
Routing with Bounded Bu�ers and
Hot�Potato Routing

in Vertex�Symmetric Networks�

Friedhelm Meyer auf der Heide and Christian Scheideler

Department of Mathematics and Computer Science
and Heinz Nixdorf Institute

University of Paderborn
����� Paderborn� Germany

Abstract� In this paper we present and analyze on�line routing schemes
with contant bu�er size and hot�potato routing schemes for vertex�sym�
metric networks	 In particular� we prove that for any vertex�symmetric
network with n vertices� degree d� and diameter D 
 ��log n�� a ran�
domly chosen function and any permutation can be routed in time

� O�log n �D�� with high probability �w	h	p	�� if constant size bu�ers
are available for each edge�

� O�log n �D log���D� for any � � �� w	h	p	� if for each vertex bu�ers
of size �� independent of the degree of the network� are available	

The schedule for the second result can be converted into a hot�potato
routing schedule� if a self�loop is added to each vertex	

E	g	� for any bounded degree vertex�symmetric network with self�loops
and diameter O�log n� �among them expanders� we obtain a hot�potato
routing protocol that needs time O�log� n�log log n����� for any � � � to
route a randomly chosen function and any permutation� w	h	p		

Our protocols also allow bounds on the space requirements for vertices
and packets in the network
 we show that O�D�log logD � log d�� space
su�ces for storing routing information in the vertices and O�logD� space
su�ces for storing routing information in the packets	

This is the �rst result about space�e�cient routing where both the bu�er
size and the space for storing routing information is strongly bounded	
Previous results are only known about routing protocols that either can
reduce the bu�er size or the space for storing routing information	 For
space�e�cient hot�potato routing no general results are known	

In order to prove the results above we introduce a new o��line routing
protocol for arbitrary networks which is fast even for vertex bu�ers of
size �	 This bound can not be reached by any other non�trivial o��line
routing protocol yet	
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� Introduction

Packet routing schedules have extensively been studied for a wide range of networks and
routing strategies	 Whereas much is known about the runtime under the condition that
enough space for storing routing tables and an unbounded bu�er size is available �see�
e	g	� �MV����� little is known about how space restrictions such as bounded bu�ers or
space bounds for storing routing tables in�uences the runtime	 For hot�potato routing�
even without space restrictions little is known so far about the routing time in networks	

Hot�potato routing or de�ection routing is a variant of packet routing where the
packets are always moving� i	e	� they are treated as hot potatos	 In each step a processor
must send out all packets it received at the beginning of the step	 The advantage of
hot�potato routing is that packets are not stored between time steps as in the store�
and�forward routing model	 Thus bu�ers are not required except for input and output
bu�ers in each vertex	 Input bu�ers contain the packets before they start to move�
output bu�ers contain them after they have reached their destinations	 Packets in
transit are never stored in bu�ers	 This� together with a space�e�cient design of rules
how to move the packets forward� keeps the hardware cheap and routing cycles very
fast	 Because of these reasons hot�potato routing is especially useful for optical networks
�AS��� M��� S���� where bu�ering would involve the packets to be stored in electronic
media	

In this paper we present on�line routing schemes with bounded bu�er size and
hot�potato routing schemes� and analyze the time and space they need on vertex�
symmetric networks	 These schemes use a new space�e�cient routing strategy based
on simulations of networks �see �MS����� and a new o��line routing protocol	 This
o��line protocol seems to be of independent interest	

��� Routing with Bounded Bu�er Size

The routing network is represented by a connected graph H 
 �V� E�� where V 
 �n�
is the set of all vertices �or processors� and E � V � V is the set of all edges �or links�
in H	 Each fv�wg � E consists of two links� one in each direction	

Each vertex has one input bu�er and one output bu�er	 Initially� the packets are
stored in the input bu�ers	 If a packet reaches its destination� it is stored in the output
bu�er	 Packets in transit are stored in so�called transit bu�ers	 We call a transit bu�er
edge bu�er if it is attached to an edge and vertex bu�er if it is attached to a vertex	

We only consider oblivious routing strategies� i	e	� a packet with origin u and des�
tination v has to travel along a prescribed routing path p�u� v� in H	 The set of these
paths for all

�
n

�

�
pairs fu� vg of vertices in H is called a path system and denoted by

P	 A shortest path system contains only paths p�u� v� that are shortest paths from u
to v in H	 Clearly� any shortest path has to be vertex�simple� that is� it uses no vertex
more than once	

A packet consists of a source u � V � a destination v � V � routing information�
and a message	 The source and destination need log n bits	 Throughout this paper we
restrict the routing information to be very small� namely of length at most O�log n�	
We assume the messages to have uniform length	

Given a path system P in H� a routing protocol consists of a contention resolution
protocol and a routing structure for all vertices in H	

The contention resolution protocol controls how long incoming packets have to wait
in a vertex before they are sent to the next vertex on their paths	 It has to ensure that



no two packets collide during the routing� that is� try to use the same edge at the same
time	

The edge along which a packet has to be sent is determined with the help of a routing
structure stored in v	 This is a �static� data structure that� given the destination and
the routing information of a packet� enables v to compute the next edge the packet
has to use w	r	t	 its path prescribed in P� and �maybe� update the packet�s routing
information	 We demand that this access needs constant time� i	e	 a constant number
of operations on log n�bit words	

Routing is performed in synchronous rounds	 In a round� each vertex uses its con�
tention resolution protocol to choose one packet to forward	 Then it uses its routing
structure to compute the outgoing edge the packet has to go	 If the bu�er on the edge
to be used is full� the packet is returned to the bu�er it came from� otherwise its routing
information is updated and the packet is forwarded	

Clearly� the following parameters greatly in�uence the time needed to route a func�
tion f 
 V � V in H


� the dilation D of P� that is� the length of the longest path in P�

� the congestion C� i	e	 the maximum number of routing paths p�u� f�u�� in P that
pass through the same vertex in H� and

� the bu�er size B available at edges or vertices to store packets	

In routing schemes with bounded bu�ers two events may occur that prevent the
scheme from terminating
 deadlocks and livelocks	 A deadlock appears if a set of packets
is not able to move forward any more	 Livelocks occur if a set of packets is routed in
such a way that they mutually de�ect each other in an in�nite loop from which they
never recover	 As we will see� our routing protocols are constructed in a way that
deadlocks and livelocks can not appear	

��� Hot�Potato Routing

The hot�potato routing model di�ers from the routing model for bounded bu�ers only
in three aspects	

� Hot�potato routing strategies do not need any transit bu�ers	

� Each time step� a vertex may receive and send out several packets� at most one
packet per edge	

� Since packets can not be bu�ered� the contention resolution protocol now decides
which packets to forward on their routing path� and which to route to other direc�
tions	 Our protocol will make sure that a packet is never more than one edge away
from its routing path	

��� Vertex�Symmetric Networks

In this paper we only deal with routing schemes for vertex�symmetric networks	 This
class is de�ned as follows	

De�nition�� A graph H 
 �V� E� is called vertex�symmetric if for any pair u� v of
vertices in H there exists an automorphism � 
 V � V mapping u to v such that for
the graph H� 
 �V�E�� with E� 
 ff��x�� ��y�g j fx� yg � Eg it holds H� 
 H	



Vertex�symmetric networks form a very general class and include most of the stan�
dard networks such as the d�dimensional torus� the butter�y� the hypercube� etc		 Fur�
thermore� the best expanders that have an explicit construction are all Cayley graphs
and therefore vertex�symmetric �see� e	g	� �M����	

The goal of this paper is to �nd a path system and a routing protocol for any
vertex�symmetric network such that a small bu�er size and little space su�ces for
storing routing structures in the vertices and routing information in the packets while
still maintaining a fast routing time	

��� Previous Results

In the following the term �with high probability� �w	h	p	� means �with probability of
at least � � �

n��
�� where n is the number of vertices and � is any constant	

We start with results on o��line routing	 It is not di�cult to see that �C �D� ��D
rounds su�ce to route f using a hot�potato protocol	 This upper bound follows from
the fact that a packet may collide along its prescribed path with at most C �D other
packets	 A simple graph coloring argument yields that C �D � � routing phases� each
taking time D� su�ce to guarantee that no two packets collide	 In �LMR��� an o��line
routing protocol is presented that works for networks with constant size edge bu�ers	
�The required bu�er sizes are not explicitly computed� but it seems they have to be
fairly large	� They show that O�C � D� time su�ces to route all packets	 On the
other hand� if there is at least one edge that transmits C packets and one packet that
traverses O�D� vertices then packet routing takes ��C � D� time� even if arbitrarily
large bu�ers are allowed	

Let us now turn to on�line routing	 If no restrictions are imposed on space require�
ments then� according to �MV���� it holds for arbitrary networks with diameter D that
any function f with congestion C can be routed on�line in time O�D � C � log n��
w	h	p		 Their results can be used to prove that� for all vertex�symmetric networks with
diameter D 
 ��log n� and degree d� a randomly chosen function can be routed in time
O�D�� w	h	p	� if O�n �D � log d� space is available in each vertex and routing information
of length O�log n� is available in each packet	 This result was generalized by �MS���
where it is shown� e	g	� that for every s � ��� n�� a random function can be routed in
time O�logs n �D� if O�s �D � log d� space is available in each vertex and O�log�s �D��
space is available for storing routing information in each packet	 Unfortunately� all
on�line protocols mentioned above need edge bu�ers of size O�log n�� w	h	p		

In �LMRR��� it is shown that for any bounded�degree leveled network with depth
L� any set of n packets whose paths have congestion C can be routed in time O�C �
L�log n�� using � bu�er per edge	 Leighton and Rao furthermore prove in �LR��� that
for any network with �ux �� any CRCW PRAM algorithm can be simulated with delay

O� log
� n

�
�� w	h	p	� using a su�ciently large constant number of bu�ers per edge	 This

very general result has the drawback that the diameter of a network can be by a factor
of log n lower than log n

�
	 In this paper� instead� we directly consider the diameter of a

network	
Experimental results on simulations of hot�potato routing on various networks are

documented in �AS��� GH��� M���	 In several of these papers a probabilistic analysis
of simple protocols is presented� but various independence assumptions are made to
make the analysis tractable	

Feige and Raghavan �FR��� present a simple deterministic hot�potato routing pro�
tocol that routes a random function on the �n� ���torus in �n �O�log n� steps� w	h	p		



Furthermore they present a simple deterministic routing protocol that routes a random
function on the d�dimensional hypercube in O�d� steps� w	h	p		

In �MW��� a probabilistic hot�potato routing protocol is presented that routes a
random function on the �n� d��torus in dn�O�d� log n� steps� w	h	p	� if d 
 O�n�� with
� � � � �

� 	
Apart from the Butter�y network� the torus� and the hypercube no other non�trivial

results for hot�potato routing on vertex�symmetric networks are known so far	

��� New Results

Our main result is an upper bound for the routing time and space requirement for
various space�e�cient routing schemes on vertex�symmetric networks	 In particular�
we prove


Main Theorem� Let H 
 �V� E� be any connected vertex�symmetric network with n
vertices� degree d� and diameter D 
 ��log n�� Then a randomly chosen function and
any permutation can be routed in time

� O�log n �D�� w�h�p�� if su�ciently large� constant size vertex bu�ers and O�D log d�
space per vertex are available�

� O�log n �D log���D� for any � � �� w�h�p�� if vertex bu�ers of size � and
O�D�log logD � log d�� space per vertex are available�

The schedule for the second result can be converted into a hot�potato routing schedule if
a self�loop is added to each vertex� For all these schedules� O�logD� space is su�cient
for storing routing information in each packet� w�h�p��

If H has degree two then an e�cient hot�potato routing scheme is straightforward�
since H must be a ring	 So in the following we will only deal with vertex�symmetric
networks with degree at least three	

We now give a short summary of the techniques used to derive the Main Theorem	
Our approach is  Routing via Simulation� introduced in �MS���	 For this purpose we
will embed a network G 
 �V� R� in H that is based on a Butter�y network	 We will
describe it precisely in Section �	 For this network we can prove the following result
with a variant of Ranade�s protocol �see �R��� or �L����	

Vertex bu�ers of size � su�ce to route a randomly chosen function in G using time
O�log n�� w�h�p��

Consider a network H 
 �V�E�	 Fix a shortest path system PH
R in H which contains

shortest paths pH�u� v� in H only for pairs �u� v� � R	 Our routing strategy will simulate
routing in G by routing in H


Suppose� a packet with origin u and destination v travels along the path pG�u� v� in
G	 In order to simulate the traversal of an edge �x� y� � R� it chooses the path pH�x� y�	

Our way to implement routing with bounded bu�er size in H will be to use o��line
routing schemes for simulating one routing step in G	 If we are satis�ed with larger
�still constant� bounds on vertex bu�ers� we may use the o��line protocol from �LMR���
mentioned in Section �	

For vertex bu�ers of very small size or hot�potato protocols� we need a new o��line
protocol	 We prove the following result which may be of independent interest	



For any set of packets with vertex�simple paths having congestion C and dilation
D� there is an o��line protocol for vertex bu�ers of size one that needs time

O��D �C log�C �D� log log�C � D���log log log�C � D������

for any � � � to route all packets�

Let Sn be the set of all permutations on V 	 For a permutation 	 � Sn let 	 � R 

ff	�u�� 	�v�g j fu� vg � Rg	 We change the de�nition of the congestion C in a way that
C denotes the maximum number of paths in a shortest path system PH

��R that cross
each other at a vertex	 Then� according to �MS���� it holds


Let H 
 �V� E� be de	ned as in the Main Theorem and G 
 �V� R� be de	ned as in
Section �� Then there is an embedding 	 � Sn of G into H and a shortest path system
PH
��R such that the congestion C is O�D��

Therefore routing a random function f in H needs� w	h	p	� at most time

� O�log n �D� with vertex bu�ers of su�ciently large� constant size�
� O�log n �D log���D� for any � � � with vertex bu�ers of size ��
� O�log n�D log���D� for any � � � in hot�potato mode if each vertex has a self�loop	

Using the Valiant�Brebner paradigm� it is not di�cult to show that this result leads
to protocols for routing arbitrary permutations in H within the same time bounds by
sending the packets �rst to randomly chosen destinations before they are sent to those
destinations prescribed by the permutation	 Finally� using techniques similar to those
in �MS���� we obtain the space bounds mentioned in the Main Theorem	

��	 Organization of the Paper

The following section contains our new o��line routing protocol	 Section � uses this
protocol to establish a routing scheme with bu�er size � per vertex and a hot�potato
routing scheme for arbitrary networks	 Finally� Section � contains space bounds for the
contention resolution protocol� routing structures� and routing information that hold
for all vertex�symmetric networks	

� O��line Routing Schemes

In this section we will present two o��line routing schemes	 The following theorem
follows directly from a result in �LMR��� �see also �LMR���� by changing their model
in a way that we consider vertices instead of edges	

Theorem�� For any set of packets with vertex�simple paths having congestion C and
dilation D� there is an o��line schedule for vertex bu�ers of constant size that needs
O�C � D� time to route all packets�

In �LMR��� and �LMR��� the bu�er size is not explicitly computed� but it seems
that it has to be fairly large� caused by the last of a sequence of re�nements of schedules
to develop this o��line schedule	 In the following we present an o��line routing scheme
which only needs one bu�er for each vertex	



Theorem�� For any set of packets with vertex�simple paths having congestion C and
dilation D� there is an o��line schedule for vertex bu�ers of size 
 that needs time

O��D �C log�C �D� log log�C � D���log log log�C � D������

for any � � � to route all packets�

Proof� Before proceeding� we need to introduce some notation	 Let V be the set
of all vertices in the network and P be a path system consisting of all paths the
packets use to reach their destinations	 Consider a schedule S for routing the packets	
Let a path P � P of length 
 be represented as a sequence ��v�� t��� � � � � �v�� t�� �
�V � IN�� of vertices and time steps the vertices of P are reached by the packet using
P in S	 We de�ne AS

k to be the collection of all paths ��v��� t
�

��� � � � � �v
�

k� t
�

k�� for which
there is a path ��v�� t��� � � � � �v�� t��� � P and an i such that ��v��� t

�

��� � � � � �v�k� t
�

k�� 

��vi� ti�� � � � � �vk�i��� tk�i���� and ti� � � � � tk�i�� are consecutive time steps	 Let FS

k be
the collection of paths ��v��� t

�

��� � � � � �v
�

k� t
�

k�� in AS
k that furthermore ful�ll t�� 
 j �k for

an integer j	 A T �frame consists of T consecutive time steps	 For a �xed A � AS
k and

T �frame F � the frame congestion CS
A�F is de�ned as

CS
A�F 
 number of packets that traverse a vertex in A within frame F in S �

Our strategy for constructing an e�cient schedule is to make a succession of re�
�nements to an initial schedule S�� in which each packet moves at every step until it
reaches its destination	 The proof uses the Lov!asz Local Lemma �AES��� p	��� at each
re�nement step	

Lemma	 
Lov�asz Local Lemma�� Let A�� � � � �An be a set of �bad� events in an
arbitrary probability space� Suppose that each event Ai is mutually independent of a set
of all the other events Aj but at most b� and that Pr�Ai� � p� If ep�b � �� � � then�
with probability greater than zero� no bad event occurs�

During these re�nements� we choose suitable vertices for the packets to wait at	
These vertices are called secure vertices	 The secure vertices are selected in such a way
that no two secure vertices are direct neighbors on a path of a packet	 So if a packet
decides to move forward along its path it can do so without violating the restriction of
one bu�er per vertex or moving waiting packets too far away from their secure vertices�
even if all secure vertices are occupied	 This can be done by simply exchanging packets
if a packet wants to enter a secure vertex with a packet waiting at it and� as soon as
the packet moves on� moving the waiting packet back to its secure vertex	

The �rst step of our re�nement is to assign an initial delay to each packet	 The
delays are chosen from the range ��� ��C�� where �� will be determined later	 In the
resulting schedule� S�� a packet that is assigned a delay t waits in its starting vertex
for t steps� then moves along its prescribed path without waiting until it enters its
destination vertex	 The time S� needs is at most D � ��C	 Let �i 
 �log

��C�D���i���

for any i 	 �� T� 
 ���� log�C � D�� and Ti 
 ���i log Ti�� for any i � �	 We use the
Lov!asz Local Lemma to show that if the delays are chosen randomly� independently�
and uniformly� then with nonzero probability the frame congestion for any A � AS�

T�
for

some �xed frame of size �T�T� is less than T�
���

	 Thus� such a set of delays must exist	
To apply the Lov!asz Local Lemma� we associate a bad event with each path A �

AS�
T�

	 The bad event for A is that at least T�
���

packets traverse the vertices in A in some
�xed �T�T��frame de�ned later	 To show that there is a way of choosing the delays so



that no bad event occurs� we need to bound the dependence b among the bad events
and the probability p that a bad event occurs	

Calculating the dependence is straightforward	 Whether or not a bad event occurs
solely depends on the delays assigned to the packets that pass through a path A	 Thus�
the bad events for paths A and A� are independent unless some packet passes through
a vertex in A and a vertex in A�	 Clearly� at most C � T� packets pass through A� and
each of these packets passes through at most D other vertices	 Since at most C packets
pass through each of these vertices� there are at most C � T� �D �C � T� sets A� � AS�

T�

that depend on A	 Thus the dependence b of the bad events is at most D�C � T���	
It remains to compute the probability that a bad event occurs	 Let p be the prob�

ability of the bad event corresponding to path A for a �xed �T�T��frame de�ned later	
Then

p �

�
T� �C
T�
���

��
�T�T�
��C

�T�
��

�

This expression is derived as follows for the case that there is no packet that moves
through more than one vertex in A	

� There are
�T��C

T�
���

�
ways to select T�

���
packets out of at most T� �C that move through

vertices in A	
� The probability that a packet crosses a vertex within the �T�T��frame is at most

�T�T�
�C

	

It is not di�cult to show that this upper bound for p is also an upper bound for the
situation that there are packets that move through several vertices in A	 Clearly� by
choosing �� 	 ��e��T�T� it holds that ep�b��� � �	 So� according to the Lov!asz Local
Lemma� the packets can be given delays in such a way that no bad event occurs	 Using
these delays we obtain a schedule S�	

We now want to assign a secure vertex to each path A � FS�
T�T�

in such a way that

there is no A � FS�
T�T�

for which the distance between secure vertices is smaller than
��	 With the help of the Lov!asz Local Lemma we will show that such an assignment
of secure vertices indeed exists	

For each A � FS�
T�T�

� decompose A into T� disjoint paths A�� � � � �AT� � FS�
T�

of
length T�	 Each of these paths Ai chooses randomly and independently a candidate for
the secure vertex of A	 To apply the Lov!asz Local Lemma� we associate a bad event
with each path A � FS�

T�T�
	 The bad event for A is that none of the candidates chosen by

A�� � � � �AT� ful�lls the requirement that all other candidates chosen by paths A� � FS�
T�

that intersect A within the �T�T��frame chosen for the Ai in A have a distance of at
least �� from this candidate	

Whether or not a bad event occurs solely depends on the choices of those paths
A� � FS�

T�
that intersect A	 Thus the dependence b of the bad events is at most T�

���
�T�T�	

It remains to calculate the probability that a bad event occurs	 Let p be the prob�
ability of the bad event corresponding to path A	 Then

p �

�
���� � �� �

T�
���

�
�

T�

�T�

�

This expression is derived as follows	 On a �xed path there are at most ��� �� vertices
at distance �� from the chosen candidate	 For each of these vertices within distance ���
at most T�

���
other paths run through them for the �xed �T�T��frame	 The probability

that one of these paths decides to choose this vertex as its candidate is �
T�

	 Clearly�



it holds that ep�b � �� � �	 So� according to the Lov!asz Local Lemma� there exists a
secure vertex for every A � FS�

T�T�
	 This completes the design of schedule S�	

The idea behind re�ning schedule S� is to cut the paths the packets use in S� in
pieces at the secure vertices such that each piece lies within two consecutive T�T��
frames starting with time step iT�T� for an integer i 	 �	 Let schedule S�

� be a part of
schedule S� consisting of the �rst two consecutive T�T��frames and all pieces of paths
lying within them� as shown in the picture	

paths of packets secure vertices

T T 1  2 2T T1   2

. . .S1
 S

1

1

0 0 2T T1   2

Figure �� Construction of schedule S�
�

We re�ne schedule S�
� in the following way	 Those packets that have a piece of

their path in S�
� choose additional delays from the range ��� ��T�T��� where �� will be

determined later	 In the resulting schedule S�
� a packet that is assigned a delay t� in S�

�

and t� in S�
� waits in its starting vertex for t��t� steps� then moves along its prescribed

path without waiting until it enters its secure vertex	 Thus the time S�
� needs is at most

�� � ���T�T�	 We again use the Lov!asz Local Lemma to show that if the new delays
are chosen randomly� independently� and uniformly then� with nonzero probability� the

frame congestion for any path A � A
S�
�

T�
for some �xed frame of size �T�T� is less than

T�
���

	 Thus� such a set of delays must exist	
To apply the Lov!asz Local Lemma� we associate a bad event with each path A �

A
S�
�

T�
	 The bad event for A is that at least T�

���
packets traverse the vertices in A in

some �T�T��frame	 To show that there is a way of choosing the delays so that no bad
event occurs� we again need to bound the dependence b among the bad events and the
probability p that a bad event occurs	

Whether or not a bad event occurs depends solely on the delays assigned to the
packets that pass through a vertex set A	 Thus� the bad events for paths A and A�

are independent unless some packet passes through a vertex in A and a vertex in A�	
Clearly� at most T�

���
packets pass through A� and each of these packets passes through

at most �T�T� other vertices within the �rst two T�T��frames	 Since at most T�
���

packets

pass through each of these vertices� there are at most T�
���

��T�T� �
T�
���

�T� sets A� � A
S�
�

T�

that depend on A	 Thus the dependence b of the bad events is at most T �
� � T

�
� 	

It remains to compute the probability that a bad event occurs	 Let p be the prob�
ability of the bad event corresponding to path A for a �xed �T�T��frame	 Then

p �

� T�
���
T�
���

��
T� � �T�T�
��T�T�

� T�
���

�

This expression is derived in a similar way as above	 Note that� since each of the T�
	��

packets may move through all vertices in A� we get a probability of at most T���T�T�
��T�T�

	



Clearly� by choosing �� 	
�e
� T� it holds that ep�b � �� � �	 Thus according to the

Lov!asz Local Lemma� the packets can be given delays in such a way that no bad event
occurs	 Using these delays we obtain a schedule S�

� 	

We now want to assign a secure vertex to each path A � F
S�
�

T�T�
in such a way that

there is no A � F
S�
�

T�T�
for which the distance between secure vertices is smaller than

��	 With the help of the Lov!asz Local Lemma we will show that such an assignment
of secure vertices indeed exists	

For each A � F
S�
�

T�T�
� decompose A into T� disjoint paths A�� � � � �AT� � F

S�
�

T�
	 Each

of these paths Ai chooses randomly and independently a candidate for the secure vertex
of A	 To apply the Lov!asz Local Lemma� we associate a bad event with each path A �

F
S�
�

T�T�
	 The bad event for A is that none of the candidates chosen by A�� � � � �AT� ful�lls

the requirement that all other candidates chosen by paths A� � F
S�
�

T�
that intersect A

within the �T�T� frame chosen for the Ai in A have a distance of at least �� from this
candidate	

Whether or not a bad event occurs solely depends on the choices of those paths

A� � F
S�
�

T�
that intersect A	 Thus the dependence b of the bad events is at most T�

���
�T�T�	

It remains to calculate the probability that a bad event occurs	 Let p be the prob�
ability of the bad event corresponding to path A	 Then

p �

�
���� � �� �

T�
���

�
�

T�
�

��� � �

��

�T�

�

This expression is derived as follows	 On a �xed path there are at most ��� �� vertices
at distance �� from the chosen candidate	 For each of these vertices within distance ���
at most T�

���
other paths run through them for the �xed �T�T��frame	 The probability

that one of these paths decides to choose this vertex as its candidate is �
T�

	 Furthermore�
the probability that a new secure vertex come to close to an old secure vertex is at
most �����

��
	 Clearly� it holds that ep�b � �� � �	 So� according to the Lov!asz Local

Lemma� there exists a secure vertex for every A � F
S�
�

T�T�
	 This completes the design of

schedule S� for the �rst two T�T��frames in S�	

Applying this calculation to all other consecutive pairs of T�T��frames in schedule
S� we get a schedule Si� for every �T�T��frame starting at time iT�T� for an integer
i	 In order to build a schedule S� for our routing problem out of these schedules Si��
we paste Si� and Si��

� together by letting all packets that are active in both schedules
wait at their secure vertices w	r	t	 schedule S�	 Note that� if the �T�T��frames used
for developing schedule S� are chosen appropriately� during schedule Si� and Si��

� no
vertex is used twice as secure vertex since the two consecutive pairs of T�T��frames� Si�
and Si��

� are built of� together cover �T�T� time steps in schedule S�	

The re�nements are continued recursively using a stretch factor of �i 	
�e
� Ti� until

Ti 	 Ti��� that is� Ti is a constant	 At that stage a simple graph coloring argument
yields a schedule Si that needs time

O��D � ��C� � �� � ��� � � � � � �� � �log��C�D���


 O��D � C log�C � D� log log�C �D���log log log�C �D������

for any � � �	 �



� Routing with Bounded Bu�ers and Hot�Potato

Routing in Arbitrary Networks

In this section we will show how e�cient routing with bounded bu�ers and hot�potato
routing can be done in arbitrary networks H with n vertices	 Our strategy will be to
�nd a suitable ��� embedding of the following graph G into H	

De�nition
� For n 	 � let d 
 maxfi � IN j i � �i � ng	 Let G 
 �V� R� be a network
with vertex set

V 
 f�
� x� j 
 � f�� � � � � bn
�dcg 
 x 
 �xd��� � � � � x�� � f�� �gd 
 �d � 
 � x � ng�

and edge set R de�ned in the following way	

� For each 
 � �d�� every vertex �
� x� � V is connected with �
�� x� and
�
�� �xd��� � � � � x���� �� x���� � � � � x��� where 
� 
 
 � � if �d�
 � �� � x � n and �
otherwise	

� For each 
� d � 
 � bn
�dc� each vertex �
� x� � V is connected with �
 � �� x� if
�d�
 � �� � x � n and ��� x� otherwise	

G is chosen in such a way that it consists of a Butter�y network connected back�
to�back by linear arrays of length at most log n � �	 A picture will clarify this for
n 
 ��	

(0,3)

(0,0)

(4,3)

(5,0)

BF1

BF2

Partition 1

Partition 2

Figure �� Network G with �� vertices

Suppose each vertex in G wants to send a packet stored in its input bu�er to a
random destination in G	 We will route these packets in two phases	

� Phase �� Route all packets in Partition � to their destinations in two subphases�
each using the Ranade protocol	 During the �rst subphase only those packets
become active that have their random destinations in Partition �	 The picture
below clari�es how the packets have to be routed in this phase	

BF1

BF2

Figure �� The �rst subphase



The �rst time the packets move through BF� only those edges connecting vertices
of di�erent rows are used	 In BF� the packets are routed to the rows of their
random destinations	 When packets move back from BF� to Partition �� only
edges connecting vertices of the same row are used afterwards	
During Subphase � only those packets become active that have their random des�
tinations in Partition �	 In this case the packets in Partition � are �rst moved to
Partition � and then routed to their destinations analogous to Subphase �	
The analysis of Ranade�s protocol in �R��� can easily be modi�ed such that each
edge in G only needs one bu�er to ensure that� w	h	p	� after O�log n� rounds Phase
� is completed	 �Note that the input and output bu�ers do not count as bu�ers
here	�

� Phase �� Route all packets stored in Partition � in a similar way as done for
Partition � in Phase �	

So altogether two bu�ers at each vertex in G su�ce to route the packets in G according
to a randomly chosen function f with the above scheme in O�log n� rounds� w	h	p		

Let G 
 �V� R� be embedded ��� into H via a permutation 	 � Sn	 Fix a shortest
path system PH

��R in H	 Suppose now we want to simulate the Ranade protocol on
G by H	 Then we can simulate each routing step of G on�line by using the o��line
protocol for routing packets along all paths in PH

��R	 So H needs two bu�ers per vertex
for simulating the protocol described above� and one bu�er per vertex to be able to
use our o��line protocol presented in Theorem � for simulating one routing step in G	
From this we can conclude the following theorem	

Theorem�� Fix a 
�
 embedding of G into H� Let C denote its congestion and D its
dilation� Then a random function can be routed in time

� O�log n � �C � D��� w�h�p�� if vertex bu�ers of su�ciently large constant size are
available


� O�log n � �D � C� log����C � D�� for any � � �� w�h�p�� if vertex bu�ers of size �
are available�

If we add a self�loop to each vertex we can easily coordinate the second routing
protocol in Theorem � in such a way that the �n bu�ers can be simulated by the edges
of H	 �Note that each edge consists of two links capable of transporting one packet per
time step	� Thus the following result holds	

Corollary �� The schedule for the second result in Theorem � can be converted into a
hot�potato routing schedule� if every vertex in H has degree at least � and a self�loop�

In order to route an arbitrary permutation we subdivide the n packets into � sets
of size n

�
for su�ciently large �	 For each of these sets� the packets are �rst sent to

randomly chosen rows before they are sent to their destinations	 Note that the packets
can be evenly distributed among the vertices of their randomly chosen rows using the
fact that for su�ciently large � it holds w	h	p	 that for any row the number of packets
that randomly chose it is at most the number of vertices in the row	 Thus� using the
Valiant�Brebner paradigm� the following corollary holds	

Corollary �� The schedules presented in Theorem � can be used to obtain a routing
protocol that routes any permutation in H in time

� O�log n � �C � D��� w�h�p�� if vertex bu�ers of su�ciently large constant size are
available


� O�log n � �D � C� log����C � D�� for any � � �� w�h�p�� if vertex bu�ers of size �
are available�



� Space�E�cient Routing Structures and Contention

Resolution Protocols

In this section we will present a space�e�cient routing structure and contention reso�
lution protocol for our routing schemes	 In particular� we prove the following theorem	

Theorem�� Let H be de	ned as in the Main Theorem� Then the routing protocols for
Theorem � can be implemented in such a way that

�
� space O�D log d� for storing routing structures in a vertex�

��� space O�logD� for storing routing information in a packet�

��� space O�D� for the contention resolution protocol if the o��line protocol presented
in �LMR��� is used�

��� space O�D log logD� for the contention resolution protocol if the o��line protocol
in Theorem � is used�

su�ce to route a random function f in H� w�h�p��

Proof� With a proof similar to the proof of Theorem �	� in �MS��� it can be shown that�
for a suitable embedding 	 of G into H and a suitable path system PH

��R simulating
the edges of G� a path system can be constructed for H that needs space O�D log d�
in each vertex� and space O�logD� for storing routing information in a packet	

In remains to prove the space bounds for the contention resolution protocol	 Let
Tv denote a table that associates to each packet traversing v a number of steps it has
to wait there before moving on	

The o��line routing protocol presented in �LMR��� is constructed in such a way
that all packets that traverse v wait there for at most a constant number of time steps	
The packet that starts at v may wait for at most O�D� time steps	 Thus Tv needs space
O�D�	

According to the proof of the o��line schedule presented in Theorem �� a packet
may wait at most O�D log���D� time steps for any � � � before it is started	 Once a
packet is started it may wait at a vertex for at most O�log���D� time steps for any
� � �	 Thus Tv needs space O�D log logD�	 This proves the theorem	 �

� Conclusions

Very recently� we used the techniques described above to obtain a deterministic scheme
that routes arbitrary permutations within the same time and space bounds as stated
in the Main Theorem	 This is achieved by an embedding of a variant of the Multibut�
ter�y network �see �U���� instead of the variant of the Butter�y network described in
De�nition �	
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