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Abstract

The Lovász Local Lemma (LLL) is a powerful tool that is increasingly playing a valuable role in
computer science. It has led to solutions for numerous problems in many different areas, reaching
from problems in pure combinatorics to problems in routing, scheduling and approximation theory.
However, since the original lemma is non-constructive, many of these solutions were first purely
existential. A breakthrough result by Beck [8] and its generalizations (Alon [1], Molloy & Reed
[24]) have led to polynomial time algorithms for many of these problems. However, these methods
can only be applied to a simple, symmetric form of the LLL. In this paper we provide a novel
approach to design polynomial-time algorithms for problems that require the LLL in its general
form. We apply our techniques to find good approximate solutions to a large class of NP-hard
problems called minmax integer programs (MIPs). Our method finds approximate solutions that
are — especially for problems of non-uniform character — significantly better than all methods
presented before. To demonstrate the applicability of our method, we apply it to transform important
results in the area of job shop scheduling that have so far been only existential (due to the fact that
the general LLL was used) into algorithms that find the predicted solutions (with only a small loss)
in polynomial time. Furthermore, we demonstrate how our results can be used to solve satisfiability
problems.

∗Research partially supported by DFG-Sonderforschungsbereich 376 “Massive Parallelität: Algorithmen, Entwurfsmethoden, An-
wendungen.”



1 Introduction

The probabilistic method is used to prove the existence of objects with desirable properties by showing that
a randomly chosen object from an appropriate probability distribution has the desired properties with positive
probability. In most applications, this probability is not only positive but is actually high and frequently tends
to 1 as the parameters of the problem tend to infinity. In such cases, the proof usually supplies an efficient
randomized algorithm for producing a structure of the desired type.

There are, however, certain examples, where one can prove the existence of the required combinatorial
structure by probabilistic arguments that deal with rare events; events that hold with positive probability which
is exponentially small in the size of the input. This happens often when using the LLL. This lemma (in its
general form) is defined as follows.

Lemma 1.1 (Lovász [11]) Let A1, . . . , An be a set of “bad” events in an arbitrary probability space and let G
be a dependency graph for the events A1, . . . , An. (That is, Ai is independent of any subset of events Aj with
(i, j) �∈ G.) Assume that there exist xi ∈ [0, 1) for all 1 ≤ i ≤ n with

Pr[Ai] ≤ xi

∏
(i,j)∈G

(1 − xj)

for all i. Then with positive probability no bad event occurs.

In its symmetric form, the LLL is defined as follows.

Lemma 1.2 (Symmetric LLL) Let A1, . . . , An be a set of “bad” events with Pr[Ai] ≤ p for all i. If each Ai is
mutually independent of all but at most d of the other events Aj and ep(d+1) ≤ 1, then with positive probability
no bad event occurs.

Many applications of the LLL can be found in the literature (see, e. g., [2, 4, 5, 9, 11, 12, 14, 18, 20, 21,
22, 26, 27, 29, 30]). To turn proofs using the Lovász Local Lemma into efficient algorithms, even random
ones, proved to be difficult for many of these applications. In a breakthrough paper [8], Beck presented a
method of converting some applications of the Lovász Local Lemma into polynomial-time algorithms (with
some sacrifices made with regards to the constants in the original application). Alon [1] provided a parallel
variant of the algorithm and simplified the arguments used. His method was further generalized by Molloy and
Reed [24] to yield efficient algorithms for a number of applications of a simple, symmetric form of the Lovász
Local Lemma.

There have been only very few cases for which polynomial time algorithms for applications of the general
Lovász Local Lemma have been found without requiring a reduction to the symmetric LLL. Molloy and Reed
[24] found methods for the problems of β-frugal coloring and acyclic edge coloring that could possibly be ap-
plied to problems that require the general Lovász Local Lemma, but as it was pointed out by the authors, they
may require to prove some (possibly difficult) concentration-like properties for each problem under considera-
tion. Recently, the authors [10] were able to design and analyze a polynomial-time algorithm for the problem of
2-coloring non-uniform hypergraphs and related coloring problems.

In this paper, we will present a constructive form of the general LLL that cannot be proved (without sig-
nificant modifications) by the method in [10] for several technical reasons described in Section 2. We will
demonstrate in Section 3 how to use this result to construct efficient approximation algorithms for so-called
minmax integer programs (MIPs). For every k ∈ IN, let [k] represent the set {1, . . . , k}.

Definition 1.3 A MIP has variables {xi,j : i ∈ [n], j ∈ [�i]}, for some integers �i. Let N =
∑

i∈[n] �i and let
x denote the N -dimensional vector of the variables xi,j . A MIP seeks to minimize a real Y subject to:
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(1) a system of linear inequalities Ax ≤ y, where A ∈ [0, 1]m×N and y is the m-dimensional vector with
the variable Y in each component,

(2) for all i ∈ [n]:
∑

j∈[�i]
xi,j = 1, and

(3) for all i and j: xi,j ∈ {0, 1}.

MIPs represent a general framework for choice problems (see properties (2) and (3)). Many applications in
the area of routing and scheduling can be formulated as MIPs (for several examples, see [22]). A common strat-
egy to find good approximate solutions to MIPs is to first solve its linear relaxation and then to use randomized
rounding. This approach was pioneered by Raghavan and Thompson [28] and was later extended and refined for
MIPs by Srinivasan [30], Lu [23] and Leighton, Rao and Srinivasan [22]. The latter papers apply the symmetric
form of the LLL to construct good rounding strategies. Leighton et al. [22] give as a high-level application of
MIPs the hypergraph partitioning problem [15]:

We are given a set system H = (V,E), where V = [n] and E = {S1, . . . , SM} ⊆ P(V ). Given a positive
integer �, the problem is to partition V into � parts, so that the sets are split well: we want a χ : V → [�] that
minimizes Y = maxj∈[M ],k∈[�] |{i ∈ Sj : χ(i) = k}|.

The cost function above has the drawback that it only seeks to minimize the absolute split size. However,
there are applications where it would be much more desirable to minimize the relative split size, i. e., to find
a function χ that minimizes Y = maxj∈[M ],k∈[�] |{i ∈ Sj : χ(i) = k}|/|Sj |. Problems of this kind can be
found, for instance, in a paper by Feige and Scheideler [14]. Their solution (which heavily uses the general
LLL) allowed to prove upper bounds on the makespan of job shop schedules that significantly improved the
previously best results (see Section 4.1). Solving these problems with the techniques given in [22, 23] gives an
approximation ratio that is as large as Θ( log n

log log n) (n is the problem size), whereas an approximation ratio of
partly as low as 1 + o(1) is required for the proofs in [14] to be constructivized. Our method presented in this
paper will achieve this goal.

1.1 New results

Our main technical contribution is a novel approach to design polynomial-time algorithms for problems that
require the general LLL. We will apply this approach to find good approximation algorithms for MIPs:

Consider any MIP. Our strategy is to start with an optimal solution {x∗i,j : i ∈ [n], j ∈ [�i]} to the LP
relaxation of the MIP (i. e., the integrality constraints in Definition 1.3 (3) are removed). The resulting LP
optimum y∗ is clearly a lower bound for y, the optimum of the (integral form of the) MIP. We will present
a randomized rounding algorithm that exploits the dependencies among the rows of matrix A to find a good
approximate solution for y. These dependencies are defined as follows.

Definition 1.4 Given a MIP instance I as defined above, let the dependency graph GI of I consist of the node
set [m] and an edge set that contains edge (r, s) if and only if there are i, j, j′ so that ar,(i,j) > 0 and as,(i,j′) > 0,
and r �= s or j �= j′.

Note that GI may contain self-loops. This simplifies our proofs. However, it would also be possible to avoid
them. Based on our LLL techniques, we will prove the following main result.

Theorem 1.5 Given a MIP instance I , let x∗ be its optimal fractional solution and y∗ be the vector with
y∗r = (Ax∗)r for all r. Consider the random experiment of setting xi,j to 1 and all other xi,j′’s to 0 with
probability x∗i,j . For any vector α ∈ IRm

+ , let

pr = e−min[αr , α2
r ]y′

r/3
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for all r ∈ [m], where y′r = y∗r/(maxc ar,c). (pr is a Hoeffding bound for Pr[(Ax)r ≥ (1 + αr)y∗r ].) Let
0 < ε < 1 be a constant that is chosen such that αr ≥ max[(y′r)−1, (y′r)−(1−ε)/2] for every r. Furthermore, let

qr = e− lnε p−1
r and let zr = qδ

r be at most 1/3, where δ is a sufficiently small positive constant. If it holds that

qr ≤ zr

∏
(r,s)∈GI

(1 − zs)2/ε2 (1)

for all r, then there is an algorithm that finds a vector x in polynomial time so that (Ax)r ≤ (1 + O(αr))y∗r for
all r.

The main feature of this result is its great flexibility: It allows to exploit local dependencies among the rows
to achieve approximate solutions that allow to distinguish between rows that require a very good or just a rough
approximation. This is important, since MIPs may be — especially in real-world applications — composed of
different classes of restrictions that have different dependency structures and that require different approximation
ratios. In [22, 23] only the maximum dependency of a row on other rows can be used.

As we will see in Section 4, the property of being able to exploit local dependencies is vital to constructivize
the job shop scheduling results presented in [14]. We also show how to apply our method to obtain the first
approximation algorithm for MAX SAT problems that is able to exploit local dependencies.

2 The Local Lemma Algorithm

We start with presenting a general approach to design polynomial-time algorithms for problems that require the
general LLL.

Let V denote a set consisting of n independent random variables called trials. For each trial t ∈ V , let
Ωt denote the set of its possible outcomes. Let A be a set of m “bad” events, where each event A ∈ A is
determined by the outcome of the trials in TA ⊆ V . Let E = {TA | A ∈ A}. Two events A1, A2 ∈ A are said
to be neighbors if TA1 ∩ TA2 �= ∅. For every A ∈ A, let N(A) denote the set of all neighbors of A. Clearly,
event A is mutually independent of every subset of events A′ with A′ �∈ N(A). We assume that for every event
A and every set S ⊆ TA, the event A restricted to S (written as A|S) is well-defined and fulfills the condition
that A|S only depends on S and is independent of any other set of trials outside of S, even if they belong to the
original event A. Let Pr[A|S ] denote the probability that A|S is true under the assumption that an outcome is
chosen independently at random for each trial in S. Suppose that the following natural assumptions are valid:

• For every trial, a random outcome can be generated in polynomial time, and
• it can be decided in polynomial time for every event A and set S ⊆ TA whether A|S is true.

Then the following theorem holds.

Theorem 2.1 There is a constant Δ > 0 so that for every 0 < δ ≤ Δ the following holds:
Let A1, . . . , Am be a set of “bad” events over a set V of independent random trials, |V | = n. Every trial

t ∈ V has a set of outcomes of size at most polylogarithmic in n + m. Let pi = e−|TAi
|ε for all i ∈ [m], where

0 < ε ≤ 1 is a constant away from 0. Suppose that for all S ⊆ TAi it holds that

• if |S| > |TAi |ε then Pr[Ai|S ] ≤ pi, and

• if |S| ≤ |TAi |ε then Pr[Ai|S ] = 0.

Furthermore, assume that for qi = e− lnε p−1
i and xi = qδ

i it holds that xi ≤ 1/e and

qi ≤ xi

∏
Aj∈N(Ai)

(1 − xj)
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for all i. Then there is a randomized algorithm that finds outcomes for the random trials in polynomial time (in
n + m), w.h.p., such that for every event A, the set TA can be partitioned into at most some constant number of
subsets S1, . . . , Sk so that A|Sj is false for all j ∈ [k].

We first describe the algorithm underlying Theorem 2.1. Its analysis will be given in Section 2.2.

2.1 Description of the Algorithm

Consider any set of events that fulfills the conditions in Theorem 2.1. Our algorithm consists of four steps.

Step 1: Choose a random outcome for every trial in V .

Before we describe Step 2, we first introduce some notation and provide the ideas behind that step. Let the
events in Theorem 2.1 be called basic events, and let any event defined by a basic event restricted to a subset of
its trials be called a reduced event. As in Theorem 2.1, we assume the basic events to be numbered consecutively
from A1 to Am. Given an event B representing an event Ai or any reduced event of Ai, we denote its index
by i. A basic event A is called bad if its trial set cannot be decomposed into a constant number of subsets S
such that A|S is false. Clearly, after Step 1 there might be many basic events left that are bad. In this case we
have to redo certain trials covered by these events. The aim of Step 2.1 is to find a partition of the bad events
into trial-disjoint groups. The key feature of our partitioning procedure is that we do not consider all the trials
covered by the bad events. Instead, in the course of the algorithm we shall sometimes partition the basic events
into several reduced events that are assigned to different groups.

Step 2: Perform the following two substeps Step 2.1 and Step 2.2.

Step 2.1:

set R = V // R denotes the set of remaining trials
for i = 1 to m do:

if Ai|TAi
∩R is true then

call Build 1-Component(Ai|TAi
∩R)

Algorithm Build 1-Component(B):

set i = 0 and E0 = {B}
set R = R \ TB

repeat
set Ei+1 = ∅
set Ci+1 = N(Ei) // Ci+1 = all basic events that are neighbors of Ei

for all events Aj ∈ Ci+1 in increasing j do:
set S = TAj ∩ R // S: trials not selected yet
if Aj |S is true then // if true, this implies |S| > |TAj |ε

set R = R \ S and add Aj|S to Ei+1

set i = i + 1
until Ei = ∅

Consider some fixed set E∗ =
⋃

i≥0 Ei of (possibly reduced) events built in the algorithm Build 1-Compo-
nent. A basic event A is said to participate in it if more than |TA|ε of its trials are covered by E∗. (This clearly
holds for those events that have a reduced event in E∗.) The set of all participating events restricted to the trials
covered by E∗ is called a 1-component. For every 1-component C , let BC = E∗ denote its set of core events.
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Core events play an important role in the reselection process because, as we shall show, it is sufficient to reselect
only the trials covered by the core events in order to find a good selection for all (possibly reduced) events in C .

After performing Step 2.1, one might think that the 1-components can be solved independently. However,
it could happen that some basic event is partitioned into too many reduced events that belong to different com-
ponents. Theorem 2.1 requires for every event A to provide a decomposition of TA into a constant number of
sets S such that A|S is false. Therefore, without a coordination among these components, Theorem 2.1 might
not hold at the end. Step 2.2 takes care of these events by combining components into one component if neces-
sary. As we will see, the trials covered by the components constructed in Step 2.2 can afterwards be reselected
independently so that now Theorem 2.1 is ensured to hold at the end.

Define C to be the set of all 1-components. Recall that A denotes the set of all basic events. The second
substep works as follows.

Step 2.2:

set S = A // S denotes the set of remaining events
set R = C // R denotes the set of remaining 1-components
for all not yet taken 1-components C in R in

increasing index of their initial events do:
call Build 2-Component(C)

Algorithm Build 2-Component(C):

set i = 0 and E0 = BC

repeat
set Ei+1 = ∅
set D = N(Ei) ∩ S // D = all neighboring basic events not yet considered
for all events Aj ∈ D in increasing j do: // check nearby 1-components

set T to the set of trials in Aj covered by outside 1-components
if |T | > |TAj |ε then (∗)

for all 1-components C′ in R that overlap with TAj do:
set Ei+1 = Ei+1 ∪ BC′

remove C′ from R
remove Aj from S

set i = i + 1
until Ei = ∅

In the following, a basic event A is called dangerous if condition (∗) above holds for it. Let the union of
the 1-components built in the algorithm Build 2-Component be called a 2-component. For every 2-component
C , let BC denote the union of the sets BC′ of the 1-components C′ it consists of and let VC be the set of trials
covered by the events in BC . Every basic event participating in 1-components in C is also said to participate in
C , but only with a single non-core event (by combining all of its non-core reduced events in the 2-component
into one event).

Remark 2.2 Let us notice some important properties that we shall frequently use in our analysis and which
follow immediately from our construction:

(1) For every 2-component C , all events in BC are true.
(2) For every 2-component C , the trial sets covered by the core events A′ ∈ BC are disjoint and of size more

than |TA|ε of the corresponding basic event A.
(3) Every basic event has at most one core event.
(4) For every 2-component, every basic event has at most one non-core event.
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(5) For every basic event A, the part of A not covered by 2-components is false.

For the next step we use the following properties.

Lemma 2.3

(1) For every 2-component C , there are outcomes for the trials in VC so that all events participating in C are
false.

(2) For every basic event A, A participates in at most one 2-component.
(3) For every basic event A, the part of A not covered by 2-components is false.
(4) For every basic event A, the part of A contained but not participating in 2-components can be split into

at most two reduced events that are false under any circumstance.

Proof. To prove (1), observe that for every 2-component C , every basic event participates as at most one
(possibly reduced) event in C . Thus, one can easily verify that the probability bounds in Theorem 2.1 together
with the LLL imply that there are outcomes for the trials in VC so that all events participating in C are false.

For (2), assume that there is a basic event A that participates in at least 2 different 2-components. In this
case, A must have been dangerous from the viewpoint of every 1-component. This, however, would have caused
combining all trials of A covered by 1-components into a single 2-component, contradicting the assumption.

For (3), suppose that A does not have trials in any 1-component. Then it must be false, because otherwise
it would have been selected in step 2.1 as the initial event of a 1-component. Suppose now that A is partly
contained in 1-components and that C was the last of these taking some of the trials of A. Then the part of A
not taken yet must be false, because otherwise it would have been integrated into C .

In order to prove (4), note that the part of an event A covered by 2-components in which it does not participate
cannot exceed 2|TA|ε, because otherwise A would have been dangerous from the viewpoint of one of these
components. Hence, it can be split into two reduced events that are small enough so that they cannot become
bad if only trials covered by the 2-components are redone. �

Lemma 2.3 implies that every event can be split into at most 4 reduced events so that all of them can be made
false, which fulfills one of the requirements of Theorem 2.1. (With a closer look, actually 3 reduced events also
suffice.) Furthermore, it implies the following vital property.

Corollary 2.4 The 2-components can be considered independently of each other in order to fulfill Theorem 2.1.

Now we are ready to present Step 3.

Step 3: For every 2-component C , apply independently Step 2 above until the 2-components resulting from C
are sufficiently small.

From Section 2.2 it follows that we can identify “sufficiently small” with 2-components covering at most
O(ln1/ε ln m) trials. Since by Theorem 2.1 every trial only has a set of outcomes that is polylogarithmic in
n + m, we can use the following last step.

Step 4: Find through exhaustive search outcomes for the trials in each 2-component so that all of its events are
false.
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2.2 Analysis of the Algorithm

The following lemma implies that the overall runtime of the algorithm presented above is polynomial in n + m.

Lemma 2.5 Let ε and δ be chosen as in Theorem 2.1. Then,

(1) with probability at least 1−1/mα for any constant α > 0 the number of trials covered by any 2-component
after Step 2 is at most O((α ln m)1/ε), and

(2) for any 2-component C after Step 2 of size O(ln1/ε m), with probability at least 1 − 1/ lnα m for any
constant α > 0 the number of trials covered by any 2-component in C after applying Step 2 to C is at
most O(((α + 1/ε) · ln ln m)1/ε).

In order to prove the lemma, we intend to bound the expected number of possibilities of choosing sets of
core events that are able to establish a 2-component. We will do this by counting all possible sets of basic events
that could represent the core events of a 2-component. There are two main problems that have to be solved for
the counting:

(1) First of all, the counting has to provide an ordering for these basic events. The ordering must be able to
uniquely determine how the 2-component must be constructed by the algorithm.

(2) A unique way of establishing a 2-component still does not uniquely determine the core events, since it can
happen that there is a core event in this 2-component whose basic event has trials that are also covered by
other 2-components.

These two problems are the main reasons why the analysis used in [10] does not directly apply here. There,
the problem under consideration did not require to provide an ordering of the basic events, and a basic event
corresponding to a core event cannot have trials belonging to two different 2-components. This made the proof
significantly easier. In order to solve the problems above, we introduce the following structures.

The 1-Component Witness

Assume we are given a 1-component C with a set of core events BC =
⋃d

i=0 Ei, where E0 consists of the initial
core event of C and each Ei with i ≥ 1 represents the set of core events added to C in round i of Build 1-
Component. A graph T = (BT , E) is called a 1-component witness of C if T is a directed tree with the property
that

• the node set BT of T is the set consisting of the basic events of all core events in BC , and

• (A,B) ∈ E for the basic events A and B if and only if

– there is an i ≥ 0 such that, for the core events A′ and B′ of A and B, A′ ∈ Ei and B′ ∈ Ei+1, and

– A is the event of smallest index with a core event in Ei that overlaps with B.

The 2-Component Witness

Furthermore, assume we are given a 2-component D consisting of a set of 1-components SD =
⋃d

i=0 Si, where
S0 consists of the initial 1-component of D and each Si with i ≥ 1 represents the set of 1-components added to
D in round i of Build 2-Component. A graph T = (BT ∪ DT , E1 ∪ E2) is called a 2-component witness of D
if T is a tree of directed edges with the property that

• the node set BT contains the basic events of all core events in D,
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• the node set DT of T contains the basic events of all dangerous events considered for D (see (∗) of
Build 2-Component), which may include some of the basic events in BT ,

• (A,B) ∈ E1 for the basic events A,B ∈ BT if and only if (A,B) is an edge of the 1-component witness
of a 1-component in D, and

• (A,B) ∈ E2 for the basic events A,B ∈ BT ∪ DT if and only if the trial sets of A and B overlap, A and
B do not have core events in a single 1-component, and one of the two cases holds:

(1) A ∈ BT and B ∈ DT and A is the event of smallest index among the basic events that had a core
event in D before B was discovered to be dangerous, or

(2) A ∈ DT and B ∈ BT and B is the event of smallest index in its 1-component, among those
intersecting A, that was added to D due to A.

Edge set E1 is called the set of 1-component edges, and edge set E2 is called the set of 2-component edges.

Since according to Remark 2.2 (3) every basic event can only have one core event, 1- and 2-component
witnesses are always guaranteed to be trees. Obviously, every 2-component has a unique 2-component witness.
On the other hand, every 2-component witness T implies a 2-component C that is unique concerning

(1) its decomposition into 1-components,

(2) the order in which events are added to each of its 1-components in Build 1-Component,

(3) the order in which its 1-components are constructed, and

(4) the round in which each 1-component is added to C in Build 2-Component.

Item (1) follows from the fact that the 1-component witnesses in T are separated via 2-component edges. Fur-
thermore, item (2) holds because Build 1-Component ensures that the order in which new events are added to a
1-component in one round is determined by their indices. Item (3) is true, since Step 2.1 ensures that the order
in which the 1-components are constructed is determined by the indices of their initial events. Finally, item (4)
holds, because Step 2.2 ensures that the initial 1-component of C is represented by the 1-component witness in
T with the initial event of minimum index, and the round in which every other 1-component C′ is added to C is
determined by the number of 1-component witnesses that have to be passed in T from the initial 1-component
witness to the 1-component witness representing C′.

However, a 2-component witness may not result in a 2-component with uniquely determined trial sets for the
core events. The reason for this is that it can happen that a basic event can be a core event in one 2-component
(say, C) and overlap with the trials of another 2-component (say, C′). This can happen if C′ is constructed
before C . Hence, in this case, a single 2-component witness is not able to uniquely specify the trials covered by
the core events of a 2-component. Therefore, we also introduce 3-component witnesses.

The 3-Component Witness

Given a 2-component D, the 3-component witness T = (BT ∪ DT , E1 ∪ E2 ∪ E3) of D is a tree of directed
edges that is iteratively constructed as follows:

Initially, T is equal to the 2-component witness of D. As long as there is some 2-component C not already
in T that is in the neighborhood of an event in BT , we add a 3-component edge (A,B) to E3 for an arbitrary
pair of intersecting basic events A in T and B having a core event in C , and we add the 2-component witness of
C to T .

Given a 3-component witness T , let VT denote the set of all trials covered by the basic events in BT . 3-
component witnesses have the following important property.
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Lemma 2.6 Every 3-component witness uniquely determines the 2-component of its initial 2-component wit-
ness.

Proof. As noted above, a 2-component witness already completely specifies a 2-component up to the trial sets
covered by its core events. Since

• a 3-component witness provides a complete time ordering in which events are added to the 2-components
it is witnessing,

• each time a core event is added to a 1-component, all trials of its basic event are taken that are not already
covered by other 1-components, and

• there are no more 2-components that overlap with events in T ,

a 3-component witness ensures the unique determination of the trials covered by the core events of the 2-
component corresponding to its initial 2-component witness (and all other witnessed 2-components). �

This implies the following result.

Corollary 2.7 For any 2-component C constructed by the algorithm, there is a 3-component witness that
uniquely specifies all core events in C .

Corollary 2.7 implies that if there is no 3-component witness including a given set of basic events B, then B
cannot form the core of a 2-component. This does significantly help to bound the size of 2-components, since
instead of counting combinatorial structures based on core events, we are allowed to count combinatorial struc-
tures based on basic events, which is much easier. Another reason why we switch to witnesses is that bounding
the size of 2-components directly (i.e. by arguing about the behavior of our algorithm) is extremely difficult be-
cause of high dependencies among the events (trials of a core event may have been visited several times before
forming this event and adding it to a component), whereas counting witnesses is purely combinatorial (we just
intend to fulfill the requirements stated for witnesses above, which are of purely syntactical nature). The core
events selected in such a counting approach now have independent probabilities, since they do not overlap and
their selection is not based on some algorithmic process.

To go on, we introduce some additional notation. For every basic event A, let λA = |TA|ε be called the
order of A and any of its reduced events. Recall that the probability of an event A or any of its reduced events
to be true is at most pA ≤ e−λA (see Theorem 2.1). The order of a set E of events is defined as

∑
A∈E λA.

Furthermore, for every event A in a 3-component witness T , we define the witness order (or ω-order in short)
ωA of A to be equal to λA if A ∈ BT and otherwise to some value of at least λε

A that will be specified later. The
ω-order ωT of a 3-component witness T is the sum of the ω-orders of all of its events in BT ∪DT . We intend to
count the expected number of 3-component witnesses T that have some given ω-order. Since ωT ≥ λBT

, which
is at least the sum of the orders of the core events of the 2-component represented by its initial 2-component
witness, it holds:

Lemma 2.8 For any 2-component C , its corresponding 3-component witness T ensures that ωT ≥ λBC
.

Hence, in order to bound the expected number of 2-components of order at least λ, it suffices to bound the
expected number of 3-component witnesses of ω-order at least λ. This will enable us to prove Lemma 2.5.
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2.3 Computing the expected number of 3-component witnesses

Suppose we want to compute the expected number of 3-component witnesses of ω-order at least ω. Let Mω be
the set of all potential 3-component witnesses with this property. A 3-component witness is called valid if all
of its core events are true. Since the core events do not overlap, their probabilities to be true are independent.
Hence,

Pr[T is a valid 3-component witness] =
∏

E∈BT

Pr[E is true] .

Thus it holds that

E[|{valid 3-component witnesses with ω-order ω}|] =
∑

T∈Mω

Pr[T valid]

=
∑

T∈Mω

∏
E∈BT

Pr[E] .

Let � be the depth of a witness T when rooted at the initial core event of its initial 1-component, and let ωi
denote the ω-order of the core events at depth i in T . Then the above sum can be further refined to

∑
�≥0

∑
ω0

∑
core events E0
of ω-order ω0

∑
ω1,...,ω�:�
i ωi=ω−ω0

∑
sets S1, ..., S� of core events

with ω-order w1, ...,w�

⎛
⎝Pr[E0 is true]

�∏
j=1

∏
E∈Sj

Pr[E is true]

⎞
⎠

=
∑
�≥0

∑
ω0

∑
core events E0
of ω-order ω0

Pr[E0]
∑

ω1,...,ω�:�
i ωi=ω−ω0

�∏
j=1

⎛
⎜⎜⎝ ∑

set Sj of core events
with ω-order ωj

∏
E∈Sj

Pr[E is true]

⎞
⎟⎟⎠ .

The equation holds because in general,

n∏
i=1

⎛
⎝∑

j∈Si

xi,j

⎞
⎠ =

∑
j1,...,jn

n∏
i=1

xi,ji .

for all n, sets Si and values xi,j . Note that ∑
set Sj of core events

with ω-order ωj

∏
E∈Sj

Pr[E is true]

represents the expected number of valid sets Sj at level j of ω-order ωj . In order to compute an upper bound on
this, it suffices to know the ω-order for level j − 1. Hence, our strategy will be to compute the expected number
of 3-component witnesses T level-wise, starting with the basic event that represents the initial event of the initial
1-component of T . Given a level of ω-order ω′, we then compute the expected number of possibilities to have
a next, valid level of ω-order ω′′ for every ω′′. The structures we intend to use for counting all possibilities for
one level of the 3-component witness are formalized in the following definition.

Definition 2.9 Given any set of basic events E , a set of basic events F is called a witness extension of E if E
and F can be connected by a forest of 1-, 2-, and 3-component edges in a way that they fulfill all properties of
two consecutive levels of a 3-component witness.

To be able to use our level-wise approach for counting 3-component witnesses, we need a technical lemma.
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2.4 A Technical Lemma

Consider some fixed set E of basic events. Suppose that for every event A ∈ E we have a non-negative ran-
dom variable ΛA which we call its contribution. Then the contribution ΛE of E is defined as the sum of the
contributions of all events in E . Let

SE
ω = {witness extensions F of E with ΛF = ω} .

The next lemma provides an estimation for E[|SE
ω |].

Lemma 2.10 Let γ be an arbitrary positive constant with γ ≤ 1/288. Furthermore, let E be any set of basic
events and (ΛB)B∈N(E) be any sequence of contributions with the property that

(1) the contribution of any event in N(E) is either 0 or at least 1/γ,

(2) |{(A,B) ∈ E × N(E) : Pr[1 ≤ ΛB ≤ k] > 0}| ≤ ωE · eγ·k,

(3) for every A ∈ E and B ∈ N(A) there are at most d different ways of linking B to A, and

(4) there is a φ ≥ 1/6 so that for every event A ∈ N(E), Pr[ΛA = k] ≤ e−φ·k independently of other events
of positive contribution.

Then

E[|SE
ω |] ≤ e−φω/2 · ed·ωE/48 .

Proof. Follows directly from the proof of Lemma 3.3 in [10]. �

2.5 Counting Witness Extensions of 1- and 3-Component Edges

In this section we show how to apply Lemma 2.10 to bound the expected number of ways to select basic events
of a certain order that form a witness extension of 1- and 3-component edges, called a 1/3-witness extension in
the following. For this we first need some simple claims.

Claim 2.11 For every event A it holds ∑
B∈N(A)

e−δ·λε
B ≤ λε

A .

Proof. From the conditions of Theorem 2.1 and the fact that ln p−1
A = λA we obtain for every event A that

e−λε
A ≤ e−δλε

A ·
∏

B∈N(A)

(
1 − e−δλε

B

)
.

This implies that

e−λε
A ≤

∏
B∈N(A)

(
1 − e−δλε

B

)
≤

∏
B∈N(A)

exp
(
−e−δλε

B

)
= exp

⎛
⎝−

∑
B∈N(A)

e−δλε
B

⎞
⎠ ,

which immediately yields the claim. �
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Claim 2.12 For every event A and k > 0 it holds that

|{B ∈ N(A) : λB ≤ k}| ≤ eδ·kε · λε
A .

Proof. Follows directly from Claim 2.11 above. �

Claim 2.13 Every event must have an order of at least (1/δ)1/ε.

Proof. In Theorem 2.1 we require that xi ≤ 1/e for all i ∈ [m]. This implies that, for every event Ai,

e−δ lnε p−1
i ≤ 1

e
⇔ δ · λε

Ai
≥ 1 ⇔ λAi ≥ (1/δ)1/ε .

�

Now we are ready to apply Lemma 2.10. Consider any set E of basic events. Let the contribution ΛB of an
event B ∈ N(E) be defined either as its order λB if the core event corresponding to B is true, or 0 otherwise.
(Recall that according to Corollary 2.7 the core event of B is uniquely determined although we only count basic
events.)

Condition (1) of Lemma 2.10 follows from Claim 2.13. Our assumption that ωA ≥ λε
A for all events A ∈ E

and Claim 2.12 together imply that

|{(A,B) ∈ E × N(E) : ωB ≤ k}| ≤ eδ·kε
∑
A∈E

λε
A ≤ eδ·kε · ωE .

Thus, condition (2) is true. For every A ∈ E and B ∈ N(A) we have 3 choices of connecting B to A: 2 choices
for a 1-component edge, and one choice for a 3-component edge. We will not count the possibilities of B being
dangerous or not dangerous here, since this will be considered in the analysis for the 2-component edges. Hence,
condition (3) holds with d = 3.

In order to fulfill condition (4), we use only a part of the probability we obtain for a core event to be true.
The reason for this is that we want to reserve the other part for the 2-component edges. In particular, instead of
a probability of e−λB for the core event of B to be true, we only use a probability of e−λB/2 = e−ωB/2. Thus,
condition (3) follows with φ = 1/2 and by the fact that the core events use disjoint trial sets.

Since all requirements of Lemma 2.10 are fulfilled, the expected number of possibilities C
(1,3)
E,ω of choosing

events of contribution altogether ω for a 1/3-witness extension of E satisfies

C
(1,3)
E,ω ≤ e−ω/4 · eωE/16 . (2)

2.6 Counting Witness Extensions of 2-Component Edges

In this section we show how to apply Lemma 2.10 to bound the expected number of ways to select event sets of
a certain order that form a witness extension of 2-component edges, called 2-witness extension in the following.

Let us fix some set E of events. We consider two different cases for counting 2-component edges of the form
(A,B) ∈ E × N(E) for a 3-component witness T :

(1) B ∈ BT , or

(2) B ∈ DT \ BT .
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We start with the first case. For this case, we define the contribution ΛB of B as λB if the core event of B is
true and 0 otherwise. Using this definition, condition (1) of Lemma 2.10 follows from Claim 2.13. Analogous
to Section 2.5, also condition (2) is true. For every A ∈ E and B ∈ N(A) we have 2 choices of connecting
B to A: either A is dangerous, or B. Hence, condition (3) holds with d = 2. Furthermore, as in Section 2.5,
condition (4) holds with φ = 1/2.

Now we consider the second case. This case significantly differs from our previous considerations, since B
itself does not provide a probability (B does not have a core event like the other events!). Therefore, we have
to “borrow” probabilities from other core events. To achieve this, we define the ω-order ωB of the dangerous
event B to be the sum of the orders of the set S of core events that were added to the 2-component due to B.
From (∗) of Build 2-Component we know that the core events in S have to cover at least λB trials of B. That

is,
∑

C∈S λ
1/ε
C ≥ λB . Since (

∑
C∈S λC)1/ε ≥∑C∈S λ

1/ε
C , we must have ωB ≥ λε

B. Since for each of the core
events C in S we still have a probability of e−λC/2 available, we can assign a probability of e−ωB/2 ≤ e−λε

B/2

to B.
Let us define the contribution ΛB of B as ωB if the core events added to the 2-component due to B are

true, and 0 otherwise. Then Claim 2.13 together with the inequality ωB ≥ λε
B establishes condition (1) of

Lemma 2.10. For the remaining two conditions we need a simple claim.

Claim 2.14 For every event A and every k > 0 it holds

|{B ∈ N(A) : ωB ≤ k}| ≤ |{B ∈ N(A) : λB ≤ k1/ε}| ≤ eδ·k · λε
A .

Proof. The proof of the claim follows directly from Claim 2.12. �

Condition (2) follows from Claim 2.14, condition (3) follows with d = 1, and condition (4) follows with
φ = 1/2.

Combining the two cases (which yields d = 3), it follows from Lemma 2.10 that the expected number of
possibilities C

(2)
E,ω of choosing events of contribution ω for a 2-witness extension of E satisfies

C
(2)
E,ω ≤ e−ω/4 · eωE/16 . (3)

2.7 Counting Witness Extensions

Now we are ready to count arbitrary witness extensions. Given a set E of basic events, our aim is to count
the expected number of witness extensions F of E of ω-order ω, denoted by CE,ω. Let Sω,δ represent the set
{0, �1/δ�, �1/δ� + 1, . . . , w − �1/δ�, w}. According to the previous two sections we obtain

CE,ω ≤
∑

κ∈Sω,δ

C
(1,3)
E,κ · C(2)

E,ω−κ

≤
∑

κ∈Sω,δ

e−κ/4 · eωE/16 · e−(ω−κ)/4 · eωE/16

≤ max[ω − 2/δ + 3, 2] · e−ω/4 · eωE/8 ≤ e−ω/6 · eωE/8

if δ > 0 is sufficiently small.

2.8 Proof of Lemma 2.5

Assume that we intend to bound the expected number of 2-components of order at least λ. According to
Lemma 2.8, this can be achieved by bounding the expected number of 3-component witnesses of ω-order at
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least λ. Suppose that the 3-component witnesses have to start with some fixed initial event A0 of ω-order ω0.
Then it holds for all ω ≥ ω0 that

E [|{3-component witnesses T with initial event A0 and ωT = ω}|]

≤
δω∑
�=0

∑
ω1,... ,ω�∈{�1/δ�,... ,ω}:

�
j≥0 ij=ω

e−ω0

�−1∏
j=0

e−ωj+1/6 · eωj/8

≤
(

ω + δω

δω

)
· e−ω/6 · eω/8 ≤

(
e(1 + δ)

δ

)δω

e−ω/24

≤ e−ω/48

if δ > 0 is sufficiently small. On the other hand we know that

ωT =
∑

A∈BT ∪DT

ωA ≥
∑

A∈BT

λA =
∑

A∈BT

|TA|ε .

Since
∑

A∈BT
|TA|ε ≥ (

∑
A∈BT

|TA|)ε and
∑

A∈BT
|TA| ≥ |VT |, it follows that |VT | ≤ ω

1/ε
T .

Now we are ready to bound the number of trials covered by the 2-components after Step 2 and Step 3 of our
algorithm.

Step 2:

Since there are at most m events that can be the initial event of a 3-component witness of ω-order at least ω, we
obtain

E[|{3-component witnesses T of ω-order at least ω}|] ≤ m ·
∑
κ≥ω

e−κ/48 ≤ 50m · e−ω/48 .

This is at most m−α if ω ≥ 48((α + 1) ln m + 4). Thus, with probability at least 1 − 1/mα for any constant
α > 0 the number of trials covered by a 3-component witness is at most [48((α+1) ln m+4)]1/ε, which proves
part (1) of Lemma 2.5.

Step 3:

For every 2-component C covering at most γ ln1/ε m trials, its set S of core events fulfills
∑

A∈S λA ≤
γ ln1/ε m. Hence, according to Claim 2.12 there can be at most γ(ln m)1/ε · eδkε

events of order at most k
that are participating in C . Therefore, the expected number of 3-component witnesses of order at least ω in C is
at most ∑

κ≥ω

γ(ln m)1/ε · eδ·κε · e−κ/48 ≤ γ(ln m)1/ε
∑
κ≥ω

e−κ/96 ≤ 100γ(ln m)1/ε · e−ω/96

if ε and δ are sufficiently small. This is at most (ln m)−α if ω ≥ 96((α + 1/ε) ln ln m + ln(100γ)). Thus with
probability at least 1−1/(ln m)α for any constant α > 0 the number of trials covered by a 3-component witness
is at most [96((α + 1/ε) ln ln m + ln(100γ))]1/ε , which proves part (2) of Lemma 2.5.
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3 The MIP Algorithm

In this section we present an algorithm that fulfills Theorem 1.5. First we give a high-level description of the
algorithm.

Given an arbitrary MIP, we start with finding an optimal solution {x∗i,j : i ∈ [n], j ∈ [�i]} to the LP
relaxation of the MIP (i. e., the integrality constraints in Definition 1.3 (3) are removed). The resulting LP
optimum y∗ is clearly a lower bound for y, the optimum of the (integral form of the) MIP.

Afterwards, our algorithm works in 3 steps. Its structure is similar to the algorithm in [22], but the techniques
used here are completely different. Step 1 rounds the x∗i,j’s to multiples of some number in Ω(1/ ln m). Step
2, which contains the main novel contribution in this chapter, rounds the x∗i,j’s until all of them are above some
constant γ < 1 or 0. Step 3 finally rounds the x∗i,j’s to values in {0, 1}.

Step 1: Initial Rounding

For every r ∈ {1, . . . ,m}, let wr = maxc ar,c. First, we scale A to a matrix A(1) = (a(1)
r,c ) by multiplying row

r of A with w−1
r for all r. This ensures that maxc a

(1)
r,c = 1 for all r. Let the vector y(1) be equal to A(1)x∗.

For the remaining steps we will assume that the approximation vector α fulfills the following property for some
0 < ε < 1 (see Theorem 1.5):

αr ≥ σr with σr = max
[
(y(1)

r )−1, (y(1)
r )−(1−ε)/2

]
.

Let μ = maxr�(6 ln m)/(min[σr, σ
2
r ]y

(1)
r )�. Since min[σr, σ

2
r ] · y

(1)
r ≥ 1 for every r, μ ≤ �6 ln m�. If

μ = 1, then we simply use the randomized rounding strategy by Raghavan and Thompson [28] to transform x∗

into an integral vector x(1). That is, for every i ∈ [n] we set the variable x
(1)
i,j to 1 and the other x

(1)
i,j′’s to 0 with

probability x∗i,j . In this case,

Pr[(A(1)x(1))r ≥ (1 + αr)y(1)
r ] ≤ e−min[αr,α2

r ]y
(1)
r /3

≤ e−min[σr,σ2
r ]y

(1)
r /3 ≤ e−2 ln m =

1
m2

for every row r. Hence, with high probability we obtain an integral solution x(1) with (A(1)x(1))r < (1+αr)y
(1)
r

for all r as proposed in Theorem 1.5.
For the case that μ > 1, we select a matrix R = (ri,k)i∈[n],k∈[μ] uniformly at random out of [0, 1)n×μ. For

every i, j, we set x
(1)
i,j = |{k : ri,k ∈ [

∑j−1
�=1 x∗

i,�,
∑j

�=1 x∗
i,�)}|/μ. Consider a system of bad events E1, . . . , Em

with Er being true if and only if (A(1)x(1))r ≥ (1 + αr)y
(1)
r . We show now how to bound the probability of

Er being true for any r. For any i ∈ [n] and k ∈ [μ], let the random variable Xi,k be equal to a
(1)
r,(i,j)/μ if and

only if ri,k is selected so that it contributes 1/μ to x
(1)
i,j . The definition ensures that

∑
i,k Xi,k = (A(1)x(1))r.

Obviously,

E[
∑
i,k

Xi,k] = E[(A(1)x(1))r] = y(1)
r .

Since Xi,k ≤ 1/μ for all i, k and the random variables are independent, we can apply the Hoeffding bounds
(after a scaling) to obtain

Pr[Er] ≤ e−min[αr ,α2
r]·μ·y(1)

r /3 ≤ e−2 ln m =
1

m2
.
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for all r. Hence, with high probability none of the bad events occurs. Assume that the random experiment has
been successful in avoiding all bad events (otherwise we repeat it). Then we replace x∗ by the N -vector x(1).
In order to simplify the following calculations, we assume in the following as a worst case that, after Step 1,
(A(1)x(1))r = (1 + αi)y

(1)
r for all r.

Step 2: Intermediate Rounding

This is the first step that requires the LLL (and the consideration of a dependency graph that may have already
been significantly reduced by the previous step). The aim of this step is to round the vector x(1) with entries in
{k/μ : k ∈ {0, . . . , μ}} to a vector x(2) with entries in {k/γ : k ∈ {0, . . . , γ}} for some fixed integer γ > 1.
This will be done in several phases, starting with phase 1. Initially, we set z(0) equal to x(1) and μ0 equal to μ.
The outcome vector of phase ϕ ≥ 1 is defined by z(ϕ). The final vector z(ϕ) of Step 2 is set to x(2).

The task of phase ϕ is to round a vector z(ϕ−1) of values that are multiples of 1/μϕ−1 to a vector z(ϕ) of
values that are multiples of 1/μϕ with μϕ = �με

ϕ−1 ln μϕ−1�. This is done as follows.

For simplicity, set x = z(ϕ−1), x′ = z(ϕ), μ = μϕ−1, μ′ = μϕ, and A = A(1). The random experiment for
applying the LLL is to select a matrix R = (ri,k)i∈[n],k∈[μ′] uniformly at random out of [0, 1)n×μ′

. For every

i, j, we set x′
i,j = |{k : ri,k ∈ [

∑j−1
�=1 xi,�,

∑j
�=1 xi,�)}|/μ′. Consider a system of bad events E1, . . . , Em with

Er being true if and only if

(Ax′)r >

(
1 +

min[αr, 1]√
ln μ

)
· (Ax)r .

Let the dependency graph G of the Er’s be defined as in Definition 1.4. Clearly, every event Er is mutually
independent of all events it is not connected with in G. Assume that the approximation vector α is chosen such
that inequality (1) in Theorem 1.5 holds. As will be shown in the next subsection, in this case Theorem 2.1
predicts that a vector x′ can be provided in polynomial time so that for all r,

(Ax′)r ≤
(

1 +
c · min[αr, 1]√

ln μ

)
· (Ax)r

for some constant c > 0.
Step 2 ends with the first μϕ for which μϕ+1 > μ

ε+(1−ε)/2
ϕ (i. e., phase ϕ is the last phase). In this case,

μ
(1−ε)/2
ϕ < ln μϕ. In general, for all 0 < δ < 1 it holds that if xδ < ln x then x < e1/(1−δ). Thus, in our case,

μϕ < e2/(1+ε), which is a constant. For all phases ϕ of Step 2 it therefore holds that μϕ−1 ≥ μ
2/(1+ε)
ϕ . This

enables us to bound the approximation factor obtained in Step 2. We distinguish between two cases. If αr < 1
for some row r then

∞∏
j=0

⎛
⎝1 +

c · αr√
ln μ

(2/(1+ε))j

ϕ

⎞
⎠ ≤ exp

⎛
⎝c · αr

∞∑
j=0

1
(2/(1 + ε))j/2

√
ln μϕ

⎞
⎠

≤ exp (O(αr)) = (1 + O(αr)) .

Thus, (Az(ϕ))r ≤ (1 + O(αr))y
(1)
r for all r. If αr ≥ 1, then we also obtain an approximation ratio of

(1 + O(αr)), since
∏

j(1 + c/
√

ln μj) is a constant.

Applying Theorem 2.1 to Step 2

Our aim is to show that every phase of Step 2 can be made to match the requirements of Theorem 2.1. Let x,
x′, μ, and μ′ be chosen as above, and let A represent the matrix A(1). In order to avoid dealing with events of
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non-uniform weights, we use the following strategy. Let ν be the minimum value of an ai,j in A. For every
k ∈ {0, . . . , �log ν�} and every row r in A, let the set Mr,k contain all (i, j) with ar,(i,j) ∈ (2−(k+1), 2−k]

and xi,j > 0. Set mr,k = 2k+1μ · (Ax)r. Obviously, |Mr,k| ≤ mr,k. Let the matrix B(k) = (b(k)
r,c ) represent

A with zeroes at all entries ar,c with c �∈ Mr,k. Furthermore, let yr,k be chosen so that (B(k)x)r = yr,k. Set
yr =

∑
k≥0 yr,k. We define the event Er,k to be true if and only if

(B(k)x′)r > yr,k +
6min[αr, 1]√

2(1−ε)k ln μ
· yr .

Assume that all events Er,k were false. Then it follows that

(Ax′)r ≤
∑
k≥0

(
yr,k +

6min[αr, 1]√
2(1−ε)k ln μ

· yr

)
=
(

1 + O

(
min[αr, 1]√

ln μ

))
yr ,

as desired.
We show now how to bound the probability of Er,k being true. Recall the random experiment above of

selecting the x′
i,j’s. For any i ∈ [n] and � ∈ [μ′], let the random variable Xi,� be equal to b

(k)
r,(i,j)/μ

′ if and only if

ri,� is selected so that it contributes 1/μ′ to x′
i,j . The definition ensures that

∑
i,� Xi,� = (B(k)x′)r. Obviously,

E[
∑
i,�

Xi,�] = E[(B(k)x′)r] = yr,k .

Since Xi,� ≤ 1/(μ′2k) for all i, k and the random variables are independent, and since yr,k ≤ yr, the Hoeffding
bounds give (after a scaling) that Pr[Er,k] is at most

exp

⎛
⎝−6

(
min[αr, 1]√
2(1−ε)k ln μ

)2

· (μ′2k) · yr/3

⎞
⎠ ≤ exp

(
−2 · 2εkμε min[α2

r , 1]yr

)
.

Recall that mr,k = 2k+1μ · yr and, by our assumption, yr ≥ (1 + αr)y
(1)
r ≥ 1. As αr < 1 is only allowed for

y
(1)
r ≥ 1, we obtain for αr < 1 that α2

ryr ≥ yε
r and therefore

2εkμε min[α2
r , 1]yr ≥ 2εkμεyε

r ≥ mε
r,k · 2−ε .

Clearly, the same inequality holds for αr ≥ 1. Thus, we have Pr[Er,k] ≤ e−mε
r,k . On the other hand, the

minimum number of Xi,�’s and therefore of ri,�’s necessary to obtain a value of 6min[αr, 1]/(
√

2(1−ε)k ln μ)·yr

is at least 6 · 2εkμε min[αr, 1]yr, which is more than mε
r,k.

Next we show how to transform inequality (1) in Theorem 1.5 into a condition that matches the requirements
of Theorem 2.1. First, we define the dependency graph. Suppose that we are dealing with a MIP instance I .
Then we define the dependency graph G′

I to contain the edge ((r, k), (s, �)) if and only if (r, s) ∈ GI and either
r �= s or k �= �. (Here we use the fact that GI may have self-loops.) It is easy to check that G′

I covers all
dependencies among the Er,k events.

Let pr, qr, and zr be defined as in Theorem 1.5. That is,

pr = e−min[αr ,α2
r]y

(1)
r /3 , qr = p− lnε p−1

r
r , and zr = qδ

r .

Set pr,k = exp(−2εk+1 min[α2
r , 1]yr). Since we assumed at the end of Step 1 that yr ≥ (1 + αr)y

(1)
r , it holds

that pr,k ≤ p2εk

r . Let qr,k = e− lnε p−1
r,k and zr,k = qδ

r,k. Then we have

qr,k = e− lnε p−1
r,k ≤ e−δ2ε2k lnε p−1

r = q2ε2k

r . (4)
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Since zr ≤ 1/3 by Theorem 1.5,
∑

k≥0 z2ε2k

r ≤ ε−2zr/(1 − zr) ≤ 3/(2ε2) · zr for all r. Thus,

∏
k≥0

e−zr,k ≥ e−3/(2ε2)·zr ≥ (1 − zr)3/(2ε2) .

On the other hand, (1 − zr,k) ≥ e−(4/3)zr,k for all zr,k since e−(4/3)x ≤ 1 − 4x/3 + 8x2/9 ≤ 1 − x for all
x ≤ 1/3. Hence,

∏
k≥0(1 − zr,k) ≥ (1 − zr)2/ε2 . Furthermore, due to (4) it holds for all (i, k) that

qr,k

zr,k
= q1−δ

r,k ≤ q1−δ
r =

qr

zr
.

Thus, we obtain from inequality (1) in Theorem 1.5 that

qr,k ≤ zr,k

∏
((r,k),(s,�))∈G′

I

(1 − zs,�) .

Next we define the trials and events used in Theorem 2.1. The ri,�’s represent the trials t1, . . . , tn, and
the Er,k’s represent the events A1, . . . , Am. Our random experiment ensures that the trials are mutually inde-
pendent. Let Tr,k represent the set of all ri,�’s for which there is an x′i,j counting for Er,k (that is, xi,j > 0).
Obviously, every event Er,k only depends on the outcome of the trials represented by Tr,k. If a restricted set S
of ri,�’s is applied to an event Er,k, then we define Er,k|S to be true if and only if

(B(k) · x′)r|S > E[(B(k) · x′)r|S ] +
6min[αr, 1]√

2(1−ε)k ln μ
· yr .

((B(k) · x′)r|S counts only those entries that can be greater than 0 due to some ri,� ∈ S.) This ensures that,
under the assumption that an event Er,k can be decomposed into at most some constant number of events Er,k|S
that are false (as claimed by Theorem 2.1), we obtain the desired asymptotic approximation ratio. As shown
above, pr,k ≤ e−mε

r,k . Furthermore, we already showed that if |S| > mε
r,k then the above definition yields

Pr[Er,k|S ] ≤ pr,k. Otherwise, we can set Pr[Er,k|S ] = 0, since more than mε
r,k trials are needed to violate our

deviation bound.
There is one aspect of our application that does not directly match the requirements of Theorem 2.1: |Tr,k|,

the number of trials counting for Er,k, cannot be upper bounded by mr,k, but only by μ · mr,k. This changes
the number of trials covered by a 2-component C from at most

∑
Er,k∈BC

mr,k to at most
∑

Er,k∈BC
|Tr,k| ≤

μ
∑

Er,k∈BC
mr,k. Thus, the size of the final 2-components changes to O(μ(1ε ln ln m)1/ε). If μ ≥ √

log m, it
may not be possible any more to find a final solution via exhaustive search in polynomial time. However, every
event participating in this 2-component has a probability of at most pr,k ≤ e−με

to be true. Furthermore, it
follows from Claim 2.12 that a 2-component of q nodes can have at most q · eδ·kε

events of order at most k, and
each of these events has a probability of at most e−k to be true. Hence, an expected constant number of random
experiments suffice for each 2-component to obtain a final solution. Thus, Step 2 of the MIP algorithm can be
done in polynomial time.

Step 3: Final Rounding

Recall that x(2) is the vector resulting from x(1) in Step 2. Let B(k), yr,k, and yr be defined as in the previous
step. Step 3 works like a phase in Step 2 with the difference that now the random experiment simply consists
of rounding x(2) to an integral vector x in a way that for every i, xi,j is set to 1 and the other xi,j′’s to 0 with
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probability x
(2)
i,j . Assuming that yr ≥ (1 + αr)y

(1)
r for all r it holds

Pr

⎡
⎣(B(k)x)r ≥ yr,k +

c · min[αr, 1]√
2(1−ε)k ln μϕ

· yr

⎤
⎦ ≤ exp

⎛
⎝−c

⎛
⎝ min[αr, 1]√

2(1−ε)k ln μϕ

⎞
⎠

2

· 2k · yr/3

⎞
⎠

≤ exp
(
−2 · 2εkμε

ϕ min[α2
r , 1]yr

)
if c ≥ 6με

ϕ ln μϕ, which is a constant. Hence, as in Step 2, we can apply Theorem 2.1 to obtain altogether an
approximation ratio of 1 + O(αr) for every row r. This concludes the proof of Theorem 1.5.

4 Applications

In this section we present two applications of our method: job shop scheduling and MAX SAT.

4.1 Job Shop Scheduling

In acyclic job shop scheduling problems there are n jobs and m machines. Each job is composed of a sequence of
operations to be performed on different machines. A legal schedule is one in which within each job, operations
are carried out in order, and each machine performs at most one operation in any unit of time. If D denotes
the length of the longest job and C denotes the number of time units requested by all jobs on the most loaded
machine, then clearly lb = max[C,D] is a lower bound on the length of the shortest legal schedule. Let P
denote the longest operation a job has on a machine.

In [14] several non-constructive results are shown about the makespan of job shop schedules. Our techniques
allow to find in polynomial time schedules with a makespan that is close to the predicted makespan (instead of
1, we obtain a 1 + ε in the exponent of some terms). In particular, we will show that the following result holds.

Theorem 4.1 In polynomial time, acyclic job shop schedules can be computed with the following upper bounds
on the makespan for any constant ε > 0:

(1) For any acyclic JSS problem,

L = O
(
(C + D(log log P )1+ε) log P

log(min[C/D+(log log P )1+ε,P ])

)
,

implying that L = O(lb log lb(log log lb)1+ε). Observe that if C ≥ D · Pδ for some constant δ > 0, then
L = Θ(C).

(2) If operation lengths depend only on the machine on which the operation is performed, then L = O(C +
D(log log P )1+ε).

(3) With preemption, L = O(C + D(log log P )1+ε).

In order to prove Theorem 4.1, we have to constructivize the existence proof given for an intermediate
schedule in Section 2.5 in [14]. Assume that we are given a fixed constant 0 < ε < 1. Let d = log1/ε D.
To avoid dealing with floors and ceilings we assume in the following that all fractions and logarithms result in
integer values. It is easy to check that this does not affect our asymptotic bounds. As a further simplification,
we assume w.l.o.g. that D ≤ P3 and C ≤ P 3 · d. If not, this can be achieved in the following way:

We use a sequence of refinements, starting with an initial (illegal) schedule S0 in which every job is executed
at every time step until it is completed. Hence, the length L0 of S0 is at most D. First, we expand S0 to a
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schedule of length at most 2D in which every operation is contained completely in some time interval I of
length P , starting and ending at an integer multiple of P . In the following, we assume all delays and splits
to be integral multiples of P . (This will simplify partitioning a schedule into subschedules.) The symmetric
LLL predicts that suitable delays can be chosen for the jobs out of a range of [C/d] so that, for ln C ≥ P , the
congestion within any time interval of size ln3 C is at most (1 + O(1/

√
ln C))d ln3 C . We split such a schedule

into subschedules of length L1 = ln4 C and continue to refine each of these subschedules independently. The
LLL predicts that for each of these subschedules there are delays for the jobs in the range [L3/4

1 ] so that, for
ln L1 ≥ P , the congestion within any time interval of size ln3 L1 is at most (1 + O(1/

√
ln L1))d ln3 L1. Again,

we split such a schedule into subschedules of length L2 = ln4 L1. The refinements can be continued until we
reach schedules of length P3 in which the congestion is at most O(P3 · d). (To achieve a congestion of at
most P 3 ·d, another application of the symmetric LLL partitions these subschedules into subschedules of length
P 3 with congestion at most P3 · d.) In order to find these subschedules in polynomial time, the algorithm by
Leighton, Maggs, and Richa [21] can be used. Each of these subschedules will then be refined independently by
the methods presented below.

For every i ∈ {1, . . . , logd D}, we define the set Ti as {D/di, . . . ,D/di−1 − 1}. An operation of a job is
called a Ti-operation if its length is in Ti. For any time interval I and schedule S, let S|I denote S restricted
to I (that is, S|I only contains operations that start in I). Fix some machine M and schedule S. Then the
Ti-congestion CS

i (M) at M is defined as the congestion at M caused by Ti-operations in S. Similarly, the
Ti-contention cSi (M) at M is defined as the contention at M caused by Ti-operations in S. Furthermore, given
any fixed time step t, cSi (M, t) denotes the contention at M caused by Ti-operations in step t of schedule S.

Our strategy will be to refine some schedule S to some schedule S′. If we are already at the rth refinement
step, r ≥ 1, this is done by cutting S into consecutive time frames of length D/dmax[r−2,0]. Each operation is
associated with the frame in which it starts. Within each frame, each job is given a suitable delay in the range
[D/dr−1 − D/dr]. Thus, a job starting at time t in some frame F that chooses a delay of δ now starts at time
t+δ in F . Let SF be the schedule for F before inserting the delays, and let S′F be the schedule for F afterwards.
Our goal is to find delays for the jobs so that the congestion and/or the contention within certain time intervals of
S′

F is sufficiently balanced for every group of Ti-operations. In order to specify the congestion and contention
bounds we want to achieve, we need some notation.

For any j ≥ 0, let Ij denote the set of all possible time intervals of length D/dj in the time range of S′
F , and

let �i = D/di−1 denote an upper bound on the largest possible length of a Ti-operation. Given a fixed machine

M , let Ĉi(M) = maxI∈Ir−1 C
SF |I
i (M). Furthermore, given a fixed machine M and fixed time interval I ∈ Ir,

let C ′
i(M, I) = C

S′
F |I

i (M) and Ĉ ′
i(M) = maxI∈Ir C ′

i(M, I). W.l.o.g. we may assume that Ĉi(M) is at most
�i · dk for all M , where k = 1 + 1/ε. Otherwise, we separate the operations into different sets of congestion in
[�i · dk/2, �i · dk]. Since all Ti-operations have a length of less than �i, this is always possible.

Since we assume that D ≤ P3, Theorem 4.1 follows from the following lemma (which replaces Claims 2.10
and 2.12 in [14]).

Lemma 4.2 For any constant 0 < ε < 1, a schedule S′
F can be found in polynomial time so that the following

conditions hold for S′
F for every time frame F .

For every i ≥ r + 2, every machine M and time interval I ∈ Ir:

(1) If Ĉi(M) = �i · dk for some 2 ≤ k ≤ 1 + 1/ε, then
Ĉ ′

i(M, I) = (1 + O(
√

d−(k−2)))Ĉi(M)/(d − 1).

(2) If Ĉi(M) < �i · d2, then Ĉi(M, I) = O(�i · d).

Furthermore, for every machine M and time step t in S′
F :

(3) c
S′

F
r+1(M, t) = O(C/D + (log log D)1/ε), and
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(4) c
S′

F
r (M, t) = O(cSF

r ).

Proof. For every machine M and time interval I ∈ Ir, we define the event AM,i,I to be true if and only if

Ĉ ′
i(M, I) ≥

{
(1 + b1

√
d−(k−2))Ĉi(M)/(d − 1) : k ≥ 2

b1 · �i · d : k < 2

for some constant b1 > 0 to be fixed later. Moreover, for every machine M and time step t in S′F , we define the
event BM,i,t to be true if and only if

c
S′

F
i (M, t) ≥

{
b2(C/D + (log log D)1/ε) : i = r + 1
b2 · cSF

r : i = r

for some constant b2 > 0 to be fixed later.
First, we prove probability bounds for the events and bound the dependencies among them. Afterwards, we

show that the events fulfill all requirements of Theorem 1.5.

Bounding the probabilities

We start with the congestion events. First, we bound the probability that item (1) is not fulfilled. Since the jobs
choose their delays uniformly at random out of the range [D(d − 1)/dr ], the expected value of Ĉ ′

i(M, I) is at
most

D

dr
· Ĉi(M)
D(d − 1)/dr

=
Ĉi(M)
d − 1

.

As the operations considered in Ĉi(M) have a length of less than �i and the jobs choose their delays indepen-
dently at random, the Hoeffding bounds imply that, for any fixed machine M and time interval I ∈ Ir,

Pr[Ĉ ′
i(M, I) ≥ (1 + b1

√
d−(k−2))Ĉi(M)/(d − 1)] ≤ e−b1·d−(k−2)dk−1/3

= e−b1·d/3

for any constant b1 ≥ 1. For item (2), observe that the probability that (2) is not fulfilled can also be made to be
at most e−b1·d/3 for any constant b1 ≥ 1.

Next we consider the contention events. We start with item (3). Consider any fixed machine M and any
fixed time step t in S′

F . According to Section 2.5 in [14], if the congestion events hold for every refinement step,

then the expected value of c
S′

F
r+1 is at most γ · C/D for some constant γ ≥ 1 (recall that we assume C ≥ D).

Since the jobs choose their delays independently at random, we obtain

Pr[cS′
F

r+1(M, t) ≥ b2(C/D + (log log D)1/ε)] ≤ e−(b2/γ−1)(C/D+(log log D)1/ε)/3

for any constant b2 ≥ 2γ.

For item (4), note that the expected value for c
S′

F
r is at most γ′(C/D + (log log D)1/ε) if item (3) is always

fulfilled. Thus,

Pr[cS′
F

r (M, t) ≥ b3(C/D + (log log D)1/ε)] ≤ e−(b3/γ′−1)(C/D+(log log D)1/ε)/3

for any constant b3 ≥ 2γ′. Hence, we can achieve the same probability as in case (3).
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Bounding the dependencies

Whether or not a bad event AM,i,I happens only depends on the delays assigned to the jobs. Hence, two bad
events AM,i,I and AM ′,i′,I′ are independent unless some job has operations that are considered both for AM,i,I

and for AM ′,i′,I′ . According to our assumptions, at most d2+1/ε jobs are considered for any AM,i,I . Each of
these jobs can have operations on at most D other machines, and there are at most 2D time intervals in I ∈ Ir
to be considered per machine. Hence, any event AM,i,I depends on at most d2+1/ε · 2D2 other events AM ′,i′,I′ .

Next we consider the contention events. Two bad events BM,i,t and BM ′,i′,t′ , i, i′ ∈ {r, r + 1}, are inde-
pendent unless some job has operations that count both for BM,i,t and for BM ′,i′,t′ . To keep the number of
dependent events as low as possible, let us restrict the number of time steps to be considered in S′F to those that
are integer multiples of D/dr+1. Suppose that we know that, for some machine M and i ∈ {r, r +1}, the maxi-
mum contention at any of these time steps is c. Then the maximum contention for M and i over all time steps of
S′

F can be at most 2c, since any operation considered for BM,i,t has a length of at least D/dr+1. Since the length
of F is D/dmax[r−2,0] and the delay range is less than D/dr−1, at most 2d3 time steps have to be considered for
each M and i. According to our assumption that C ≤ D · d, the contention in SF is at most O(d) (assuming
that all events have been true in previous refinement steps). Thus, at most O(d) · (D/dr−1)/(D/dr+1) = O(d3)
operations are considered for each BM,i,t. Since a job can have at most (D/dmax[r−2,0])/(D/dr+1) = d3 oper-
ations of length at least D/dr+1, we conclude that an event BM,i,t depends on at most 2d3 ·O(d3) · d3 = O(d9)
other events BM ′,i′,t′ .

Next we consider the dependencies among the congestion and contention events. It immediately follows
from above that a congestion event depends on at most d2+1/ε · 2d3 · d3 = 2d8+1/ε contention events, and that a
contention event depends on at most O(d3) · 2D2 congestion events.

Applying the results to Theorem 1.5

Now we are ready to check the requirements of Theorem 1.5. In order to transform Lemma 4.2 into a MIP, we
start with defining the meaning of x and A. We choose a vector x in such a way that every entry xi,j represents
a specific delay option j of job i. A is chosen such that every row of A represents either a congestion or a
contention event.

First, we consider the congestion events. For any event AM,g,I , we intend to transform item (1) in Lemma 4.2
into a row r of A such that (Ax)r ≥ (1 + αr)yr if and only if the congestion for Ĉ ′

i(M, I) is too large. This
is the case if, for every (i, j), we set ar,(i,j) = � if and only if the jth delay option of job i contributes an

operation of size � to Ĉ ′
i(M, I), αr = b1

√
d−(k−2), and yr = Ĉr−1

i /d. Since ar,(i,j) ≤ �g (the maximum length
of operations in Tg), we obtain for y′r = yr/max(i,j) ar,(i,j) that y′r ≥ yr/�g = dk−1. Furthermore, since

k − 2 ≤ (1 − ε)(k − 1) ⇔ k ≤ 1 +
1
ε

,

we have αr ≥ (y′r)−(1−ε)/2. Thus, our ε can be used as it is also for Theorem 1.5. For item (2) of Lemma 4.2
we can establish a row in A in the same way as above. In this case, we obtain y′r ≥ 1 and αr ≥ 1. Hence, also
for item (2), αr ≥ (y′r)−(1−ε)/2.

Next we consider the contention events. For any event BM,g,t, we transform item (3) in Lemma 4.2 into a row
r of A in the same way as described above. However, now αr = (b2/γ−1) and yr = γ(C/D +(log log D)1/ε)
for some constants γ > 0 and b2 ≥ 2γ. Since ar,(i,j) ≤ 1 for every (i, j) we have y′r ≥ y∗r ≥ 1. As αr ≥ 1 for

b2 ≥ 2γ, item (3) fulfills that αr ≥ (y′r)−(1−ε)/2. Item (4) can be transformed into a row that fulfills the same
conditions.

In order to prove the other requirements of Theorem 1.5, recall that for the congestion events we obtain a
probability of at most pC = e−αd for any constant α > 0. Furthermore, for the contention events we obtain a
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probability of at most pc = e−β(log log D)1/ε
for any constant β > 0. Let qC = e− lnε p−1

C and zC = qδ
C . Similarly,

let qc = e− lnε p−1
c and zc = qδ

c . Then

qC = e−(αd)ε ≤ D−αε
and zC ≤ D−δ·αε

and

qc = e−(β(log log D)1/ε)ε ≤ (log D)−βε
and zc ≤ (log D)−δ·βε

.

Clearly, zC and zc can be made smaller than 1/3, which fulfills one of the conditions of Theorem 1.5. To
proceed, we need a simple claim.

Claim 4.3 For any 0 ≤ x ≤ 1/2, 1 − x ≥ e−2x.

Proof. Since for all 0 ≤ x ≤ 1/2 we have 1− 2x + 2x2 ≥ e−2x and 1− x ≥ 1− 2x + 2x2, the claim follows.
�

Let G = (V,E) be the dependency graph of the events AM,i,I and BM,i,t. Together with the claim, we
obtain for any fixed AM,i,I

∏
(AM,i,I ,AM′,i′,I′)∈E

(1 − zC)2/ε2 ≥ e−2(2/ε2)zC ·2d2+1/εD2
= e−8D−δ·αε

d2+1/εD2/ε2 ≥ 1
e

if α is sufficiently large. In the following, let c′, c′′, c′′′ be suitably chosen constants. For any fixed BM,i,t

∏
(BM,i,t,BM′,i′,t′)

(1 − zc)2/ε2 ≥ e−2(2/ε2)zc·c′d9
= e−4c′(log D)−δ·βε

d9/ε2 ≥ 1
e

if β is sufficiently large. Moreover, for any fixed AM,i,I

∏
(AM,i,I ,BM′,i′,t)

(1 − zc)2/ε2 ≥ e−2(2/ε2)zc·c′′d8+1/ε
= e−4c′′(log D)−δ·βε

d8+1/ε/ε2 ≥ 1
e

if β is sufficiently large. Finally, for any fixed BM,i,t

∏
(BM,i,t,AM′,i′,I)

(1 − zC)2/ε2 ≥ e−2(2/ε2)zC ·c′′′d3D2
= e−4c′′′D−δ·αε

d3D2/ε2 ≥ 1
e

if α is sufficiently large. Since qC ≤ zC/e and qc ≤ zc/e if α and β are sufficiently large, all requirements of
Theorem 1.5 are fulfilled, which proves the lemma. �

4.2 Satisfiability

Many approaches have already been presented that provide good approximation algorithms for MAX SAT prob-
lems. This was pioneered by Johnson [19] and Raghavan and Thompson [28] and further improved by Yan-
nakakis [31], Goemans and Williamson [16, 17], and Asano et al. [6, 7]. Many of these approaches use at the
end a simple randomized rounding strategy. Our approach may help to improve this last step:

Consider any boolean formula in CNF. We will give an example of how to express the MAX SAT problem
for this formula as a reverse form of a MIP, called maxmin integer program (MIP), that is defined as follows.
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Definition 4.4 A MIP has variables {xi,j : i ∈ [n], j ∈ [�i]}, for some integers �i. Let N =
∑

i∈[n] �i and let

x denote the N -dimensional vector of the variables xi,j . A MIP seeks to maximize a real Y subject to:

(1) a system of linear inequalities Ax ≥ y, where A ∈ [0, 1]m×N and y is the m-dimensional vector with
the variable Y in each component,

(2) for all i ∈ [n]:
∑

j∈[�i]
xi,j = 1, and

(3) for all i and j: xi,j ∈ {0, 1}.

Using the same dependency graph as for MIPs, the following result holds for MIPs.

Theorem 4.5 We are given any MIP instance I with an optimal fractional solution x∗. Consider the random
experiment of setting xi,j to 1 with probability x∗i,j (and in this case all other xi,j′’s to 0). Given any vector
α ∈ [0, 1]m, let

pr = e−α2
ry′

r/2

for all r ∈ [m], where y′r = y∗r/(maxc ar,c). (pr is a Hoeffding bound for Pr[(Ax)r ≤ (1 − αr)y∗r ].) Let
0 < ε < 1 be a constant that is chosen such that αr ≥ min[1, (y′r)−(1−ε)/2] for every r. Furthermore, let

qr = e− lnε p−1
r and let zr = qδ

r be at most 1/3 for every r, where δ is a sufficiently small positive constant. If it
holds that

qr ≤ zr

∏
(r,s)∈GI

(1 − zs)2/ε2 (5)

for all r, then there is an algorithm that finds a vector x in polynomial time so that (Ax)r ≥ (1−O(αr))y∗r for
all r.

Proof. The proof of the theorem is almost identical to the proof of Theorem 1.5. Essentially, all that has to be
done is to replace the Hoeffding bounds in Theorem 1.5 by Hoeffding bounds necessary for MIPs. Furthermore,
we have to change to the rule that as long as at most mε

r,k many ri,�’s in some set S contribute a 0 (instead of
1/μ′ for MIPs), then it does not affect the deviation bound for Er,k|S . �

An instance of MAX SAT is defined by (C, w), where C is a set of m boolean clauses such that each clause
C ∈ C is a disjunction of literals with a positive weight w(C). Let X = {x1, . . . , xn} be the set of boolean
variables in the clauses of C. For every i, xi = 1 means xi is true and xi = 0 means xi is false. A literal is a
variable x ∈ X or its negation x̄ = 1 − x. For each xi, we define xi,0 = x̄i and xi,1 = xi. We assume that no
literals with the same variable appear more than once in a clause in C. Clause j in C is denoted by

Cj = xij,1,�j,1
∨ xij,2,�j,2

∨ . . . ∨ xij,kj
,�j,kj

.

We would like to find an optimal solution to the following integer program:

maximize
m∑

j=1

wjyj

subject to
kj∑

s=1

xij,s,�j,s
≥ yj ∀j (6)

xi,0 + xi,1 = 1 ∀i (7)

xi,�, yj ∈ {0, 1} (8)
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If we replace (8) by 0 ≤ xi,�, yj ≤ 1, then an optimal solution x∗ of the LP can be found in polynomial time.
We use this solution to transform the LP into a MIP in the following way:

All inequalities j with
∑kj

s=1 xij,s,�j,s
= 0 are removed from the system. Each inequality j with

∑kj

s=1 xij,s,�j,s
≥

1 is given a coefficient cj ≤ 1 so that
∑kj

s=1 cj · xij,s,�j,s
= 1, and each inequality j with

∑kj

s=1 xij,s,�j,s
< 1 is

extended by the variable x0,0 ∈ {0, 1} and a coefficient cj < 1 so that

cj · x0,0 +
kj∑

s=1

xij,s,�j,s
= 1

when setting x0,0 = 1. Now, for the MIP, all xi,j (including x0,0) form the variables of the MIP, A is specified
by the left hand side of the modified inequalities above, and the requirements (2) and (3) of Definition 4.4 follow
directly from lines (7) and (8) of the IP. In this case, it is obviously possible to find a feasible solution for Y = 1,
i.e. a solution can be found that results in a value for the objective function of the IP above that is at least as
good as the value when using x∗.

Using our randomized rounding technique, our aim is to find integral xi,�’s so that for some vector α,
(Ax)j ≥ (1 − αj)Y for all j. If α is chosen such that the probabilities for this satisfy the conditions in
Theorem 4.5, our techniques can be used to exploit non-uniform properties of the MIP (and therefore the corre-
sponding MAX SAT problem) to find good approximate solutions in polynomial time.

5 Conclusions

In this paper, we presented a powerful technique to exploit non-uniform properties in MIPs in order to find good
approximate solutions. We applied this technique to job shop scheduling and MAX SAT problems. The upper
bounds we obtained for the job shop scheduling problems significantly improve previously known upper bounds.
We expect our techniques to have many more applications to other types of integer programs and combinatorial
optimization problems.
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[11] P. Erdős and L. Lovász. Problems and results on 3-chromatic hypergraphs and some related questions. In
A. Hajnal, R. Rado, and V. T. Sós, editors, Infinite and Finite Sets (to Paul Erdős on his 60th birthday),
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