
Space�E�cient Routing in Vertex�Symmetric Networks�

�Technical Report�

Friedhelm Meyer auf der Heide and Christian Scheideler

Department of Mathematics and Computer Science
and Heinz Nixdorf Institute� University of Paderborn

����� Paderborn� Germany

email� ffmadh�chrschg	uni
paderborn�de

Abstract

In this paper we prove an upper bound for the trade�o� between routing time and
space needed in vertex�symmetric networks to store routing information in the processors
and the packets� In particular� we prove that for any vertex�symmetric network with n

vertices� degree d� and diameter D � ��logn	 it holds for all s � 
�� n�

A randomly chosen function and any permutation can be routed in time O�log

s
n �D	�

with high probability� if O�s �D � logd	 space is available at each processor and

��	 O�D � logd	 space is available for storing routing information in each packet �this
su�ces to route to arbitrary destinations	� or

��	 O�log�s �D		 space is available for storing routing information in each packet �this
su�ces to route to randomly chosen destinations� w�h�p�	�

E�g�� for arbitrary bounded degree vertex�symmetric networks with diameter O�logn	
�among them expanders	 this result shows
 routing time O�logn	 can be achieved already
if O�n�	 space is available in each vertex� � � � arbitrary� If we allow O�log� n	 routing
time� space can be reduced to O�logn	�

This is the �rst result that relates space to routing time� previous approaches only
consider space and dilation� ignoring congestion and the design of routing protocols�

� Introduction

The communication cost among the processors of a parallel system is usually measured by two
parameters� the time and the routing space necessary to route all packets from any point to
any point of the system� Whereas much is known about the runtime for all kinds of networks
under the condition that enough space is available �see� e�g�� �MV��	
� little is known about
how space�e�ciency can in
uence the runtime� But space�e�ciency will be important for
large parallel systems to keep the price of the routing hardware low� Moreover� the design of
the routing hardware for these systems should be independent of the topology of the network
to be realized� On the other hand� the communication among the processors usually requires
a large portion of the runtime of a parallel algorithm� Therefore� designing routing hardware
and routing protocols that �nd an optimal trade�o� between routing time and space is an
important task in parallel systems�

� Supported in part by DFG�Forschergruppe �E�ziente Nutzung massiv paralleler Systeme� Teilprojekt ���
by Volkswagen Foundation and by the Esprit Basic Research Action Nr �	�	 
ALCOM II�
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In this paper we prove an upper bound for the trade�o� between space and routing
time that holds for all vertex�symmetric networks with diameter ��logn
� This result is a
consequence of a new strategy for the simulation between arbitrary networks� The simulation
strategy and its analysis is inspired by the routing protocol for arbitrary networks presented
in �MV��	� We will apply our techniques for the simulation of networks to demonstrate
space�e�cient routing strategies for vertex�symmetric networks�

��� Space�E�cient Routing

The routing network is represented by a connected graph H � �V�E
� where V � �n	��
f�� � � � � n� �g
 is the set of all vertices �or processors
 and E � V � V is the set of all edges
�or links
 in H � Each fv� wg � E consists of two links� one in each direction� Each link
entering a vertex v contains an input bu�er that is able to store packets�

We only consider oblivious routing strategies� i�e�� a packet with origin u and destination
v has to travel along a prescribed routing path p�u� w
 in H � The set of these paths for all�n
�

�
pairs �u� v
 of vertices in H is called a path system and denoted by P � A shortest path

system contains only paths p�u� v
 that are shortest paths from u to v in H �
A packet consists of a source v � V � a destination w � V � additional routing information

and a message� The source and destination need logn bits� each� Throughout this paper
we restrict the routing information to be very small� namely of length at most O�logn
� We
assume the messages to have uniform length�

Given a path system P in H � a routing protocol consists of a contention resolution protocol
and a routing structure for each vertex v in H �

The contention resolution protocol chooses a packet from those currently stored in v�s
input bu�ers� The choice depends on the source� destination and routing information of
these packets� Our contention resolution protocol works with O�degree of H
 operations�
each on log n�bit words�

The edge along which a packet has to be sent is determined with the help of a routing
structure stored in v� This is a �static
 data structure that� given the destination and the
routing information of a packet� enables v to compute the next edge the packet has to use
w�r�t� its path prescribed in P � and �maybe
 update the packet�s routing information� We
demand that this access needs constant time� i�e� a constant number of operations on log n�bit
words�

The routing protocol used in this paper proceeds in rounds� Initially� every vertex v � V

has one packet� A function f � V � V assigns a destination vertex to each packet� The set
of all functions is denoted by F � In a round� each vertex v chooses a packet from one of its
input bu�ers with the help of its contention resolution protocol� computes the next edge it
has to go by accessing its routing structure� and sends it along the respective edge�

Clearly� the following parameters greatly in
uence the time needed to route an h�function
f in H �

� the dilation D of P � that is� the length of the longest path in P � and

� the congestion Cf � i�e� the maximum number of routing paths p�u� f�u� i

 in P that
pass through the same vertex in H �

Note that Cf �D rounds su�ce to route f � This upper bound follows from the facts that a
packet is delayed at most Cf times at any vertex and that the length of its path is at most D�
On the other hand� if there is at least one vertex that transmits Cf packets and one packet
that traverses ��D
 vertices in H � the routing takes ��D � Cf
 time�
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��� Routing Networks

In this paper we mainly deal with space�e�cient routing in vertex�symmetric networks� This
class is de�ned as follows�

De�nition ��� A network H � �V�E
 is called vertex�symmetric if for any pair u� v of
vertices in H there exists an automorphism � � V � V mapping u to v such that for the
graph H� � �V�E�
 with E� � ff��x
� ��y
g j fx� yg � Eg it holds H� � H�

Vertex�symmetric networks form a very general class and include most of the standard
networks such as the d�dimensional torus� the butter
y� the hypercube� etc�� Furthermore�
the best expanders that have an explicit construction are all Cayley graphs and therefore
vertex�symmetric �see� e�g�� �LPS��	� �M��	 or �M��	
�

Besides the notion of vertex�symmetric networks we need in our proofs the notion of s�ary
Butter
y networks� This class is de�ned as follows�

De�nition ��� The s�ary d�dimensional Butter�y network �s� d
�BF is an undirected graph
G � �V�E
 with vertex set

V � f�l� x
 j l � �d	� x � �xd��� � � � � x�
 � �s	dg

and edge set

E �
s���
i��

ff�l� x
� ��l� �
 mod d� f�x� l� i

g j �l� x
 � V g

where f�x� l� i
 is de�ned as

f�x� l� i
 � �xd��� � � � � xl��� i� xl��� � � � � x�


For k � f�� � � � � sg let us call the subgraph Gk � �Vk� Ek
 of an �s� d
�BF with vertex set

Vk � f�l� x
 j l � �d	� x � �k	� �s	d��g

and edge set Ek � EjVk�Vk the �s� d� k
�BF�

The following example will clarify how a ��� �� �
�BF is located in a ��� �
�BF �the vertices
in the highest and lowest level are the same
�

(3,2,2)-BF

(0,0)

(0,1)

(0,0)

(0,8)

(1,8)

(0,8)

Figure �� A ��� �� �
�BF in a ��� �
�BF

Note that the �n� �
�BF is the complete graph consisting of n vertices�
The goal of this paper is to show that for any vertex�symmetric network H with diameter

��logn
 and s � f�� ng there is a suitable routing protocol that can e�ciently simulate a
suitably chosen �s� d� k
�BF in H using little space for the routing structures in the vertices
and routing information in the packets�
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��� Previous Results

If no restrictions are imposed on the routing space then� according to �MV��	� it holds for
arbitrary networks with diameter D that any h�function f with congestion Cf can be routed
in time O�D � Cf � log n
� w�h�p�� Their results can be used to prove that� for all vertex�
symmetric networks with diameter D� a randomly chosen h�function can be routed in time
O�h �D � logn
� w�h�p�� if space O�n � d
 in each vertex and routing information of length
O�logn
 in each packet is available� �By �w�h�p�� we mean a probability of at least �� �

n� for
every constant � � ��


The most commonly used strategies for space�e�cient routing are interval routing and
hierarchical routing�

The interval routing protocol works as follows� every outgoing link e of a vertex v with
id�v
 � �n	 is attached by intervals of id�s of vertices� e�g� �i�� i�	� telling v that whenever it
has a packet that has to be sent to a destination vertex with id i such that i� 	 i 	 i�� v
has to send the packet along link e� Cleary� if each vertex is allowed to have k intervals the
routing protocol requires only a space of O�k logn
 for every vertex of the network� Analyses
of the interval routing protocol and generalizations of it can be found� e�g�� in �FJ��	 and
�FGS��	� In �B��	 a lower bound can be found for the number of intervals necessary to obtain
optimal interval routing for arbitrary networks of degree �� namely �� n

log� n

� Thus a dilation

O�diameter
 can only be achieved using space �� n
logn 
� No analysis is known so far for the

routing time of interval routing in arbitrary vertex�symmetric networks�
Space�e�cient hierarchical routing schemes can be found� e�g�� in �FJ��	� �PU��	 and

�ABLP��	� These papers analyze the relationship between the routing space and the stretch
factor for a class of so�called c�decomposable graphs �see �FJ��	
 or arbitrary graphs �see
�PU��	� �ABLP��	
� A routing scheme has stretch factor k if the length of the path a packet
from vertex v to vertex w has to take according to the scheme is at most k times longer then
the length of the shortest path between v and w� In �ABLP��	 it is shown that� in order
to guarantee stretch factor k� routing structures of size O�k � n��k � log n
 in each vertex and
routing information of size O�logn
 in each packet are su�cient� So their routing scheme
needs routing structures of size at least O�log� n
� According to �PU��	 any routing scheme
that achieves a stretch factor of k must use an average of ��n����k���
 bits for the routing
structure of a vertex�

All hierarchical schemes have the great disadvantage that the routing is done with the
help of a clustering of the graph� where some vertices are declared as routing centers for a set
of other vertices� It is not di�cult to prove that this strategy causes a congestion of ��n
�
w�h�p�� if randomly chosen ��functions have to be routed� Therefore hierarchical routing
schemes are not useful to obtain a fast routing time�

��� New Results

Our main result is a trade�o� between routing time and space requirement in arbitrary vertex�
symmetric networks� In particular� we prove�

Main Theorem� Let H � �V�E
 be an arbitrary vertex�symmetric network with n vertices�
degree d� and diameter D � ��logn
� Then for every s � ��� n	 it holds�
A randomly chosen function can be routed in O�logs n �D
 rounds� w�h�p�� if O�s �D � log d

space is available at each vertex and

�	
 O�D � log d
 space is available for storing routing information in each packet� This
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su�ces to route arbitrary functions�

��
 O�log�s � D

 space is available for storing routing information in each packet� This
su�ces to route random functions� w�h�p��

Consequences of this result are described in Section ��� below� It is easy to extend the
results of the Main Theorem to routing arbitrary permutations in H by simulating each
routing phase in a way that the packets are �rst sent to random destinations before they are
sent to their original destinations �see� e�g�� �V��	
�

Our approach to achieve this trade�o� between routing time and space is �Routing via
Simulation�� The line of proof chosen here contains new results about the simulation of
arbitrary and vertex�symmetric networks�

Consider networks G � �V�R
 and H � �V�E
� Fix a shortest path system PH
R in H

which contains shortest paths pH�u� v
 in H only for pairs fu� vg � R� Further �x a shortest
path system PG in G� consisting of paths pG�u� v
 for all u� v � V � Our strategy to simulate
routing in G by H then works as follows�

Suppose� a packet with origin u and destination v travels along the path pG�u� v
� In
order to simulate the traversal of an edge fx� yg � R� it chooses the path pH�x� y
�

The resulting path system in H is called P�� Let DG denote the dilation of PG� DH the
dilation of PH

R � and D� the dilation of P��
Let us call a packet at stage q if it is currently routed along the path in H simulating the

q�th edge of the packet�s path in G� Let Cq
f be an upper bound for the number of packets

at stage q that pass a vertex v in H and C�
f � maxq�	DG
C

q
f � Obviously� this de�nition of

congestion is stronger then the one in Section ���� because there Cf was de�ned to be the
sum over all Cq

f � So in the following we consider C�
f instead of Cf �

Clearly� D� 	 DH �DG� and routing f using the path system P� needs time ��D��C�
f
�

We will present a routing protocol that uses the path system P� and prove the following
performance bound�

Let f be some routing function with congestion C�
f w�r�t� P�� Then routing f in H needs

at most O�DG�DH � C�
f 
 � logn
 rounds� w�h�p��

Before we give upper bounds on the routing time and routing space in vertex�symmetric
networks we describe what our random experiments are�

� Let Sn be the set of all permutations on V � Let � � Sn de�ne an embedding of the
vertices of G into vertices of H in a way that u in G is embedded in ��u
 in H � In the
following we will mean by 
G is randomly embedded in H� that � is chosen uniformly
at random from Sn�

� Let SPG denote the collection of all shortest path systems PG in G� We say that PG
is a random shortest path system if it is chosen uniformly at random from SPG�

� Further let SPH denote the collection of all shortest path systems PH in H � We say
that PH

R is a random shortest path system if its paths are taken from a path system PH
chosen uniformly at random from SP�

� We call f a random function if it is chosen uniformly at random from F �
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For a permutation � � Sn let � 
 R � ff��u
� ��v
g j fu� vg � Rg� Let DG be the
diameter of G� Then� for the experiment of randomly choosing a shortest path system PG
and a function f � the expected stage congestion � of G is de�ned as

� � max
e�R� q�	DG


E�� packets that want to use e as q�th edge


Using the random experiments described above we are able to prove the following results�

Let G � �V�R
 be a dG�regular network with expected stage congestion �� H � �V�E
 be
vertex�symmetric with diameter DH � ��logn
� � be a randomly chosen embedding of G into
H� and PG and PH

��R be randomly chosen shortest path systems� Then the congestion C�
f of

a random function f is at most O�� �dGDH
� w�h�p�� Therefore routing f in H needs at most
O�DG � � � dGDH
 rounds� w�h�p�� Furthermore� there are two strategies for space�e�cient
routing that imply routing structures of size O�dG �DH � log dH
 plus the size for storing PG�
and

�	
 routing information of size O�DH log dH
� This su�ces to route arbitrary functions�

��
 routing information of size O�log�dG �DG �DH

� This su�ces for random functions f �
w�h�p��

Finally� in order to get fast and space�e�cient routing protocols forH � we will use as guest
graph G a well�known vertex�symmetric network� the s�ary Butter
y� Its regular structure
allows very space�e�cient routing structures for PG� Furthermore� we show that � � �

dG
which implies that the congestion C�

f of a random function is bounded by O�DH
� w�h�p��
The Main Theorem then follows immediately from the fact that the s�ary Butter
y has degree
�s and diameter at most � logs n�

��� Discussion of the Main Theorem

According to the Main Theorem it holds for all bounded degree vertex�symmetric networks
with diameterD � ��logn
� If only space O�D
 is allowed for each vertex and space O�logD

is allowed for storing routing information in a packet the routing of a randomly chosen
function �nishes after O�logn �D
 rounds� w�h�p�� If a space of O�n� �D
� 	 � �� is allowed
for each vertex and space O�logn
 is allowed for each packet� the routing �nishes after O�D

rounds� w�h�p��

As noted above� the best expanders that have an explicit construction are all Cayley
graphs and therefore vertex�symmetric� Although it seems to be very di�cult to design
space�e�cient routing schemes for these graphs with the help of an analysis of the underlying
algebraic structure� the Main Theorem shows that space O�logn
 su�ces to route almost
all functions f � F in time O�log� n
 and a space of O�n�
 su�ces� for arbitrary 	 � �� to
achieve a routing time of O�logn
� w�h�p��

��	 Organization of the Paper

In the next section we describe the routing protocol used for our simulations� Section � proves
an upper bound for the congestion C�

f if G is edge�symmetric and H is vertex�symmetric�
Section � presents a suitable design for space�e�cient routing structures� Finally� in Section
� the Main Theorem is proved�
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� The Extended Growing�Rank Protocol

In this section we describe an extension of the growing�rank protocol presented in �MV��	�
As we will see� it is especially suitable for simulations among vertex�symmetric networks�

Let G � �V�R
 and H � �V�E
 be arbitrary networks and f � F � Let PG� PH
R � P�� DG�

DH � and C�
f be de�ned as in Section ����

Initially� each packet Pv is assigned an integer rank�Pv
� chosen uniformly at random and
independently from the set f�� � � � � K � �g� where

K ��

�
��e�C�

f
��DH������ logn�DG

DH

�
�DH

for some constant � � �� Thus K is a multiple of DH �
Whenever a packet is forwarded in H � its rank is increased by K

DH
� When a packet P

reaches the vertex in H that simulates the q�th vertex on P �s path in PG� q � �� �� � � �� a
new rank is chosen independently and uniformly at random from the set q � �K � �K	 �
fq � �K� � � �� q � �K � �K � �
g�

If two or more packets are contending to leave the same vertex� then the one with the
smallest rank is chosen� A round for a vertex within a stage looks the same as in the growing
rank protocol described in �MV��	�

� choose a packet P with minimum rank�

� rank�P 
 ��rank�P 
 � K
DH

�

� move P forward on its routing path�

If there is more than one packet with smallest rank� then in order to break ties the packet
Pv with lowest value v is chosen �note that for this purpose v has to be stored in the routing
information
�

The following theorem will give a bound for the routing time of an arbitrary function
on G simulated by H for arbitrary networks G and H � The proof will be an extension of
the proof in �MV��	 which itself is modi�cation of analyses presented in �R��	� �L��	� and
�LMRR��	� The result in �MV��	 only holds for shortest path systems� The problem we have
to handle in our proof is that di�erent phases of our routing protocol overlap and that we do
not have shortest path systems any more�

Theorem ��� Let G and H be two arbitrary graphs� let P�� DH� and DG be de�ned as
above� Furthermore� let f � F be some routing function with congestion C�

f w�r�t� P�� Then
the extended growing�rank protocol routes f in H within O�DG�DH � C�

f 
 � logn
 rounds�
w�h�p��

Proof� In the following� we denote the rank of a packet P while waiting at a vertex v by
rankv�P 
� Let idmax � n� We de�ne the ident�rank of P at v as rankv�P 
 � id�P �

idmax�� and
denote it by id�rankv�P 
� Note that� in each round� the ident�ranks of all packets are distinct�
This type of rank ensures that whenever a packet P delays a packet P � at a vertex v it holds
id�rankv�P 
 
 id�rankv�P �
� The following lemma shows that the rank of any packet at stage
q can not be greater than ��q � �
K � ��

Lemma ��� Suppose P is a packet at stage q which is stored at a vertex v in some round�
Then rank v�P 
 	 ��q � �
K � ��
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Proof� At the beginning of stage q� the rank of P is at most q ��K�K��� Since the length
of the routing path of P within two stages is at most DH � the rank of P is increased by K

DH

for at most DH times� Thus� rankv�P 
 	 q � �K �K � � �DH � K
DH

	 ��q � �
K � ��

Note that the rank of any packet during any stage of the routing will be bounded above
by �DGK � �� The following analysis will be based on a delay sequence argument�

De�nition ��� 		�s� �
�delay sequence

 An �s� �
�delay sequence consists of

�	
 s� � not necessarily distinct collision vertices v�� v�� � � � � vs�

��
 s delay packets P�� P�� � � � � Ps such that the routing path of Pi crosses the vertex vi and
the vertex vi�� in that order for � 	 i 	 s�

��
 s integers ��� ��� � � � � �s such that �i is the number of edges on the routing path of packet
Pi from vertex vi to vertex vi�� for � 	 i 	 s� and

Ps
i�� �i 	 �� and

��
 s integer keys r�� r�� � � � � rs such that � 	 rs 	 � � � 	 r� 	 r� 	 �DGK � ��

We call s the length of the delay sequence� and we say a delay sequence is active� if rank vi�Pi
 �
ri for � 	 i 	 s�

Lemma ��� Suppose the routing takes T � �DGDH or more rounds� Then there exists an
active �T � �DGDH � �DGDH
�delay sequence�

Proof� First� we give a construction scheme for a delay sequence� Let P� be a packet
that moves forward in round T to a vertex v�� We follow P��s routing path backwards to
the last vertex on this path where it was delayed� This vertex we call v�� Let P� be the
packet that caused the delay� since it was preferred against P�� We now follow the path of
P� backwards until we reach a vertex v� at which P� was forced to wait� because the packet
P� was preferred� We change the packet again and follow the path of P� backwards� We can
continue this construction until we reach round �� Here it ends with a packet Ps starting at
its source vs�

The path from vs to v� recorded by this process in reversed order is called delay path� It
consists of contiguous parts of routing paths� In particular� the part of the delay path from
vertex vi to vertex vi�� is a subpath of the routing path of packet Pi� we de�ne �i to be the
length of this subpath for � 	 i 	 s�

We set ri �� rankvi�Pi
 for � 	 i 	 s� Because of the rules of the protocol we have
r� � r� � � � � � rs � �� Moreover� Lemma ��� yields that �DGK � � � r�� Thus� we have
constructed an active �s� �
�delay sequence for every � �Ps

i�� �i�
Our next goal is to bound the sum of the �i�s� In addition to the ranks r�� � � � � rs� we denote

by r� the rank of P� in v�� It follows immediately from the protocol that ri � �i � K
DH

	 ri��

for � 	 i 	 s� As a consequence�

sX
i��

�i � K

DH
	 r�

Lemma ���
��

sX
i��

�i 	 ��DGK � �
 � DH

K
	 �DGDH � ��


Since the delay sequence covers up T rounds and consists of
Ps

i�� �i moves and s � �
delays� we have T �

Ps
i�� �i � s� �� It follows that

s � T �
sX
i��

�i � �
���
� T � �DGDH � � �
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Consequently� if we stop the above construction at packet PT��DGDH
� we have found an

active �T � �DGDH � �DGDH
�delay sequence�

Lemma ��� If the routing paths of the packets are shortest paths� then the tuples �P� q
 of
delay packets P at stage q in the above construction are pairwise distinct�

Proof� Suppose� in contrast to our claim� that there is some packet P appearing twice at
the same stage q in the delay sequence� Then there exist i and j with � 	 i 
 j 	 s and
P � Pi � Pj � Thus� the routing path of P crosses the delay path at the collision vertices vj
and vi in that order�

Let m denote the distance from the vertex vj to the vertex vi� If the routing paths are
shortest paths� then the rank of P is increased m times while moving from vj to vi� and
hence�

id�rankvi�P 
 � id�rankvj �P 
 �m � K

DH
� ��


On the other hand� each packet Pk�� delays the packet Pk at vertex vk � and consequently�
id�rankvk�Pk
 � id�rankvk �Pk��
 for � 	 k 	 s � �� Further� the length of the routing
path of packet Pk�� from vk�� to vk is �k��� and thus the rank of Pk�� is increased by
�k�� � K

DH
on its path from vk�� to vk for � 	 k 	 s � �� It follows that id�rankvk�Pk
 �

id�rankvk���Pk��
 � �k�� � K
DH

for � 	 k 	 s� �� This yields

id�rankvi�P 
 � id�rankvj �P 
 �
j��X
k�i

�k�� � K

DH
� id�rankvj�P 
 �m � K

DH
� ��


Since ��
 contradicts ��
� there is no packet that appears twice at the stage in the delay
sequence�

Lemma ��
 The number of di�erent active �s� �
�delay sequences in H is at most

n � ��
�
�eC�

f �s� �DGK


s

�s
�

Proof� We count the number of possible choices for each component�

� There are n possibilities to determine the starting point v� of the delay path�

� Since
Ps

i�� �i 	 �� there are
�s��
s

�
ways to choose the �i�s�

� Finally� there are
�s��DGK��

s

� 	 �s��DGK
s

�
possibilities to choose the ri�s such that

�DGK � � � r� � r� � � � � � rs � ��

� Once the �i�s and ri�s are chosen� there are at most �C�
f

s choices for the delay packets�

This is because there are at most C�
f choices for the packet P�� We follow the routing

path of P� backwards for �� rounds� until we reach vertex v�� Now we have at most C�
f

choices for P�� We follow again the routing path of this packet to vertex v� an so on�
until we reach packet Ps�
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Altogether� we �nd that the number of active �s� �
�delay sequences is at most

n � �C�
f

s

�
s � �

s

��
s� �DGK

s

�
�

Applying the inequalities
�a
b

� 	 �a and
�a
b

� 	 �
ea
b

�b
� the desired upper bound is

n�C�
f

s�s��

�
e�s� �DGK


s

	s
	 n � ��

�
�eC�

f�s� �DGK


s

�s
�

The probability that a particular delay sequence with s distinct packets is active is at
most K�s� This is because a sequence with s distinct packets determines s ranks� As a
consequence�

Prob�the routing takes T � s� �DGDH or more rounds


	 Prob

�
an �s� �DGDH
�delay sequence with

distinct delay packets is active

	

	 n��DGDH

�
�eC�

f �s� �DGK


s

�s
�K�s �

We choose T � ��eC�
fDG � �DGDH � ��� �
 logn� This yields

s � ��eC�
fDG � ��


s � ��� �
 logn� �DGDH � and ��


s 	 DGK ��


for K � ��eC�
f � �DH � ��� �
 logn�DG� As a consequence�

Prob�the routing takes T � s� �DGDH or more rounds


�
�
	 n��DGDH

�
�eC�

fDG

s

�s
�������
	 n��DGDH

�
�

�

	����� logn��DGDH

� n�� �

This proves Theorem ����

Note that� if we use priority queues as bu�ers for the packets and so�called ghost�packets
according to a strategy used in �R��	� then it takes only O�dH
 time for a vertex to �nd the
packet with the lowest rank� So if we consider only networks H with constant degree� then
the time to �nd the packet with lowest rank in each round is constant�

In the next section this theorem will be used to obtain e�cient simulations of arbitrary
networks on vertex�symmetric networks�

� Bounding the Congestion

In this section we bound the congestion C�
f for the case that G is a dG�regular network and

H is vertex�symmetric� Recall our strong notion of congestion as de�ned in Section ����
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Theorem ��� Let G be a dG�regular network with expected stage congestion �� and H be
vertex�symmetric with diameter DH � ��logn
� � be a random embedding of G into H� PG
be a random shortest path system in G� and PH

��R be a random shortest path system in H�
Then� for a random function f �

C�
f � O�� � dGDH
 �

w�h�p�� Thus� by Theorem ��	� O�DG � � � dGDH
 rounds su�ce to route a random function
f � w�h�p��

Proof� We have to prove the bound on C�
f � For a �xed v � V and e � fu� wg � R�

let the binary random variable Xe�v be � if and only if for a randomly chosen embedding
� and shortest path system PH

��R the path pH���u
� ��w

 contains v� Further� for a �xed
edge e � R and packet u � V � let the binary random variable Xq

u�e be � if and only if for a
randomly chosen shortest path system PG and function f � e is the q�th edge in the path from
u to f�u
 in G prescribed by PG�

For v � V � let the random variable Cq
v denote the congestion at v in H caused by packets

at stage q if �� the shortest path systems PG and PH
��R� and f � F are chosen independently

at random� Clearly� it holds�

Cq
v �

X
e�R

Xe�v

�X
u�V

Xq
u�e

�

We �rst want to calculate the expected congestion E�Cq
v
 for each vertex v in H and

q � �DG	�
Let pe�v be the probability thatXe�v � � and pqu�e be the probability thatXq

u�e � �� Because
H is vertex�symmetric there is an automorphism � for every pair of vertices v� v� in H that
maps v to v�� Consequently� by the choice of the random experiments� pe�v � pe���v� � pe�v� �
Since the Xe�v are independent from the Xq

u�e it holds�

E�Cq
v
 �

X
e�R

X
u�V

E�Xe�v
 �E�Xq
u�e


�
X
e�R

X
u�V

pe�v � pqu�e �
X
e�R

X
u�V

pe���v� � pqu�e

�
X
e�R

X
u�V

pe�v� � pqu�e � E�Cq
v�


Thus E�Cq
v
 is the same for every vertex v � V � namely at most DH � �� because there are

n packets that have to be routed along paths of length at most DH � ��
Unfortunately� we can not use the well�known Cherno� bound to prove an upper bound

for Cq
v that holds w�h�p�� because the products Xe�v �Xq

�x�i��e are not independent from each
other� Nevertheless� the following lemma enables us to use the high moments version of
the well�known Markov Inequality �see� e�g�� �SSS��	
 in such a way that we can bound the
congestion at each vertex in H by O�� � dGDH
� w�h�p��

Lemma ��� Let X be an arbitrary random variable� Then� for every 	 � � and k � �� it
holds�

Prob

�
jX � E�X
j � 	 � k

q
E�jX �E�X
jk


	
	


�
�

�k
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Let m � f� logn� � logn� �g be even� Then we get�

E�jCq
v �E�Cq

v
jm
 � E��Cq
v � E�Cq

v


m


�
mX
k��

�
m

k

�
E��Cq

v

k
��E�Cq

v


m�k

It remains to bound E��Cq
v

k
 for every � 	 k 	 m� Let s�k� j
 �

Pj
������
�

�j
�

�
�j � �
k 	 jk

be the number of surjective mappings from �k	 to �j	� Then it holds

E��Cq
v

k
 �

kX
j��

s�k� j

X

f�u��e��������uj �ej �g

�V�R

E�Xe��vX
q
u��e�

� � � � �Xej �vX
q
uj�ej




In the following let the operator  E��
 denote the average value of E��
 over all subsets
f�u�� e�
� � � � � �uk� ek
g 
 V � R� where ��� denotes some formula over random variables�
In other words�

 E��
 �
��n�jRj
k

� X
f�u��e��������uj �ej�g

�V�R

E��


Then it remains to prove the following lemma to get a bound for E��Cq
v

k
�

Lemma ��� For k 	 � � log n� � constant� and the four random experiments described above
it holds�

 E�Xe��vX
q
u� �e� � � � � �Xek�vX

q
uk�ek


 	


e	�DH��k�

n�

�k
Proof� Since the Xe�v are independent from the Xq

u�e it holds�

E�Xe��vX
q
u��e�

� � � � �Xek�vX
q
uk �ek




� E�Xe��v � � � � �Xek�v
 �E�Xq
u��e�

� � � � �Xq
uk�ek




From this we conclude that

 E�Xe��vX
q
u��e�

� � � � �Xek�vX
q
uk�ek




�
��n�jRj
k

� X
f�u��e��������uj �ej�g

�V�R

E�Xe��vX
q
u��e� � � � � �Xej�vX

q
uj�ej 


�
��n�jRj
k

� X
e��


�ek�R

E�Xe��v � � � � �Xek �v

X

u������uk�V
s�t� all �uj � ej � distinct

E�Xq
u��e�

� � � � �Xq
uk�ek


 � �
k!

The factor �
k� is necessary to eliminate super
ous permutations of the �uj � ej
� It is easy to

see that the Xq
uj�ej

can be regarded as independent� because the destinations of the packets
are chosen independently at random and there is at most one edge e a packet can take at
stage q� Thus� according to the de�nition of the expected stage congestion �� it holds for
all e�� � � � � ek � R with M denoting the set of all �u�� � � � � uk
 � V k such that all �uj� ej
 are
distinct�

�
jM j

X
�u��


�uk��M

E�Xq
u��e� � � � � �Xq

uk�ek

 	

�
�

n

	k

It remains to prove an upper bound for  E�Xe��v � � � � �Xek�v
� This is done in the following
claim�
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Claim ��� For the random experiments described above it holds�

 E�Xe��v � � � � �Xek �v
 	


e�DH��k�

n

�k
Proof� According to the de�nition of  E��
 we get

 E�Xe��v � � � � �Xek�v
 	
��n�jRj
k

� kX
j��

s�k� j

X

fe���


�e�jg�R
E�Xe���v

� � � � �Xe�
j
�v


X
�u��


�uk��V k

�

k!
�

since there are s�k� j
 possibilities to map fe�� � � � � ekg to fe��� � � � � e�jg� Therefore it holds
�note that �m	k � m!��m� k
!
�

 E�Xe��v � � � � �Xek�v
 	 ��n�jRj
k

� kX
j��

s�k� j

X

fe���


�e�jg�R
E�Xe���v

� � � � �Xe�j �v

 � n

k

k!

�
kX

j��

s�k� j
 � nk
�njRj	k

X
fe���


�e�jg�R

Prob�Xe���v
� � � � �Xe�

j
�v � �
� 
z �

���

Before we can proceed with our calculation we have to �nd an upper bound for ��
 if
fe��� � � � � e�jg is randomly chosen out of R�

Let the random variable I be i if and only if fe��� � � � � e�jg has a maximal independent set
of size i� that is� fe��� � � � � e�jg has a set f e�� � � � �  eig of maximal size i for which all vertices
adjacent to  e�� � � � �  ei are distinct� We �rst want to show that for any edge e � f e�� � � � �  eig
we can independently assume a probability of DH��

n��i that� for a randomly chosen embedding
of G into H � the path simulating e in H traverses a �xed vertex v in H �

Since H is vertex�symmetric� it holds for every �xed vertex v in H that� for a randomly
chosen shortest path system PH in H �

��n
�

� X
fu�wg�V

pfu�wg�v �
DH � �

n

Consider the edges  e�� � � � �  ei�� to be embedded into some set of verticesW � fw�� � � � � w��i���g
in H � Then we get

��n
�

� X
fu�wg�V nW

pfu�wg�v 	
DH � �

n

From this we conclude that� for a randomly chosen ��� embedding � and shortest path system
PH �

Prob�X�ei�v � � j X�e��v � � � � �X�ei���v � �


�
Prob�X�e��v � � � � �X�ei�v � �


Prob�X�e��v � � � � �X�ei���v � �


�

P
W�fw��


�w��i�����g�V

Qi��
j�� pfw�j�� �w�jg�v � �

�n���i���
� 


P
fu��u�g�V nW pfu��u�g�vP

W�fw��


�w��i�����g�V
Qi��
j�� pfw�j���w�jg�v

	

P
W�fw��


�w��i���g�V

Qi��
j�� pfw�j���w�jg�v �

����z �� 
�n
�

�
�n���i���

�

� � DH � �

nP
W�fw��


�w��i�����g�V

Qi��
j�� pfw�j���w�jg�v
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���
 can be bounded by

�
n

n � ��i� �
� �

	� DH � �

n
	 DH � �

n� �i

Therefore it holds�

Prob�Xe���v
� � � � �Xe�

j
�v � �
 	

jX
i��

Prob�I � i


�
DH � �

n� �i

	i

It remains to prove an upper bound for Prob�I � i
�
Consider any �xed i � f�� � � � � jg� Let f e�� � � � �  eig be a maximal independent set in

fe��� � � � � e�jg� Then the set fe��� � � � � e�jg can be decomposed into � trees T� containing  e� in
such a way that we obtain the following structure �each " in a tree T� denotes a set of edges
incident to one of the vertices of e�
�

. . . . . . 

e 2 ee 1 i

Figure �� A decomposition of fe��� � � � � e�jg into i trees�

Assume in the contrary this is not true� Then there exists a tree T� that has an edge e
with distance � from  e� that has no vertex that is adjacent to an edge in f e�� � � � �  eig� But
then we can extend the independent set by e� that is� f e�� � � � �  eig can not be a maximal
independent set� Thus the decomposition above is correct�

Clearly� there are at most jRji possibilities to choose the edges of the independent set� For
the remaining edges there are ��i
j�i possibilities to determine to which subtree of which tree
T� they belong� and dj�iG possibilities to choose the second vertex adjacent to them� Since we
do not want to count permutations among these j edges we get that altogether there are at
most �

jRj
i

��
i��dG � �


j � i

�

possibilities to choose an edge set fe��� � � � � e�jg that correponds to the decomposition described

above� Since there are
�jRj
j

�
ways to choose a subset of j di�erent edges it holds with jRj � dG

� n

that

Prob�I � i
 �

�jRj
i

��i��dG���
j�i

�
�jRj
j

�
	 �jRj	i�i��dG � �

j�i

�jRj	j � j!

i!�j � i
!
	
�
j

i

��
�i

n

	j�i

So altogether we get

Prob�Xe��v � � � � �Xej�v � �
 	
jX

i��

�
j

i

��
DH � �

n� �i

	i��i
n

	j�i

	
�
DH � �j

n� �j

	j
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Using this bound in ��
 and the fact that
�n
k

� 	 �p
�k

� enk 

k for all n � IN and k � f�� � � � � ng

yields

 E�Xe��v � � � � �Xek�v
 	
kX

j��

s�k� j
 � nk
�njRj	k

X
fe��


�ejg�R

�
DH � �j

n � �j

	j

	
kX

j��

jk � nk
�njRj	k

�
jRj
j

��
DH � �j

n � �j

	j

	
kX

j��

jk � nk
�njRj	k

�p
�j

�
ejRj
j

	j �DH � �j

n � �j

	j

	
kX

j��

ejp
�j

�
j

jRj
	k�j �DH � �j

n� �j

	j

	
�
e�DH � �k


n

	k

This proves the claim�

So altogether we get

 E�Xe��vX
q
�x��i���e�

� � � � �Xek�vX
q
�xk�ik��ek


 	
�
e�DH � �k


n

	k ��
n

	k
This proves the lemma�

With the help of Lemma ��� we get

E��Cq
v

k
 �

kX
j��

s�k� j

X

f�u� �e��������uj �ej �g

�V�R

E�Xe��vX
q
u��e� � � � � �Xej�vX

q
uj�ej 


	
kX

j��

s�k� j


�
n � jRj
j

��
e��DH � �j


n�

	j

	
kX

j��

jk � �p
�j

�
enjRj
j

	j �e��DH � �j


n�

	j

	
kX

j��

ejp
�j
jk�j

�
njRj � e��DH � �j


n�

	j

	 �e� e�� � dG�DH � �k
 � k	
k

for all k 	 m� m chosen as above� Thus it holds

E�jCq
v �E�Cq

v
jm
 � E��Cq
v � E�Cq

v


m


�
mX
k��

�
m

k

�
E��Cq

v

k
��E�Cq

v


m�k

	 � e� e�� � dG�DH � �m
 �m	� 
z �
���


m
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With the help of Lemma ��� we get that for any 	 � �� jCq
v �E�Cq

v
j � 	 � ��
 with probability
at most ��� 


k and therefore

Prob�jCq
v �E�Cq

v
j � 	 � ��
 
 	


�
n

�� log �

Hence� the congestion Cv � maxq�	DG
 C
q
v in each vertex v is at most O�� � dGDH
� w�h�p��

With the help of the simple Markov Inequality �k � �
 we can �nally show that for a randomly
chosen �� PG� and PH

��R it holds� w�h�p�� that afterwards a function f chosen independently
at random has a congestion C�

f of at most O�� � dGDH
� w�h�p�� Applying Theorem ��� with
this result completes the proof of Theorem ����

Theorem ��� implies that it is easy to construct a fast probabilistic sequential algorithm
that builds up a path system in H that guarantees a congestion of O�� � dGDH
 for almost
every function f � w�h�p�� It is not clear whether there exists a fast parallel algorithm for this
purpose� This will be an interesting problem for the situation that the con�guration of the
parallel system often changes�

� Design of Space�E�cient Routing Structures

In this section we present two methods to design space�e�cient routing structures and routing
information�

Theorem ��� Let G be dG�regular and H vertex�symmetric� G be randomly embedded in H

by �� and PG and PH
��R be random shortest path systems� Then there are two strategies for

space�e�cient routing that imply routing structures of size O�dG �DH � log dH
 plus the size
for storing PG� and
�	
 routing information of size O�DH log dH
 su�ce to route arbitrary functions f in H�

for arbitrary h�

��
 routing information of size O�log�dG �DG �DH

 su�ce to route random functions f in
H� w�h�p��

Proof� We �rst prove ��
� Consider a vertex v in H � Let x � ����v
 and Rx be the set of
all edges in G incident to x� Clearly� the number of x �which needs space logn
 has to be
stored in v� Furthermore� the routing structure for v consists of the following two tables�

� Tv�� � V � � Rx � f�g is arranged in such a way that for every path pG�y� z
 in PG that
crosses x� Tv���y� z
 contains the edge following x in pG�y� z
�

� Tv�� � Rx � PH
��R is arranged such that Tv���e
 contains that path in H representing

the edge e in G�

Clearly� it takes dG � DH � log dH bits to store Tv�� in v� Since DH log dH � ��logn
� the
routing structure for v needs space O�dG �DH � log dH
 plus the space needed for storing Tv���
which depends on PG�

In this case� the simulation will work as follows� Suppose� a packet Px stored in v has
to be sent to a vertex y in G� Initially� v chooses the edge e � Tv���x� y
 and stores the
corresponding path Tv���e
 in the routing information r�x
 of packet Px�



� DESIGN OF SPACE�EFFICIENT ROUTING STRUCTURES ��

If this packet is received by vertex w in H during the routing� w �rst checks whether the
packet has already completed the path stored in its routing information� If this is true and the
packet Px has not reached its destination vertex yet� then w chooses the edge e � Tw���x� y

and stores Tw���e
 in r�x
� Otherwise� w will take the information about the next edge to be
chosen out of r�x
 and routes the packet along this edge�

Thus the routing information consists of a path in H of length at most DH � which needs
space O�DH log dH
� and h and a random rank for the extended growing rank protocol� which
needs space O�logn
� because C�

f 	 n for all functions f � This proves part ��
 of Theorem ����

In order to prove part ��
 we have to �nd an upper bound for the number of paths in
PH
��R that traverse a vertex v in H � w�h�p�� if DH � ��logn
�

Lemma ��� For a randomly chosen � and PH
��R it holds� w�h�p�� that the number of paths

in PH
��R traversing v is at most O�dG �DH
 for every vertex v in H�

Proof� For v � V � let the random variable Pv denote the number of paths in PH
��R traversing

vertex v� let Xe�v and pe�v be de�ned as in the proof of Theorem ���� Clearly� it holds�

E�Pv
 �
X
e�R

Xe�v

Choose two arbitrary vertices v and v�� Since H is vertex�symmetric� there exists an
automorphism � that maps v to v�� By the conditions of the random experiments we conclude
pe�v � pe���v� � pe�v� � Consequently� it holds E�Pv
 � E�Pv�
� Hence the expected congestion

for all vertices is the same� namely at most dG
� �DH ��
� because jRj � dG

� �n and every path
in H has at most length DH � ��

As mentioned in the proof of Theorem ���� the random variables used for Pv are not
independent from each other� Nevertheless Claim ��� can be used to show that for all k 	
� logn� � constant� it holds�

E�P k
v 
 	

�
jRj

�
e�DH � �k


n

		k

Using this in the high moment version of the Markov Inequality yields that the number of
paths Pv traversing a vertex v is at most O�dG �DH
� w�h�p��

Let B � O�dG � DH
 be an upper bound for the number of paths in PH
��R traversing a

vertex v in H such that a path collides with at most B � DH other paths in H � Suppose
G� � �V �� E�
 is a graph in which each vertex represents a path in P��R and vertices x� y � V �

are connected with each other if their respective paths collide with each other in H � Then
G� has a degree of at most d� � B �DH � Because d��� colors su�ce to color every d��regular
graph in such a way that no two adjacent vertices have the same color it is possible to attach
numbers to the paths in PH

��R out of �B �DH � �	 in such a way that no two colliding paths
have the same number�

Let 
 � R � �B � DH � �	 be the function that assignes a number to all edges in R
represented as paths in PH

��R such that the condition above is ful�lled� Then we choose the
following strategy to store space�e�cient routing information�

Consider a vertex v in H � Let x � ����v
 and Rx be the set of all edges in G incident to
x� Let the routing structure for v consist of the following three tables�
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� Tv�� � V
� � Rx � f�g is arranged in such a way that for every path pG�y� z
 in PG that

crosses x� Tv���y� z
 contains the edge following x in pG�y� z
�

� Tv�� � Rx � �B �DH � �	� e� 
�e
 maps each edge in Rx to a suitable color�

� Tv�� � �B �DH � �	 � �E � f�g
� is arranged such that Tv���k
 contains both edges the
path with number k uses to traverse v�

Clearly� it takes at mostO�dG logn
 space to store Tv��� If we apply perfect hashing techniques
described in �SS��	 we can reduce the size of Tv�� from O�B �DH � log dH
 to O�B � log dH

in such a way that we can still evaluate Tv�� in constant time� Altogether this results in a
routing structure of size

O��dG �DH � logn
 log dH � dG log n


� O��dG �DH
 log dH


because of DH � ��logn
� plus the size for storing Tv��� which depends on PG�
The simulation will then work as follows� Suppose� a packet Px stored in v has to be sent

to a vertex y in G� Initially� v chooses the edge e � Tv���x� y
� transforms it into a number
k � Tv���e
� and stores k in the routing information r�x
 of packet Px�

If this packet is received by vertex w in H during the routing� w �rst checks with the
help of Tv�� whether the packet has already completed the path whose number is stored in its
routing information� If this is true and the packet Px has not reached its destination vertex
yet� then w chooses the edge e � Tw���x� y
� transforms it into a number k� � Tw���e
� and
stores it in r�x
� Otherwise� w will ask table Tv�� for the two edges in H which lie on the
path with number k and routes the packet along the edge not used before�

Hence for a random f the routing information of each packet consists of its actual rank
which can be stored in O�log�DG �DH

 bits� and a number k � �B �DH � �	 which can be
stored in O�log�dG �DH

 bits� w�h�p�� This proves part ��
 of Theorem ����

� Space�E�cient Routing in Vertex�Symmetric Networks

We now �nally prove the Main Theorem� For this we introduce the modi�ed s�ary Butter�y
network denoted by �s� d� k
�mBF�

De�nition ��� For any �s� d� k
�BF G� � �V �� E �
� let the �s� d� k
�mBF G � �V�E
 be an
undirected graph with vertex set V � f��� x
 j � � �d� �	� x � �xd� � � � � x�
 � �k	� �s	k��g and
edge set

E � E � n ff�d� �� x
� ��� y
g j x� y � �k	� �s	k��g
�ff�d� �� x
� �d� �y� r
 mod k � sk��
g� f�d� �y� r
 mod k � sk��
� ��� y
g j
f�d� �� x
� ��� y
g � E�� r � �d sk e	g

To clarify how an �s� d� k
�mBF looks like we give the following picture�



� SPACE�EFFICIENT ROUTING IN VERTEX�SYMMETRIC NETWORKS ��
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Figure �� The structure of an �s� d� k
�mBF�

Let us perform the following simple routing strategy on an �s� d� k
�mBF�
Suppose vertex v � ��� x
 wants to send a packet P to vertex w � ���� y
� This will be

done in two phases� In Phase �� P is �rst sent along the vertices

v � ��� �xd��� � � � � x�

 � ��� �� �xd��� � � � � x���� y�� x���� � � � � x�



� ��� �� �xd��� � � � � x���� y���� y�� x���� � � � � x�

� � � �

� �d� �� �xd��� yd��� � � � � y�� x���� � � � � x�



� �d� �� ��yd��� � � � � y�� x���� � � � � x�
 � r	 mod k � sk��


� �d� �yd��� � � � � y�� x���� � � � � x�

� � � �

� ��� �yd��� � � � � y�



where r is randomly chosen out of �d ske	�
In Phase �� P is moved from ��� �yd��� � � � � y�

 to �� � �� �yd��� � � � � y�

� etc� until it

reaches its destination w�
In the following section we bound the expected stage congestion for these two phases�

��� Bounding the Expected Stage Congestion

In this section we want to give bounds on the expected stage congestion at Phase �� ��� and
the expected stage congestion at Phase �� ���

Lemma ��� For any �s� d� k
�mBF it holds that �� �
�
s and �� � ��

Proof� Let us �rst consider a simple greedy routing strategy in an �s� d� k
�BF� Clearly�
this strategy determines exactly one path for any pair of starting and destination vertex�
Because of the symmetry properties of the resulting path system it is clear that the expected
congestion for any stage is the same for every vertex within the same level� Therefore the
expected congestion for any stage is the same for every vertex in any �s� d� k
�BF� namely ��
Furthermore� the Butter
y�like structure of an �s� d� k
�BF ensures during Phase � that� for
any vertex v in level � with c edges to the next higher level� each of these edges has the same
probability to be chosen by a packet with random destination leaving v� In Phase �� each
vertex only has one edge to choose� Therefore� �� � ��

In order to bound ��� let us now change to the routing strategy on an �s� d� k
�mBF
described above� Because this strategy is equivalent to the greedy routing strategy on an
�s� d� k
�BF except for routing from level d� � to d and d to � in Phase �� the expected stage
congestion for all edges outside these levels is �

s �
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It remains to analyze the expected stage congestion of Phase � for all edges inbetween
level d� � and �� Since the edges from level d� � to � in an �s� d� k
�BF all have the same
probability to be chosen it follows that each of the edges from level d� � to d and d to � in
an �s� d� k
�mBF have the same probability to be chosen� namely �

k � �
ds�ke 	 �

s � Therefore�

�� �
�
s �

Whereas in Phase � the degree of the subgraph in the �s� d� k
�mBF used for routing is at
most �s� in Phase � the degree of the subgraph used for routing is at most �� since in Phase
� the packets only use edges of type f�l� x
� �l� �� x
g� Thus the congestion for all stages
within Phase � and � is bounded by C�

f � O�maxf�� � �s� �� � �g �DH
 � O�DH
� w�h�p��

��� Simulations using Butter
y Networks

We now �nally prove the Main Theorem� First of all� it is easy to check that for any
s � f�� � � � � ng there is an �s� d� k
�BF of size m such that jVH j 	 m 	 �jVH j� Let G be the
corresponding �s� d� k
�mBF� If we attach to each vertex ��� x
 in G with � 
 d the number
id��� x
 � d �x�� and for each vertex �d� x
 the number id�d� x
 � d �k �sd���x� the vertices in
G are numbered consecutively in such a way that all vertices in level d have numbers greater
than n � �� So if we force G to be embedded into H such that each vertex in H gets at
most � vertices of G and the vertices with numbers � to n � � in G are embedded � to � in
H we have a systematic numbering for all vertices in H using only vertices of lower levels
than d� �Note that a systematic numbering is necessary to avoid that vertices in H have to
use additional space for storing the numbers of the other vertices�
 We prevented vertices in
level d to have a number less than n to ensure that �� � �

s � even for stage �� since only the
vertices with numbers � to n � � in G are considered to have packets at the beginning of a
routing problem� It remains to show that a restriction to this kind of embedding does not
hurt our analysis�

The only place where we have to consider the way G is embedded in H is in the proof of
Claim ���� There we assume that for i 	 � logn independent edges  e�� � � � �  ei it holds that�
for a randomly chosen embedding and any �xed vertex v in H �

Prob�X�e��v � � � � �X�ei�v � �
 	
�
DH � �

n� �i

	i
A similar analysis to that in Claim ��� shows that this bound also holds for the kind of
embedding of G described above�

Since the greedy routing strategy on an �s� d� k
�BF has dilation at most � logs n it follows
that if � is a random embedding of G into H obeying the above restrictions and PH

��R is
a randomly chosen shortest path system with dilation D� then according to Theorem ���
a randomly chosen routing function f can be routed in H in time O�logs n � DH
 w�h�p��
Furthermore� the routing strategy on G described above implies a path system PG that
needs no space in the routing structures of the vertices in H � The Main Theorem then
immediately follows by choosing the strategies described in Theorem ����

	 Conclusions

Changing the view point from a simulation of G by H to a space�e�cient path system that
supports communication between any two vertices in H we have established in this paper a
way to run arbitrary parallel algorithms on H in a space�e�cient way�
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