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Abstract

In this paper we prove an upper bound for the trade-off between routing time and
space needed in vertex-symmetric networks to store routing information in the processors
and the packets. In particular, we prove that for any vertex-symmetric network with n
vertices, degree d, and diameter D = Q(logn) it holds for all s € [2,n]:

A randomly chosen function and any permutation can be routed in time O(log, n- D),
with high probability, if O(s - D - logd) space is available at each processor and

(1) O(D -logd) space is available for storing routing information in each packet (this
suffices to route to arbitrary destinations), or

(2) O(log(s - D)) space is available for storing routing information in each packet (this
suffices to route to randomly chosen destinations, w.h.p.).

E.g., for arbitrary bounded degree vertex-symmetric networks with diameter O(logn)
(among them expanders) this result shows: routing time O(logn) can be achieved already
if O(n®) space is available in each vertex, ¢ > 0 arbitrary. If we allow O(log2 n) routing
time, space can be reduced to O(logn).

This 1s the first result that relates space to routing time; previous approaches only
consider space and dilation, ignoring congestion and the design of routing protocols.

1 Introduction

The communication cost among the processors of a parallel system is usually measured by two
parameters: the time and the routing space necessary to route all packets from any point to
any point of the system. Whereas much is known about the runtime for all kinds of networks
under the condition that enough space is available (see, e.g., [MV95]), little is known about
how space-efficiency can influence the runtime. But space-efficiency will be important for
large parallel systems to keep the price of the routing hardware low. Moreover, the design of
the routing hardware for these systems should be independent of the topology of the network
to be realized. On the other hand, the communication among the processors usually requires
a large portion of the runtime of a parallel algorithm. Therefore, designing routing hardware
and routing protocols that find an optimal trade-off between routing time and space is an
important task in parallel systems.

i Supported in part by DFG-Forschergruppe “Effiziente Nutzung massiv paralleler Systeme, Teilprojekt 47,
by Volkswagen Foundation and by the Esprit Basic Research Action Nr 7141 (ALCOM II)
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In this paper we prove an upper bound for the trade-off between space and routing
time that holds for all vertex-symmetric networks with diameter Q(logn). This result is a
consequence of a new strategy for the simulation between arbitrary networks. The simulation
strategy and its analysis is inspired by the routing protocol for arbitrary networks presented
in [MV95]. We will apply our techniques for the simulation of networks to demonstrate
space-efficient routing strategies for vertex-symmetric networks.

1.1 Space-Efficient Routing

The routing network is represented by a connected graph H = (V, F), where V = [n](=
{0,...,n— 1}) is the set of all vertices (or processors) and F2 C V x V is the set of all edges
(or links) in H. Each {v,w} € I consists of two links, one in each direction. Each link
entering a vertex v contains an input buffer that is able to store packets.

We only consider oblivious routing strategies, i.e., a packet with origin « and destination
v has to travel along a prescribed routing path p(u,w) in H. The set of these paths for all
(;) pairs (u,v) of vertices in H is called a path system and denoted by P. A shortest path
system contains only paths p(u,v) that are shortest paths from u to v in H.

A packet consists of a source v € V', a destination w € V, additional routing information
and a message. The source and destination need logn bits, each. Throughout this paper
we restrict the routing information to be very small, namely of length at most O(logn). We
assume the messages to have uniform length.

Given a path system P in H, a routing protocol consists of a contention resolution protocol
and a routing structure for each vertex v in H.

The contention resolution protocol chooses a packet from those currently stored in v’s
input buffers. The choice depends on the source, destination and routing information of
these packets. Our contention resolution protocol works with O(degree of H) operations,
each on log n-bit words.

The edge along which a packet has to be sent is determined with the help of a routing
structure stored in v. This is a (static) data structure that, given the destination and the
routing information of a packet, enables v to compute the next edge the packet has to use
w.r.t. its path prescribed in P, and (maybe) update the packet’s routing information. We
demand that this access needs constant time, i.e. a constant number of operations on log n-bit
words.

The routing protocol used in this paper proceeds in rounds. Initially, every vertex v € V
has one packet. A function f:V — V assigns a destination vertex to each packet. The set
of all functions is denoted by F. In a round, each vertex v chooses a packet from one of its
input buffers with the help of its contention resolution protocol, computes the next edge it
has to go by accessing its routing structure, and sends it along the respective edge.

Clearly, the following parameters greatly influence the time needed to route an h-function

fin H:
e the dilation D of P, that is, the length of the longest path in P, and

e the congestion Cy, i.e. the maximum number of routing paths p(u, f(u,?)) in P that
pass through the same vertex in H.

Note that C'y - D rounds suffice to route f. This upper bound follows from the facts that a
packet is delayed at most C'y times at any vertex and that the length of its path is at most D.
On the other hand, if there is at least one vertex that transmits C'; packets and one packet
that traverses (D) vertices in H, the routing takes Q(D + C'y) time.
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1.2 Routing Networks

In this paper we mainly deal with space-efficient routing in vertex-symmetric networks. This
class is defined as follows.

Definition 1.1 A network H = (V, E) is called vertex-symmetric if for any pair u,v of
vertices in H there exists an automorphism ¢ : V. — V mapping u to v such that for the

graph H, = (V, ) with E, = {{¢(z),o(y)} | {z,y} € E} it holds H, = H.

Vertex-symmetric networks form a very general class and include most of the standard
networks such as the d-dimensional torus, the butterfly, the hypercube, etc.. Furthermore,
the best expanders that have an explicit construction are all Cayley graphs and therefore
vertex-symmetric (see, e.g., [LPS88], [M88] or [M94]).

Besides the notion of vertex-symmetric networks we need in our proofs the notion of s-ary
Butterfly networks. This class is defined as follows.

Definition 1.2 The s-ary d-dimensional Butterfly network (s,d)-BF is an undirected graph
G = (V, E) with vertex set

V=A{lz2)|leld, z=(z4-1,...,20) € [s]7}

and edge set
E = SOI{{(Z,QC), (I+1) mod d, f(z,l,i)}| (l,z) e V}

=0

where f(z,1,1) is defined as
fla,0,0) = (2g-1, -, Ti41, 8, &1—1, . . ., T0)
For k € {1,...,s} let us call the subgraph Gy, = (Vi, E) of an (s,d)-BF with vertex set
Vi={(Lo) |1 [d), o€ [} x [}

and edge set By, = Ely, «v, the (s,d, k)-BF.

The following example will clarify how a (3, 2,2)-BF is located in a (3, 2)-BF (the vertices
in the highest and lowest level are the same).

(0,0) — — (08)

(0,1) — — (19

00 — — (09

(322)-BF

Figure 1: A (3,2,2)-BF in a (3,2)-BF

Note that the (n,1)-BF is the complete graph consisting of n vertices.

The goal of this paper is to show that for any vertex-symmetric network H with diameter
Q(logn) and s € {2,n} there is a suitable routing protocol that can efficiently simulate a
suitably chosen (s,d, k)-BF in H using little space for the routing structures in the vertices
and routing information in the packets.



L NI RUDUCUCLITUN a4

1.3 Previous Results

If no restrictions are imposed on the routing space then, according to [MV95], it holds for
arbitrary networks with diameter D that any hA-function f with congestion C'y can be routed
in time O(D + Cy + logn), w.h.p.. Their results can be used to prove that, for all vertex-
symmetric networks with diameter D, a randomly chosen h-function can be routed in time
O(h - D +logn), w.h.p., if space O(n - d) in each vertex and routing information of length
O(logn) in each packet is available. (By ‘w.h.p.” we mean a probability of at least 1 — n% for
every constant a > 0.)

The most commonly used strategies for space-efficient routing are interval routing and
hierarchical routing.

The interval routing protocol works as follows: every outgoing link e of a vertex v with
id(v) € [n] is attached by intervals of id’s of vertices, e.g. [i1, i3], telling v that whenever it
has a packet that has to be sent to a destination vertex with id ¢ such that 11 < i < iy, v
has to send the packet along link e. Cleary, if each vertex is allowed to have k intervals the
routing protocol requires only a space of O(klogn) for every vertex of the network. Analyses
of the interval routing protocol and generalizations of it can be found, e.g., in [FJ88] and
[FGS93]. In [B93] a lower bound can be found for the number of intervals necessary to obtain
optimal interval routing for arbitrary networks of degree 3, namely Q(log? n) Thus a dilation
O(diameter) can only be achieved using space €2(;&). No analysis is known so far for the
routing time of interval routing in arbitrary vertex-symmetric networks.

Space-efficient hierarchical routing schemes can be found, e.g., in [FJ90], [PU89] and
[ABLP90]. These papers analyze the relationship between the routing space and the stretch
factor for a class of so-called c-decomposable graphs (see [FJ90]) or arbitrary graphs (see
[PU89], [ABLP90]). A routing scheme has stretch factor k if the length of the path a packet
from vertex v to vertex w has to take according to the scheme is at most &k times longer then
the length of the shortest path between v and w. In [ABLP90] it is shown that, in order
to guarantee stretch factor k, routing structures of size O(k - nt/* . log n) in each vertex and
routing information of size O(logn) in each packet are sufficient. So their routing scheme
needs routing structures of size at least O(log? n). According to [PU89] any routing scheme
2k+4)) bits for the routing

that achieves a stretch factor of & must use an average of Q(n'/(
structure of a vertex.

All hierarchical schemes have the great disadvantage that the routing is done with the
help of a clustering of the graph, where some vertices are declared as routing centers for a set
of other vertices. It is not difficult to prove that this strategy causes a congestion of O(n),
w.h.p., if randomly chosen 1-functions have to be routed. Therefore hierarchical routing
schemes are not useful to obtain a fast routing time.

1.4 New Results

Our main result is a trade-off between routing time and space requirement in arbitrary vertex-
symmetric networks. In particular, we prove:

Main Theorem: Let H = (V, E) be an arbitrary vertex-symmetric network with n vertices,
degree d, and diameter D = Q(logn). Then for every s € [2,n] it holds:

A randomly chosen function can be routed in O(log,n - D) rounds, w.h.p., if O(s- D -logd)
space is available at each vertexr and

(1) O(D -logd) space is available for storing routing information in each packet. This
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suffices to route arbitrary functions.

(2) O(log(s - D)) space is available for storing routing information in each packet. This
suffices to route random functions, w.h.p..

Consequences of this result are described in Section 1.4 below. It is easy to extend the
results of the Main Theorem to routing arbitrary permutations in H by simulating each
routing phase in a way that the packets are first sent to random destinations before they are
sent to their original destinations (see, e.g., [V82]).

Our approach to achieve this trade-off between routing time and space is ‘Routing via
Simulation’. The line of proof chosen here contains new results about the simulation of
arbitrary and vertex-symmetric networks.

Consider networks G = (V,R) and H = (V, E). Fix a shortest path system P in H
which contains shortest paths pg(u,v) in H only for pairs {u,v} € R. Further fix a shortest
path system Pg in G, consisting of paths pg(u,v) for all u,v € V. Our strategy to simulate
routing in G by H then works as follows:

Suppose, a packet with origin u and destination v travels along the path pg(u,v). In
order to simulate the traversal of an edge {z,y} € R, it chooses the path pg(z,y).

The resulting path system in H is called P*. Let Dg denote the dilation of Pg, Dy the
dilation of Pg, and D* the dilation of P*.

Let us call a packet at stage ¢ if it is currently routed along the path in H simulating the
g-th edge of the packet’s path in G. Let C’;{ be an upper bound for the number of packets
at stage ¢ that pass a vertex v in If and C'} = max,e[p,) C’;{. Obviously, this definition of
congestion is stronger then the one in Section 1.1, because there C'y was defined to be the
sum over all C’;{. So in the following we consider C'% instead of C'y.

Clearly, D* < Dy - Dg, and routing f using the path system P* needs time Q(D* + Cj*c)
We will present a routing protocol that uses the path system P* and prove the following
performance bound.

Let f be some routing function with congestion C} w.r.t. P*. Then routing f in H needs
at most O(Da(Dp + CF) + logn) rounds, w.h.p..

Before we give upper bounds on the routing time and routing space in vertex-symmetric
networks we describe what our random experiments are.

o Let 5, be the set of all permutations on V. Let 7 € 5, define an embedding of the
vertices of (7 into vertices of H in a way that u in G is embedded in 7(u) in H. In the
following we will mean by ‘G is randomly embedded in H’ that « is chosen uniformly
at random from S,,.

o Let 8Py denote the collection of all shortest path systems Pg in G. We say that Py
is a random shortest path system if it is chosen uniformly at random from SPg.

o Further let Py denote the collection of all shortest path systems Pg in H. We say
that Pﬁ is a random shortest path system if its paths are taken from a path system Py
chosen uniformly at random from SP.

o We call f a random function if it is chosen uniformly at random from F.
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For a permutation = € S, let # o R = {{w(u),x(v)} | {u,v} € R}. Let D¢ be the
diameter of G. Then, for the experiment of randomly choosing a shortest path system Pg
and a function f, the expected stage congestion o of G is defined as

o= max _F(# packets that want to use e as ¢-th edge)
6€R7 qe[DG]

Using the random experiments described above we are able to prove the following results:

Let G = (V, R) be a dg-reqular network with expected stage congestion o, H = (V, E) be
vertex-symmetric with diameter Dy = Q(logn), 7 be a randomly chosen embedding of G into
H, and Pg and PgR be randomly chosen shortest path systems. Then the congestion Cj*f of
a random function f is at most O(o-dg D), w.h.p.. Therefore routing f in H needs at most
O(Dg -0 -dgDy) rounds, w.h.p.. Furthermore, there are two strategies for space-efficient
routing that imply routing structures of size O(dg - Dy -log dy) plus the size for storing Pg,
and

(1) routing information of size O(Dplogdy). This suffices to route arbitrary functions.

(2) routing information of size O(log(dg - Dg- Dp)). This suffices for random functions f,
w.h.p..

Finally, in order to get fast and space-efficient routing protocols for H, we will use as guest
graph G a well-known vertex-symmetric network, the s-ary Butterfly. Its regular structure
allows very space-efficient routing structures for Pg. Furthermore, we show that o = di
which implies that the congestion C% of a random function is bounded by O(Dpg), w.h.p..
The Main Theorem then follows immediately from the fact that the s-ary Butterfly has degree
2s and diameter at most 2 log, n.

1.5 Discussion of the Main Theorem

According to the Main Theorem it holds for all bounded degree vertex-symmetric networks
with diameter D = Q(logn): If only space O(D) is allowed for each vertex and space O(log D)
is allowed for storing routing information in a packet the routing of a randomly chosen
function finishes after O(logn - D) rounds, w.h.p.. If a space of O(n- D), € > 0, is allowed
for each vertex and space O(logn) is allowed for each packet, the routing finishes after O(D)
rounds, w.h.p..

As noted above, the best expanders that have an explicit construction are all Cayley
graphs and therefore vertex-symmetric. Although it seems to be very difficult to design
space-efficient routing schemes for these graphs with the help of an analysis of the underlying
algebraic structure, the Main Theorem shows that space O(logn) suffices to route almost
all functions f € F in time O(log*n) and a space of O(n¢) suffices, for arbitrary ¢ > 0, to
achieve a routing time of O(logn), w.h.p..

1.6 Organization of the Paper

In the next section we describe the routing protocol used for our simulations. Section 3 proves
an upper bound for the congestion C% if G is edge-symmetric and I is vertex-symmetric.
Section 4 presents a suitable design for space-efficient routing structures. Finally, in Section
5 the Main Theorem is proved.
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2 The Extended Growing-Rank Protocol

In this section we describe an extension of the growing-rank protocol presented in [MV95].
As we will see, it is especially suitable for simulations among vertex-symmetric networks.
Let G = (V,R) and H = (V, E) be arbitrary networks and f € F. Let Pg, PH, P*, Dg,
Dy, and C% be defined as in Section 1.3.
Initially, each packet P, is assigned an integer rank(/F,), chosen uniformly at random and
independently from the set {0,..., K — 1}, where

K= "126~C}“—|—2DH—£(:+1)logn/DG-‘ ) DH

for some constant v > 0. Thus K is a multiple of Dp.

Whenever a packet is forwarded in H, its rank is increased by 1%1 When a packet P
reaches the vertex in H that simulates the ¢’th vertex on P’s path in Pg, ¢ = 0,1,..., a
new rank is chosen independently and uniformly at random from the set ¢ - 2K + [K] =
{¢-2K,...,q 2K+ (K -1)}.

If two or more packets are contending to leave the same vertex, then the one with the
smallest rank is chosen. A round for a vertex within a stage looks the same as in the growing
rank protocol described in [MV95]:

e choose a packet P with minimum rank;
e rank(P) :=rank(P) + %;
e move P forward on its routing path.

If there is more than one packet with smallest rank, then in order to break ties the packet
P, with lowest value v is chosen (note that for this purpose v has to be stored in the routing
information).

The following theorem will give a bound for the routing time of an arbitrary function
on (G simulated by H for arbitrary networks G and H. The proof will be an extension of
the proof in [MV95] which itself is modification of analyses presented in [R91], [L92], and
[LMRR94]. The result in [MV95] only holds for shortest path systems. The problem we have
to handle in our proof is that different phases of our routing protocol overlap and that we do
not have shortest path systems any more.

Theorem 2.1 Let G and H be two arbitrary graphs, let P*, Dy, and Dg be defined as
above. Furthermore, let f € F be some routing function with congestion C; w.r.t. P*. Then
the extended growing-rank protocol routes f in H within O(Dg(Dy + C}) + logn) rounds,
w.h.p..

Proof. In the following, we denote the rank of a packet PP while waiting at a vertex v by
rank”(P). Let idpmax = n. We define the ident-rank of P at v as rank”(P) + ﬁ%% and
denote it by id-rank”(P). Note that, in each round, the ident-ranks of all packets are distinct.
This type of rank ensures that whenever a packet P delays a packet P’ at a vertex v it holds
id-rank”(P) < id-rank”(P’). The following lemma shows that the rank of any packet at stage

g can not be greater than 2(¢ 4+ 1)K — 1.

Lemma 2.2 Suppose P is a packet at stage q which is stored at a vertex v in some round.
Then rank?(P) < 2(¢g+ 1)K — 1.
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Proof. At the beginning of stage ¢, the rank of P is at most ¢-2K + K — 1. Since the length
of the routing path of P within two stages is at most Dy, the rank of P is increased by %H

for at most Dy times. Thus, rank”(P) <¢- 2K+ K -1+ Dy - % <20+ 1)K -1. n

Note that the rank of any packet during any stage of the routing will be bounded above
by 2D K — 1. The following analysis will be based on a delay sequence argument.

Definition 2.3 (((s,()-delay sequence)) An (s, ()-delay sequence consists of
(1) s+ 1 not necessarily distinct collision vertices vg, vy, ..., Us;

(2) s delay packets Py, P, ..., Ps such that the routing path of P; crosses the vertex v; and
the vertex v;_1 in that order for 1 <1 <'s;

(3) s integers (1,0, ..., s such that {; is the number of edges on the routing path of packet
P; from vertex v; to vertex v;—q for 1 <1 <s, and Y 7_; {; <{; and

(4) s integer keys ri,ra,...,rs such that 0 <rs < --- <ry<ry <2DgK — 1.

We call s the length of the delay sequence, and we say a delay sequence is active, if rank " (F;) =
r; for 1 <1 <s.

Lemma 2.4 Suppose the routing takes T > 2D Dy or more rounds. Then there exists an
active (T'— 2D Dy, 2D Dy)-delay sequence.

Proof. First, we give a construction scheme for a delay sequence. Let P, be a packet
that moves forward in round T to a vertex vg. We follow P;’s routing path backwards to
the last vertex on this path where it was delayed. This vertex we call vy. Let P, be the
packet that caused the delay, since it was preferred against F;. We now follow the path of
P, backwards until we reach a vertex vy at which P, was forced to wait, because the packet
P5 was preferred. We change the packet again and follow the path of P5; backwards. We can
continue this construction until we reach round 1. Here it ends with a packet P; starting at
its source v;.

The path from v, to vy recorded by this process in reversed order is called delay path. 1t
consists of contiguous parts of routing paths. In particular, the part of the delay path from
vertex v; to vertex v;_; is a subpath of the routing path of packet P;; we define £; to be the
length of this subpath for 1 < ¢ < s.

We set r; := rank"(F;) for 1 < ¢ < s. Because of the rules of the protocol we have
T > rg > --- > 1rg > 0. Moreover, Lemma 2.2 yields that 2DgK — 1 > rq. Thus, we have
constructed an active (s, ()-delay sequence for every £ > 577 (;.

Our next goal is to bound the sum of the £;’s. In addition to the ranks rq, ..., rs, we denote
by rg the rank of P in vg. It follows immediately from the protocol that r; + ¢; - % < r_q
for 1 < ¢ < s. As a consequence,

> K Lemma 2.2 > - DH
l;  — < b; < (2DgK — 1) — <2DgDg . 1
ZZ:; DH_rO — Z < (2Ds ) K = oTerH (1)

=1

Since the delay sequence covers up T rounds and consists of > 7_; f; moves and s — 1
delays, we have T'= 57, {; + s — 1. It follows that

& Q)
s=T-> l;+1>T-2DgDy+1 .

=1
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Consequently, if we stop the above construction at packet Pr_sp.p,, we have found an
active (1I' = 2Dg Dy, 2DgDpr)-delay sequence. [ |

Lemma 2.5 [f the routing paths of the packets are shortest paths, then the tuples (P, q) of
delay packets P at stage q in the above construction are pairwise distinct.

Proof. Suppose, in contrast to our claim, that there is some packet P appearing twice at
the same stage ¢ in the delay sequence. Then there exist 7 and j with 1 < ¢ < j < s and
P = P, = P;. Thus, the routing path of P crosses the delay path at the collision vertices v;
and v; in that order.

Let m denote the distance from the vertex v; to the vertex v;. If the routing paths are
shortest paths, then the rank of P is increased m times while moving from v; to v;, and
hence,

) . ) K
id-rank"(P) = id-rank" (P)+m - — . (2)
Dy

On the other hand, each packet Py delays the packet Py at vertex vy, and consequently,
id-rank"*(Py) > id-rank" (Pg4q) for 1 < k < s — 1. Further, the length of the routing
path of packet Pyiq from wryy to vy is fry1, and thus the rank of FPpiq is increased by
et - % on its path from viyy to v, for 1 < k < s— 1. It follows that id-rank"*(F) >

id-rank"* 1 (Pgy1) + Cry1 - % for 1 <k <s—1. This yields

i1 . .
. K K
id-rankV: (P) > id-rank?s (P) T ;Kk-l—l . D—H > id-rank® (P) +m- D—H . (3)

Since (3) contradicts (2), there is no packet that appears twice at the stage in the delay
sequence. |

Lemma 2.6 The number of different active (s, ()-delay sequences in H is at most

of (260}(3 +2DgK) ) *

s

n -

Proof. We count the number of possible choices for each component:
e There are n possibilities to determine the starting point vg of the delay path.

e Since Y 7_; (; < {, there are (51'4) ways to choose the ¢;’s.
e Finally, there are (SHDfK_l) < (SH?GK)
QDGI(—lzf‘l ZT‘QZ "'ZT‘5>0.

possibilities to choose the r;’s such that

e Once the ¢;’s and r;’s are chosen, there are at most (Cj*f)s choices for the delay packets.
This is because there are at most C choices for the packet P;. We follow the routing
path of P backwards for ¢4 rounds, until we reach vertex v;. Now we have at most Cj*f
choices for P,. We follow again the routing path of this packet to vertex vy an so on,
until we reach packet P;.
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Altogether, we find that the number of active (s, £)-delay sequences is at most

n- (O (”) ( ’ QSDGK) .

Applying the inequalities (Z) < 2% and (Z) < (%)b, the desired upper bound is

n(C?)SQS‘FZ(e(

S S

s—|—2DgK))5 . n‘QZ(QeC}(s—kQDgK))S

The probability that a particular delay sequence with s distinct packets is active is at
most K ~°. This is because a sequence with s distinct packets determines s ranks. As a
consequence,

Prob(the routing takes ' = s — 2D Dy or more rounds)
(s,2DgDyr)-delay sequence With)
distinct delay packets is active

s

< Prob (an

IN

We choose T' = 12eC7 D¢ + 4D Dy + (ov+ 1) logn. This yields

s > 12eCiDg (4)
s > (a+1)logn+2DgDy , and (5)
s < DgK (6)

for K > 1260} + 2Dy + (o + 1) logn/Dg. As a consequence,

Prob(the routing takes ' = s — 2D Dy or more rounds)

* s a+1)logn+2DaD
(g) no2PcDu (%) (4)2(5) n2?Pelu (1)( Jlos R =n"% .
S

2
This proves Theorem 2.1. [ |

Note that, if we use priority queues as buffers for the packets and so-called ghost-packets
according to a strategy used in [R91], then it takes only O(dy) time for a vertex to find the
packet with the lowest rank. So if we consider only networks H with constant degree, then
the time to find the packet with lowest rank in each round is constant.

In the next section this theorem will be used to obtain efficient simulations of arbitrary
networks on vertex-symmetric networks.

3 Bounding the Congestion

In this section we bound the congestion C7 for the case that G is a dg-regular network and
H is vertex-symmetric. Recall our strong notion of congestion as defined in Section 1.3.
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Theorem 3.1 Let G be a dg-regular network with expected stage congestion o, and H be
vertex-symmetric with diameter Dy = Q(logn), © be a random embedding of G into H, Pg
be a random shortest path system in G, and PgR be a random shortest path system in H.
Then, for a random function f,

€= 0(0-daDn)

w.h.p.. Thus, by Theorem 2.1, O(Dg - o - dgDy) rounds suffice to route a random function
[, w.h.p..

Proof. We have to prove the bound on Cj*f. For a fixed v € V and ¢ = {u,w} € R,
let the binary random variable X., be 1 if and only if for a randomly chosen embedding
7 and shortest path system PH . the path pg(m(u), 7(w)) contains v. Further, for a fixed
edge e € I and packet u € V, let the binary random variable X  be 1 if and only if for a
randomly chosen shortest path system Pg and function f, e is the g-th edge in the path from
w to f(u) in G prescribed by Pg.

For v € V, let the random variable C'? denote the congestion at v in H caused by packets
at stage ¢ if 7, the shortest path systems Pg and Pﬂ,R, and f € F are chosen independently
at random. Clearly, it holds:

Cl= Z Xeo (Z Xgﬁ)

eER ueV

We first want to calculate the expected congestion I/(CY) for each vertex v in H and
q € [Dg].

Let p. , be the probability that X, , = 1 and pj , be the probability that X . = 1. Because
H is vertex-symmetric there is an automorphism ¢ for every pair of vertices v, v’ in H that
maps v to v’. Consequently, by the choice of the random experiments, p., = Peyp(v) = Pev'
Since the X, , are independent from the X7 _ it holds:

E(Cg) = Z Z E(Xe,v) : E(Xg,e)

eERueV

= Z Z Pew - p%,e = Z Z Peo(v) p%,e
ecRueV eERueV

= Z Z Pep’ - p%,e = E(CS’)
eERueV

Thus F(CY?) is the same for every vertex v € V, namely at most Dy + 1, because there are
n packets that have to be routed along paths of length at most Dy + 1.

Unfortunately, we can not use the well-known Chernoff bound to prove an upper bound
for C'7 that holds w.h.p., because the products X, -X(qw)’6 are not independent from each
other. Nevertheless, the following lemma enables us to use the high moments version of
the well-known Markov Inequality (see, e.g., [SSS93]) in such a way that we can bound the

congestion at each vertex in H by O(o - dgDp), w.h.p..

Lemma 3.2 Let X be an arbitrary random variable. Then, for every ¢ > 0 and k > 0, it
holds:

Prob <|X —E(X)|>e- t/E(IX - E(X)I’“)) < (l)k
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Let m € {alogn,alogn + 1} be even. Then we get:
E(lC] = E(CHI™) = E(C] - E(C)™)

> (2)E<<cz>k><—E<cz>>m—k
k=0

It remains to bound E((C2)¥) for every 0 < k < m. Let s(k,j) = E?ZG(—l)Z(%) (j— Ok < 5k

be the number of surjective mappings from [k] to [j]. Then it holds

E(CH*) =D s(k, ) > E(Xe o X ey o Xy o X )

j=1 {(u,e1) sty e5) }

In the following let the operator F(.) denote the average value of E(.) over all subsets
{(u1,€1),..., (up,ex)} € V X R, where > denotes some formula over random variables.
In other words,

Then it remains to prove the following lemma to get a bound for E((C9)%).

Lemma 3.3 Fork < «-logn, a constant, and the four random experiments described above

it holds:

u1,e1 RV UL, e

_ k
E(Xe o X0 o oo X, 0 X0 ) < (ﬂ%)

Proof. Since the X, are independent from the X7 it holds:

E(Xely'UX’Zl,el et Xeky'UX’gk,ek)
=E(Xeweooo- Xepo) - E(le,el cae ngﬁk)
From this we conclude that
E(Xely'UX’Zl,el et Xeky'UX’Zk,ek)
1
= n|R| Z E(XelvUthel et X6J7UX5J76J)
G BT
CVxR
1 1
= n|R| Z E(X517U Tt Xeky'u) Z E(X’gl,el Tt ng,ek) : H
( k ) €1,..,e,ER 11;1( ..... uk)e(;( . .
t. a ej 1stinct

The factor % is necessary to eliminate superflous permutations of the (u;,e;). It is easy to
see that the nge] can be regarded as independent, because the destinations of the packets
are chosen independently at random and there is at most one edge e a packet can take at
stage ¢. Thus, according to the definition of the expected stage congestion o, it holds for
all er,...,e, € R with M denoting the set of all (uy,...,ug) € V¥ such that all (uj,e;) are

distinct:
1 a\*
q q
M] Z E(th@l ""'Xuzmek) < (E)
(ul,...,uk)EM
It remains to prove an upper bound for E(Xew ...- X, »). This is done in the following

claim.
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Claim 3.4 For the random experiments described above it holds:

E(XejwrooXepa) < (5(D127+4k))k

Proof. According to the definition of F(.) we get

k
- 1 ) 1
E(Xejwr oo Xepa) < —re > os(kg) > E(Xe oo Xe;w) > T
( k ) j=1 {e'l,...,e;}gR (un,mug,)EVE T
since there are s(k, j) possibilities to map {e1,...,ex} to {e},...,€’}. Therefore it holds
(note that [m], = m!/(m — k)!):
_ 1k nk
E(Xelvv"“'Xek,U) < no|R| ZS(IC,]) Z E(Xell,u""'Xeg,v)'F
( k ) J=1 {elef}CR )

k Nk
= RIS X X, = 1)
’ 27

{e'l,...,e;}gR

Before we can proceed with our calculation we have to find an upper bound for (k) if
{€},..., €} is randomly chosen out of R.

Let the random variable I be 7 if and only if {e],.. .,e;«} has a maximal independent set
of size 4, that is, {e},..., €’} has a set {ey,..., ¢} of maximal size ¢ for which all vertices
adjacent to €y,...,é; are distinct. We first want to show that for any edge e € {é,...,¢;}
we can independently assume a probability of l;)lfjjl'il that, for a randomly chosen embedding
of G into H, the path simulating e in H traverses a fixed vertex v in H.

Since H is vertex-symmetric, it holds for every fixed vertex v in H that, for a randomly

chosen shortest path system PH in H,

Dp+1
T Z Pluwtv = i

2> {u,w}CV
Consider the edges €y, ..., €;,_1 to be embedded into some set of vertices W = {wy, ..., wz(i_l)}
in H. Then we get
1 Dg+1
Yy Z Pluwtw <

(3) {uw} CVAW "

From this we conclude that, for a randomly chosen 1-1 embedding 7= and shortest path system

PH7
PI’Ob(XghU =1 | Xél,v et X5i—1ﬂ/ = 1)
Prob(Xe oo .- Xe, v =1)
PI’Ob(Xéh»U Tt Xé,‘_l,’u = 1)

i—1 1
ZW:{w17,,,7w2(i_l _1}§V H;:l p{ng_l,ng} v (n—22i—1 ) Z{ul,uQ}QV\W p{ul,ug},u

ZW {wisewa i1y =1 JCEV H] 1p{w2] 1,Ww2; 1
()

i-1 (5) Dy +1
ZW:{W17~~~77~U2(1‘—1)}§V H]:l p{w2]_1,w2]},v ) (n—2(2i—1)) ) n
2

IN

=1
sz{wl peeWa(i—1)—1CV H]:l Pluwsy—1 w230
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(+%) can be bounded by

n n — 41

( n )QDH+1<DH+1
n—20—1)—1

Therefore it holds:

Prob(X X—<ijI—' Dyt 1Y
rO( 6/1,’[/"“' 6;71}—1)_; rO( —Z) m
It remains to prove an upper bound for Prob(l = ).

Consider any fixed i € {1,...,5}. Let {€1,...,¢} be a maximal independent set in
{€},...,€;}. Then the set {e},... €’} can be decomposed into ¢ trees T containing e, in
such a way that we obtain the following structure (each A in a tree Ty denotes a set of edges
incident to one of the vertices of e;):

Fn EA - 5

/

Figure 2: A decomposition of {¢},...,¢’} into i trees.

Agsume in the contrary this is not true. Then there exists a tree Ty that has an edge e
with distance 2 from e, that has no vertex that is adjacent to an edge in {éy,...,€;}. But
then we can extend the independent set by e, that is, {€1,...,€;} can not be a maximal
independent set. Thus the decomposition above is correct.

Clearly, there are at most | R|* possibilities to choose the edges of the independent set. For
the remaining edges there are (27)7~ possibilities to determine to which subtree of which tree
T, they belong, and d, " possibilities to choose the second vertex adjacent to them. Since we
do not want to count permutations among these j edges we get that altogether there are at

most
(|R|) (i(QdG - 1))
1 7=

possibilities to choose an edge set {€], ..., €’} that correponds to the decomposition described
above. Since there are (“f') ways to choose a subset of j different edges it holds with |R| = dTGn
that
(IRI) (i(2def1))
Prob(I =4) = ——Z—" =

()

[R[:(i1(2de = 1))~ j! 7\ (i
(121, G- - () ()

So altogether we get

Prob(X¢, o, ..o X¢,p = 1)

IA
[~

~. S
~—
TN
s |3
o~ |t
Il I
~—
TN
s | &
~—
7

IN
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Using this bound in () and the fact that (}) <

yields

IN

_ s(k, j) - n®
E(Xejwroo Xeyo) ZL

< () foralln € Nand k€ {1,...,n}

5 (DH+4j)f

j=1 [ 2] {e1,.me; }CR n—d4
<y L (I (DH+4J')J‘
R A ANESY
. Zk:jk-nk 1 <e|R|)f<DH+4j)f
S ZEhvAa N ) 1
)y
= 2R Y
- (e(DH—|—4k))k
o n
This proves the claim. [ |
So altogether we get
_ g g e(Dg +4k)\" [ o\ *
E(Xelva(xl,il),el T ‘Xekv'UX(l’k,’ik),ek) S ? E
This proves the lemma. [ |

With the help of Lemma 3.3 we get

k
E(CHY) = > s(k,j) > E(Xey o X ey oo Xy o X L)
j:l {(u1,e1),+) (uj ej)}
CVXR
k R ;
(n-|R ec(Dg +47)\’
< Zs(k,])( | |) (#)
i=1 J n
) 1 en|R|\’ fea(Dg + 45)\’
B S A (UL W EERRY
= VT j n
e _.(n|R|-ec(Dg+4j)\’
)
SV n2
< (e[so - da(Dy + 4k) + k)"

for all £ < m, m chosen as above. Thus it holds

B(CY = BECHI™)
2

k=0
< |

E((Cq —

v

E(C))™)

(2)E<<cz>k><—E<cz>>m—k

[50-da(Dg 4+ 4m) +m] )™

(%)
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With the help of Lemma 3.2 we get that for any € > 0, |C4 — E(C?)| > €- (*) with probability
at most (1)* and therefore

— n

Prob(|C — B(CH)] > - (x)) < (1)
Hence, the congestion C', = max,¢[p.]C} in each vertex v is at most O(o - dgDp), w.h.p..
With the help of the simple Markov Inequality (k = 1) we can finally show that for a randomly
chosen 7, Pg, and 777{{,R it holds, w.h.p., that afterwards a function f chosen independently
at random has a congestion C'} of at most O(o-deDp), w.h.p.. Applying Theorem 2.1 with
this result completes the proof of Theorem 3.1. |

Theorem 3.1 implies that it is easy to construct a fast probabilistic sequential algorithm
that builds up a path system in H that guarantees a congestion of O(o - dgDp) for almost
every function f, w.h.p.. It is not clear whether there exists a fast parallel algorithm for this
purpose. This will be an interesting problem for the situation that the configuration of the
parallel system often changes.

4 Design of Space-Efficient Routing Structures

In this section we present two methods to design space-eflicient routing structures and routing
information.

Theorem 4.1 Let G be dg-regular and H vertex-symmetric, G be randomly embedded in H
by ©, and Pq and PgR be random shortest path systems. Then there are two strategies for
space-efficient routing that imply routing structures of size O(dg - Dy - logdy) plus the size
for storing P, and

(1) routing information of size O(Dylogdy) suffice to route arbitrary functions f in H,
for arbitrary h.

(2) routing information of size O(log(dg - Dg - Dyr)) suffice to route random functions f in
H, w.h.p..

Proof. We first prove (1). Consider a vertex v in H. Let # = 77! (v) and R, be the set of
all edges in G incident to z. Clearly, the number of & (which needs space logn) has to be
stored in v. Furthermore, the routing structure for v consists of the following two tables.

e T,1:V?— R,U{0}is arranged in such a way that for every path pg(y, z) in Pg that
crosses z, T, 1(y, z) contains the edge following = in pg(y, 2).

o Io: R, — PﬂR is arranged such that 7, 2(e) contains that path in H representing
the edge e in (.

Clearly, it takes dg - Dy - logdy bits to store 1,5 in v. Since Dylogdy = Q(logn), the
routing structure for v needs space O(dg - Dy -log dpr) plus the space needed for storing T, 1,
which depends on Pg.

In this case, the simulation will work as follows. Suppose, a packet P, stored in v has
to be sent to a vertex y in G. Initially, v chooses the edge e € T, 1(z,y) and stores the
corresponding path 7', o(e) in the routing information r(z) of packet P,.
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If this packet is received by vertex w in H during the routing, w first checks whether the
packet has already completed the path stored in its routing information. If this is true and the
packet P, has not reached its destination vertex yet, then w chooses the edge e € T}, 1 (2, y)
and stores T, 2(€) in r(z). Otherwise, w will take the information about the next edge to be
chosen out of r(z) and routes the packet along this edge.

Thus the routing information consists of a path in H of length at most Dy, which needs
space O(Dy logdy), and h and a random rank for the extended growing rank protocol, which
needs space O(logn), because (% < n for all functions f. This proves part (1) of Theorem 4.1.

In order to prove part (2) we have to find an upper bound for the number of paths in
PH . that traverse a vertex v in H, w.h.p., if Dy = Q(logn).

Lemma 4.2 For a randomly chosen © and 77 op 1t holds, w.h.p., that the number of paths
in PH . traversing v is at most O(dg - Dyy) for every vertex v in H.

Proof. Forv € V, let the random variable P, denote the number of paths in PH , traversing
vertex v, let X, and p., be defined as in the proof of Theorem 3.1. Clearly, it holds:

v) = Z Xe,v

eER

Choose two arbitrary vertices v and v’. Since H is vertex-symmetric, there exists an
automorphism ¢ that maps v to v’. By the conditions of the random experiments we conclude
Pew = Peyo(v) = Pewr- Consequently, it holds F(P,) = F(P,s). Hence the expected congestion
for all vertices is the same, namely at most d{L(DH + 1), because |R| = ﬁ -n and every path
in H has at most length Dy + 1.

As mentioned in the proof of Theorem 3.1, the random variables used for P, are not
independent from each other. Nevertheless Claim 3.4 can be used to show that for all £ <
alogn, o constant, it holds:

B(el < (IR (M))k

n

Using this in the high moment version of the Markov Inequality yields that the number of
paths P, traversing a vertex v is at most O(dg - D), w.h.p.. |

Let B = O(dg - Dy) be an upper bound for the number of paths in PgR traversing a
vertex v in H such that a path collides with at most B - Dy other paths in H. Suppose
G' = (V' E') is a graph in which each vertex represents a path in Pror and vertices z,y € V'
are connected with each other if their respective paths collide with each other in H. Then
G’ has a degree of at most ' = B- Dy. Because d’+ 1 colors suffice to color every d’-regular
graph in such a way that no two adjacent vertices have the same color it is possible to attach
numbers to the paths in PgR out of [B - Dy 4 1] in such a way that no two colliding paths
have the same number.

Let ¢» : R — [B - Dy + 1] be the function that assignes a number to all edges in R
represented as paths in 77 op such that the condition above is fulfilled. Then we choose the
following strategy to store space-efficient routing information.

Consider a vertex v in H. Let = #~!(v) and R, be the set of all edges in G incident to
x. Let the routing structure for v consist of the following three tables.
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e T,1:V?— R,U{0}is arranged in such a way that for every path pg(y, z) in Pg that
crosses z, T, 1(y, z) contains the edge following = in pg(y, 2).

o I'o: Ry = [B-Dy+1],e — t(e) maps each edge in R, to a suitable color.

e Ty5:[B-Dy+1]— (FU{0})?is arranged such that T, 3(k) contains both edges the
path with number k uses to traverse v.

Clearly, it takes at most O(d¢ log n) space to store T), 5. If we apply perfect hashing techniques
described in [SS90] we can reduce the size of T, 3 from O(B - Dy - logdy) to O(B -logdpy)
in such a way that we can still evaluate T, 3 in constant time. Altogether this results in a
routing structure of size

O((dg - Dy + logn) log dy 4 di log n)
= O((da - Dp)logdn)

because of Dy = Q(logn), plus the size for storing 7’ ;, which depends on Pg.

The simulation will then work as follows: Suppose, a packet P, stored in v has to be sent
to a vertex y in G. Initially, v chooses the edge e € T\, 1(z,y), transforms it into a number
k =T, 2(e), and stores k in the routing information r(z) of packet P,.

If this packet is received by vertex w in H during the routing, w first checks with the
help of T, 3 whether the packet has already completed the path whose number is stored in its
routing information. If this is true and the packet P, has not reached its destination vertex
yet, then w chooses the edge e € T}, 1(z,y), transforms it into a number k' = T, ;(e), and
stores it in r(z). Otherwise, w will ask table T, 3 for the two edges in H which lie on the
path with number k& and routes the packet along the edge not used before.

Hence for a random f the routing information of each packet consists of its actual rank
which can be stored in O(log(D¢ - Dpr)) bits, and a number k € [B - Dy + 1] which can be
stored in O(log(dg - Dyr)) bits, w.h.p.. This proves part (2) of Theorem 4.1. n

5 Space-Efficient Routing in Vertex-Symmetric Networks

We now finally prove the Main Theorem. For this we introduce the modified s-ary Butterfly
network denoted by (s, d, k)-mBF.

Definition 5.1 For any (s,d,k)-BF G' = (V', E'), let the (s,d,k)-mBF G = (V, E) be an
undirected graph with vertex set V.= {((,z) | £ € [d + 1], = (24, ..., %0) € [k] x [s]*"'} and
edge set

E = E\{{(d-1,2),(0,9)} |,y € [F] x [s]*"}
U{{(d_ 17$)7 (dv (y—l' T‘) mod k - Sk_l)}v {(d7 (y‘|' T‘) mod k - Sk_l)v (O,y)} |
{(d—1,2),(0,y)} € E'.r € [[31]}

To clarify how an (s, d, k)-mBF looks like we give the following picture.
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level

1 2 k
(sd-1)-BF (sd-1)-BF co.. | (sd-1)-BF

d-1
gk
d [ @)

00O Q Q J

Figure 3: The structure of an (s,d, k)-mBF.

Let us perform the following simple routing strategy on an (s, d, k)-mBE:
Suppose vertex v = ({,z) wants to send a packet P to vertex w = (¢, y). This will be
done in two phases. In Phase 1, P is first sent along the vertices

v=(0,(x4g-1,.--,20)) — L+ 1, (g1, Tog1, Yty To—1y-..,%0))
= (042, (Tde1y e oy o2, Yo 1, Yoy Tom1y ooy o)) — o ..
— (d=2,(Td—1,Yd=2s- - -y Yty To—1y. ., T0))
— (d=1,[(yd=1s- s Yty To—1,...,20) + 1] modk-sk_l)
= (dy (Yd=1y -y Yty o1y o, T0)) — ...
— (4, (Yd=1- -+, Yo))

where r is randomly chosen out of [[
In Phase 2, P is moved from (¢
reaches its destination w.
In the following section we bound the expected stage congestion for these two phases.

Z1l-
v (Ya—1,--,90)) to (0 + 1, (Yd—1,---,%0)), etc. until it

5.1 Bounding the Expected Stage Congestion

In this section we want to give bounds on the expected stage congestion at Phase 1, oy, and
the expected stage congestion at Phase 2, o5.

Lemma 5.2 For any (s,d, k)-mBF it holds that o1 = % and oy = 1.

Proof. Let us first consider a simple greedy routing strategy in an (s,d, k)-BF. Clearly,
this strategy determines exactly one path for any pair of starting and destination vertex.
Because of the symmetry properties of the resulting path system it is clear that the expected
congestion for any stage is the same for every vertex within the same level. Therefore the
expected congestion for any stage is the same for every vertex in any (s, d, k)-BF, namely 1.
Furthermore, the Butterfly-like structure of an (s, d, k)-BF ensures during Phase 1 that, for
any vertex v in level £ with ¢ edges to the next higher level, each of these edges has the same
probability to be chosen by a packet with random destination leaving v. In Phase 2, each
vertex only has one edge to choose. Therefore, oo = 1.

In order to bound oy, let us now change to the routing strategy on an (s,d, k)-mBF
described above. Because this strategy is equivalent to the greedy routing strategy on an
(s,d, k)-BF except for routing from level d — 1 to d and d to 0 in Phase 1, the expected stage

congestion for all edges outside these levels is %
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It remains to analyze the expected stage congestion of Phase 1 for all edges inbetween
level d — 1 and 0. Since the edges from level d — 1 to 0 in an (s, d, k)-BF all have the same
probability to be chosen it follows that each of the edges from level d — 1 to d and d to 0 in
an (s,d,k)-mBF have the same probability to be chosen, namely % . fs}’ﬂ < % Therefore,

0'1:%. |

Whereas in Phase 1 the degree of the subgraph in the (s, d, k)-mBF used for routing is at
most 3s, in Phase 2 the degree of the subgraph used for routing is at most 2, since in Phase
2 the packets only use edges of type {(/,2),(l+ 1,2)}. Thus the congestion for all stages
within Phase 1 and 2 is bounded by C% = O(max{o; - 35,0, -2} - D) = O(Dp), w.h.p..

5.2 Simulations using Butterfly Networks

We now finally prove the Main Theorem. First of all, it is easy to check that for any
s € {2,...,n} there is an (s, d, k)-BF of size m such that |Vy| < m < 2|Vy|. Let GG be the
corresponding (s, d, k)-mBF. If we attach to each vertex (¢,2) in G with ¢ < d the number
id(¢,2) = d-z4( and for each vertex (d, ) the number id(d, z) = d-k-s?~1 4z, the vertices in
G are numbered consecutively in such a way that all vertices in level d have numbers greater
than n — 1. So if we force G’ to be embedded into H such that each vertex in H gets at
most 3 vertices of G and the vertices with numbers 0 to n — 1 in G are embedded 1 to 1 in
H we have a systematic numbering for all vertices in H using only vertices of lower levels
than d. (Note that a systematic numbering is necessary to avoid that vertices in H have to
use additional space for storing the numbers of the other vertices.) We prevented vertices in
level d to have a number less than n to ensure that oy = %, even for stage 0, since only the
vertices with numbers 0 to n — 1 in G are considered to have packets at the beginning of a
routing problem. It remains to show that a restriction to this kind of embedding does not
hurt our analysis.

The only place where we have to consider the way G is embedded in H is in the proof of
Claim 3.4. There we assume that for ¢+ < alogn independent edges ey, ..., ¢€; it holds that,
for a randomly chosen embedding and any fixed vertex v in H,

Dy +1\°
Prob(Xw-...-Xewzl)g( H+ )

n — 41

A similar analysis to that in Claim 3.4 shows that this bound also holds for the kind of
embedding of G described above.

Since the greedy routing strategy on an (s, d, k)-BF has dilation at most 2 log, n it follows
that if 7 is a random embedding of G into I obeying the above restrictions and PgR is
a randomly chosen shortest path system with dilation D), then according to Theorem 3.1
a randomly chosen routing function f can be routed in H in time O(log,n - Dy) w.h.p..
Furthermore, the routing strategy on G described above implies a path system Pg that
needs no space in the routing structures of the vertices in H. The Main Theorem then
immediately follows by choosing the strategies described in Theorem 4.1.

6 Conclusions

Changing the view point from a simulation of G by H to a space-efficient path system that
supports communication between any two vertices in H we have established in this paper a
way to run arbitrary parallel algorithms on H in a space-efficient way.
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