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Abstract: Lithium niobate (LiNbO3), a material frequently used in optical applications, hosts different
kinds of polarons that significantly affect many of its physical properties. In this study, a variety of
electron polarons, namely free, bound, and bipolarons, are analyzed using first-principles calculations.
We perform a full structural optimization based on density-functional theory for selected intrinsic
defects with special attention to the role of symmetry-breaking distortions that lower the total
energy. The cations hosting the various polarons relax to a different degree, with a larger relaxation
corresponding to a larger gap between the defect level and the conduction-band edge. The projected
density of states reveals that the polaron states are formerly empty Nb 4d states lowered into the
band gap. Optical absorption spectra are derived within the independent-particle approximation,
corrected by the GW approximation that yields a wider band gap and by including excitonic effects
within the Bethe–Salpeter equation. Comparing the calculated spectra with the density of states, we
find that the defect peak observed in the optical absorption stems from transitions between the defect
level and a continuum of empty Nb 4d states. Signatures of polarons are further analyzed in the
reflectivity and other experimentally measurable optical coefficients.

Keywords: lithium niobate; polarons; charge localization; lattice deformation; optical response;
density-functional theory; Bethe-Salpeter equation

1. Introduction

Lithium niobate (LiNbO3, LN) is a transparent ferroelectric solid that is extensively
used in optical technologies due to its advantageous combination of functional properties
and commercial availability. In particular, its large piezoelectric, electro-optical, acousto-
optical, and nonlinear optical coefficients make it an ideal material for a wide range
of optical devices, such as optical modulators [1], waveguides [2], optical sensors [3],
holographic storage [4], and integrated photonics [5]. By doping with other elements or
by manipulating the sample geometry or crystal structure, for example by periodic poling
of the ferroelectric domains, the properties of LN can be tailored for specific purposes [6].
To achieve optimal results, it is important to understand how structural details at the
atomic scale influence the observable electronic and optical properties of the material.

The nominal composition of LiNbO3 involves an equal number of lithium and niobium
atoms, and although it is possible to produce high-quality stoichiometric LN samples by
various methods [7], these are not viable for large-scale fabrication. Instead, the Czochralski
technique that is typically used to grow LN single crystals for commercial applications from
a congruent melt leads to a Li:Nb ratio of about 48.5:51.5 [8]. Even without external doping,
this relative surplus of Nb in congruent LN crystals implies a high concentration of intrinsic
defects, whose nature has long been a matter of debate, as different conceivable defect
models are compatible with the observed nonstoichiometric composition [9]. Nowadays, it
is widely accepted that NbLi antisite defects, where extra niobium atoms are inserted on
regular lithium sites, play a central role in explaining this imbalance. As the two atomic
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species have different charge states, the resulting excess charge must be compensated by
other defect types, such as cationic vacancies, however. In the prevalent Li-vacancy model,
originally proposed by Lerner et al. [10], each NbLi antisite defect is compensated by four
Li vacancies, denoted as VLi. However, interstitial NbV atoms placed at empty cationic
sites in the crystal lattice could also contribute to the surplus of niobium [11]. As we
showed recently, these models may be partially reconciled, because a NbV–VLi defect pair
consisting of an interstitial niobium atom and a lithium vacancy can be regarded as a
metastable variant of the NbLi antisite defect, where the antisite niobium atom overcomes
a modest energy barrier and migrates to a neighboring empty cationic site [12].

An important consequence of the high defect concentration in LN is the ubiquitous
occurrence of different types of polarons [13]. These arise when mobile electrons or holes
interact with the ionic lattice to create a local distortion, leading to an attractive effective
potential. If the resulting potential well is sufficiently deep, then the charge carrier is
trapped and immobilized. The quasiparticle consisting of the self-trapped electron or hole
together with the surrounding spatially localized lattice distortion is called polaron or,
more specifically, small polaron if the coupling is so strong that the charge carriers are
essentially confined to a single lattice site. In LN, three polaron-related optical absorption
bands are experimentally observed at 0.9 eV [14], 1.6 eV [15], and 2.5 eV [16]. Based on
circumstantial evidence, these are usually attributed to the free electron polaron trapped at
a regular Nb lattice site (NbNb), the bound polaron formed by a single localized electron
at a NbLi antisite defect, and the bipolaron formed by a pair of bound electrons, one at a
NbLi antisite defect and the other at the neighboring regular NbNb atom, respectively, [13].
In particular, the temperature dependence of the relative strengths of the absorption bands
at 1.6 eV and 2.5 eV are consistent with the thermal [16] or optical [17] dissociation of
bipolarons into single bound polarons, and the band at 0.9 eV could only be observed in
reduced samples with a high dopant concentration of Mg ions, which inhibit the forma-
tion of NbLi antisite defects, leaving free polarons as a natural explanation [14]. On the
other hand, the assignment to particular defect types rests chiefly on the correlation with
electron-paramagnetic-resonance (EPR) signals believed to originate from NbLi antisite
defects [13], but as the actual spatial distribution of the polaron cannot be imaged directly
in experiments, the precise relation between the antisite defect and the localized charge
accumulation ultimately remains open. In this situation, first-principles simulations of
the defect structures and their EPR parameters [12] as well as their optical spectroscopic
properties provide valuable further insight.

In an early theoretical study, Donnerberg et al. [18] employed a semiempirical shell
model to investigate intrinsic defects in LN. Their results, as well as other subsequent atom-
istic simulations with improved interaction potentials [19], lent support to the Li-vacancy
model and indicated the stability of small electron polarons and bipolarons, but neither
the electronic energy levels nor the corresponding orbitals appear explicitly in this ap-
proach. Later, first-principles calculations based on density-functional theory yielded
accurate quantitative values for the formation energies of several possible intrinsic defects
and confirmed the Li-vacancy scenario as the dominant mechanism for the deviation
from stoichiometry [20,21]. Furthermore, the localized wavefunctions of the bound po-
laron and the bipolaron at the NbLi antisite defect are accessible in this framework [22].
As density-functional theory systematically underestimates the band gap of insulators like
LN, the position of the defect levels inside the band gap cannot be obtained reliably in this
way, however, precluding a quantitative comparison with the experimentally observed
absorption bands. In a first step, the band-gap problem can be solved by including quasi-
particle corrections within the GW approximation for the electronic self-energy [23,24],
the zero-point renormalization due to lattice vibrations [25], and spin-orbit coupling,
which altogether raise the band gap of LN by about 2 eV compared to standard density-
functional theory [26]. Second, the optical absorption spectrum is strongly influenced
by electron-hole attraction effects, which give rise to excitonic resonances. In principle,
these can be treated within time-dependent density-functional theory. Numerical results
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reported by Friedrich et al. for intrinsic [27] and extrinsic [28] defects in LN were in good
quantitative agreement with the experimental data, but the uncertainty due to empirical
corrections, which are necessary to countervail limitations of standard approximations in
time-dependent density-functional theory [29], still precluded a reliable discrimination
between competing defect configurations involving antisite or interstitial niobium atoms.
As an alternative, we adopt the Bethe–Salpeter equation (BSE), which requires no such
empirical corrections, to determine the optical response in this work. Owing to the much
higher computational expense, a full solution of the BSE was initially limited to stoichio-
metric LN [23,30], but we recently succeeded in extending this approach to congruent
LN [12], which requires a larger supercell to accommodate the defect.

The aim of this paper is twofold. First, we present a detailed description of the
geometric and electronic structure of electron polarons in LN, with special focus on the
quasi-Jahn-Teller distortion that breaks the threefold rotational symmetry in the case of free
and bound polarons. The resulting tilted configurations were only very recently revealed
as the true ground states [12] and are hence not yet widely discussed in the literature,
as previous theoretical studies [21,22] were based on simpler, axially symmetric structure
models instead. Second, we analyze the contribution of polarons to the dielectric function,
which is related to the optical absorption spectrum. Going beyond our previous work [12],
we also investigate polaron signatures in other optical coefficients like the reflectivity or
the electron-energy-loss function, which can be measured directly in experiments.

This paper is organized as follows. In Section 2, we present the different structure mod-
els for free polarons, bound polarons, and bipolarons, and we explain our computational
methods. Subsequently, we discuss our results for the polaron-induced lattice deformation
in Section 3.1, for the electronic structure in Section 3.2, and for the dielectric function and
optical coefficients in Section 3.3. Finally, Section 4 summarizes our conclusions.

2. Models and Methods

Lithium niobate belongs to the trigonal crystal system with the space group R3c [8].
Its crystal structure consists of octahedral cages formed by oxygen atoms. The cationic
sites inside the oxygen cages can either be occupied by a lithium or niobium ion, or remain
empty. For defect-free stoichiometric lithium niobate (SLN), the stacking order along
the threefold symmetry axis is a periodic repetition of the sequence Li–Nb–vacancy as
illustrated in Figure 1a. Due to the ferroelectric distortion, which breaks the inversion
symmetry, the cations do not reside in the geometric center of the oxygen cages but
are slightly displaced in the vertical direction. To highlight point defects in LN, which
can be characterized by a modified occupancy of the cationic sites, we use a schematic
representation where each square symbolizes a filled or empty oxygen octahedron.

In the absence of defects, an additional electron introduced into the material will
localize at one of the regular NbNb atoms, as indicated by the red square in Figure 1b.
Together with the resulting lattice relaxation, this gives rise to the free polaron. Congruent
LN, on the other hand, features a high concentration of NbLi antisite defects. In this
scenario, an additional electron will localize at the defect site instead, creating a bound
polaron as in Figure 1c. The NbLi antisite atom can also migrate into the next empty oxygen
octahedron, producing a NbV–VLi defect pair. This configuration can likewise host a bound
polaron, depicted in Figure 1d. If not one but two electrons are added to the system, then
a bipolaron forms either at the antisite, Figure 1e, or the defect pair, Figure 1f. All defect
structures illustrated in Figure 1 are considered in this work.

The primitive rhombohedral unit cell of stoichiometric LN contains two formula units
of LiNbO3, amounting to 10 atoms. For the investigation of point defects, we choose a
periodically repeated 2 × 2 × 2 supercell with 80 atoms, in which one defect is embedded.
The same supercell geometry was used in [21,22]. An explicit comparison of different
supercells containing between 80 and 270 atoms found that the formation energies of
the defect types considered here remain stable for all supercell sizes, with merely slight
numerical variations [20]. This is in agreement with our own test calculations for a larger
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3 × 3 × 3 supercell containing 270 atoms, reported previously in [27], which also confirmed
that the relaxed interatomic distances in the immediate vicinity of the defect are almost
identical and that the resonances in the imaginary part of the dielectric function align nicely
for both supercell sizes, except for a variation in intensity that reflects the different defect
concentrations. The present choice is hence justified and serves to limit the computational
cost associated with the solution of the BSE, but it will also be validated a posteriori in
this work. Incidentally, we note that it is possible to avoid supercells altogether by using
perturbation theory and describing the properties of polarons in leading order in terms of
the electronic structure of the pristine stoichiometric crystal [31], which is advantageous
for materials featuring large polarons, but as electron polarons in LN are known to be
small [13], the nonperturbative supercell approach seems appropriate here.

(a) (b) (c) (d) (e) (f)
Li

Nb Nb Nb Nb Nb Nb

Nb Nb Nb Nb Nb Nb

NbLi NbLi

NbV NbV

VLi VLi

SLN
free

polaron bound polaron bipolaron

NbLi NbLiNbV –VLi
NbV –VLi

Li Li Li Li Li

Li Li Li Li Li Li

Li Li

Figure 1. Stacking order of lithium niobate: Stoichiometric crystal (a), free polaron (b), bound polaron
at a NbLi antisite (c) or a NbV–VLi defect pair (d), bipolaron at a NbLi antisite (e) or a NbV–VLi defect
pair (f). Black squares represent oxygen octahedra, while red squares indicate the formation of a
(bi)polaron at this site. Gray fillings highlight deviations from the stoichiometric solid.

All external and internal degrees of freedom are relaxed within density-functional
theory (DFT) using the Quantum ESPRESSO [32] package. We use norm-conserving
pseudopotentials and the PBEsol functional [33] to describe electronic exchange-correlation
effects. Compared to other common parametrizations, the PBEsol functional yields more
reliable lattice parameters for LN [25] and closely related materials [34–36]. The oxygen
2s and 2p orbitals as well as the lithium 2s orbitals are treated explicitly as valence states.
The pseudopotential of niobium is optimized for the Nb5+ cation configuration, which
emerges on regular lattice sites in LN, in order to increase the numerical stability and to
allow for smaller cutoff radii; in this case, the 4s, 4p, 4d, and 5s orbitals are treated as valence
states. This leads to 256 valence bands for the free-polaron system in stoichiometric LN and
260 valence bands for all models of bound polarons and bipolarons, where one Li+ cation
is substituted by a Nb5+ ion. We select a kinetic-energy cutoff of 85 Ry for the plane-wave
basis set and a shifted Monkhorst-Pack mesh with 2 × 2 × 2 k points for the Brillouin-zone
integration during the self-consistency cycle, equivalent to 4 × 4 × 4 k points in the larger
Brillouin zone corresponding to the primitive unit cell. The convergence thresholds for
energies and forces during the relaxation are set to 10−4 Ry and 10−8 Ry/Bohr, respectively.
For an accurate description of the Nb 4d orbitals, we employ the DFT + U scheme [37].
The values for the Hubbard U parameter are determined self-consistently as 5.2 eV for
the NbLi antisite and NbV interstitial atoms and 4.7 eV for regular NbNb atoms, including
the one hosting the free polaron [12]. For free and bound polarons, which feature a single
unpaired electron, we perform spin-polarized calculations; for bipolarons, this is not
necessary, because they comprise two electrons with opposite spin orientations.
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From the one-particle energies εnk and the associated wavefunctions |nk〉, we obtain
the projected density of states

DOS(ω) = ∑
n

∑
k
〈nk|P|nk〉g(ω− εnk) , (1)

which provides important information about the electronic structure of the material.
The summation over n includes 800 bands, sufficient to cover an energy interval up to 10 eV
above the valence-band maximum, and the wavevector k runs over all points of a shifted
4 × 4 × 4 mesh. A Gaussian function g with a broadening of 0.05 eV is applied to compen-
sate for the discrete k-point mesh. The operator P projects the one-particle wavefunctions
onto orthogonalized atomic orbitals corresponding to the selected pseudopotentials; the
total density of states (DOS) is obtained by setting P = 1.

The frequency-dependent dielectric function, from which the absorption spectrum
and other optical coefficients may be derived, is constructed at different levels of theory in
this work. Within the independent-particle approximation (IPA), the tensor elements in the
long-wavelength limit are

εαα(ω) = 1 +
16π

Ω ∑
v,c

∑
k

1
εck − εvk

|〈vk|pα + i[Vnl, rα]|ck〉|2
(εck − εvk)2 − (ω + iγ)2 , (2)

where α denotes the spatial direction. We follow the usual convention where the threefold
symmetry axis is identified with the z direction, while the x direction is perpendicular to
the z direction and lies in the plane spanned by the threefold symmetry axis and one of the
three equivalent basis vectors of the primitive rhombohedral unit cell. For the numerical
evaluation of the dielectric function, we employ the Yambo package [38]. The first sum in
Equation (2) runs over all combinations of valence (v) and conduction (c) bands, the second
over the set of wavevectors inside the Brillouin zone. The transition dipole moments
include the commutator [Vnl, rα] with the nonlocal part of the pseudopotentials, Ω is
the volume of the supercell, and the broadening γ again compensates for the finite k-
point mesh.

For a better quantitative description, we replace the Kohn–Sham eigenvalues εnk in a
first step by the proper quasiparticle energies ε

qp
nk calculated within the GW approximation,

which not only opens the band gap by about 2 eV, in agreement with experimental mea-
surements, but also modifies the dispersion [26]. Within this independent-quasiparticle
approximation (IQA), the transition energies between valence and conduction bands are
larger than in the IPA, reflecting the widened band gap, but there is no interaction between
the created electrons and holes. For the numerical evaluation of the exchange-correlation
self-energy, we employ a plasmon-pole approximation for the dynamical screening function
as implemented in the Yambo package.

In a second step, we then incorporate the electron-hole interaction by solving the
BSE, again with the Yambo package. In this scheme, the macroscopic dielectric function is
constructed as

εαα(ω) = 1− lim
q→0

8π

Ω|q|2 ∑
v,c,k

∑
v′ ,c′ ,k′

〈vk− q|e−iq·r|ck〉〈c′k′|eiq·r|v′k′ − q〉∑
λ

Aλ
vck
(

Aλ
v′c′k′

)∗
ω− Eλ + iγ

, (3)

where q approaches zero in the direction α. The energies Eλ of the interacting electron-
hole pairs and the expansion coefficients Aλ

vck of the resulting exciton states in the ba-
sis of one-particle wavefunctions are given by the eigenvalues and eigenvectors of the
two-particle Hamiltonian

Hvck,v′c′k′ =
(
ε

qp
ck − ε

qp
vk
)
δvv′δcc′δkk′ +

(
2V̄vck,v′c′k′ −Wvck,v′c′k′

)
. (4)

The first, diagonal term, which equals the transition energies between quasiparticle
states in the valence and conduction bands, corresponds to the IQA. The second, nondi-
agonal term, the kernel of the BSE, is composed of the electron-hole exchange part V̄ and
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the electron-hole attraction W. The latter describes the formation of excitons, i.e., bound
electron-hole pairs, which strongly influence the shape of the dielectric function.

From the real and imaginary parts of the complex dielectric function, obtained by
solving the BSE, various optical coefficients with a direct relation to experimental mea-
surements may subsequently be derived. In particular, the refractive index n(ω) and the
extinction coefficient κ(ω) are given by

n(ω) =

√
|ε(ω)|+ Re ε(ω)

2
and κ(ω) =

√
|ε(ω)| − Re ε(ω)

2
. (5)

From these, we may obtain the reflectivity R(ω) and the absorption coefficient α(ω)
according to

R(ω) =
[n(ω)− 1]2 + κ(ω)2

[n(ω) + 1]2 + κ(ω)2
and α(ω) =

2ωκ(ω)

c
, (6)

where c denotes the speed of light. Finally, the electron-energy-loss function equals

L(ω) = − Im
1

ε(ω)
. (7)

3. Results and Discussion
3.1. Structure Optimization

The crystal structure of LN is characterized by a threefold axis of rotational symmetry,
which is still preserved even when the spatial inversion symmetry is broken in the ferroelec-
tric phase. As polarons form at regular NbNb atoms or point defects located on this axis, it
is natural to assume that the local lattice deformation associated with the polaron formation
also preserves the threefold rotational symmetry. Indeed, earlier theoretical studies of po-
larons in LN incorporated this explicitly as a constraint on the atomic movements in order
to simplify the structural optimization [22], and the assumed rotational symmetry was
also used to analyze experimental measurements, such as data from electron paramagnetic
resonance (EPR) [39]. Recently, it became clear that lower-energy configurations can be
reached if the rotational symmetry is broken, however. As an example, the total energy of
the optimized tilted geometry obtained from DFT for a bound polaron at the NbLi antisite
defect is 43 meV lower than for axial symmetry; the corresponding value for a bound
polaron at the NbV–VLi defect pair is 38 meV [12]. Further corroboration comes from the
fact that EPR parameters calculated within DFT for the tilted configurations are in closer
quantitative agreement with high-resolution experimental measurements reported in [40]
than those predicted for axial symmetry [12]. From this perspective, the axially symmetric
structures can be regarded as the average of three equivalent tilted configurations along
the trigonal axes. At high temperatures, the system may then be described in terms of
an effective axial symmetry resulting from rapid transitions between these equivalent
degenerate configurations. For bipolarons at both defect types, in contrast, the system
always relaxes to an axial symmetry, even without explicit constraints.

To explore the spatial extent of the polaronic lattice deformation in relation to the
supercell size, we first analyze the displacements of the niobium and the oxygen atoms
relative to their positions in stoichiometric LN as a function of the distance to the NbLi
or NbV defect atom in Figure 2. Only results for the two bipolaron models are displayed,
because these exhibit the largest distortion owing to the two localized electronic charges.
Overall, the size of the atomic displacements decreases with growing distance and falls
below a threshold of 0.05 Å within the displayed range. Earlier test calculations with a
larger 3 × 3 × 3 supercell containing 270 atoms [27] yielded very similar shifts for these
atoms. We note that some atoms near the boundary of the supercell are affected by finite-
size effects and hence excluded from the graph. Furthermore, lithium atoms, which are not
directly involved in the formation of the defects and do not contribute to the density of
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states near the band edges, as shown in the following section, are also omitted in order to
avoid cluttering.
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Figure 2. Atomic displacements in the vicinity of a bipolaron at the NbLi antisite defect (a) or the
NbV–VLi defect pair (b) with respect to the positions in stoichiometric LN, plotted as a function of
the distance from the defect niobium atom hosting the bipolaron. Green circles and red boxes refer to
niobium and oxygen atoms, respectively. The numbering corresponds to the pictured section of the
crystal structure, the label “0” marks the defect NbLi or NbV atom hosting the bipolaron. Large green
and small red balls represent niobium and oxygen atoms, respectively. Oxygen atoms outside the
central pillar of oxygen octahedra are indicated in a lighter color shade.

For bipolarons at the NbLi antisite, shown in Figure 2a, the entire shell of niobium
atoms around the defect (green labels “4”, “5”, and “8”) must be relaxed in order to treat
all displacements above 0.05 Å accurately. The oxygen sublattice appears more rigid,
in contrast, as only the cage enclosing the NbLi antisite atom (red labels “1” and “2”) plus a
few horizontal neighbors (red labels “6” and “7”) exhibit significant shifts. An even larger
number of atoms must be considered for bipolarons at the NbV–VLi defect pair in Figure 2b,
including the NbNb atom above the VLi vacancy (green label “9”). The oxygen sublattice in
particular shows shifts above 0.05 Å over a larger distance in this case, comprising several
cages as well as a large number of oxygen atoms outside the central pillar.

These results demonstrate that the lattice deformation is not confined to the oxygen
cages directly enclosing the defect niobium atoms but instead extends over several unit
cells. Nevertheless, the atomic displacements in the immediate vicinity of the point defects,
where the excess electrons are localized, are already accurately obtained with the 2 × 2 × 2
supercell, which was also used in previous studies [21,22]. Although it provides a tight fit,
especially for the defect pair, it thus allows an accurate description of the electronic and
optical properties if the polarons are sufficiently small. Furthermore, it enables us to apply
sophisticated, numerically demanding many-body techniques, such as the BSE, that would
be prohibitive for a larger supercell.

The relaxed crystal structures in the vicinity of the polaron sites for all defect models
considered in this work are illustrated in Figure 3. In each case, the atomic positions after
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relaxation, indicated in color, are contrasted with those in the defect-free stoichiometric
material, marked by black balls. The illustrations are to scale and indicate the direction and
the magnitude of the atomic displacements. For the free polaron and the bound polaron
at a NbLi antisite defect and a NbV–VLi defect pair, we show both the axially symmetric
configuration, obtained by applying an appropriate constraint, and the corresponding
lower-energy tilted configuration. For the bipolaron at both defect types, we only consider
axially symmetric configurations, which materialize even without explicit constraints.
While the oxygen atoms move by a similar amount in all models, there are noticeable
differences regarding the niobium atoms: The free polaron and the bound polaron at a NbLi
antisite defect feature only small displacements, whereas the bound polaron at a NbV–VLi
defect pair as well as both bipolaron models exhibit much larger shifts.
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Figure 3. Crystal structure in the vicinity of the free polaron (a,b), the bound polaron at a NbLi

antisite defect (c,d) or a NbV–VLi defect pair (e,f), and the bipolaron at NbLi (g) or NbV–VLi (h).
Subfigures (b,d,f) refer to tilted configurations with broken trigonal symmetry, all other structures
exhibit axial symmetry. Black balls indicate atomic positions in stoichiometric LN without polarons,
while blue, green, and red balls denote lithium, niobium, and oxygen atoms in the relaxed structures,
respectively. Note that (e,f,h) show a different segment of the crystal than the other subfigures.

For free polarons, the excess electron is trapped at the regular NbNb atom in the
top part of the crystal segment illustrated in Figure 3a for the axially symmetric and in
Figure 3b for the tilted configuration. Originally positioned near the upper face of its
oxygen cage to enlarge the distance to the neighboring Li cation, the NbNb ion increases in
size due to the electron capture and consequently moves closer to the center of the oxygen
octahedron, in turn pushing the neighboring Li atom (bottom) further in the same direction.
While both cations shift parallel to the vertical direction in the case of axial symmetry,
a small sideways movement of the NbNb atom hosting the free polaron as well as the
neighboring Li atom are clearly visible if the symmetry constraint is removed, leading to
the tilted configuration. The oxygen cage on the other side of the NbNb atom is empty and
exhibits only little distortion.

If a lithium atom is substituted by niobium, the capture of an excess electron results in
a bound polaron at the NbLi antisite defect, illustrated in Figure 3c for the axially symmetric
and in Figure 3d for the tilted configuration. Similar to free polarons, the defect atom
carrying the extra electronic charge (bottom) moves towards the center of its oxygen cage,
while the neighboring cation, a regular NbNb atom (top), is repelled and moves in the same
direction. In both configurations, the magnitude of the displacements is moderate, but the
tilting is much more pronounced than for free polarons. However, it is essentially limited
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to the defect NbLi atom and does not noticeably affect the neighboring cation, in contrast
to free polarons. This is most likely due to the larger mass of niobium compared to lithium.

With a second trapped electron at the NbLi antisite defect, the bound polaron turns
into a bipolaron, Figure 3g. The displacement of the NbLi antisite atom (bottom) is much
larger in this case, and the neighboring regular NbNb atom (top) moves towards the defect
instead of evading it. This indicates a bond similar to a hydrogen molecule, where the two
niobium atoms attract each other due to a shared electron pair.

The second defect type examined in this work is the NbV–VLi defect pair. Analogous to
the NbLi antisite defect, the capture of an excess electron leads to the formation of a bound
polaron, which can be modeled either in an axially symmetric configuration, Figure 3e, or,
without geometric constraints, in a fully optimized tilted configuration, Figure 3f. As the
interstitial NbV atom hosting the bound polaron (top) occupies a previously empty oxygen
octahedron, the neighboring regular NbNb atom (bottom), originally located near the upper
face of its oxygen cage, undergoes a large shift in the direction away from the defect
towards the center of the cage. The tilting is weaker than for the NbLi antisite defect,
in accordance with the smaller energy difference between the axially symmetric and the
tilted configuration.

For a bipolaron at the NbV–VLi defect pair, displayed in Figure 3h, the interstitial NbV
atom (top) moves further towards the center of its oxygen octahedron than in the case of
the single bound polaron, and although the neighboring regular NbNb atom (bottom) is still
pushed in the same direction, the displacement is manifestly smaller. As a consequence,
the distance between the two niobium atoms is smaller for bipolarons than for single
polarons, which can again be attributed to the bonding effect arising from the shared
electron pair.

3.2. Electronic Properties

Figure 4 shows a larger segment of the central pillars of the optimized lattice structures
together with the charge densities of the polaron states for all configurations considered
in this work. For single trapped electrons, our results confirm that most of the charge
accumulation is indeed localized at one niobium atom, a regular NbNb atom in the case of
free polarons and a NbLi or NbV defect atom in the case of bound polarons. For the systems
with axial symmetry displayed in Figure 4a,c,e, the polaron orbital has a dumbbell shape
oriented along the central axis, which reflects the rotational symmetry of the underlying
lattice structure, but if the systems are relaxed to the lower-energy tilted configurations,
then we find a less elongated clover-leaf shape as shown in Figure 4b,d,f instead. Not all
the charge of the polaron is localized at the niobium atom, however: The oxygen atoms
that form the octahedral cage around the niobium atom hosting the polaron also attract
a significant portion of the charge. For the bound polaron at the NbV–VLi defect pair
with axial symmetry, there is additionally a significant hybridization with the orbitals
of the neighboring regular NbNb atom, as seen in Figure 4e. This is facilitated by the
fact that the axial symmetry enforces a parallel orientation of the orbitals of the two
atoms. The symmetry-breaking tilt diminishes this effect and thereby effectuates a stronger
localization at the NbV atom, as illustrated in Figure 4f. Although the hybridization also
serves to lower the total energy [22], the structural deformation has a larger influence, so
that the tilted configuration is in fact more stable for single-electron bound polarons.

The charge density of the bipolaron at a NbLi antisite defect in Figure 4g appears
almost identical to the overlap of the charge densities of a free and a bound polaron, shown
separately in Figure 4a,c. This interpretation is in accordance with earlier studies that also
characterized the bipolaron as a building-block-like combination of the two single-polaron
types [13]. Furthermore, it explains why the structure relaxes to axial symmetry in the case
of bipolarons: Although the tilting slightly lowers the energy of single free and bound
polarons, the resulting reorientation and shape deformation of the orbitals noted above
prevents an effective hybridization. As the energy gain due to the hybridization outweighs
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the energy difference resulting from the atomic displacements, the system reverts back to
an axially symmetric configuration.

(a) (b) (c) (d) (e) (f) (g) (h)

free polaron bound polaron bipolaron

Nb Nb Nb Nb–V –VLi Li LiLiV VNbNb

Figure 4. Charge densities of the free polaron (a,b), the bound polaron at a NbLi antisite defect (c,d)
or a NbV–VLi defect pair (e,f), and the bipolaron at NbLi (g) or NbV–VLi (h). Subfigures (b,d,f) refer to
tilted configurations, all other structures exhibit axial symmetry. Blue, green, and red balls represent
lithium, niobium, and oxygen atoms, respectively. Reproduced from [12].

Lastly, the NbV–VLi defect pair may be regarded as a modification of the NbLi an-
tisite defect where the antisite NbLi atom migrates into the neighboring empty oxygen
octahedron [12]. Concomitantly, as evidenced in Figure 4, the uppermost displayed Li
atom also shifts into the neighboring empty octahedron for all models involving the defect
pair. The pair of the NbV and NbNb atoms in the two adjacent oxygen cages that host
the bipolaron ultimately bears a strong resemblance to the pair of neighboring NbLi and
NbNb atoms in the case of the antisite defect if turned upside down, which can clearly
be seen by comparing Figure 4g,h. Due to the very similar local environment, it is not
surprising that the charge densities of the bipolarons at the two defects are also almost
identical. In particular, the hybridization, which has a twice as large effect on the bipo-
laron than on the one-electron bound polaron, again explains the relaxation to an axially
symmetric configuration.

In Figure 5, we show the projected density of states for all defect configurations
as obtained from DFT without quasiparticle corrections. The zero of the energy axis
corresponds to the maximum of the bulk valence bands. Only the Nb 4d, O 2s, and O 2p
states are displayed, because all other states have negligible contributions in the energy
region around the band gap. In agreement with earlier studies [22], we find that the top of
the valence bands is dominated by O 2p states with minor contributions of Nb 4d, while
the lowest conduction bands between 3 eV and 5.5 eV are predominantly composed of Nb
4d states with an admixture of O 2p. The next set of conduction bands above 6.5 eV also
exhibits a contribution of O 2s states. These features are identical for all configurations,
because the valence and conduction bands are bulk properties and independent of the type
or symmetry of embedded defects.

The polaron peak is located inside the bulk band gap between 1 eV and 3 eV. As ex-
pected, it is dominated by NbNb 4d states for free polarons, by NbLi 4d states for bound
polarons or bipolarons at the antisite defect, and by NbV 4d states for bound polarons or
bipolarons at the NbV–VLi defect pair. However, in all cases, there is a also substantial
admixture of O 2p states from the oxygen atoms surrounding the defect, which accounts for
about one third of the density of states. The proportion of NbNb 4d states from neighboring
regular niobium atoms is negligible for all types of bound polarons, while for bipolarons,
which extend over two cation sites, the contribution of NbNb 4d states equals that of the
Nb 4d states associated with the antisite or interstitial niobium atom. All of these findings
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are consistent with the charge densities displayed in Figure 4. Our results thus put the
common notion of electron polarons in LN as small polarons [13] into perspective: Al-
though the polarons are clearly centered at one or, in the case of bipolarons, two niobium
atoms, a significant portion amounting to about one third of the trapped charge is in fact
distributed over the surrounding oxygen atoms. On the other hand, the fact that the charge
density of the polaron is essentially confined to one oxygen octahedron, or two in the case
of bipolarons, justifies a posteriori our use of a 2 × 2 × 2 supercell, which is large enough
to reliably isolate each polaron from its periodic images.
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Figure 5. Electron densities of states for the free polaron (a,b), the bound polaron at a NbLi antisite
defect (c,d) or a NbV–VLi defect pair (e,f), and the bipolaron at NbLi (g) or NbV–VLi (h). Subfigures
(b,d,f) refer to tilted configurations, all other structures exhibit axial symmetry. The thick black line
shows the imaginary part of εzz(ω) within the independent-particle approximation (IPA), whose
low-energy resonances correspond to transitions from the defect state into the conduction band.
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As free and bound polarons involve a single trapped excess electron, the system is
spin polarized, and the defect level splits. Therefore, the peak inside the band gap stems
entirely from the majority spin channel, while another unoccupied defect level with the
same composition appears at a higher energy in the minority spin channel, visible at
around 6 eV in the density of states. In contrast, bipolarons feature a pair of electrons with
opposite spin. As a consequence, the spectral weight of the defect level inside the band
gap is doubled, and there is no unoccupied level at higher energy.

A comparison between the axially symmetric and tilted configurations for free and
bound polarons reveals that the deformation of the lattice structure has no visible effect
on the composition of the polaron peak in the density of states, indicating that no rehy-
bridization takes place. However, the symmetry-breaking distortion lowers the energy
of the polaron state by about 0.2 eV, as can clearly be seen in the insets in Figure 5. This
energy gain is the driving mechanism for the transition from an axially symmetric to a
tilted ground-state configuration for polarons with unpaired electrons in LN.

To relate the observed absorption bands to specific polaron types in congruent LN, we
further compare the density of states with the imaginary part of the dielectric function (2)
in Figure 5. For the numerical evaluation, we use the same shifted 4 × 4 × 4 k-point mesh
as for the density of states. The summation includes all valence bands, the defect level
inside the band gap, and 267 conduction bands. The broadening is set to 0.001 eV at a
photon energy of 0 eV and increases linearly to 0.15 eV at an energy of 5 eV.

Within the IPA, the resonances in the optical spectrum correspond directly to transi-
tions between occupied and unoccupied one-particle states. For congruent LN, the lowest-
energy transitions are expected to occur between occupied defect levels inside the band
gap and the conduction-band edge. As each of our simulations features only one polaron
type and hence a single defect level that acts as an initial state, the low-energy region of
Im εzz(ω) is akin to the density of final states in the conduction band, modified by the
transition dipole moments. In order to align the curves, we shift the IPA spectrum on
the energy axis in Figure 5 so that the defect level, whose dispersion is negligible for the
2 × 2 × 2 supercell used here [27], is taken as the origin. Besides, the spectra are cut at
3 eV, so that transitions at higher photon energies from bulk valence to conduction bands
across the band gap are left out. Indeed, for all polaron types, the onset of the absorption,
where the imaginary part of the dielectric function assumes nonzero values, coincides
precisely with the energy separation between the defect level and the conduction bands in
the density of states.

3.3. Optical Properties

The congruency between the density of states and the absorption spectrum in the IPA
in Figure 5 affirms that the low-energy absorption peaks arise from transitions between
the occupied polaron state inside the band gap and the continuum of Nb 4d states at
the bottom of the conduction bands, but the IPA ignores quasiparticle corrections to the
band structure as well as electron-hole attraction effects, which are both essential for a
quantitative comparison with experimental data. In order to successively incorporate
these effects, we determine the dielectric function at the three levels of theory described in
Section 2, namely the IPA, the IQA, and the BSE. We concentrate on bipolarons in this part,
which constitute the ground state of excess electrons in congruent LN and dominate at room
temperature, where only a small number of bipolarons are thermally dissociated into free
or bound polarons [16]. For the IPA and IQA, we include all 260 valence bands, the defect
level, and 939 conduction bands. For the BSE, we reduce these numbers to 65 valence bands,
the defect level, and 89 conduction bands to counter the high computational cost associated
with the large supercell; we confirmed that these settings are sufficient to describe the
optical response accurately up to photon energies around 6 eV. In all calculations, we
employ the same shifted 2 × 2 × 2 k-point set as for the structure optimization to sample
the Brillouin zone, and a constant broadening of 0.1 eV is applied in the entire energy range
to smoothen the dielectric function.
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In Figure 6, we display the imaginary (top panels) and real (bottom panels) parts of the
dielectric function εzz(ω) for bipolarons localized either at the NbLi antisite defect (left) or
at the NbV–VLi defect pair (right) for the different approximations. The IPA results are the
same as in Figure 5g,h but are here displayed with no shift on the energy axis and calculated
with a different k-point mesh for consistency with the other schemes. Equivalent results
for Im εxx(ω) in relation to NbV–VLi can be found in [12]. The resonances at low photon
energies, where the dielectric function of stoichiometric LN has no structure [30], arise
from the defect-related optical transitions and are characteristic of the specific polaron type.
In contrast, bulk transitions dominate at energies larger than the band gap, for example
above 3 eV in the case of the IPA. The most pronounced defect-related peak, indicated by
the arrow, appears at a lower energy for bipolarons at the NbLi antisite defect than at the
NbV–VLi defect pair. If quasiparticle corrections from the GW approximation are included,
then the band gap increases significantly. Consequently, the dielectric function in the IQA
(blue lines) is blueshifted by about 2 eV with respect to the IPA, whereas the shape of the
spectrum remains essentially unchanged. In contrast, including electron-hole attraction
effects within the BSE (red lines) entails a significant redistribution of spectral weight that
enhances the oscillator strengths near the absorption thresholds due to the formation of
excitons. In addition, there is a redshift that positions the final spectrum roughly halfway
between the IPA and IQA curves. Because of the small number of bands, the BSE results
are not fully converged above 6 eV and hence depicted by dashed lines in this region.
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Figure 6. Imaginary (top) and real (bottom) parts of the εzz component of the dielectric function for
bipolarons localized at a NbLi antisite defect (left) or a NbV–VLi defect pair (right). We compare
results from IPA (black), IQA (blue), and BSE (red). The arrows indicate the positions of the dominant
defect-related peaks in the absorption spectra. The dashed horizontal line for Re εzz marks zero.

In Figure 7, we compare the εzz(ω) (red) and εxx(ω) (blue) components of the imag-
inary (solid lines) and real (dashed lines) parts of the dielectric function obtained from
the BSE. Our results show that there are clear differences in the calculated optical spectra
for the two bipolaron types, especially with respect to the lineshape of the defect peak.
In particular, the defect peak is much less pronounced for x-polarized light, which will
make an experimental detection more difficult. This strong directional dependence relates
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to the anisotropy of the bipolaron orbitals displayed in Figure 4g,h, which are oriented
along the threefold symmetry axis that corresponds to the z direction. We also note that
the positions of the maxima of the defect peaks differ for εzz(ω) and εxx(ω). Although the
underlying resonance energies Eλ of the electron-hole pairs in Equation (3) are in fact iden-
tical, direction-dependent variations in the oscillator strengths give rise to an apparent shift.
Therefore, care must be taken when the calculated spectra are compared with experimental
data or analyzed to deduce absorption bands.
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Figure 7. Imaginary (solid lines) and real (dashed lines) parts of the dielectric function ε calculated
within the BSE for z-polarized (red) and x-polarized (blue) light. The left and right panel correspond
to bipolarons at a NbLi antisite defect and a NbV–VLi defect pair, respectively.

From the complex dielectric function calculated within the BSE, we can finally derive
other optical coefficients that are typically measured in experimental spectroscopies, such
as the reflectivity R(ω), the absorption (attenuation) coefficient α(ω), and the electron-
energy-loss function L(ω). Our results for the z (red) and x (blue) components are shown
in Figure 8. The left panels again refer to bipolarons at the antisite defect, the right
panels to bipolarons at the defect pair. As for the dielectric function itself, the polaron
signatures are much more pronounced in the z components but are clearly present in
all optical coefficients. The calculated absorption coefficients are further compared to
the experimental value of 2.5 eV that is frequently cited in the literature, for example
in [13], as well as a recent measurement by our co-workers [12] that yielded 2.7 eV. Both
values were obtained from the peak position in the absorption spectrum of congruent
LN, measured in the z direction. Although the two experimental values deviate slightly,
indicating variations due to sample preparation and/or measurement technique, both lie
between the calculated defect-related absorption maxima for the NbLi antisite defect and
the NbV–VLi defect pair. This may indicate that at least some of the antisite niobium atoms
indeed migrate to neighboring oxygen octahedra, creating interstitial-vacancy pairs that
modify the lineshape and apparent position of the bipolaron absorption band.



Crystals 2021, 11, 542 15 of 18

 

 

 

 

 

 1  2  3  4  5  6

L
 (

ar
b
.u

.)

Energy (eV)

z

x

 

 

 

 

 

 1  2  3

Expt. [13]
Expt. [12]

 
 
 
 
 
 
 
 
 

      

α
 (

ar
b
. 
u
.)

 

 

 

 

 

 

      
0

10

20

30

40

50
B(NbLi)

R
 (

%
)

 

 

 

 

 

 1  2  3  4  5  6

L
 (

ar
b

.u
.)

Energy (eV)

z

x

 

 

 

 

 

 1  2  3

Expt. [13]
Expt. [12]

 
 
 
 
 
 
 
 
 

      

α
 (

ar
b

. 
u

.)

 

 

 

 

 

 

      
0

10

20

30

40

50
B(NbV−VLi)

R
 (

%
)

Figure 8. Optical properties derived from the dielectric function within the BSE: reflectivity R (top),
absorption coefficient α (middle), and electron-energy-loss function L (bottom) for z-polarized (red)
and x-polarized (blue) light. The left panels correspond to bipolarons at a NbLi antisite defect,
the right panels to bipolarons at a NbV–VLi defect pair. In the plots of the absorption coefficients,
vertical lines indicate the position of the absorption band assigned to bipolarons in different experi-
ments [12,13].

4. Conclusions

Using first-principles calculations based on density-functional theory, we performed
a detailed analysis of electron polarons in LN, taking free polarons, bound polarons,
and bipolarons into account. In contrast to earlier studies [21,22], we not only considered
electron polarons bound to NbLi antisite atoms but also to another defect compatible with
the Li-vacancy model, namely the NbV–VLi defect pair, which arises when an antisite
niobium atom migrates to a neighboring empty oxygen octahedron. Furthermore, we
did not restrict ourselves to axially symmetric structure models but performed a full
unconstrained relaxation, which leads to lower-energy tilted configurations where the
threefold rotational symmetry is broken. Our results show that the distortion lowers
the energy of the occupied defect level inside the band gap and thereby stabilizes the
tilted configurations for free and bound polarons, which feature a single unpaired electron.
On the other hand, it reduces the hybridization between the orbitals of neighboring niobium
atoms along the threefold symmetry axis, which is essential for the formation of bipolarons.
Therefore, bipolarons at both defect types relax to an axially symmetric geometry instead.
An examination of the charge densities and the projected densities of states reveals that for
all configurations, about one third of the trapped electronic charge is not actually localized
at the niobium atoms hosting the polaron but distributed over the oxygen atoms that form
the octahedral cage enclosing the defect site, well within the limits of the supercell used
in this work. The lattice distortion associated with the polaron formation extends farther,
especially for bipolarons at NbV–VLi defect pairs, but it is not necessary to include its full
spatial extent outside the localized charge distribution in calculations of the electronic and
optical properties of polarons in LN. This justifies the use of a smaller supercell, which
in turn allows us to apply sophisticated many-body techniques that would otherwise be
prohibitively expensive.

Hereupon we performed state-of-the-art first-principles calculations of the frequency-
dependent complex dielectric function and related optical coefficients. Starting from the
independent-particle approximation, we additionally included quasiparticle corrections
within the GW approximation for the electronic self-energy as well as excitonic contribu-
tions obtained from the Bethe–Salpeter equation. Our results for bipolarons at NbLi antisite
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defects and NbV–VLi defect pairs show clear signatures at low photon energies in all optical
coefficients that are characteristic of the specific defect type. A quantitative comparison of
the calculated absorption spectra with experimental measurements of the absorption band
attributed to bipolarons [12,13] suggests that at least some of the antisite niobium atoms
indeed migrate to neighboring oxygen octahedra and form interstitial-vacancy pairs.

Finally, the structure models established in this work constitute a basis for further
theoretical studies. Besides the linear optical properties already addressed here and in
previous works [12,27,28,30], the nonlinear response is of particular interest, because it is
central to the performance of LN as a key material in many optical technologies. Due to the
enormous computational cost [41], significant challenges must still be overcome in order
to facilitate accurate quantitative calculations of the polaron contribution to the nonlinear
optical coefficients of congruent LN, however.
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Abbreviations
The following abbreviations are used in this manuscript:

B(NbLi) bipolaron at a NbLi antisite defect
B(NbV–VLi) bipolaron at a NbV–VLi defect pair
BSE Bethe–Salpeter equation
DFT density-functional theory
DOS density of states
EPR electron paramagnetic resonance
FP free polaron
IPA independent-particle approximation
IQA independent-quasiparticle approximation
LN lithium niobate
P(NbLi) bound polaron at a NbLi antisite defect
P(NbV–VLi) bound polaron at a NbV–VLi defect pair
PBEsol Perdew-Burke-Ernzerhof for solids
SLN stoichiometric lithium niobate
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