
Exploiting Storage Redundancy to Speed Up Randomized

Shared Memory Simulations

Friedhelm Meyer auf der Heide and Christian Scheideler�

Heinz Nixdorf Institute and Computer Science Department�

University of Paderborn� ����� Paderborn� Germany

Volker Stemanny

International Computer Science Institute�

University of California at Berkeley� CA �����	

��� USA

Abstract

Assume that a set U of memory locations is distributed among n memory modules� using
some number a of hash functions h�� � � � � ha� randomly and independently drawn from a high
performance universal class of hash functions� Thus each memory location has a copies� Consider
the task of accessing b out of the a copies for each of given keys x�� � � � � xn � U � b � a� The paper
presents and analyses a simple process executing the above task on distributed memory machines
�DMMs� with n processors� E�cient implementations are presented� implying

� a simulation of an n�processor PRAM on an n�processor optical crossbar DMM with delay
O�log log n��

� a simulation as above on an arbitrary�DMM with delay O� log log n
log log log n ��

� an implementation of a static dictionary on an arbitrary�DMM with parallel access time
O�log� n� log log n

log a
�� if a hash functions are used� In particular� an access time of O�log� n�

can be reached if �log n��� log� n hash functions are used�

We further prove a lower bound for executing the above process by any so�called simple access

protocol� showing that our implementations are optimal�

� Introduction

Parallel machines that communicate via a shared memory� so�called parallel random access machines
�PRAMs�� represent an idealization of a parallel computation model� The user does not have to worry
about synchronization� locality of data� communication capacity� delay e�ects or memory contention�

On the other hand� PRAMs are very unrealistic from a technological point of view� large machines
with shared memory can only be built at the cost of very slow shared memory access� A more realistic
model is the distributed memory machine �DMM�� where the memory is partitioned into modules� one
per processor� In this case a parallel memory access is restricted in so far as only one access to each
module can be performed per parallel step� Thus memory contention occurs if a PRAM algorithm is
run on a DMM� parallel accesses to cells stored in one module have to be sequentialized�

Many authors have already investigated methods for simulating PRAMs on DMMs� If one focuses
on a complete network between processors and modules� the main problem is the distribution of the
shared memory cells over the modules to allow fast accesses� A standard method is to use universal
hashing for distributing the shared memory among the memory modules of the DMM� In this paper

�Supported in part by DFG�Sonderforschungsbereich ��� �Massive Parallelit�at� Algorithmen	 Entwurfsmethoden	
Anwendungen
	 and by DFG Leibniz Grant Me ���
����

ySupported by the DFG�Graduiertenkolleg �Parallele Rechnernetzwerke in der Produktionstechnik
	 ME ���
����
work was done at the Heinz Nixdorf Institute	 University of Paderborn�

	

 ��� Computation models

we consider both simulations of PRAMs and implementations of parallel static dictionaries on DMMs�
based on distributing the shared memory cells among the modules using not only one but several hash
functions� i�e� using a redundant storage representation�

��� Computation models

A parallel random access machine �PRAM� consists of processors P�� � � � � Pn and a shared memory
with cells U � f	� � � � � pg� each capable of storing one integer� The processors work synchronously and
have random access to the shared memory cells� In this paper we will only consider the exclusive�read
exclusive�write PRAM �EREW PRAM� model� that is� no two processors are allowed to access the
same shared memory cell at the same time during a read or write step�

A distributed memory machine �DMM� consists of n processors Q�� � � � � Qn and n memory modules
M�� � � � �Mn� Each processor has a link to each module� A basic communication step of such a
DMM consists of the processors sending read or write requests to the memory modules� at most
one request per processor� Each module processes some of the requests directed to it and sends an
acknowledgement to each processor whose request was chosen to be processed�

We distinguish between the following rules for choosing requests for processing� �c � 	 is a �xed
integer� For a discussion of the models see
�� or
	����

� arbitrary�DMM � In this case� one arbitrarily chosen request out of all requests arriving at one
module is processed per step� The answer given by a module is accessible by all processors
accessing the module�

� c�collision DMM � In this case� all requests arriving at one module are processed in one step� as
long as there are at most c of them� otherwise none is processed� An answer is only accessible by
the issuing processor� �Note � For c � 	 this model corresponds to a communication mechanism
based on optical crossbars �compare
	��
�� and

��� c�collision DMMs can easily be simulated
on arbitrary�DMMs with delay O�c���

Randomized versions of the above models are obtained by adding the capability of choosing a random
integer from a �nite range�

��� Dictionaries and Shared Memory Simulations

Shared memory simulations on a DMM based on hashing begin with a preprocessing phase� In this
phase each processor Pi of the PRAM is mapped to processor Qi of the DMM and the shared memory
cells �we say keys for short� of the PRAM are distributed among the modules of the DMM via a � 	
randomly and independently chosen hash functions from some suitable universal class of hash functions
�see below�� i�e� each shared memory cell has a copies� This redundant storage representation needs
space a � jU j�

In this paper we will only deal with a �
� The basic access distribution phase �we say basic
process for short� will be organized in such a way that each processor Pi that wants to get access to a
key xi � U tries to send requests to the modules containing copies of xi until it got access to at least b
of the a copies of xi� b � a� To resolve con�icts arising from colliding requests the modules will work
according to the c�collision rule or the arbitrary rule� This process is direct in a sense introduced by
Goldberg et al�
	��� A process for distributing the requests of the processors to the modules is called
direct if it runs in rounds and in each round the only messages allowed are requests of an arbitrary
number of copies of each key�

If we choose� for example� b � a
� then the basic process yields a simulation of an n�processor EREW

PRAM on an n�processor DMM using the trick introduced in

��� which we will call the majority
trick�
If each shared memory cell possesses a �
 copies distributed among the memorymodules of the DMM
then it su�ces to access arbitrary ba�c � 	 out of these a copies to guarantee a correct simulation of
both a read and a write step�

To clarify how this trick works suppose that an update of a copy of a key contains a time stamp
indicating the update time� If b � a

� copies of a key x are up�to�date then it su�ces to access arbitrary

��� Previous Results �

b copies of x� This guarantees that at least one up�to�date copy is accessed� It can be recognized by
its time stamp�

The read and write accesses to the shared memory can be looked upon as the lookup and update
operations of a parallel dynamic dictionary� i�e� a data structure that supports the above operations
on the given set U of keys� In case we only want to support lookups� we are allowed to execute some
preprocessing such that afterwards parallel lookups can be supported e�ciently� We refer to such a
data structure as a parallel static dictionary� In our framework� the static version is easier to handle
as all the copies are up�to�date all the time� Thus choosing b � 	 is good enough� Furthermore� we
can a�ord a larger storage overhead because we do not have to execute updates�

Our runtime bounds only hold with a certain probability �w�r�t� the choices of the hash functions��
By �with high probability� �w�h�p�� we mean a probability of at least 	� �

n�
for a �xed � � ��

��� Previous Results

Shared memory simulations and static dictionaries that use only one hash function to distribute the
shared memory cells over the modules of the DMM have an inherent delay of ��logn� log logn� even
if the hash function behaves like a random function �see
���� Faster static dictionaries are only known
for PRAMs� see
	�� and
��� On such machines constant access time can be achieved using linear
space�

Karp et al�
	�� were the �rst to consider shared memory simulations using two or more hash
functions� They also present a fast implementation of write steps� The simulation runs on an arbitrary�
DMM with delay O�log logn� and can be made time�processor optimal� Dietzfelbinger and Meyer auf
der Heide
�� achieve the same delay with a very simple scheme using the majority trick �see Section
	�
� with three hash functions� The scheme can be executed on the weaker c�collision DMM with
c � �� For a survey of shared memory simulations see
	��� MacKenzie et al�
	�� analyze processes
for accessing 	 out of
 copies for c �
 and 	 out of � copies for c � 	� They use these results to obtain
processes for accessing b � a out of a copies that have runtime at most O�a� log logn�� Furthermore�
they show that an EREW PRAM can be simulated on a 	�collision DMM with storage overhead of at
least �ve� This result was extended to a time�processor optimal simulation of an n log logn�processor
EREW PRAM on an n�processor 	�collision DMM by Goldberg et al�
		�� Their simulation uses
only three hash functions�

Recently� Czumaj et al�
�� presented a shared memory simulation with delay O�log log logn log� n�
using only three hash functions� However� they allow non�oblivious communication in their protocol
whereas we only consider communication strategies for the analysis of upper and lower bounds that
are� apart from the accesses to the copies� independent of the input keys�

��� New Results

In this paper we focus on the analysis and the implementation of a simple process for shared memory
simulations that generalizes the processes and simulations from
	���
�� and
	�� mentioned above�
We assume that each key has a copies� for some a �
� distributed w�r�t� a hash functions� randomly
and independently drawn from an O�log� n��universal� class of hash functions�

We introduce a simple direct process for accessing b out of a copies for each requested key on the
c�collision DMM� Informally� we consider processes for this task as direct if apart from the accesses
to the copies the communication is independent of the input keys� This process consists of rounds
in which the processors simultaneously try to get access to all copies of the requested keys for which
they have not been successful so far� until they have accessed at least b copies for each requested key�
The modules answer w�r�t� the c�collision rule�

We �rst analyse the above process and show that it �nishes within log logn
log�c�a�b��

� � rounds� w�h�p�

This generalizes �and improves constant factors of� the analyses from
	���
�� and
	�� from
 or � to
an arbitrary number a of hash functions�

A straightforward implementation of this process has a running time of c �a � � log logn
log�c�a�b�� ���� This

yields static dictionaries with access time O�log logn�� w�h�p�� for example for a �
 and b � 	 on

�In this paper log denotes the logarithm with base �	 logk n denotes �logn�k�

� ��� Organization of the paper

a
�collision DMM or for a � � and b � 	 on a 	�collision DMM� the optical crossbar DMM� With
the help of the majority trick �see section 	�
� the process also yields shared memory simulations� for
instance for a � � on a
�collision DMM or for a � � on an optical crossbar DMM� The advantage of
this kind of shared memory simulation is that the constants in the running time are small�

If we use the arbitrary�DMM we are able to implement a �still direct� variant of this process in a
more e�cient way� i�e�� we show how to speed up the execution of a round of the process� The time
needed for this implementation of the process is O�log� n�b� log logn

log a �� w�h�p�� if b � �	���a for some

constant � � �� It yields static dictionaries with access time O�log� n� using a � �logn��� log
� n hash

functions� For a shared memory simulation we obtain a delay of O� log logn
log log logn � with� e�g��

p
log logn

hash functions�
Finally� we ask whether we can �nd faster implementations of direct processes than ours� More

precisely� we consider a class of so�called simple access protocols for shared memory simulations and
allow each processor to access several copies of a key in parallel� Furthermore� we allow the processors
to communicate in oblivious mode with other processors� i�e�� the communication protocol must be
independent of the input keys� The information gathered about the topology of the access graph by
communicating with other processors may be used to decide which copies to try to access in the next
round� We prove that within this class of direct schemes our implementations are optimal�

��� Organization of the paper

Section
 contains information about universal hashing� log��algorithms� and useful tail estimates that
is necessary for the following sections� In Section � we introduce the basic process for our simulations
and analyze it� Section � shows implementations of the process on c�collision and arbitrary�DMMs�
Section � �nally contains the lower bound which holds within the class of simple schemes de�ned
above�

� Preliminaries� Universal Hashing� log��Algorithms� and Use�

ful Tail Estimates

This section contains information about the classes of hash functions we use to distribute the shared
memory� results about fast parallel algorithms we need for allocating work to the processors in our
fast simulations� and tail estimates necessary for the analyses of the stochastic processes underlying
our simulations�

��� Universal Hashing

Our simulations use hash functions h�� � � � � ha � U 	
n� that assign to each memory cell x � U a
modulesMh��x�� � � � �Mha�x� in which a copy of x has to be stored� These hash functions have to ful�ll
seemingly contradicting properties�

They have to behave like random functions and have to be evaluated in constant time while using
only little space�

Carter and Wegman
�� introduced the notion of universality for families of hash functions as a
measure of quality concerning the �rst of these demands�

De�nition ��� Let Hp�n be a family of hash functions mapping
p� to
n�� Hp�n is called �	� k��
universal� if for any set fx�� � � � � xjg
 U of keys and locations l�� � � � � lj � f	� � � � � ng� j � k� it holds
that� if the hash function h is drawn with uniform probability from Hp�n then

Pr�h�x�� � l� � � � �� h�xj� � lj� � 	

nj
�

If 	 � 	 then we simply call Hp�n k�universal�

Carter and Wegman introduced a class of linear hash functions in
�� and showed that it is �
�
��
universal� In
�� this is generalized to a class of polynomials of degree d� This class is proved there to
be �
� d� 	��universal� the evaluation time is O�d��

��� log��Algorithms �

Siegel succeeded in
	�� to present
p
n�universal classes of hash functions with constant evaluation

time� provided that the universe U is of size polynomial in n� Techniques presented in
	�� show how
to use these functions even in the case of an arbitrarily large �nite universe�

First apply a randomly chosen function h from a �
�
��universal class to a set S � U � jSj � n�
to a range of size polynomial in n� As shown in
�� this mapping is one�to�one� w�h�p� Now apply a
randomly chosen function from Siegels class of hash functions on the image of S under h�

For our analyses it is su�cient to assume that the hash functions h�� � � � � ha are randomly and
independently drawn from an O�log� n��universal class of hash functions� The above discussion shows
that using Siegels function together with the extension from
	�� yields such a class with constant
evaluation time using little space �O�

p
n� space works�� For a detailed description of this class see

	���

��� log��Algorithms

We only consider the linear approximate compaction �LAC� problem here� The algorithm solving this
problem will be used as a basis in Section � to obtain very fast simulations on an arbitrary�DMM�

De�nition ��� Let m � n denote the number of keys distributed among n processors such that each
processor has at most one key� The linear approximate compaction problem is to insert the keys into
an array B of size �m�

In
�� and
	�� a randomized algorithm for the LAC problem is presented and analyzed� Their
algorithms are designed for a CRCW�PRAM that uses n processors and O�n� shared memory cells�
As noted in
	��� such a PRAM can be simulated on an n�processor arbitrary�DMM with constant
delay� So we get the following result�

Theorem ��� The LAC problem can be solved by a randomized arbitrary�DMM with n processors in
time O�log�m�� w�h�p�

In our algorithms we also need information about intermediate time steps of the above algorithm�
Therefore we will shortly describe it�

Initially� each cell of array B is empty� Throughout the algorithm we map more and more items to
accomplish a 	�	 embedding into array B� An unmapped key is called active� Once a key is mapped
it becomes inactive� Initially� all keys are active�

The algorithm for the LAC�problem consists of O�log�m� iterations� Let q� � 	 and qi�� �
qi

for i � 	� Let d �
 be some constant �for suitable values for d see
�� or
	����

High�level description of iteration i�
The main idea is to enhance the mapping of active keys by reallocating many processors to them�

Input of iteration i� the number of active keys is assumed to be at most m�qdi �
The iteration consists of two basic steps�

� �allocation� Allocate dqi processors to each active key� Each active key that indeed gets dqi
processors is called participating�

� �mapping� Map each participating key to a di�erent empty cell of B� Each successful partici�
pating key becomes inactive�

Output of the iteration� The number of active keys to be at most m��
qi�d � m�qdi�� with high
probability�

Let us call the allocation step of iteration i to be successful if the number of non�participating
active keys is at most �

�m
�dqi � Analogous� the mapping step of iteration i is said to be successful if
the number of participating keys that remain active is at most �

�m
�dqi � Then the following lemma
holds which is implicitly proved in
�� and
	���

� ��� Useful Tail Estimates

Lemma ��	 Suppose that iteration i � 	 was successful� that is� at most m�qdi keys are still active
after iteration i�	� 	 � i � log�m� Then� for any constant d � � and su�ciently large m� there exists
a constant
 � � such that both the allocation step and mapping step are successful with probability at
least 	�
�m

�

� using only a constant number of time steps�

��� Useful Tail Estimates

There are two tail estimates we will use in this paper� First� we state a result from
	�� which generalizes
the Cherno��Hoe�ding bounds for the sums of certain types of dependent random variables� This will
be used in the lower bound proof in Section ��

De�nition ��
 Given n ��	 random variables X�� � � �Xn� we call them self�weakening if for all i� 	 �
i � n and all subsets fj�� � � � � jkg � f	�
� � � �� i� 	g it holds

P �Xi � 	jXj� � Xj� � � � � � Xjk � 	� � P �Xi � 	� �

Lemma ��� Consider n ��	 random variables X�� X�� � � � � Xn which are self�weakening� Let X �Pn
i��Xi and let E�X� � 	�� for some 	�� Then

P �X � �	 �
�	�� �
�

e�

�	 �
������

���

� e�
����� �

Proof� For a proof see
	�� and
	
��

Second� we use the General Markov Inequality �see� e�g��
	��� to obtain bounds for sums of s�wise
independent binary random variables�

Lemma ��� �General Markov Inequality�
Let X be an arbitrary random variable then� for every
 � � and k � �� it holds

Prob

�
jX �E�X�j �
 k

q
E�jX �E�X�jk�

�
�
�
	

�k
�

The following more technical tail estimate will be used in the analysis of our protocols in Section
��

Lemma ��
 Let X�� � � � � Xm be �not necessarily independent� binary random variables� let X �Pm
i��Xi� Furthermore� let Prob�Xi� � � � � � Xis � 	� � ps for all fi�� � � � � isg � f	� � � � �mg�

	 � s � d� logm� 	e� let d� logm��e
m

� p � 	 for a constant � � �� Then it holds for every
 � �

Prob�jX �E�X�j �
 �m � p� �
�

	

m

���log ����

�

Proof� We use here the General Markov Inequality described above�
Let k � fd� logme� d� logm � 	eg be even for a constant � � �� Then it holds

E�jX �E�X�jk� � E��X � E�X��k� � E

�
kX
i��

�
k

i

�
Xi��E�X��k�i

�

�
kX
i��

�
k

i

�
E�Xi���E�X��k�i � ���

Furthermore we get

E�Xi� � E

�
B�
�
� mX

j��

Xj

�
Ai
�
CA �

X
s������sm�f������ig�

s������sm�i

i�

s�� � � � � � sm�
E�Xs�

� � � � � �Xsm
m � �

��� Useful Tail Estimates �

Let us replace the X�� � � � � Xm by random variables Y�� � � � � Ym satisfying

Prob�Yi� � Yi� � � � � � Yis � 	�

�

	
ps � s � d� logm � 	e
Prob�Xi� � Xi� � � � � � Xis � 	� � s � d� logm � 	e

for all subsets fi�� i�� � � � � isg � f	� � � � �mg� According to the de�nition of the Y�� � � � � Ym we get for
all i�� � � � � ik � f	� � � � �mg and s�� � � � � sk � 	 with k � d� logm� 	e�

E�Y s�
i�
Y s�
i�

� � � Y sk
ik

� � E�Y�Y� � � �Yk� �

Therefore we can simplify E�Xi� to

E�Xi� �
iX

j��

�
m

j

�
� s�i� j� �E�Y� � � � � � Yj� �

where s�i� j� �
Pj

l����	�l

j
l

�
�j�l�i is the number of surjective mappings from f	� � � � � ig to f	� � � � � jg�

Since s�i� j� � ji for all i� j and p � k
m

it follows�

E�Xi� �
iX

j��

�
m

j

�
ji � pj

�
iX

j��

�
e �m
j

�j
ji � pj � mi

iX
j��

ej
�
j

m

�i�j
pj

� mi
iX

j��

ej � pi �
 �e �m � p�i �

Using this inequality in equation ��� yields

E�jX � E�X�jk� � �m � p�k �
kX
i��

�
k

i

�

 �e �m � p�i � ��m � p�k�i

� �m � p�k �
��e � 	�m � p�k �
�m � p�k
�
 ��e � 	�m � p�k �

Thus it holds

k

q
E�jX � E�X�jk� �
m � p

for su�ciently large m �note that k � fd� logme� d� logm � 	eg�� With the help of the General
Markov Inequality we get for every
 � ��

Prob�jX � E�X�j �
 �
m � p� �
�
	

�� logm

and with
� ��

�

Prob�jX �E�X�j �
� �m � p� �
�

�

�� logm

�
�

	

m

���log �����

�

� � The Basic Process

� The Basic Process

In order to get a clean description of our process we assume a DMM with n processors and a � n
memory modules Mj�k� j � f	� � � � � ag� k � f	� � � � � ng� Suppose that a hash functions h�� � � � � ha �
U 	 f	� � � � � ng distribute the keys from U among the modules� so each key x has a copies stored in
M��h��x�� � � � �Ma�ha�x�� Let x�� � � � � x�n � U �
 � 	� be some keys for which we want to get access to at
least b out of a copies� Let Ii � f	� � � � � ag� i � f	� � � � �
ng� be the set of all copies of xi for which we
have already been successful� The following process forms the basis of our algorithms to implement
static dictionaries and shared memory simulations�

�n�
� a� b� c��process�

initially� active keys x�� � � � � x�n� I� � � � � � I�n �

execute the following round until all keys are inactive�
for each j � f	� � � � � ag�
for each active key xi with j �� Ii�
xi tries to access Mj�hj �xi�

f each module Mj�l works according to the c�collision rule g
if xi�s access is accepted then Ii �� Ii � fjg
if jIij � b then xi becomes inactive

The following holds for the number of rounds needed by our process�

Main Theorem� Let h�� � � � � ha � U 	 f	� � � � � ng be randomly and independently chosen from a
O�log�n��universal class of hash functions� Let � �
 � 	�
 � a � p

logn� b � a and c �

O��

p
logn

a�b ����� be chosen such that

c��a� b�

c� 	
� 	 � � and
 �

�
a � 	

a� b

��
	

c�

�a�b
� 	

for some constant � � ��

�a� Then� for each t� � � t � log logn
log�c�a�b�� � 	� and c � log�	a�

a�b at most n�
�c�a�b��
t��

keys are still

active after t rounds of the �n�
� a� b� c��process� w�h�p�

�b� In particular� the �n�
� a� b� c��process
nishes within log logn
log�c�a�b�� � � rounds� w�h�p�

Proof� Let x�� ��� x�n � U �
 � ��� 	�� A module is called blocked at round t of the �n�
� a� b� c��process
if it gets more than c requests at round t� Note that a module will be blocked consecutively until it
gets at most c requests for the �rst time� In this round it answers all of them� Afterwards� it gets no
request any more�

We view the distribution of the requests among the modules as a graph� the access graph G �
�VK � VM � E�� VK � f	� � � � �
ng represents the keys x�� � � � � x�n and VM � f�j� k� j j � f	� � � � � ag� k �
f	� � � � � ngg the modulesM���� � � � �Ma�n� Node i � VK is connected with �j� k� � VM in G if hj�xi� � k�
that is�Mj�k possesses the j�th copy of the key xi� Thus E � ffi� �j� k�g j i � VK � �j� k� � VM � hj�xi� �
kg�

Assume now that a module Mj�k is still blocked at round t of the �n�
� a� b� c��process� Then Mj�k

must have received more than c requests at round t� So there must have been at least c � 	 keys
xi� � � � � � xic�� with hj�xil� � k for all l � f	� � � � � c � 	g that were still active at round t� Let xi be
one of those keys� As xi was still active at round t there must have been at least a� b hash functions
hj� � � � � � hja�b in addition to hj for which xi was not successful at round t�	� In other words� modules
Mj��hj� �xi�

� � � � �Mja�b�hja�b �xi�
must have been blocked at round t � 	� Let Mj��k� be one of those

modules� Continuing with the argumentation for Mj��k� as we did for Mj�k we �nd�
If moduleMj�k is still blocked at round t of the �n�
� a� b� c��process� the following tree can be embedded

� The Basic Process �

into G such that its root is embedded in the VM �node �j� k�� VTM �nodes are mapped to VM �nodes and
VTK�nodes are mapped to VK�nodes�

. . .

. . .
. . .

.
.

. . .

.

. .

.
.

.

c+1

a-ba-b

c c

a-b a-b

a-b a-b

c c

: V

: V

TM

t

t-1

2

1

TK

Figure �� A witness tree

Let us call this tree Tt � �VTK � VTM � ET � a witness tree of depth t� Note that� if two VTK�nodes
v and w are embedded into the same VK�node� then we can identically embed modules and keys into
nodes of Tt below v and w in a way we just described above� The following de�nition formalizes what
kind of embeddings of Tt into G we only have to consider�

De�nition ��� An embedding � of Tt into G is called valid if

�	� for each v � VTM � all neighbours v� of v are embedded into di�erent VK�nodes�

��� for each v � VTK � all neighbours v� of v are embedded into VM �nodes �j� k� with di�erent j�

��� for each fu� vg � ET we have f��u�� ��v�g � E�

��� For each v� w � VTK let Tv� Tw be the subtrees of Tt rooted in v and w� resp�� d � depth�Tv� �
depth�Tw�� If v and w are embedded identically then Tv is embedded identical to the top part of
Tw of depth d�

The following lemma is a direct result of our discussion above�

Lemma ��� If module Mj�k is still blocked at round t of the �n�
� a� b� c��process then there is a valid
embedding � of Tt into G that maps the root of Tt to Mj�k�

The above lemma implies that it su�ces to �nd a suitable upper bound for the probability �w�r�t�
random choices of hi�s as indicated in the Main Theorem� that Tt has a valid embedding into G in
order to prove part �b� of the Main Theorem�

From the above de�nition of valid embeddings one can conclude that a valid embedding of Tt into
G is already completely described by a small �at most size
jVTK j� subtree �T of Tt� called base tree�
and a set E of VTK�nodes below �T � called set of expansion nodes� with the following properties�

	� � The Basic Process

�	� �T and Tt have the same root�

�
� no two VTK�nodes in �T are embedded into the same VK�node�

��� if a VTK�node is a leaf of �T then it is a leaf of Tt �that is� in the inner part of Tt� �T can only
have VTM �nodes as leaves��

��� all VTK �nodes in

E �� fw � VTK j w is a son of a leaf in �Tg
are embedded in VK�nodes that are already used for the embedding of VTK� �T ��

��� there are no nodes v � VTK� �T � and w � E with ��v� � ��w�� but the distance from v to the
root of Tt is greater than from w to the root of Tt�

It is easy to write a breadth �rst search algorithm which �nds a base tree �T and a node set E in
Tt for every valid node embedding �� The following picture will give an example for such a subtree
for a � �� b � � and c �
�

1 2 3

1,1

2,1 3,1 4,1

2 3 4 8 5

4 5 6 3 1 6

3,1 4,1

8 5 7

4

5 6

5,1 6,1 7,1 5,1

compare

4

: edges of T
~

: nodes of

Def. 3.1 (4)

Figure �� A valid embedding of a witness tree

Note that E can be empty� Suppose now that we create a valid node embedding for a subtree �T of
Tt and a node set E such that the requirements above are ful�lled� Then we can �nd an embedding
for the rest of Tt by �rst copying the embedding of subtrees of �T below the expansion nodes such that
the embedding of the roots of the subtrees coincides with the embedding of the expansion nodes and
continue copying until every node of Tt is embedded� This process has the e�ect that the rest of Tt is
folded back into the subgraph over nodes of G induced by the embedding of �T and E �

These observations allow us to use an �involved� counting argument to show the following proba�
bility bounds� The proof can be found in Section ��	�

Lemma ��� Let h�� � � � � ha�
� a� b and c be chosen as in the Main Theorem� Consider a module
Mj�k� Then it holds

Prob� There is a valid embedding of Tt in G with root embedding Mj�k �

�
�

�

�
�

�Pt��

j��
�c�a�b��j

�
 � t � log logn
log�c�a�b�� �

�logn�� �
 �n� c��a�b�c�� � t � log logn
log�c�a�b�� � � �

The reason why this probability does not approach � as t goes to in�nity is that structures may
occur in the access graph that prevent the �n�
� a� b� c��process from terminating� e�g� a subset U � VK
such that all VM �nodes in GjU�
�U� have degree at least c � 	� where ��U � � f�j� k� j i � U� j �

� The Basic Process 		

f	� � � � � ag� hj�xi� � kg� Thus �logn�� � � �n �c
��a�b���c��� is an upper bound for the probability that

such structures occur in the access graph�
Part �b� of the Main Theorem follows directly from the above two lemmas� For the proof of part

�a� of the Main Theorem we �rst observe that� by Lemma ���� the expected number of modules still

blocked at round t�
 � t � log logn
log�c�a�b�� �
� is at most a � n�

P
t��

j��
�c�a�b��j

� Thus part �a� of the

Main Theorem would easily follow by the well�known Cherno� bound if the events There is a valid
embedding of Tt in G with root embedding Mj�k! were independent for di�erent �j� k�� This is not
true because the embeddings may overlap� On the other hand� we can show that an overlap of more
than one node is very unlikely� as long as we only consider up to � logn many �j� k� for some constant
� � �� Let

pa�t ��
�logn��

�
�
	

n

� c��a�b�
c��

�

�
�
�
	

�c���
P

t��

j��
�c�a�b��j

�

Formally� we prove in Section ��
�

Lemma ��	 For any f�j�� k��� � � � � �js� ks�g � f	� � � � � ag�f	� � � � � ng with s � � logn� � � � constant�
it holds for all t�
 � t � log logn

log�c�a�b�� � 	

Prob�Mj��k� � � � � �Mjs�ks are blocked at round t� �
�
pa�t �

	

n

�s
�

Now we can complete the proof of part �a� of the Main Theorem� Let Xt
j�k be de�ned as

Xt
j�k �

	
	 � module Mj�k is blocked at round t
� � otherwise

for all j � f	� � � � � ag� k � f	� � � � � ng� and let Xt �
Pa

j��

Pn
k��X

t
j�k� From the proof of Lemma ���

�see Section ��	� we know that Prob�Xt
j�k � 	� � pa�t� Let t � log logn

log�c�a�b�� � 	� Then it holds with c

chosen as in part �a� of the Main Theorem�

pa�t �
�
	

�c��� �c�a�b��t����
c�a�b��� ��

�
�
	

�c��� �log log n��
c�a�b��� ��

�
�
	

�c��� log n
�

�

��c

p
n

n
�

Thus Lemma ��� and Lemma
�� can be used to prove that� for c � log�	a�
a�b and for all � � t �

log logn
log�c�a�b�� � 	 it holds�

Prob�Xt � n

c �
�c�a�b��t�� � � Prob�Xt � �a � n

c�� �
c�a�b� �
�c�a�b��t�� �

� Prob�Xt � �a � n � pa�t� �
�

	

a � n
��

�

for � chosen as in Lemma ���� Hence� for t� a� b and c chosen as in the Main Theorem� at most
n��c �
�c�a�b��t��

� modules are still blocked at round t of the �n�
� a� b� c��process� w�h�p�
If the �n�
� a� b� c��process terminates then each module has to answer at most c requests� �Note

that it can happen that the process does not terminate� In this case the access graph contains a highly
connected subgraph� e�g� a graph GjU�
�U� for some subset U � VK such that all VM �nodes in it have
degree at least c� 	� The choice of
 and c relative to a and b makes this event su�ciently unlikely��
From this we can conclude that� if at round t of the �n�
� a� b� c��process m modules are still blocked
and the �n�
� a� b� c��process terminates� then at most c �m keys are still active after round t� Thus we
get with the help of the estimate above�

Prob
�
� n

�c�a�b��
t�� keys are still active after round t

�
�
�

	

a � n
��

�

	
 ��� Proof of Lemma ���

Note that we only consider events with � logn � jET j � O�log� n� values of hash functions� Thus for
the analysis O�log� n��universal hash functions are su�cient�

It remains to prove Lemma ��� and Lemma ����

��� Proof of Lemma ���

Let us �rst introduce the following notations �

� By Bk�i we denote the set of all possible base trees with k VTK�nodes such that i of these k
nodes are not leaves of Tt�

� An embedding � of Tt into G is called valid node embedding if all items in De�nition ��	 are
ful�lled except item ���� If all items are ful�lled we simply call � a valid embedding�

� For every �T � Bk�i let " �T be the set of all valid node embeddings of �T and the set of expansion

nodes E induced by �T � Furthermore let

�k�i �� maxfj" �T j j �T � Bk�ig �

� Let h�� � � � � ha be randomly and independently chosen hash functions� Then for every tuple
� �T � �� of base trees �T � Bk�i and valid node embeddings � � " �T the upper bound for the
probability that � is a valid embedding will be denoted by pk�i�

� For each node v � Tt let ��v� denote the set of all direct neighbours of v in Tt and
�v� denote
the set of all sons of v in Tt�

Let k and i be �xed� Then the probability that there is a base tree �T � Bk�i and an embedding
� � " �T such that Tt can be embedded into G is at most

jBk�ij � �k�i � pk�i �
In the next three propositions bounds for jBk�ij� �k�i and pk�i will be presented�

Proposition ��
 Let r�k�i� be the number of expansion nodes induced by any base tree in Bk�i� Then
we have

r�k� i� � i � c�a� b� � k � c� 	 �

jBk�ij �
�
i � c�a� b�

r�k� i�

�
�

Proof� Suppose a base tree �T comprises i inner VTK�nodes of Tt� For each of these i nodes v�
j
�
�v��j � c�a � b�� for any other node v � VTK� �T � we have j
�
�v��j � �� because the others must
be leaves of Tt� So j
�
�VTK � �T ���j � i � c�a� b�� Because �T is connected� k� �c�	� of these i � c�a� b�
nodes belong to �T � �Note that the top c�	 VTK�nodes always belong to �T �� The others by de�nition
must be the expansion nodes�

It remains to show that it su�ces to count all possibilities to label r�k� i� out of all i � c�a � b�
grandsons of i VTK�nodes as expansion nodes in order to count all possible base trees �T in Bk�i� For
this purpose we need the following de�nition�

De�nition ��� Let �T be a base tree in Bk�i� For each VTK�node u in Tt let pv�u� be the distance
of u from the root of Tt and ph�u� be the position of u in its row� �If pv�u� � r than there are
�c � 	��c�a � b���r����� VTK�nodes in the same row as u� So the leftmost node w in this row has
ph�w� � 	� the rightmost node w has ph�w� � �c� 	��c�a� b���r������� Let ��� be a relation over the
set of VTK�nodes of �T with

v� � v� �� pv�v�� � pv�v�� or
pv�v�� � pv�v�� and ph�v�� � ph�v����

Then we will call the node sequence �v�� v�� � � � � vk� consisting of all VTK�nodes in �T sorted� if for
every i � f	� � � � � k � 	g we have vi � vi���

��� Proof of Lemma ��� 	�

Suppose we have two di�erent base trees �T�� �T� � Bk�i� Let �v�� � � � � vk� be the sorted sequence of

VTK�nodes of �T� and �w�� � � � � wk� be the sorted sequence of VTK�nodes of �T�� Because �T� and �T� are
di�erent there must be an l � f	� � � � � kg with vl �� wl�

Let m � minfl � f	� � � � � kg j vl �� wlg� let without loss of generality be vm � wm� According to
the de�nition of base trees the highest row of VTK �nodes belongs to every base tree� so m � c � 	�
Then vm and wm must have a common VTK�node vj � wj as grandfather� j � m� otherwise m is
not chosen correctly� Let vm occupy position p� and wm occupy position p� out of c�a � b� possible
below vj � Then because of vm � wm it must hold p� � p� which means that at the position of vm in
�T� there must be an expansion node� Because the expansion nodes are distributed di�erent below vj
from below wj we have that any two di�erent base trees must have di�erent distributions of expansion
nodes below their VTK�nodes�

So we proved that if two base trees �T�� �T� � Bk�i are di�erent then the distribution of the r�k� i�
expansion nodes over the ic�a� b� grandsons of their i inner VTK�nodes must be also di�erent� Thus

ic�a�b�
r�k�i�

�
is an upper bound for the number of base trees in Bk�i�

Proposition ���

�k�i �
�

n

k

�
� �z �
���

�
k

c� 	

�
�k � �c� 	����� �z �
���

��
a� 	

a � b

�
na�b

�i
� �z �

���

kr�k�i�� �z �
�	�

�
	

c�

�i�a�b�
� �z �

���

�

Proof�

�	� There are

�n
k

�
possibilities to choose k VK�nodes of G out of
n for an injective embedding of

VTK� �T � into VK �

�
� There are

k
c��

�
possibilities to embed c� 	 out of k nodes chosen in �	� into the highest row of

VTK�nodes in �T without getting redundancies� Moreover there are �k� �c� 	��� possibilities to
distribute the remaining VK�nodes over the remaining VTK�nodes of �T �

��� For every VTK �node v of �T which belongs to the inner nodes of Tt there are

a��
a�b

�
na�b possibilities

to embed the a � b VTM �nodes under v into VM �nodes of G such that we have a valid node
embedding�

��� There are at most k possibilities for each of the r�k� i� expansion nodes to embed it into one of
the k nodes chosen in �	��

��� Let �T be a base tree with i inner VTK�nodes of Tt� Each of these nodes v is connected with
a set
�v� of �a � b� VTM �nodes� Every node w of these i�a � b� VTM �nodes has a set
�w� of
c VTK �nodes which were embedded either as a node of �T by the term �k � �c � 	��� or as an
expansion node by the term kr�k�i�� This kind of embedding creates super�uous permutations
which we want to eliminate by �	�c��i�a�b��

Proposition ��

pk�i �
�
	

n

�i�a�b�����k�i�

�
�
	

n

��r�k�i�
c��

�
�

Proof� Let �T � Bk�i and � � " �T � The i inner nodes v of Tt in �T have degree �a � b � 	� and
are embedded into i di�erent VK�nodes� Therefore the probability that each one of these VK�nodes
has the same links to VM �nodes in G as induced by the embedding of ��v� in �T is n�i�a�b���� The
remaining �k � i� nodes in �T are leaves of Tt and thus have degree 	� Hence the probability that the
links induced by an embedding � of �T are the same as in G is n��k�i��

	� ��� Proof of Lemma ���

It remains to show that we have an additional probability of n�dr�k�i���c���e for the expansion
nodes� If one considers only the embedding of �T without its set of expansion nodes then for all
VM �nodes �j� k� embedded into VTM �nodes of �T the values for k are independent from each other�
Otherwise there must exist a VK �node embedded in �T which is adjacent to two VTM �nodes with
embeddings in �j� k� and �j�� k�� such that j � j�� This obviously violates the conditions a valid node
embedding has to ful�ll�

Let I be the set of all x � E with father w that have

� no node y � VTK� �T �� ��x� � ��y�� with a VM �node embedded in a node in ��y� which lies in
the same hash function as ��w� and

� no node y � E with father v such that ��x� � ��y�� ��v� and ��w� lie in the same hash function
and y � x �for � �� de�ned as in De�nition ����

In other words� I consists of all expansion nodes of lowest order according to #�� that do not demand
an equality between the embeddings of any two VTM �nodes in �T � but all other nodes in E n I do to
maintain the status of a valid embedding for �� Instead� the embedding of each node in I induces
a new condition for the edges in G to keep � a valid embedding� Each condition is ful�lled with
probability �

n � So the probability that � remains a valid embedding for �T expanded by I is � �n �
jIj�

To analyze the probability that � also remains a valid embedding for all nodes in E n I we have to
consider the following dependency graph GD�

De�nition ��� Let �T � Bk�i be a base tree� E be the set of expansion nodes induced by �T and �

be a valid node embedding of �T and E � The dependency graph GD � �VD� ED� of �T is a directed
multigraph with

� VD � VTM � �T �

� �v� w� � ED i� ��v� and ��w� lie in the same hash function and there exists an x � ��v� and a
y � ��w� such that ��x� � ��y�� x � E n I and y � VTK� �T � � I

Clearly� jEDj � r�k� i��jIj� Each edge �v� w� in GD induces that the VM �nodes embedded in v and
w have to be the same� otherwise � is not a valid embedding� Thus each edge represents a probability
of �

n � Because GD can have circles we can not add a probability of � �n �
jEDj but only � �n �

jESF j where
ESF is the set of edges of a spanning forest in GD� The next graph theoretic claim will give a lower
bound for jESF j�
Claim ���� Let G � �V�E� be a directed multigraph with jV j � n� jEj � m� Let e�v� w� be the
number of edges from v to w in G and e�v� �

P
w�V e�v� w�� If e�v� v� � � for all v � V and there is

a d � 	 such that
e�u� v� � e�v� � d for all u� v � V ���

then it holds for the number jESF j of edges in any spanning forest of G

jESF j �
lm
d

m
�

Proof� Let G and d be de�ned as above� letG� � �V �� E�� be a connected component ofGwith jV �j � r
and jE�j � s� Furthermore let A � �ai�j���i�j�r be the adjacence matrix of G� and si �

Pr
j�� ai�j for

all i � f	� � � � � rg� Then it holds ai�i � � and ai�j � sj � d for all i� j � f	� � � � � rg according to ���� So
we get X

��i�j�r

ai�j �
X

��j�r

�r � 	�sj �
X

��i�j�r�i��j

�ai�j � sj� � �r� � r�d

� r � s � r�r � 	�d

� r � 	 � s

d
�

Let eG� be the number of edges of a spanning tree in G�� Then eG� � r�	� that is� eG� � s
d � Combining

this result with the results for all other connected components in G yields the claim�

��� Proof of Lemma ��� 	�

Obviously� GD meets condition ��� of the claim above with d �� c � 	� So the expansion nodes
induce a total probability of at least

�
	

n

�r�k�i��jEDj�� jEDj
c��

�
�
�
	

n

�� r�k�i�
c��

�

that � is a valid embedding�

Let u�k� be the lower bound of the number i of inner VTK�nodes of Tt a base tree with k VTK�nodes
can possess� Then we get �

Prob�Tt can be embedded into G with root embedding Mx�y�

�
jVTKjX
k�c��

kX
i�u�k�

jBk�ij � �k�i � pk�i

To be able to simplify the formula above we need the following two propositions�

Proposition ���� Let M �� c�
Pt��

i���c�a� b��i� Then for t �
 we have

�	�

u�k� �
	

c� 	 � k � fc� 	� � � � �M � 	g
c�

Pt��
j���c�a� b��j � otherwise

���

r�k� i� �
�

�

c��a� b� � 	 � k � fc� 	� � � � �Mg
	 � k � fM � 	� � � � � jVTKj � 	g
� � k � jVTKj

Proof�
�	�� For k � M it is easy to see that the inequality is true�
Let k �M � 	� Suppose� a base tree �T � Bk�i has s VTK �nodes which are leaves in Tt� Then at least

s
c�a�b� VTK�nodes of the next highest row of �T are necessary so that �T can possess so many leaves

of Tt� In addition to this at least s
�c�a�b��� VTK �nodes of the second row above the leaves of Tt are

necessary so that �T can have s
c�a�b� VTK�nodes in the �rst row above the leaves of Tt� Continuing

with this argumentation we �nd that if �T possesses s leaves of Tt then for the number i of VTK�nodes
in �T which are not leaves in Tt it holds�

i � c� 	 �
t��X
j��

s

�c�a� b��j
�

Because k � i � s it follows�

k � c� 	 �
t��X
j��

s

�c�a � b��j
� ���

Let s � �c�a � b��t�� � r� r � �� Then we have�

k � c� 	 �
t��X
j��

�c�a� b��t�� � r

�c�a� b��j

� c� 	 �
t��X
j��

�c�a� b��j �
t��X
j��

r

�c�a� b��j
�M � 	 � r �

	� ��� Proof of Lemma ���

So for k � M � 	� r �T can have at most �c�a� b��t�� � r leaves of Tt� Hence for all k � M � 	� r�
r � �� the number i of VTK �nodes in �T which are not leaves in Tt is�

i � k �
�c�a� b��t�� � r� � c� 	 �
t��X
j��

�c�a � b��j �� U �

Clearly� then for all k � M � 	 � r � c � 	� r � 	� we have i � U � r� So inequality �
� is also true
for k � M �

�
�� For k � M it is easy to see that the inequality is true�
Assume r�k� i� � c��a� b�� Then because of r�k� i� � i � c�a� b�� k � c� 	 we get

i � c�
k � �c� 	�

c�a� b�
�

So for the number s � k � i of VTK�nodes in �T which are leaves of Tt it holds�

s � k � c � k � �c� 	�

c�a � b�
� ����

Using the inequality ���� repeatedly for the �j � ���term in ��� yields�

k � c� 	�
t��X
j��

�c�a� b��j � M � 	 �

So if k � M � 	 it has to hold r�k� i� � c��a � b��

Proposition ���� Let a� b and c be chosen as in the Main Theorem�
 � t � log logn
log�c�a�b�� � � and n

be big enough� Then it holds for all i � k

�
i � c�a� b�

r�k� i�

�
kr�k�i�n

�
�
r�k�i�
c��

�
�
�

n�
c��a�b�
c�� � k � fc� 	� � � � �Mg

n
� r�k�i�

��c��� � k � fM � 	� � � � � jVTK jg
Proof� Let a� b and c be chosen as in the Main Theorem and t be chosen as above� Then it follows

with c � O��
p

logn

a�b
������

jVTK j � �c� 	�
t��X
i��

�c�a � b��i

� O��c� 	��c�a� b��t��� � O��c� 	� � logn � �c�a � b����

� O

��p
logn

a� b

����

� logn � �
p
logn � �a� b�	��

�
� O��logn��� �

Let k � M � At �rst we show that for n big enough

i�c�a�b�

r�k�i�

�
kr�k�i�n�r�k�i���c��� gets the smaller the

bigger r�k� i� gets� �
i � c�a� b�

r�k� i� � 	

�
kr�k�i���n�

r�k�i���
c�� �

�
i � c�a� b�

r�k� i�

�
kr�k�i�n�

r�k�i�
c��

� r�k� i���ic�a� b�� r�k� i���

�r�k� i� � 	���ic�a � b�� r�k� i�� 	��
� k � n

�
c��

�
�
�ic�a � b�� r�k� i��k

r�k� i� � 	

�c��

� n

��� Proof of Lemma ��� 	�

which is true for n big enough since i� k� r�k� i� � jVTK j� c � O��

p
logn

a�b ������ So with the help of
Proposition ��		 we can conclude� �

i � c�a� b�

r�k� i�

�
kr�k�i�n�

r�k�i�
c�� � n�

c��a�b�
c��

�
�
e � i � c�a� b� � k
c��a� b� � 	

�c��a�b����
	

n

� c��a�b���
c��

�
�
	

n

� c��a�b�
c��

�
�
e � i � k

c

�c��a�b���

� n
�

c��

�
�
e � i � k

c

��c����c��a�b����

� n

which is true for n big enough because with k� i � jVTKj � O��logn��� and c � O��

p
logn

a�b ����� it
holds�

log

�
e � i � k

c

��c����c��a�b��c�

� O�log logn
p
logn� � o�logn� �

Let k be chosen such that M � k � jVTK j� Then we can conclude because of 	 � r�k� i� � jVTK j �
O��logn����

n�
r�k�i�
��c��� �

�
i � c�a � b�

r�k� i�

�
kr�k�i�n�

r�k�i�
c�� ���

� n �
�
e � i � c�a� b� � k

r�k� i�

���c���

�
O�log logn� �
p

logn��

For k � jVTK j we have r�k� i� � �� Thus inequality ��� is also ful�lled for k � jVTK j�

Now we can simplify the formula of the probability that an embedding of Tt into G with root
embedding Mx�y is possible� Let
 � ��� 	�� 	 � a � p

logn� b � a and c be chosen such that

�
a� 	

a� b

��
	

c�

�a�b
� 	

�

Then it holds for all t�
 � t � log logn
log�c�a�b�� � � and n big enough�

Prob�Tt can be embedded into G with root embedding Mx�y�

�
jVTKjX
k�c��

kX
i�u�k�

jBk�ij � �k�i � pk�i

�

jVTKjX
k�c��

�

n

k

��
k

c� 	

�
�k � �c� 	���

kX
i�u�k�

��
a� 	

a� b

�
na�b

�i�
	

c�

�i�a�b�
�

�
i � c�a� b�

r�k� i�

�
kr�k�i�

�
	

n

�i�a�b�����k�i��
	

n

��r�k�i�
c��

�

� 	

�c� 	��

jVTKjX
k�c��

kX
i�u�k�

h

k

a��
a�b

�i
 �
c

�i�a�b�i � �
i�c�a�b�
r�k�i�

�
kr�k�i�

�
n

��r�k�i�
c��

��

� 	

�c� 	��

jVTKjX
k�c��

kX
i�u�k�

�
�

�i � �
i�c�a�b�
r�k�i�

�
kr�k�i�

�
n

��r�k�i�
c��

��
� ���

	� ��� Proof of Lemma ���

Bounding ��� for k � c� 	 to M �

Let U � c�
Pt��

j���c�a� b��j� With the help of Proposition ��		 �	� and Proposition ��	
 we get

	

�c� 	��

MX
k�c��

kX
i�u�k�

�
	

�i
�
�
��i � c�a� b�

r�k� i�

�
kr�k�i�

�
	

n

�� r�k�i�
c��

��
�

�
MX

k�c��

kX
i�u�k�

�
	

�i�
	

n

� c��a�b�
c��

�
MX

k�c��

�
	

n

� c��a�b�
c��

�
	

�u�k���

� �logn��

�
	

n

� c��a�b�
c��

�

Bounding ��� for k � M � 	 to jVTK j�
Let U � c�

Pt��
j���c�a� b��j� With the help of Propostion ��		 and Propostion ��	
 we get

	

�c� 	��

jVTK jX
k�M��

kX
i�u�k�

�
	

�i
�
�
��i � c�a� b�

r�k� i�

�
kr�k�i�

�
	

n

�� r�k�i�
c��

��
�

� 	

�c � 	��

jVTKjX
k�M��

kX
i�u�k�

�
	

�i�
	

n

� r�k�i�
��c���

� 	

�c � 	��

�
�jVTK j��X
k�M��

n�
�

��c���

kX
i�u�k�

�
	

�i
�

�
	

�U��
�
�

� 	

�c � 	��

�� jVTK j
n

�
��c���

� 	

��
	

�U��
�

�

�
�
�
	

�U��

�

�
�
�
	

�c���
P

t��

j��
�c�a�b��j

�

So the probability that Tt with root embedding Mx�y can be embedded into G is bounded above
by

�logn��

�
�
	

n

� c��a�b�
c��

�

�
�
�
	

�c���
P

t��

j��
�c�a�b��j

�

This proves Lemma ���� Note that for t � log logn
log�c�a�b�� � � and a� b and c chosen as in the Main

Theorem we get jET j � jVTKj� jVTM j � 	 � O�log� n�� So O�log� n��universal hash functions su�ce
to prove the results of Lemma ����

��� Proof of Lemma ���

We �rst want to analyze the probability that two modules Mj�k and Mj��k� are still blocked at round
t� Then we have to analyze the probabilities for all combinations of base trees for these two modules�
Let �T� be a base tree for Mj�k and �T� be a base tree for Mj��k�� We want to consider the following
three cases �

�	� The set of VK�nodes embedded in �T� and the set of VK�nodes embedded in �T� are disjoint� Then
we can analyze the two base trees independently as it is done in the proof of Lemma ����

�
� The embeddings of �T� and �T� only have one common VK�node� Then we can still analyze the
two base trees independently� as we will see� Let �� be a valid node embedding of �T� and ��

be a valid node embedding for �T�� Let G�
D be the dependency graph of �T� and G�

D be the

��� Proof of Lemma ��� 	�

dependency graph of �T� �recall that the edges of such graphs symbolize dependencies between
embeddings in VTM �nodes� see De�nition ����� For all i � 	�
� x � VK and j � f	� � � � � ag let

Ci
x�j � fy � VK j �v� w � VTM � �Ti� � v� w lie in the same connected

component in Gi
D built by modules in hash function hj �

and x � �i���v��� y � �i���w��g�

The sense behind the de�nition of Ci
x�j is that the embedding of �Ti can only be valid if all

VK�nodes in every Ci
x�j have an edge to the same VM �node as x in the access graph with regard

to hash function hj� So all dependencies of VK�nodes embedded in �Ti can be expressed byS
x�j G

i
x�j� where G

i
x�j is the complete graph over nodes in Ci

x�j� Note that for all x� y � VK and

j� j� � f	� � � � � ag it holds� if y � Gi
x�j and j � j� then Gi

x�j � Gi
y�j�� otherwise G

i
x�j �Gi

y�j� �
�
If we remove so many edges that all Gi

x�j are circle�free� but still connected then we get for each

remaining edge independently a probability of �
n
that the embedding of �Ti is valid� Because the

embeddings of �T� and �T� only have one VK�node in common� we get� if all Gi
x�j are reduced in

a way that they have no circles then also
S
x�j�G

�
x�j �G�

x�j� can have no circles any more� that

is� we can analyze the dependencies independently in �T� and �T��

��� �T� and �T� are embedded into at least two common VK �nodes� Then we can not assume inde�
pendency any more�

Let us use these conclusions for the general case that s �
 modulesMj��k� � � � � � Mjs�ks are still blocked

at round t� Let �T�� � � � � �Ts be the base trees of these modules� let Yi be the number of VTK�nodes
in base tree �Ti that are also used in base trees �Tj � j � i� Y �

Ps
i�� Yi� Furthermore� let Xt

j�k be a
random variable with

Xt
j�k �

	
	 � module Mj�k still blocked at round t
� � otherwise

for all j � f	� � � � � ag� k � f	� � � � � ng� Then it holds�

Prob�Xt
j��k� � � � � � Xt

js�ks � 	�

�
X

g������gs	�

Prob�Y� � g�� � � � � Ys � gs� �

Prob�Xt
j��k� � � � � � Xt

js�ks � 	 j Y� � g�� � � � � Ys � gs��

We want to consider three di�erent cases�

�	� Independent case �Y � 	�� Let p be chosen as pa�t in chapter
� Then it holds�

Prob�Y � 	� �Prob�Xt
j��k�

� � � � � Xt
js�ks

� 	 j Y � 	� � ps �

�
� Dependent case �
 � Y �
s��
Let g�� � � � � gs be �xed� Let li be the number of VTK�nodes of �Ti and A�l�� � � � � ls� be the number
of embeddings of T�� � � � � Ts given l�� � � � � ls� Then it holds�

Prob�Y� � g�� � � � � Ys � gs� � max
l� �����ls�fc�������jVTKjg

A�l�� � � � � ls�Qs
i��

n
li

� � ���

Let Zi denote the number of VTK�nodes in �Ti for all i � f	� � � � � sg� let
 �
Ps

i�� gi and
l � jVTK j� The following items have to be considered in order to count all possible embeddings
for Y� � g�� � � � � Ys � gs and Z� � l�� � � � � Zs � ls�

�a� There are

nP
s

i��
li��

�
ways to choose VK �nodes for the embeddings of �T�� � � � � �Ts�

� ��� Proof of Lemma ���

�b� The VK�nodes chosen in �a� can be distributed among the trees �Ti in �
Ps

i�� li�
���
Qs

i���li�
gi�� di�erent ways�

�c� There are at most �
Ps

i�� li�
�� possibilities to add VK�nodes to trees �Ti that have already

been used in trees �Tj with j � i�

Thus it holds�

Prob�Y� � g�� � � � � Ys � gs j Z� � l�� � � � � Zs � ls� �

�

�
nPs

i�� li �

�
�
Ps

i�� li �
��Qs
i���li � gi��

�
sX

i��

li �
��

sY
i��

�
n

li

�

� n�

�n� �
Ps

i�� li �
���

�
sY

i��

�n � li��

n�

��
sY

i��

li�

�li � gi��

��
sX

i��

li �

��

�
�

	

n� l

�� � sY
i��

lgi

�
�sl �
�� �

�
l�sl �
�

n � l

��
� ����

Now we can estimate ��� with the help of �����

Prob�Y� � g�� � � � � Ys � gs� �
�
l�sl �
�

n� l

��
�

So it holds for
 �
�

Prob�Y �
� �
X

g������gs���
g������gs��

Prob�Y� � g�� � � � � Ys � gs�

�
X

g������gs���
g������gs��

�
l�sl �
�

n� l

��
�
�
s �

��
l�sl �
�

n� l

��

�
�
e�s �
�l�sl �
�

�n � l�

��
�
�
	

n

�b �� c
if n big enough� because s � � logn and for t � log logn

log�c�a�b�� �
 we have l�
 � O��logn������ So

for Y �
r or Y �
r � 	� 	 � r � s� it su�ces to remove r base trees �Ti to be able to analyze
the remaining trees independently� It follows�

s��X
r��

Prob�Y �
r � Y �
r � 	��

Prob�Xt
j��k�

� � � � � Xt
js�ks

� 	 j Y �
r � Y �
r � 	�

�
s��X
r��

�
	

n

�r
� ps�r �

s��X
r��

�
s

r

��
	

n

�r
� ps�r

��� Dependent case �Y �
s��

�s���lX
���s

Prob�Y �
� � Prob�Xt
j� �k� � � � � � Xt

js�ks � 	 j Y �
�

�
�s���lX
���s

Prob�Y �
� �
�s���lX
���s

�
e�s �
�l�sl �
�

n

��
�
�
	

n

�s
�

��� Avoiding Deadlocks
	

So altogether we get�

Prob�Xt
j��k� � � � � � Xt

js�ks � 	�

�

�s���lX
���

Prob�Y �
� � Prob�Xt
j��k� � � � � � Xt

js�ks � 	 j Y �
�

� ps �
s��X
r��

�
s

r

��
	

n

�r
� ps�r �

�
	

n

�s

�
sX

r��

�
s

r

��
	

n

�r
� ps�r �

�
p�

	

n

�s
�

��� Avoiding Deadlocks

The Main Theorem implies that structures may appear in the access graph that prevent the �n�
� a� b� c��
process from terminating� Nevertheless� the expected number of rounds necessary to satisfy all
n
requests does not exceed log logn

log�c�a�b�� � � � o�	� with the following strategy�

s �� �
repeat

partition the
n keys into sets As
�� � � � � A

s
�s of �n

�s keys
for i � 	 to
s�
run log logn

log�c�a�b�� � � rounds of the �n� �
�s � a� b� c��process on set As

i

s �� s � 	
until all keys are inactive

For
� a� b and c chosen as in the Main Theorem the average number of rounds required for this
algorithm is at most �

�
log logn

log�c�a�b�� � �
��

	 �

lognX
s��

s � Prob��j � f	� � � � �
s��g � deadlock in As��
j �

�

�
�

log logn
log�c�a�b�� � �

���	 �

lognX
s��

s �
s��

�
	

s��

�c��

�logn��
�
	

n

� c��a�b�
c�� ��

�
A

�
�

log logn
log�c�a�b�� � �

���	 �
�logn��
�
	

n

� c��a�b�
c�� ��

�
A

�
log logn

log�c�a � b��
� � � o�	�

� Implementations of the Basic Process

In this section we present e�cient implementations of the basic process that yield fast static dictio�
naries and shared memory simulations�

��� Implementations on a c�collision DMM

Suppose we have an n�processor c�collision DMM� where U � the set of shared memory cells� is
distributed among the modules with hash functions h�� � � � � ha � U 	 f	� � � � � ng� So for every
i � f	� � � � � ag and x � U � Mhi�x� contains the i�th copy of x� Each processor of the DMM knows at

 ��� Implementations on an arbitrary�DMM

most one active key and the hash functions h�� � � � � ha� Such a processor is called active� Then the
�n�
� a� b� c��process can be implemented in such a way that every active processor tries to get access
to all a copies of its key sequentially until it got access to at least b� Because of the c�collision rule�
after each trial� the active processors have to wait c time steps to know whether their request was
successful or not� Thus a round takes time c � a� Now we can derive the following Theorem from part
�b� of the Main Theorem�

Theorem 	�� Let h�� � � � � ha�
� a� b and c be chosen as in the Main Theorem� Then the above
implementation of the �n�
� a� b� c��process on a c�collision DMM needs at most time c�a�� log logn

log�c�a�b������

w�h�p�

The above theorem yields simulations of a static dictionary with access time O�log logn�� w�h�p��
for example for
 � 	� a �
 and b � 	 on a
�collision DMM� and for
 � �

� � a � � and b � 	 on a
	�collision DMM�

With the help of the majority trick� that is b � a
� � the above theorem also yields simulations of

shared memory� for instance for
 � �
� and a � � on a
�collision DMM �a similar result is shown in

��� but with
 � 	�� and c � �� or for
 � �
	� and a � � on a 	�collision DMM� Thus Theorem ��	

shows that an EREW PRAM can be simulated on an optical crossbar DMM with delay not exceeding
O�log logn�� w�h�p�

Note that if the above implementation of the �n�
� a� b� c��process successfully terminates then each
module has to answer at most c � a requests�

��� Implementations on an arbitrary�DMM

We want to �nd a way to run a round of the �n� 	� a� b� c��process much faster than in a � c steps� For
this purpose we partition the DMM into a groups A�� � � � � Aa of n

a
processors and a groups B�� � � � � Ba

of n
a
modules� Each function hj � j � f	� � � � � ag� now maps U to modules in Bj only� i�e� has a range

of size n
a instead of n�

Let us �rst assume that we only have n
a keys� the i�th of which is known by the i�th processor of

all groups A�� � � � � Aa� Then the accesses to the a copies of each key can be done in parallel� i�e� in
time c� Checking whether key x got at least b answers needs time O�b�� because a threshold function
on a values with threshold b �given a ��	 vector of length a� test whether it contains at least b 	�s�
has to be computed using a processors and modules�

Let us now choose c �� maxfd a
a�be� �g� If a

a�b � O��
p

logn

a�b ����� then all conditions on c in part
�a� of the Main Theorem are ful�lled with
 � 	� Thus part �a� of the Main Theorem implies that�

after executing � rounds as described above� at most n�
a
�

keys are still active� w�h�p� Each round
needs time O�c� b� � O� a

a�b � b��

Now assign a �
a processors to each active key� Since a �
a �
a
�
� this can be done in time

O�log� n�� w�h�p�� using the LAC algorithm� compare Section
�
�
As a �
a processors and modules can compute threshold functions on a values in constant time

on an arbitrary�DMM� all remaining rounds of our process can be done in time O�c�� where c can

be chosen here to be c � dlog��e�a���
a�b

�e� It is again easy to check that this c ful�lls all preconditions
demanded for part �b� of the Main Theorem� Thus this phase needs time

O

�
log

�
a

a� b

�
log logn

log�a � b� � log log a

�

by part �b� of the Main Theorem� Altogether we have shown�

Lemma 	�� If each of n
a keys is known by a processors then the algorithm described above needs time

O

��
b�

a

a� b

�
� log� n� log

�
a

a� b

�
� log logn

log�a� b� � log loga

�
�

w�h�p�� to access b out of a copies of each of the n
a keys�

��� Implementations on an arbitrary�DMM
�

It remains to show how to reduce the number of active keys from n to m �� n
a � This is done by

the following scheme�

Let a � �� b � a� c � maxfd a
a�b

e� �g� and a� �� minf
b� ag�

initial reduction scheme�

simultaneously for each group Aj � j � f	� � � � � a
as
g�

run � rounds of the �m� 	� a�� b� c��process� using hash functions
hj � � � � � h�j�a���� mod a

It is easy to organize these rounds in such a way that concurrent accesses to copies with respect to
the same hash function never come from di�erent groups Aj� Thus each round needs time O�c �a�� �
O�c � b�� By part �a� of the Main Theorem we can conclude the following lemma�

Lemma 	�� The initial reduction scheme reduces the number of active keys from m to at most m�
a
	
�

for each group Aj in time O� a�b
a�b�� w�h�p�

Proof� The condition c � d a
a�be �
 and the choice of a� guarantee that c�a� � b� � a��

Let us consider two di�erent cases�

Case �� a� �
a� � a� Then it is easy to check that
a� � �
	a for a � �� Thus the initial reduction

scheme reduces the number of active keys to at most

n

a
	
�

� n

�
a���
� n

a�
�

w�h�p� So in this case the situation necessary for applying Lemma ��
 can be established with the
help of the LAC algorithm presented in Section
�
�

Case �� a� �
a� � a� Then� in a �nal reduction scheme� we want to reduce the remaining n�
a
	
�

active keys to at most n�a�� Let a� be chosen as above and as ��
as�� for all s � 	� For s � � let

ms �� asm and As
j ��

Sj�as
k��j���as��Ak be subsets of the set of processors� j � f	� � � � � a

as
g� that is

jAs
j j � ms� For the rest of this section the
 in the �m�
� a� b� c��process will mean that our process is

started with at most
m active keys� Assume that in each Aj � j � f	� � � � � ag� at most m�
a
	
� keys are

still active�

�nal reduction scheme�

s �� 	
while

Ps
i�� ai � a do

simultaneously for each As
j� j � f	� � � � � a

as
g �

�	� allocate as processors for all but a fraction of at most 	�
�as��

of the active keys in As
j

�
� run � rounds of the �m� �
as
� as� b� c��process on As

j on
hash functions not used before for keys in As

j

s �� s � 	

Let us call one execution of the while�loop one round� We will now prove by induction on s that
in time O�c � b� each round s reduces the number of active keys to at most ms�a

�
s�� in each group As

j �
w�h�p�

The initial reduction scheme serves as a basis for this induction because it ensures that at the
beginning of the �nal reduction scheme at most m�
a

	
� keys are still active in each group Aj of

processors� w�h�p�

� ��� Implementations on an arbitrary�DMM

Assume now that at most ms���a
�
s keys are left in each subset As��

i of processors at the beginning
of round s� Then in �	�� according to Lemma
��� for all but ms�

�as�� active keys in each set As
i � as

processors can be allocated in constant time� w�h�p� We then are able to implement the �m� �
as
� as� b� c��

process in �
� in such a way that each key that has as processors can send messages to as modules
possessing its copies in constant time and can check in time O�b� whether at least b messages came
through� So altogether step �
� needs O�c � b� time� w�h�p�� for c chosen as for the initial reduction

scheme to reduce the number of active keys in each As
j to at most ms�
a

	
s � Since as � a� �
a� � ��

we get
ms

�as��
�
ms

a	s
� ms

�
as��
�

ms

a�s��

�

Thus round s of the reduction scheme reduces the active keys from at mostms�a
�
s to at mostms�a

�
s��

in each partition As
i in time O�c� b�� w�h�p�

Consider now the last round of the �nal reduction scheme� It is easy to check that as�� �
as � �
	a

for all a � �� So this round reduces the number of active keys from at most ms�a
�
s to at most

ms

�as��
�
ms

a	s
� ms

�
as��
� ms

a�

active keys in each group As
i � w�h�p� This results in the following lemma�

Lemma 	�	 The
nal reduction scheme reduces the number of active keys from at most n�
a
	
� to at

most n�a� in time

O

��
b�

a

a� b

�
�log� a� log� b� 	�

�
�

w�h�p�

Note that the �nal reduction scheme works correctly even if a
as

is not an integer for some s� In
this case the remaining keys of the incomplete group As

i are put into one of the complete groups As
j �

This at most doubles the upper bound for the number of remaining keys in As
j which does not hurt

our analysis�

Now an e�cient way to access b out of a copies for each of n keys on an arbitrary�DMM could look
as follows�

� Phase �� Reduce the number of active keys from n to at most n
a�

using the initial and �nal
reduction scheme�

� Phase �� Assign a processors� one from each group Aj� to each of the n
a� active keys� using the

LAC algorithm from Section
�
�

� Phase �� Finish the process �compare Lemma ��
��

Unfortunately� we can not use the lemmas proven above to conclude the time bound

O
�
a�b
a�b �

�
b� a

a�b

�
�log�a� log� b� 	� � log� n� log

�
a

a�b

�
� log logn
log�a�b��log loga

�
because the keys phase � is started with are not independent of the hash functions� The reason for
this is that they remained active after phase 	� where the same hash functions are used as in phase ��

In case that b � a
� we can circumvent this problem easily� simply use disjoint halfs of the hash

functions in phase 	 and ��

In case b � a
� we can proceed as follows� Let p be chosen such that �p���a

p � b � �p���a
p�� � Thus

p � b �a
a�bc� In order to simplify our presentation of the solution suppose that p divides a� Then we can

partition the a groups B�� � � � � Ba of n
a modules each into groups C�� � � � � Ca�p consisting of p groups

Bj � each� Select a pair �Ci� Cj� out of these groups and perform the following scheme on them�
Carry out phase 	 on Ci with b� �� b

p�� �note that b� � b
p�� � a

p�� � and phase � on Cj with the

same b��

� A lower bound for simple access protocols
�

Since phases 	 and � are now run on di�erent sets of hash functions we can combine the results in

Lemma ��
 and Lemma ���� Note that we have to choose c � d a�p
a�p�b� e � p� 	 � b �a

a�b � 	c for phase
	 and c � log�
e�p � 	�� for the last part of phase ��

Of course� if we run this scheme only for one pair �Ci� Cj� then each key got through only b� instead
of the required b requests� But if we run this scheme for all pairs �Ci� Cj� it can easily be seen that
each key got through at least b� requests in at least p�	 groups Ci� so altogether each key got through
at least b��p � 	� � b requests�

Let us call the algorithm described above the advanced �n� a� b��scheme� Then the following The�
orem holds�

Theorem 	�
 For a and b chosen such that � � a � p
logn� b � a� and a

a�b � O��

p
logn

a�b ����� the
advanced �n� a� b��scheme executed on an arbitrary�DMM needs time

O
�
b �a

a�bc
�

� �
a�b
a�b �

�
b� a

a�b

�
�log�a� log� b� 	��

log� n� log
�

a
a�b

�
� log logn
log�a�b��log loga

��
�

w�h�p� In particular� if b � �	� ��a for constant � � �� the time bound is

O

�
log� n� b�

log logn

loga

�
�

w�h�p�� for all � � a � p
logn�

In order to realize a static dictionary� b � 	 su�ces� The number a of hash functions used is the
redundancy of the storage representation�

Corollary 	�� For each a such that � � a � p
logn the above strategy yields a static dictionary on an

arbitrary�DMM with redundancy a and parallel access time O�log� n � log logn
loga �� w�h�p� In particular�

parallel access time O�log� n� can be achieved with redundancy �logn��� log
� n�

In order to realize shared memory simulations we have to choose b � a
� �

Corollary 	�� For each a such that � � a � p
logn the above strategy yields a shared memory

simulation on an arbitrary�DMM with delay O�a� log logn
loga

�� w�h�p� In particular� delay O� log logn
log log logn

�

can be achieved with redundancy� e�g�� a �
p
log logn�

� A lower bound for simple access protocols

In this section we ask whether there exist faster implementations of direct processes than ours� More
precisely� we assume that the keys are distributed among the modules of an arbitrary DMM using a
independent� truly random hash functions� We demand that� given n keys� only one copy of each of
them has to be accessed� We allow the processors to try to access several copies of all keys they know in
parallel and to communicate with other processors� The communication is restricted to the oblivious
mode� i�e� the communication is independent of the hash functions and the input keys� Based on
the information gathered about the topology of the access graph by such oblivious communication a
processor may decide on which copies to request in the next round� Let us call this type of protocols
the simple access protocols�

We want to describe a simple access protocol in a more formal way� As the communication is
oblivious we can perform it in advance� We want to prove a lower bound for access protocols that
need at most log logn steps� After t steps of the communication� 	 � t � log logn� each processor
knows a set Kl of input keys� jKlj �
t� As the communication is oblivious� Kl is independent of the
values of the keys� i�e� it is independent of the access graph� We assume w�l�o�g� that requests w�r�t�
di�erent hash functions never collide� i�e� we assume that each module Mj � 	 � j � n� exists in a
copies� Mj�k� 	 � k � a�

� � A lower bound for simple access protocols

We transfer the capability of decisions from the processors to the modules� i�e� the processors
always access all the active keys they have w�r�t� to all a hash functions� A module Mj�k knows a set
Vj�k �

S
lKl of keys� induced by the keys of the processors Pl accessing it� Vj�k can be partitioned

in each step t of the simple access protocol into two sets At
j�k and Dt

j�k of active and inactive keys�
respectively� Let Gj�k be the subgraph of the access graph induced by the set Vj�k of keys and the
neighbor modules of Vj�k�

In each step each moduleMj�k decides which of the active keys from At
j�k it answers� This decision

is only based on the topology of Gj�k and the set At
j�k of still active keys from Vj�k�

Finally the partition At
j�k�Dt

j�k is adjusted� i�e� if x � At
j�k has been answered in step t by Mj�k or

some other module� it moves to Dt��
j�k � Obviously a module can simulate the decisions of a processor

accessing it because it has at least as much information as the processor�
In the following we �rst show that the decisions made by the modules are in essence random� Then

we analyze the process where each module Mj�k answers a random request from At
j�k in each step t�

We allow at most logn hash functions� i�e� a � logn�

Lemma
�� There is a subset A of the input set� jAj � n
� log� n

� such that no processor knows more

than one key from A during the t steps of the simple protocol� 	 � t � log logn� A is independent of
the hash functions and the access graph G restricted to A contains no cycle of length less than �� with
probability at least �

	 �

Proof� As we mentioned above we can perform the communication steps in advance� because they
are oblivious� i�e� independent of the hash functions and the input keys�

De�ne the communication graph �G � �K�E�� where K is the set of all keys� x�� � � � � xn� There is
an edge fxi� xjg � E if some processor with key xi � K communicates with some processor with key
xj � K during a round t� for 	 � t � log logn� For t in the stated bounds we can bound the number
of edges in the graph by n logn� We restrict the set of keys to a maximum independent set A� Using
Turan�s Theorem �see e�g�

�� we get

A � jKj�
jKj�
jEj �

n�

n�
n logn
� n

� logn
�

As we consider di�erent sets of modules to store the copies of keys w�r�t� di�erent hash functions
the access graph G has no cycles of length
� Thus� we only have to show that there exist no cycles
of length �� Note that the set A is independent of the hash functions� Hence the probability of the
occurrence of a ��cycle can be bounded by� n

� logn

�� a
n

��
�
�

ne

� logn

�� � a
n

��
� 	

�
�

The last inequality holds for a � logn�

From now on we assume that there are no communication steps� and only requests from the set
A have to be answered� In this case the subgraph G�

j�k of Gj�k induced by V �
j�k � Vj�k � A reduces

to the
�neighborhood of Mj�k in the access graph� Lemma ��	 ensures that no cycles exist in this
neighborhood� Therefore it is completely symmetric around Mj�k� and each decision of Mj�k based on
the topology of this
�neighborhood is random� Hence� in the following we can view the simulation
as acting on a independent games� In each game all processors try to access their active key w�r�t�
to all a hash functions and the active modules randomly and independently choose one request for
processing� This procedure is called an access step�

We �rst prove a technical lemma that bounds the number of keys left in a single game after one
access step�

Lemma
�� Assume we have n
q keys� � � q � n

�
� � randomly distributed among n modules� If each

module removes one of its keys� with high probability at least n
q	 keys will remain�

� A lower bound for simple access protocols
�

Proof� We have m � n�q requests and n modules� De�ne the following random variables for
i � 	� � � � � n�

Yi ��

	
	 if module Mi gets a request
� else

Y ��
Pn

i�� Yi is the number of modules which receive a request� Obviously the Yi are self�weakening
�compare De�nition
���� First we have to �nd an upper bound 	� for E�Y � to apply Theorem
���
De�ne the random variable X �� n � Y for the number of modules which do not get a request� One
can easily see�

E�X� � n�	� 	

n
�
m

� n�	� 	

n
�e�

m
n

� E�Y � � n� E�X� � n

�
	�

�
	� 	

n

�
e�

m
n

�
�� 	� �

We can bound 	� by m�
�

	� � n

�
	�

�
	� 	

n

�
e�

m
n

�
� n

	� e�

m
n

�
� n

�
	

m

n

�
�

m

�

Therefore Theorem
�� yields for � � � � 	�

P �Y � �	 � ��	�� �
�
	

e

�	�����
�
�
	

e

�	�m��

�

We choose � �� �
�

m
n

��
to make this probability polynomial small�

P �Y � �	 �
	

�m
n

��
�	�� �

�
	

e

� m

��n�

�

�
	

e

� n

��q

�

This probability is polynomial small for � � q � n
�
� �

It remains to compute the number of requests that are left� i�e� m � �	 � ��	�� We want to show
that this expression is greater than n�q� using Taylor�s expansion of the exponential function�

m � �	 � ��	� � m � �	 � ��n

�
	�

�
	� 	

n

�
e�

m
n

�

� n

�
m

n
� �	 � �� � �	 � ��

�
	� 	

n

�
e�

m
n

�
� n

�m
n
� 	� � � e�

m
n � �e�

m
n

�
�
e�m

n � �e�
m
n

�
� n

�
��	 � m

n
� � � �e�

m
n �

X
j��

�m
n

�j
j�

�
A �

	�� �
� �

m
n �

�

� n

�
�	

�m
n

��
e�

m
n � 	

�

�m
n

��
�

X
j�	

�m
n

�j
j�

�
A �

� n
�m
n

��
�

m�

n�
�

n

q�
�

The last inequality holds for m � n�q and q � ��

With the help of this lemma we are able to bound the number of requests that are left after one
access step�

� � A lower bound for simple access protocols

Lemma
�� Let the number of active keys be at least n
q � After performing one access step� i�e� all

modules independently answer one key randomly� at least n
q
a

active keys are left� w�h�p�� as long as

q � n
�

�a�� �

Proof� W�l�o�g� we can make the analysis using new random hash functions at each step� The old
hash function can be viewed in step t as random function distributing the active keys randomly among
the active modules� A new random hash function has the range of all n modules in each step� Hence
the probability for an active key to be answered increases�

De�ne the following random variables�

X � $ answered keys in this round

X �

n�qX
i��

Xi� Xi ��

	
	 key i will be answered
� else

Y � m�X � $ not answered keys

Y �

n�qX
i��

Yi� Yi ��

	
	 key i will be left
� else

Apply Lemma ��
 to all hash functions to obtain that� if we consider the hash functions independently�
with respect to every hash function at least n

q	 keys remain� To handle the dependencies between the
hash functions we have to compute the probability that a key is answered by at least one hash function
or not answered by any hash functions�

P �Yi � 	� � P � key i will be left in all hash functions�

�
�

n
q	

n
q

�a

�

�
	

q�

�a
�

� E�Y � � n

q

�
	

q�

�a
�

n

q�a��

� E�X� �
n

q
�E�Y � � n

q

�
	� 	

q�a

�
� 	� �

The Xi are self�weakening� Applying Theorem
�� yields�

P �X � �	 � ��	�� � P

�
X � �	 � ��

n

q

�
	� 	

q�a

��

� e
� ��

	
n
q

�� �

q�a

�
for � � � � 	�

Choose � �� �
q�a

�

P

�
X � n

q

�
	� 	

q	a

��
�

�
	

e

� n

	q�a��

�� �

q�a

�

�
�
	

e

� n

�q�a��

for q � 	�

The probability is at least polynomial small for q � n
�

�a�� � We want to derive from this expression a
bound for Y �

P

�
Y � n

q	a��

�
� P

�
n

q
�X � n

q	a��

�
� P

�
X � n

q

�
	� 	

q	a��

��
�

� Conclusions
�

Hence the probability for Y being smaller than n
q�a�� is polynomial small�

If we consider only a set A of keys satisfying the assumptions in Lemma��	� Lemma��� immediately
implies the following theorem�

Theorem
�	 Any simple scheme based on a random� independent hash functions to distribute the

shared memory needs expected time %
�
log logn
log a

�
� for a � �logn�
� � � 	�

Proof� We start with the set A of keys described in Lemma ��	� i�e� with n
q keys� q � � logn�

Lemma ��� states that after t rounds we are left with at least n
q
a

t requests as long as q�a
t � n

�
�a�� �

This condition holds for

t � log logn � log��a�
�� log log q

log �a

� %

�
log logn

loga

�
for a � �logn�
� � � 	�

Because of Lemma ��	 this bound holds with constant probability and therefore the expected time
follows�

For shared memory simulations� also a�
 is a lower bound� because at least a
� copies of each of the

n keys have to be updated� but only n updates can be done in one step�

Corollary
�
 Any shared memory simulation within the class of simple access protocols based on a
random� independent hash functions has expected delay %�a� log logn

loga �� Thus any choice of a can only

yield simulations with expected delay %� log logn
log log logn �� i�e� the result from Theorem ��� is optimal�

	 Conclusions

Note that we can get rid of the factor

b �a

a�b c

�

�
in the running time stated in Theorem ���� In the

Appendix it is proved that the following lemma holds even if phase � of the advanced �n� a� b��scheme
is perfomed on hash functions that have already been used in phase 	� Thus we do not have to use a
partitioning of the hash functions as necessary for our scheme in Section ��
�

Lemma ��� If phase � of the advanced �n� a� b��scheme is started with the same hash functions as

phase 	 then at most n�
a
t��

keys are still active after t rounds of the process we execute in phase ��
w�h�p� In particular� phase �
nishes within log logn

log�a�b��log log a � � rounds� w�h�p�

Note that if in this case the advanced �n� a� b��scheme successfully terminates then each module has

to answer at most c��log
� a�log� b�
��c� requests� where c� � maxfd a

a�be� �g and c� � log�
�e�a���
a�b ��

For b � 	 this reduces to � log� a� 		� for b � a
� � 	 this reduces to 	��

�� REFERENCES

References

	
� R�J� Anderson and G�L� Miller� Optical communication for pointer based algorithms� Technical
Report CRI ���

� Computer Science Department� University of Southern Carolina�
����

	�� C� Berge� Graphs and Hypergraphs �North�Holland� Amsterdam�
�����

	�� H� Bast and T� Hagerup� Fast and reliable parallel hashing� in� Proc� SPAA���� ����
�

	
� A� Czumaj� F� Meyer auf der Heide and V� Stemann� Shared memory simulations with triple�
logarithmic delay� in� Proc� ESA����
�����

	�� J�L� Carter and M�N� Wegman� Universal classes of hash functions� J� Comput� Syst� Sci� �� �
����

��
�
�

	�� M� Dietzfelbinger� A� Karlin� K� Mehlhorn� F� Meyer auf der Heide� H� Rohnert and R� Tarjan�
Dynamic perfect hashing� upper and lower bounds� SIAM J� of Comput� � �
��
� ������
�

	�� M� Dietzfelbinger and F� Meyer auf der Heide� How to distribute a hash table in a complete network�
in� Proc� STOC����

��
���

	�� M� Dietzfelbinger and F� Meyer auf der Heide� Simple e�cient shared memory simulations� in�
Proc� SPAA����

��

��

	�� M� Ger�eb�Graus and T� Tsantilas� E�cient optical communication in parallel computers� in� Proc�
SPAA����

�
��

	
�� L� A� Goldberg� M� Jerrum and T� Leighton� A doubly logarithmic communication algorithm for
the completely connected optical communication parallel computer� in� Proc� SPAA���� ��������

	

� L�A� Goldberg� Y� Matias and S� Rao� An optical simulation of shared memory� in� Proc� SPAA��	�
��������

	
�� T� Hagerup and C� R�ub� A guided tour of Cherno� bounds� Inform� Proc� Letters �� �
�������
��������

	
�� R� Karp� M� Luby and F� Meyer auf der Heide� E�cient PRAM simulation on a distributed mem�
ory machine� Technical Report TR�RI����
�
� University of Paderborn� Sept�
���� To appear in
Algorithmica� A preliminary version appeared in Proc� STOC���� �
������

	

� F� Meyer auf der Heide� Hashing strategies for simulating shared memory on distributed memory
machines� in� F� Meyer auf der Heide� B� Monien and A�L� Rosenberg� ed�� Proc� of the
st Heinz
Nixdorf Symposium �Parallel Architectures and Their E�cient Use�� LNCS� Vol� ��� �Springer�
Berlin�
���� ������

	
�� P�D� MacKenzie� C�G� Plaxton and R� Rajamaran� On contention resolution protocols and associ�
ated phenomena� in� Proc� STOC��	�
���
���

	
�� Y� Matias and U� Vishkin� Converting high probability into nearly�constant time � with applications
to parallel hashing� in� Proc� STOC��
� �����
��

	
�� A� Panconesi and A� Srinivasan� Fast algorithms for distributed edge coloring� in� Proc� PODC����
��
�����

	
�� A� Siegel� On universal classes of fast high performance hash functions� their time�space tradeo��
and their applications� in� Proc� FOCS�
�� ������

	
�� J� Schmidt� A� Siegel and A� Srinivasan� Cherno��Hoe�ding bounds for applications with limited
independence� in� Proc� SODA���� ��
��
��

	��� E� Upfal and A� Wigderson� How to share memory in a distributed system� J� Assoc� Comput�
Mach� �� �
����

��
���

	�
� L� Valiant� Parallelism in comparison problems� SIAM J� Comp� � �
���� �
������

	��� L� Valiant� General purpose parallel architectures� in� J� van Leeuwen� ed�� Handbook of Computer
Science �Elsevier� Amsterdam�
����� Chapter
��

A Appendix �	

A Appendix

Proof of Lemma ����

Let s be the biggest integer such that
Ps

i�� ai � a� and let l �
� In order to analyze phase � of the
advanced �n� a� b��scheme under the assumption that the same hash functions as in phase 	 are used�
we want to consider the following events�

� Et � Module Mx�y is still active after t rounds

� E�
t�k � the k selected keys provide an embedding for Tt

� E��
k � the k selected keys survived phase 	

Let

p�a�t �� �a� 	� � �logm��

�
	

m

� c��a�b�
c��

�

�
	

�Pt��

j��
�c�a�b��j

We want to show that Prob�Et� � p�a�t for all t�
 � t � log logn
log�c�a�b����� The proof for the upper bound

for the number of keys that are still active after t rounds will then be analogous to the proof of the
Main Theorem� It holds�

Prob�Et� �
jVTKjX
k�c��

�
n

k

�
�Prob�E�

t�k� �Prob�E��
k j E�

t�k�

According to the proof of Lemma ��� we get �note that n has to be substituted by m � n
a
�

Prob�E�
t�k� �

kX
i�u�k�

jBk�ij � �k�i � pk�i�

It remains to calculate Prob�E��
k j E�

t�k�� The active keys consist of those keys surviving for s � � the

initial reduction scheme in one of a groups A�
j �� Aj or for s � � round s of the �nal reduction scheme

in one of a
as

groups As
j � To keep sentences in the following short let us simply call the situation for

s � � iteration s� Let

g ��

	
a � s � �
a
as

� s � �

be the number of groups that are melted together to one group in phase � and let �T be a base tree for
the event E�

t�k� that is�
�T has k VTK�nodes� Furthermore� let X � f�� � � � � k� 	g be a random variable

for the number of keys embedded in a VTK�node v of �T that have a key embedded in the grandfather
of v which comes from a di�erent group As

j of keys than itself� The probability for such an event is

	� �
g for each VTK�node in the base tree independently from the others� There are

k��
r

�
possibilities

to choose VTK�nodes for the event X � r �the leftmost VTK�node at the top of Tt serves as a basis
for the partition of �T �� Thus it holds �

Prob�E��
k j E�

t�k� �
k��X
r��

�
k � 	

r

��
	� 	

g

�r �
	

g

��k����r

� Prob�E��
k j E�

t�k � X � r�

According to the de�nition of X� for the case X � r �T can be partitioned into r � 	 subtrees with
VTK�nodes as roots and with keys embedded only from one group As

j in each subtree� Because up
to c subtrees with keys embedded only from one group As

j can be connected with each other by a

VTM �node in �T we can partition �T into at least d r
c
e � 	 subtrees with VTM �nodes as roots and with

keys embedded only from one group As
j�

We call �T a minimal deadlock tree if either X � � and the embedding of �T induces a deadlock
structure in the access graph� or X � � and the embedding of �T does not induce a deadlock structure
within any group As

j of keys� Surely� if there exists a deadlock structure in the access graph then there

�
 A Appendix

exists a valid embedding for a minimal deadlock tree� This means that we can restrict ourselves to
counting minimal deadlock trees instead of all deadlock trees�

In the following we will only consider deadlock�free trees or minimal deadlock trees �T � First� let
�T be a tree with X � �� Then� according to our assumptions� �T has at least dX

c
e � 	 deadlock�free

subtrees with VTM �nodes as roots and with keys embedded only from one group As
j � Let T

� be one of
these subtrees� Then one of the following two cases holds�

�	� There is a key x embedded in T � for which at most as � b modules are known by T � that store
a copy of x� �Otherwise x has a complete neighbourhood of as � b� 	 modules in T ��� For this
case we refer to Lemma A�	�

�
� There is a module M embedded in T � for which at most c keys are known by T � that have a
copy stored in it� �Otherwise M has a complete neighbourhood of c � 	 keys in T ��� For this
case we refer to Lemma A�

It is not di�cult to see that� if no such key x or module M exists in T � then the embedding of T �

implies a deadlock structure for group As
j� that is� our assumptions for �T are not ful�lled�

Lemma A�� Let k be the number of VTK �nodes in a base tree �T for the situation E�
t�k� Let T � and

x be de
ned as in case �	� above� and let Ex be the event that x is still active after t� rounds of the
�m� �

as
� as� b� c��process at iteration s of the advanced �n� a� b��scheme� Then it holds

Prob�Ex� � 	

�c�as�b��t
���

Proof� Let all keys embedded in T � belong to the group As
j � According to our assumptions at

most as � b modules are known by T � that store copies of x� As a worst case for Prob�Ex� we will
suppose that for each module M � out of these at most as � b modules the embedding of T � already
provides an embedding of Tt� into the access graph of As

j with root embedding M �� But we still have
to �nd one more embedding of Tt� into the access graph of As

j with one of the remaining b modules
that store copies of x embedded in its root to ful�ll the event Ex� Let M � be one of these remaining
modules and EM � be the event that M � is still blocked at round t� of iteration s� As we will see� if
we know the probability for EM � we can easily estimate the probability for the event Ex� In order to
get an upper bound for the probability that EM � is true we need to estimate the probability that Tt�
can be embedded in the access graph of As

j with root embedding M � under the assumption that the

embedding of �T is valid�
Let k� be the number of keys from As

j embedded in Tt� that are not embedded in �T � We have to
distinguish three cases�

k� � � � For this case the upper bound of the probability that Tt� can be embedded completely in the
access graph of As

j is

Prob�EM � j k� � �� � k

m
�

�
k

m

�c
�T can have at most k VTM �nodes embedded in the same hash function as M �� so the probability
that x is stored in a module already used in �T is at most k

m � If this is not the case then there

must be at least c keys besides x that are already used in �T and are stored inM �� The probability
for this event is at most � km �c�

k� � 	��c � Let �T � be a base tree in Tt� with k� VTK �nodes� i of them inner nodes and E � be its set of
expansion nodes� None of the keys embedded in VTK�nodes in �T � is allowed to be a key already
embedded in �T � but in the expansion nodes all keys from As

j are allowed to be embedded� Let

us call keys or modules that are not already embedded into �T new and otherwise old� Let p
be the number of new keys that are embedded in the highest row of VTK �nodes in Tt� � If we
consider all possibilities for base trees �T � for any triple �k�� i� p� then we obviously cover all the
possibilities for valid base trees in Tt� � Let r�k�� i� p� be the number of expansion nodes a base

A Appendix ��

tree with parameters �k�� i� p� possesses and j be the number of old nodes embedded in E �� Then
the probability for the expansion nodes is bounded above by

r�k��i�p�X
j��

�
r�k�� i� p�

j

��
	

m

�d
r�k��i�p��j

c�� e
�
k

m
�

c

r
k

m

�j

�
�

c��

r
	

m
�

�
k

m
�

c

r
k

m

��r�k��i�p�

�

because it holds�

�
r�k��i�p�j

�
is the number of ways to distribute the old keys among the expansion nodes�

�
 �
m

�d r�k��i�p��j
c�� e

is the overall probability for the new keys� see Proof of Lemma ����

� The probability that a key already used in �T is embedded in an expansion node is at
most k

m � Furthermore� the probability that the module embedded in a VTM �node above

an expansion node is already embedded in �T is at most k
m � Because at most c expansion

nodes can have one common VTM �node as father we get an additional factor of c
p
k�m for

each expansion node with an old key�

We can improve this probability bound for k� � f	� � � � � cg� Suppose that p new keys are embed�
ded into VTK�nodes of the highest row of Tt� � For each of the as � b VTM �nodes v below these
p VTK�nodes it holds �recall that only k � p � c � p new keys are left��
Either the module embedded in v is old �this is true with probability k

m
� or if the module em�

bedded in v is new at least c� �c� p� � p old keys have to be embedded below v to get a valid
embedding for �T � �this is true with probability � km �p��

Let u�k�� p� be a lower bound for i for �xed values of k� and p� Obviously� u�k�� p� � p � 	
and r�k�� i� p� � p � c�as � b� � �c � p� �recall the de�nition of r�k� i� in Proposition ����� that

is� r�k�� i� p� � r�k��i�p�
� � p�as � b�� So we get the following probability bound for the expansion

nodes � �
c��

r
	

m
�

�
k

m
�

c

r
k

m

��r�k��i�p��p�as�b�

�
��

k

m

�p
�

k

m

�p�as�b�

�
�

c��

r
	

m
�

�
k

m
�

c

r
k

m

�� r�k��i�p�
	

�
��

k

m

�p
�

k

m

�p�as�b�

Because the hash functions used at round s have never been used before with keys in As
j we get

analogous to the proof of Lemma ����

Prob�EM � j k� � 	��c�

�
cX

k���

�
ms

k�

��
	

as

�k� k�X
p��

�
k�

p

�
�k� � p��

�
k

m

�c�p k�X
i�u�k��p�

��
as � 	

as � b

�
mas�b

�i
�

�
	

c�

�i�as�b��i � c�as � b�

r�k�� i� p�

��
c��

r
	

m
�

�
k

m
�

c

r
k

m

�� r�k��i�p�
	

�
��

k

m

�p
�

k

m

�p�as�b�� 	

m

�k��i�as�b�

�
cX

k���

k�X
p��

	

p�

�
k

m

�c�p k�X
i��

�
	

�i�
k

m

��p��

�
	

m

�� A Appendix

k� � c � Let pa�t� be de�ned as in the proof of the Main Theorem� Then we get�

Prob�EM � j k� � c�

�
jVTKjX
k��c��

�
ms

k�

��
	

as

�k� cX
p��

�
k�

p

�
�k� � p��

�
k

m

�c�p k�X
i�u�k��p�

��
as � 	

as � b

�
mas�b

�i
�

�
	

c�

�i�as�b��i � c�as � b�

r�k�� i� p�

��
k�

c��

r
	

m
�

�
k

m
�

c

r
k

m

��r�k��i�p��
	

m

�k��i�as�b�

� pas�t� �
c��X
p��

	

p�

�
k

m

�c�p jVTKjX
k��c��

k�X
i�u�k��p�

�
	

�i�
c��

r
	

m
�

�
k

m
�

c

r
k

m

��r�k��i�p���

� pas�t� �
c��X
p��

	

p�

�
k

m

�c�p�
jVTK j

�
	

m

� �
��c���

� c

�
	

�c�as�b��

� pas�t� �
c��X
p��

	

p�

�
k

m

�c�p
� pas�t� �

k

m

The key x has edges to as modules M �
�� � � � �M

�
as in the access graph of the group As

j � So altogether it
holds �

Prob�Ex� �
asX
i��

Prob�EM �
i
�

�

asX
i��

�
Prob�EM �

i
j k� � �� � Prob�EM �

i
j k� � 	��c� � Prob�EM �

i
j k� � c�

�

� as �
�
pas�t� �

k � 	

m

�
� 	

�c�as�b��t
���

Lemma A�� Let k be the number of VTK �nodes in a base tree �T for the situation E�
t�k� Let T � and

M be de
ned as in case ��� above� and let EM be the event that M is still blocked at round t� of the
�m� �

as
� as� b� c��process at iteration s of the advanced �n� a� b��scheme� Then it holds

Prob�EM � � 	

�c�as�b��t
��	

Proof� Let all keys embedded in T � belong to the group As
j � According to our assumptions at most

c keys are known that have a copy stored in M � Thus� as an upper bound for Prob�EM � we can use
the probability that there exists a key y with a copy in M that was still active after t� � 	 rounds of
iteration s� Let us de�ne the following events�

� E�
y� the key y has a copy in M and was still active at the beginning of iteration s�

� E�
y� the key y was still active after t� � 	 rounds of iteration s�

For the calculation of the probability of E�
y we have to consider two cases�

� Case 	� s � �� Then Prob�E�
y� � �

m �

� Case
� s � �� Then Prob�E�
y� � �

m � �
as
�

A Appendix ��

Let m� �� m �recall that ms � asm for s � �� and y�� � � � � yms
be all keys in As

j � Then we get�

Prob�EM � �
msX
i��

Prob�E�
yi� � Prob�E�

yi j E�
yi�

�
msX
i��

	

ms
� Prob�E�

yi j E�
yi�

In order to get an upper bound for the probability that E�
y is true under the assumption that E�

y is
true we need to estimate the probability that a key y in As

j that has one copy in moduleM has copies
in at least as� b other modules for which there is an embedding of Tt��� into the access graph of As

j �
Thus according to Lemma A�	 it holds for t �
 �recall that as � b � 	��

Prob�E�
y j E�

y� �
�
as � 	

as � b

�
�
�
pas�t��� �

k � 	

m

�as�b
� 	

�c�as�b��t
��	

Now we can estimate the probability that EM is true�

Prob�EM � �
msX
i��

	

ms
� 	

�c�as�b��t
��	

�
	

�c�as�b��t
��	

If we combine the results of Lemma A�	 and Lemma A�
 we see that we get an additional probability

of at least 	�
�c�as�b��
t��	

for every subtree T � in �T as de�ned above� In the following let t� � �� Now
we can start to prove an upper bound for Prob�E��

k j X � r�� We will distinguish here between the
case s � � and s � ��

Case �� s � ��

Lemma A�� Let a� b and c be chosen as in Lemma ���� Then it holds for s � � and r � �

Prob�E��
k j X � r� �

�
	

as

�k�	

g

�r��

Proof� Let T � be de�ned as above� let q be the number of di�erent keys embedded in T �� Suppose
that none of the modules embedded in T � belongs to a hash function used in round s � 	� Suppose
round s� 	 took l �
 rounds of our process� Then for l �
 according to Lemma ��� the probability
that all keys embedded in T � are still active after round s � 	 is at most�

pas���l�� �
	

m

�q
�
�

	

as

�q

Let v be a VTM �node in T �� If we change the embedding of v in a way that we embed a module in v
from a hash function already used in round s�	 for d keys embedded in neighbors of v�
 � d � c�	
then we can partition T � into r trees� that is� we get an addition probability of

�
	

�c�as�b��t
��	

�d��

�

�
	

as

�d

�� A Appendix

which is at most 	 for t� � �� Thus as a worst case we assume that all hash functions embedded in T �

have only been used in iteration s� Therefore it holds for all l� � � and r � ��

Prob�E��
k j X � r� �

�
	

as

�k
� �Prob�E��

r
c
��

�
�

	

as

�k�
	

�c�as�b���

�r
c
��

�
�

	

as

�k�
	

g

�r��

So altogether we get�

Prob�E��
k j E�

t�k �X � �� � 	

g
�
�
	

g

�
	� 	

g

�
�

	

g

�k��

�
�

	

as

�k
� 	

as

�
	

a

�k
Let pa�t be de�ned as

pa�t ��
�logm��

�
	

m

� c��a�b�
c��

�

�
	

�Pt��

j��
�c�a�b��j

Then it holds �recall that n � a �m��

Prob�Et j X � �� �
jVTK jX
k�c��

nk

k�
� Prob�E�

t�k� � Prob�E��
k j E�

t�k �X � ��

�
jVTK jX
k�c��

mk

k�
� Prob�E�

t�k� �
	

as

� 	

as
� pa�t

We still have to consider the case where �T is only embedded into keys from one group As
j� that is�

X � �� If �T has k VTK�nodes then for this case a similar argumentation as in Lemma A�� yields that
Prob�E��

k j X � �� � � �
as
�k� So if we count over all g groups As

j we get�

Prob�Et j X � �� � g �
jVTKjX
k�c��

mk
s

k�
� Prob�E�

t�k� � Prob�E��
k j E�

t�k �X � ��

� g �
jVTKjX
k�c��

mk

k�
� Prob�E�

t�k� �
�
	

�k
� � � �

� g � �logm��

�
	

m

� c��a�b�
c��

�
	

�
�
	

�Pt��

j��
�c�a�b��j

So altogether we get Prob�Et� � p�a�t for the case s � ��

Case �� s � ��
For c�a � b� � a and a� b � 	 it holds for t� � ��

Prob�E��
k j X � r� �

�
	

�c�as�b��
�

�r
c
��

�
�
	

g

�r��

Thus we get�

Prob�E��
k j E�

t�k �X � �� � 	

g
�
�
	

g

�
	� 	

g

�
�

	

g

�k��

� 	

a
�
�

a

�k��

A Appendix ��

Let us now suppose that we have n
� active keys instead of n active keys at the beginning of the

advanced �n� a� b��scheme� We can get this situation by running phase 	 to � seperately for the �rst
and the second half of the keys� Then we get for each half �

Prob�Et j X � �� �
jVTKjX
k�c��

�n�
�k

k�
� Prob�E�

t�k� � Prob�E��
k j E�

t�k �X � ��

�
jVTKjX
k�c��

mk

 � k� � Prob�E
�
t�k� �

	

pa�t

We still have to consider the case X � �� For this case it is easy to see that we get�

Prob�Et j X � �� � g �
jVTK jX
k�c��

�m�
�k

k�
� Prob�E�

t�k� � Prob�E��
k j E�

t�k �X � ��

� g �
jVTK jX
k�c��

mk

 � k� � Prob�E
�
t�k� � � � �

� g � �logm��

�
	

m

� c��a�b�
c��

�
	

�
�
	

�Pt��

j��
�c�a�b��j

So altogether it also holds Prob�Et� � p�a�t for the case s � �� Note that if at most �	� �
a �n keys are

active at the beginning of the advanced �n� a� b��scheme then we do not have to partition the set of
keys any more to get Prob�Et� � p�a�t for the case s � ��

