choose

the destinations of the worms such that all B � � routing
paths share an edge� i�e� the worms can not reach their
destination altogether in the same round� This is because
any two worms � and �� can not use the same edge before
level logN 
 ��j�� 
 �j��

Now� consider an arbitrary worm �� with some �xed
destination� and let m be an arbitrary integer� Then the
number of possibilities to choose B worms ��� 	 	 	 � �B�� and
their destinations such that �� 
 �� 
 	 	 	 
 �B 
 �B�� �
�� �m and such that all B�� routing paths share an edge
is at most X

������ ��B
�������������m

��minf������������ ����B�������m�g����B

�

�
m

B 
 �

� ��m���X
i
�

��i�B��� � ��i���B �

�X
i
��m�

��i�B��� � ����m�����B

�

�
m

B 
 �

�
���m� 	 ���



Now we are able to estimate the number of �s� B��delay
sequences� For this purpose we have to count the number
of ways to choose s � B � � worms ��� 	 	 	 � �s�B�� and their
destinations such that � � �� 
 �� 
 	 	 	 
 �s�B�� 

q�N and such that for every � � i � s� the routing paths
of the worms �i�B��� �i�B��� 	 	 	 � ��i����B�� share an edge�

Of course� there are at most q�N� possibilities to choose
�� and its destination� De�ne R �� q�N � and let mi ��
�i�B��
��i����B��� Then it follows by repeatedly applying
inequation � that the number of �s� B��delay sequences is at
most

q�N� �
X

m��m����� �ms�IN�P
mi�R

sY
i
�

�
mi

B 
 �

�
� ���mi�

� q�N� �

�
R

s�B 
 ��

� X
m����� �ms�IN�P

mi�R

sY
i
�

���mi�

	 
z �

�As�R

We now show by induction on s that As�R � logsN �
�
R
s

�
�

For s � �� this inequality trivially holds� For s � �� we have

As�R �

R��X
ms
�

���ms�
X

m��m����� �ms���IN�P
mi�R�ms��

s��Y
i
�

���mi�

�

R��X
m
�

���m� � As���R�m

�

R��X
m
�

���m� � logs��N �

�
R
m

s
 �

�
� 	 	 	

� logsN �

R��X
m
�

�
R
m

s
 �

�

� logsN �

�
R

s

�
	

Therefore� the probability that a worm is still active after

T �
�e � q� � log��B N � ��� �� log�q�N�

B

� O�
q� � log��B N � logN

B
�

rounds can be bounded by

q�N� �

�
R

T �B 
 ��

�
� logT N �

�
R

T

�
�N�TB

� q�N� �

�
�e � q�N � log��B N

TB �N

�TB

� �q� �N��� 	

This yields part �a� of Theorem ����

����� Proof of Part 	b


Consider m � �BN� logN arbitrary worms� We �rst bound
the probability P that all these worms can be routed simul�
taneously� i�e� they can arrive at their random destinations
in L consecutive time steps� In the following we say the
worms collide if more than B of them want to travel through
the same edge�

In order to cope with dependencies between the collision
probabilities on di�erent levels we use an idea from Ranade
et al� �RSW�� which is to divide the butter	y into many

small subbutter	ies� Let k �� dlog logNe andK � �k� Then
the �rst k levels consists of N�K small distinct butter	ies�
We denote the number of worms starting in the ith of these
butter	ies by mi�

We �rst estimate the probabibility Pi that the m worms
do not collide in one of the �K edges on level k�� incident
to the K output nodes of the ith small butter	y� under the
assumption B � � � mi � �KB� Let e�� 	 	 	 � e�K denote
these edges on level k� �� Further� let Ej denote the event
that more than B worms want to travel along the edge ej �
and let E�

j denote the event that exactly B �� worms want
to travel along this edge� Then

Prob�Ej� � Prob�E�
j�

�

�
mi

B � �

��
�

�K

�B�� �
�


�

�K

�mi�B��

B���mi

�

�
mi

�K�B � ��

�B��

���mi�B�����K

mi��KB

�

�
mi

�K�B � ��

�B��

� ��B �

and therefore�

Pi � Prob

�
�K
j
�

Ej

�

�

�KY
j
�

Prob

�
Ej

�����
j��
�
�

E�

�
�

�KY
j
�

Prob�Ej�

�

�
�


�
mi

�K�B � ��

�B��

� ��B

��K

� exp
�

mB��

i � �B � ����B��� � �!K��B
�
	

Now we can bound the probability P that the m worms
do not collide in level k � �� If there is at least one small
butter	y in which more than �KB worms start� then it is
P � �� Otherwise�

P �

N�KY
i��

mi�B��

Pi

� exp

�
B�


�
B� N�KX

i��
mi�B��

mB��
i

�
CA � �B � ����B��� � �!K��B

�
CA 	

Let � denote the number of small butter	ies in which more



than B � � worms start� and de�ne

m� ��

N�KX
i��

mi�B��

mi � m

BN

K
�

!

�
m 	

Then it is

N�KX
i��

mi�B��

mB��
i �

N�KX
i��

mi�B��

�
m�

�

�B��

� �
�
!m
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Thus� we can conclude

P � exp

�

�
�
!m

��

�B��

� �B � ����B��� � �!K��B
�

��N�K

� exp
�

�!��� � ��N��B �mB�� � �B � ����B���

�
	

We can repeat this argument to obtain upper bounds for
the probability of having no collisions in the levels �k � ��
�k � �� k �  and so on� Since we obtain all these bounds
by using only information regarding the k levels in front of
the respective collision level� we may multiply these prob�
abilities to obtain an upper bound on the probability that
the worms do not collide on their way through the whole
butter	y� Thus��

exp
�

�!��� � ��N��B �mB�� � �B � ����B���

��� logN
k��

�
� exp

�



logN �mB��

� log logN � ��N�B � �B � ��B��

�
	

Therefore� the probability that there exists a set of

m � �N �

�
���� �� log� logN

logN
� �B � ��B��

���B

worms that can be routed simultaneously is�
N log�N

m

�
� exp

�



logN �mB��

� log logN � ��N�B � �B � ��B��

�

� exp

�
m

�
��� �� log logN


logN �mB��

� log logN � ��N�B � �B � ��B��

��
� exp�
m� 	

As a consequence� the routing takes at least time

LN log�N

m
� �

��
logN

log� logN

���B
L�logN��

B

�

with probability exp�
m�� This proves part �b� of Theo�
rem ����
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