Dynamic and Redundant Data Placement

(Extended Abstract)
A. Brinkmann, S. Effert, F. Meyer auf der Heide C. Scheideler
Heinz Nixdorf Institute TU Minchen
Paderborn, Germany Munchen, Germany

brinkman@hni.upb.d€ fermat, fmadf @upb.de scheideler@in.tum.de

Abstract assume that all data in the system is organized into blocks
of uniform size that have to be assigned to storage devices
We present a randomized block-level storage virtualiza- in the given pool. One approach to keep track of this as-
tion for arbitrary heterogeneous storage systems that cansignment as the system evolves is to use rule-based or table-
distribute data in a fair and redundant way and can adapt based placement strategies. However, table-based methods
this distribution in an efficient way as storage devices en- are not scalable and rule-based methods can run into frag-
ter or leave the system. More precisely, our virtualization mentation problems, so a defragmentation has to be per-
strategies can distribute a set of data blocks among a setformed once in a while to preserve scalability.
of storage devices of arbitrary non-uniform capacities so In this paper, we will follow a different approach, which
that a storage device representing x% of the capacity in theis based on hashing. The basic idea behind hashing is to
system will get x% of the data (as long as this is in princi- use a compact functiolin order to map balls with unique
ple possible) and the different copies of each data block areidentifiers out of some large univergginto a set of bins
stored so that no two copies of a data block are located in called.S so that the balls are evenly distributed among the
the same device. Achieving these two properties is not easybins. In our case, the balls are the data blocks and the bins
and no virtualization strategy has been presented so far tha are the storage devices. Given a static set of devices, it is
has been formally shown to satisfy fairness and redundancyeasy to construct a hash function so that every device gets
while being time- and space-efficient and allowing an effi- a fair share of the data load. However, standard hashing
cient adaptation to a changing set of devices. techniques cannot adapt well to a changing set of devices.
Fortunately, there are hashing schemes that can adapt to
) a changing set of devices without creating a large overhead.
1 Introduction The most popular is probably the consistent hashing scheme
by Karger et al. [8], which is able to evenly distribute a
The ever-growing creation of and demand for massive single copy for each data block about storage devices and
amounts of data requires highly scalable data managemento adapt to a changing number of disks. However, in real
solutions. The most flexible approach is to use a pool of systems, storing just a single copy of a data block can be
storage devices that can be expanded as needed by addirgangerous because if a storage device fails, all of the block
new storage devices or replacing older devices by newer,stored in it cannot be recovered any more. A simple alter-
more powerful ones. Probably the most elegant way of hid- native is to store multiple copies of each data block, but as
ing the management of such a system from the users is towill be demonstrated in this paper, it is not an easy task to
use storage virtualization, i.e. to organize the storage de distribute these copies among the storage devices so that in
vices into what appears to be a single storage device. Thighe following every storage device has a fair share of the
will help to hide the complexity of the storage system from data load (meaning that every storage device with x% of
the users, but coming up with a highly effective and flexible the available capacity gets x% of the data and the requests)
storage virtualization is not easy. and that the redundancy property (meaning that the copies
Storage virtualization solutions vary considerably, espe of each data block are distributed so that no two copies are
cially because there is no generally accepted definition of stored on the same device) are kept.
how and at which level storage virtualization is supposed In fact, all hashing strategies proposed so far for non-
to provide an interface to the users. We will address the uniform storage systems can only satisfy the two conditions
problem of block-level storage virtualization. That is, we in special cases. In this paper, we first derive a formula for

the maximum number of data blocks a system of arbitrary case that there is any change in the set of data blocks,
non-uniform storage devices can store if the fairness and storage devices, or their capacities. A placement strat-
the redundancy conditions above have to be satisfied. Then egy will be callede-competitive concerning operation

we illustrate why it is not easy to satisfy fairness and re- w if itinduces the (re-)placement of (an expected num-
dundancy at the same time, and afterwards we propose the ber of) at most times the number of copies an optimal
first hashing strategies that can satisfy both conditions fo strategy would need fap.

arbitrary non-uniform storage systems.
Our aim is to find strategies that perform well under all of

1.1 The Model these criteria.

The model for our investigations is based on an exten-1 2 Previous Results
sion of the standard balls into bins model (see e.g. [7, 9]).
Let{1,..., M} be the set of all identifiers for the balls and Data reliability and the support for scalability as well as
{1,..., N} be the set of all identifiers for the bins. Suppose the dynamic addition and removal of storage systems is one
that the current number of balls in the systemmis< M of the most important issues in designing storage environ-
and that the current number of bins in the system is N. ments. Nevertheless, up to now only a limited number of
We will often assume for simplicity that the balls and bins strategies has been published for which it has formally been
are numbered in a consecutive way starting with 0 (but any shown that they can perform well under these requirements.
numbering that gives unique numbers to each ball and bin Data reliability is achieved by using RAID encoding

would work for our strategies). schemes, which divide data blocks into specially encoded
Suppose that bin can store up td; (copies of) balls. sub-blocks that are placed on different disks to make sure
Then we define its relative capacity as= b;/ >}, b;. that a certain number of disk failures can be tolerated with-

We require that for every balk copies have to be stored out losing any information [10]. RAID encoding schemes

in the system for some fixeld In this case, a trivial upper ~ are normally implemented by striping data blocks according
bound for the number of balls the system can store while to a pre-calculated pattern across all the available storag
preserving fairness and redundancﬁ§:1 b;/k, butit can devices, achieving a nearly optimal performance in small
be much less than that in certain cases, as we will see. Thenvironments. Even though extensions for the support of
k copies of a ball will be called eedundancy groupEven heterogeneous disks have been developed [4], adapting the
though we just focus on plain mirroring, all results inside placement to a changing number of disks is cumbersome
this paper are also valid for other redundancy techniques.under RAID as all of the data may have to be reorganized.
Placement schemes for storing redundant information can In the following, we just focus on data placement strate-

be compared based on the following criteria (see also [2]): gies which are able to cope with dynamic changes of the
capacities or the set of storage devices (or bins) in the sys-

o Capacity Efficiency: A scheme is calledapacity ef- tem. Good strategies are well known for uniform capaci-
ficientif it allows us to store a near-maximum amount ties without replication, that is, all available bins habe t
of data blocks. A replication scheme is called same capacities and only one copy of each ball needs to be
competitive if it is able to store at leagt — ¢)-times stored. In this case, it only remains to cope with situations
the amount of data that could be stored by an optimal in which new bins enter or old bins leave the system. Karger
strategy. Capacity efficiency can be shown in the ex- et al. [8] present an adaptive hashing strategy that satisfie
pected case or with high probability. We will see in the fairness and is 1-competitive w.r.t. adaptivity. In adafiti
following that the fairness property is closely related to the computation of the position of a ball takes only an ex-
capacity efficiency. pected number ad(1) steps. However, their data structures

) o . o . need at least log2 n bits to ensure that with high probabil-

e Time Efficiency: A scheme is calledme efficientf it ity the distribution of the balls does not deviate by moreitha
allows a fast computation of the position of any copy 5'constant factor from the desired distribution.
of a data block. Adaptive data placement schemes that are able to cope

e Compactness: We call a schemecompactif the with arbitrary heterogeneous capacities have been intro-
amount of information the scheme requires to com- duced in [2]. The presented strategies Share and Sieve are
pute the position of any copy of a data block is small compact, fair, and (amortized) + €)-competitive for ar-

(in particular, it should only depend a andm in a bitrary changes from one capacity distribution to another,
logarithmic way). wheree > 0 can be made arbitrarily small. Data placement

schemes for heterogeneous capacities that are based on ge-
e Adaptivity: We call a schemadaptiveif it allows us ometrical constructions are proposed in [11]. Their linear
to redistribute a near-minimum amount of copies in the method combines the standard consistent hashing approach

in [8] with a linear weighted distance measure. A second 2 Limitations of existing Strategies

method, calledogarithmic methoduses a logarithmic dis-

tance measure between the bins and the data. In this chapter we will present limitations of existing data
First methods with dedicated support for replication are placement strategies. First, in Section 2.1, we derivetd tig

described in [5][6]. The proposedush (Replication Un- bound for the number of data items (balls) that can be stored

der Scalable Hashingjtrategy maps replicated objects to in a system of: bins with given capacities, if, for each item,

a scalable collection of storage servers according to user# copies have to be stored in different bins. In Section 2.2,

specified server weighting. When the number of serverswe will demonstrate that the standard replication approach

changes, the Rush variants try to redistribute as few abject to produce the copies by usikglata distributions indepen-

as possible and all variants guarantee that no two replicas odently (the trivial approach) is not able to fully exploieth

an object are ever placed on the same server. The drawbackvailable storage capacity.

of the Rush-variants is that they require that new capagity i

added in chunks, where each chunk is based on servers 0.1 Capacity Efficiency

the same type and the number of disks inside a chunk has to

be sufficient to store a complete redundancy group without e consider storage systems consisting bins. Letb;

violating fairness and redundancy. The use of sub-clusterspe the number of balls that can be stored in abiB =

is required to overcome the problem if more than a single Z?;Ol b; the total number of copies that can be stored in

block of a redundanc_y group is accidently mgpped toa thea" bins andB, = Z;:jl b;. Assume that: divides B.

same hash-value. This property Ieat_js to restrictions tpr b! Such a storage system is said to allowapacity efficient

ger numbers of sub-blocks. Extensions of the Rush-family j._replication schemeit it is possible to distributé: copies

are presented in [12]. of each ofm = B/k balls over all bins, so that théth bin
getsb; copies, and no more than a single copy of a ball is
1.3 Contributions of this Paper allowed to be stored in one bin. In the following lemma we

will give an necessary and sufficient condition for a storage
In this paper, we present the first data placement strate-System to allow a capacity efficieitreplication scheme.

gies which efficiently support replication for an arbitrary Lemma 2.1. Given an environment consisting outoins.

set of heterogeneous storage systems. We will show thaﬁEach bin can storé; balls, where we assume w.l.o.g. that
for any number of storage devices, the strategies are alway%.

. S . - 1€ {0,....,n— 1} : b; > b;r1. A perfectly fair data

able to be capacity efficient, time eff'.c'e”t_ and compact ar_ld replica{tion strategy}is able to oEtimaII)r: use thye capacity o
that thgy are able t(_) support adaptmty with a low competi- all bins if and only ifby < B/k.
tive ratio in comparison to a best possible strategy.

In order to design capacity efficient strategies for arbi- Sketch.We will assume w.l.0.g. inside this proof thBt=
trary heterogeneous systems, several insights are negessa k - m, wherem € IN is an arbitrary integer value. th is
In Section 2, we start with a precise characterization of the not an integer value, it would be necessary to split copies
conditions the capacities of the storage devices have to satof balls to be able to optimally use the available storage
isfy so that redundancy and fairness can be achieved at theapacity.
same time without wasting any capacity in the system. With We will show in a first step that it is not possible to op-
this insight, we derive a recursive formula for the maximum timally use the available capacity if- by > B. To store
number of data blocks that we can store in a given systemby > B/k copies in bin0 without violating the require-
without violating the redundancy condition. This formula ments of a valid-replication scheme, additiongt — 1) - by
will be important to calculate the capacity each storage de-copies have to be stored in the bifis ..., (n — 1)}. This
vice can contribute to the redundant storage. is not possible, because froBy < B — by andby > m it

After showing that trivial placement strategies cannot follows thaty™7" ' b; < (k — 1) - bo.
preserve fairness and redundancy at the same time, we Inthe second part of the proof we will show that it is pos-
present in section 3 a placement strategy for two copies andsible to store:-copies ofm balls, if k- by < B by construct-
then generalize this to a placement strategy for an arpitrar ing an optimal distribution of the balls. We will place in
fixed numbet of copies for each data block, which are able €ach step of the construction the copies for one ball. The re-
to run inO(k). The strategies have a competitivenesg®f ~ maining capacity of each binbefore each stepis denoted
for the number of replacements in case of a change of theasb; andb? = b;. Furthermorep’ = Z?:_Ol b;. Each step
infrastructure. Hence, as long ass fixed (which should starts by taking thé bins with biggest! and placeg copy
normally be the case), we expect our placement strategie®f the ball on each of thg bins. Afterwards, the construc-
to perform well in practice. In fact, the experiments per- tion decrements their remaining capacitieslbdgr the next
formed so far and reported in this paper support this claim. step. It is shown in the full version of this paper that from

Vi e {0,...,(n—1)}: ¥ < k- B itimmediately follows therefore possible to optimally use the available capacity
thatvi € {0,...,(n — 1)} : b1 < k- Bi*! and thatthe of the bins. The coefficients; can be calculated in time
construction successfully terminates aftesteps. O O(k - n) based on Algorithm 1.

We have shown in Lemma 2.1 that it is possible to opti- 2.2 The trivial data replication approach
mally use the available storage capacity fdt-eeplication
scheme, ifvi € {0,...,n — 1} : b; < k - B. Nevertheless, Data replication can be performed by different strategies.
it is not always possible to influence the construction of the The most well known strategies are RAID schemes, which
storage environment. Therefore, it is interesting to know eyenly distribute data according to a fixed pattern over ho-
how many data can be stored in a storage environment, €Veihogeneous bins. Another important strategy, which is of-
in the previous Lemma. hashing functions, like Consistent Hashing or Share, and to
makek independent draws to gétdifferent bins. We will
show in the following that this strategy leads to the loss of
the properties of fairness and capacity efficiency.

Lemma 2.2. Given an environment consisting outofins.
Each bin can storé; balls, where we assume w.l.o.g. that

Vi€ {0,...,n— 1} : b; > b;y1. The maximum number of
balls that can be stored in the system usingr-geplication Definition 2.3. A replication strategy is called trivial, if
scheme wittk < i is it performsk draws to achieve:-replication withk > 2
according to a fair data distribution scheme fér = 1,
net.,) ‘ et where the probability that a bin is the target for thieh
By = 2io i,Where{ 69 = m.ln(bm 1//’@ ‘ Zj:O b5) draw only depends on its constant relative weight compared
k b; = min(b;, bo) Vi >0 to the other bins participating in theth draw and not on

k. Furthermore, for a trivial replication strategy, exactly
all bins that have not been the target of one of the draws
{1, ...,7 — 1} take part in draw.

Sketch.In a first step, we will show that it is not possible to
store more that copies ofB,,, ., balls in the environment
without violating the constraint that no more than a single
copy of a ball is allowed to be stored in one bin. This part ~ We will show in this section that the trivial approach to
of the proof will be performed by contradiction: data replication is not able to fulfill the requirement offai

If it would be possible to store copies of more thag ... ness for anyt > 2. Before formalizing this, we will give
balls in the environment, it would follow that at least one a simple example that explains the drawback of the trivial
bin would have to store more thahballs. The number of approach for data replication. Figure 1 shows a system that
balls stored in a bird can only be bigger thabl if b,_; < consists out of 3 bins, where the first bin has got twice the
b;—1, otherwiseb, = b; and the capacity constraints of that capacity of bin 2 and bin 3. The data distribution scheme
bin ¢ would be exceeded by storing more thgrcopies in should distribute data over the bins for= 2. It is easy to
that bin. According to the definition @f;, b; < b; is only see that it is possible to distribute the data foe= 2 per-
possible if alsdg # bf,. Lets now assume thag > 1/k - fectly fair by putting each first copy in the first bin and the
Z;.:Ol b;. Based on Lemma 2.1, it is not possible in this second copy alternatingly in the second and third bin.
case to optimally use the available storage capacity for a In the case of a trivial data replication strategy, the prob-
k-distribution of copies. ability that the larger bin is not the target for the first copy

The second part of the proof directly follows from in the setting from Figure 1i = 1 — 1/2 = 1/2. If the
Lemma 2.1. Based on the definitionigf, all adjusted ca- first bin is not taken in the first draw, the probability that it

pacitiest, follow the requirement that enables an optimal also not taken in the second drawpis= 1 — 2/3 = 1/3
capacity utilization. O and it follows that the probability that it is not taken at all

is 1/6. To enable an optimal packing of the balls, the larger
In the remainder of this paper we will assume that the bin has to be taken in every random experiment, while the
input to the different replication strategies is set in a way trivial strategy waste$/6-th of the capacity of the biggest
thatb;, = b, for everyi € {0,...,n — 1} and that it is bin and1/12 of the overall capacity.
The following lemma will show that the trivial approach
_ _ _ to makek independent draws from the bins leads, especially
Algorithm 1 optimalweightsk, {bo, ..., bn—1}) for a small number of heterogeneous bins, to a significant
1 if by > 5 S b then waste of capacity.

2 optlmaIYVelghtrf(J{f ~ Dby baad) Lemma 2.4. Assume a trivial replication strategy that has
3: l:jo f: L= i bl to distributek copies ofm balls overn > k bins. Further-
4 endl more, the biggest bin has a capacity,,, that is at least

First Copy 3 The Redundant Share Strategy

The analysis of trivial data replication strategies has
shown that these strategies suffer from not being able to ef-
ficiently use larger bins, especially if the number of bins
is small. The Redundant Share strategies presented inside
this section overcome the drawback of trivial data replica-
tion strategies by favoring larger bins in the selection-pro
5=(—%,) cess. We will start by describing a data replication strateg

9 Second Coy for a 2-fold mirroring that orders the bins according to thei
weightsc; and iterates over the bins. Therefore, the strategy
needsO(n) rounds for each selection process. After pre-
senting this restricted replication strategy, we will [Enets
a generalized-replication strategy that is able to distribute
balls perfectly fair over all bins and that also has linear-ru
(1 + ¢) - ¢; of the next biggest bir. In this case, the ex- time. Finally, we will present time efficient strategiesIbui
pected load of the biggest bin will be smaller than the ex- upon the restricted strategies, which are also able to work
pected load required for an optimal capacity efficiency. for k-fold mirroring with arbitraryk in O(k).

All strategies presented in this section are not only able
to distribute data fair about the bins, but also to keep the
property of fairness in case of dynamic insertion or detetio
of bins. We will show that the number of necessary replace-
ments can be bounded against an optimal adversary. Fur-
(t)hermore, all strategies are always able to clearly idgntif
thei-th of k& copies of a data block. This property is a key
requirement, if data is not replicated by-amirror strategy,
but is distributed according to an erasure code, like Parity
RAID, Reed-Solomon Codes or EvenOdd-strategies [1][3].
In case of an erasure code, each sub-block has a different
meaning and therefore has to be handled differently.

Figure 1. Distributing data according to a triv-
ial strategy for k = 2.

Sketch.Inside this proof we assume w.l.o.g. that it is pos-
sible to find a valid data distribution for/areplication that

is able to optimally distribute copies overbins in a way
that each biri gets a share of exactty of all copies. Fur-
thermore, we assume that the bins are ordered according t
their capacity and thaty = ¢, > ¢1. In this case, bir)
has got to get an expected loadkofe, - m balls. Therefore,
the probability that no copy of a ball is placed on bihas

to be smaller thap, = (1 — k- ¢¢) for each random experi-
ment. In the following we will show by complete induction
over the number of copigsthat the probabilityp, that no
copy of a ball is placed in bifi is bigger than the required
probability, which proofs Lemma 2.4.

For every strategy that distributes data fair over the bins
for k = 1, the probability that a bin is not chosen in the first
step is(1 — ¢;). In the following, y; denotes the relative The input values for the Algorithm 2 LinMirror are the
capacity of the bin that has been chosen in djawThe capacities of the bins; and the virtual address of the ball

probability that a bin is not chosen in the second step is that should be distributed over the bins. It is important to
ci ; _ : notice that we will usé: and 2 interchangeable inside this
1-— %)' We will start fork = 2. In this case, the

3.1 Mirroring in linear Time

1= o . subsection.
probability that bin0 is not chosen has to be bigger than The algorithm works in rounds. The task of the while
(1—=2-co). loop is to select the bin for the first copy of the ball. There-
fore it iterates over all bins in descending order of their
o = (1 —co) <1 __%) > 1-2-¢ capacitiesh; and selects the location for the primary copy
L=m based on a random process. An invariant of the algorithmis
n=eeo (1 - ¢) <1 o) > 1-2-¢ (1) that'it is not possible to place a copy of a ball in a bafter
l—e€-co the i-th round of the while loop. It follows that the algo-
& ¢c > €-co rithm has to ensure that the probability that a ball is placed

in bin ¢ is equal to the required shage ¢; after thei-th
round of the while loop.
The calculation of the probabilit§; that bini is the tar-
get for a ball is based on the recursive nature of the algo-
As it can be seen in the proof of Lemma 2.4, it is neces- rithm (even if the algorithm is formulated without explicit
sary to ensure that larger bins get their required shareeof th recursion). It just assumes that secondary copies have been
replicated balls. evenly distributed over the bins. .., n — 1, so the task of

which is true for eaclk < 1. The induction step for
(k — 1) — k is shown in the full version of the paper. O

Algorithm 2 LinMirror (address, {bg, ..., bn—1}) Algorithm 3 placeOneCopy{ddress, ¢, {bg, ..., bn-1})

Require: Vi € {0,...,n—1}:b; > biy1 A2-b; < B 1 Cpew = 2 bo/ S0, b
LVie{0,... ,n—1}:¢=2-b/ 3" b; 2: if ¢ < 1andéye, > 1then
2.7+ 0 3 by =0b*
3: whilei <n—1do 4: end if
4: rand «— Random value(address,hind)[0, 1) 5: Call fair data distribution strategy for one copy with pa-

5. if rand < ¢; then rametergadress, bo, ..., bn—1)

6: Set volume as primary copy

7: Set secondary copy to
placeOneCopy{ddress, ¢, bit1, ..., bp—1) 0,...,(i — 2). & denotes the probability that bjhis cho-

8: return sen as primary copy in roungb;/ Z};{H b; the probabil-

o endif ity that bini is chosen as secondary copy for that primary

100 il copy and[[/; (1 — ¢&,) the probability that the while loop

11: end while reaches thg-th round for a ball. In the next step, we will

calculate the maximum percentage of primary copies that

. . o o can be assigned to birby settinge; = 1.
round: is to find a valid mirroring for the bing ..., n — 1.

Each round starts by selecting a random value between 0 il
and 1, which is calculated based on the address of the data pi=]]00-c) (3)
block b and the name of the biiy which has to be unique =0

inside the environment. If the random value is smaller than Therefore, the number of secondary copies that have to

the adapted weigh; of the bini in an iteration step of the ¢ agsigned to binfrom the primary copies stored in bin
while loop, the bin is chosen as primary copy. The sec-, _ g

ond copy is chosen by a strateghaceOneCopthat has to

be able to distribute balls fair over bins without replicati si=2-ci—s72 _p, (4)
The input of placeOneCopy are all bins which have not yet

been examined in the while-loop. Therefore, the second

copy of the mirror is distributed over all bins with smaller B"flsed on Equation 4, we are now able to calculate

weightc; than the weight of the primary copy. from:

Algorithm 2 contains an inhomogeneity in the usage of . o
placeOneCopy it; > 1 for a bini andVj < i : ¢ < si = % CEio1 - H(l — &) (5)
1. The inhomogeneity is based on the recursive nature of b 4+ b j=0

the algorithm and occurs, if the subggt...,n — 1} of

bins does not fulfill the requirements of the algorithm that ~ 1° t€st the fairness of the described algorithm we im-
2.b; < Z?:il b;. In this case it is not sufficient to evenly plemented it in a simulation environment. We started the

tests with 8 heterogeneous bins. The first has a capacity of
500,000 blocks, for the other bins the size is increased by
100,000 blocks with each bin, so the last bin has a capacity
h ©of 1,200,000 blocks. To show what happens if we replace
smaller bins by bigger ones we added two times two bins.
The new bins are growing by the same factor as the first
did. Then we removed two times the two smallest bins. Af-
The adjustment, — b* in Algorithm 3 has to ensure ter each step we measured how much percent of each bin

that bini is able to get the required amount of balls. This is is used. As it can b? Seen In figure 2, the distribution for
done in the following way. In a first step, the percentage of heterogeneous bins is fair.
secondary copies already assigned toship to stepi — 2
is calculated by setting

distribute the secondary copies of preceding bins over the
subset, instead it is required to favor hin The function
placeOneCopy overcomes this problem in roghé 1) by
adjusting the probabilities for the data distribution oé t
secondary copies for primary copies placed in @in- 1)
before calling a fair data distribution strategy for thegala
ment of the secondary copy.

Lemma 3.1. LinMirror is perfectly fair in the expected case
if a perfectly fair distribution scheme inside placeOne€op

o is chosen.

i—2 . bi = y
o ; <CJ S b 01:[0(1 CO)) @) Proof. The expected share of biris the sum of the first and
second copies of balls stored in that bin. A second copy of
Equation 2 sums the percentage of the secondary copies ball can only be assigned to a bin, if the first copy of that
assigned to bin for primary copies stored in the bins ball is stored in a biy with j < .

ci/ Yoo c; of all balls to keep this property. In the case of
91 LinMirror, all data blocks for which the strategy produces a
87 new target disk have to be moved from their current location
[) to the new disk.
67l] M Lets assume that the new storage system has the biggest
£ 59 share and we will set = 0 and the index of all other bins

4 will be increased by one. W.l.o.g. we will assume that the
3 index of the other bins has already bin increased by one
2 — i before the insertion of the new bin 0. In this case, an ex-
1+ pected share of = ¢o/ Y-, ¢; of all balls will be placed
0+ - = as primary copy on bin 0 and an additional share aff

8Disks 10Disks 12Disks ~ 10Disks 8 Disks all balls will become the second copy of a first copy that

is placed on bin 0, leading to an expected numbe2 of
block movements, which directly involve the new disk. The
random valueandfor stepi of the while loop only depends
The proof is based on the recursive nature of the algo-©n the block number and the name of the hiwhich does
rithm. We start the proof for bi. Its demand can only ~ not change by the insertion of a new disk. Therefore, ad-
be satisfied by primary copies. Therefore, the probability ditional changes of the placement of first copies can only
that this bin is chosen as primary copy has to be equal toOCcur, if é&; changes after the insertion of bin 0. Based on
its demand, which is fulfilled by settingy = 2 - ¢;. It Algorithm 2, ¢; does not change after the insertion of bin 0
is important to notice that placeOneCopy evenly distrisute for all i > 0. Therefore, no additional balls will be replaced
the second copies according to the demands of the remain@fter the insertion of bin 0 and LinMirror is 2-competitive

Figure 2. Distribution for heterogenous bins.

ing bins{1,...,(n — 1)}. Therefore, the problem in the N the expected case, if a new bin with the biggest capacity

next round reduces to the problem to finde a valid mirroring IS inserted. _ . _

scheme for the binél, . .., (n — 1)}, which is achieved by What happens if the new disk has not the biggest capac-

the same mechanisms as for bin 0. ity? If a bini is inserted that has not the biggest share, it
This recursive nature is broken for the case thabe- has only an influence on the probabilitigsfor j < i. The

comes bigger than 1. This is the case if the precondition€xPected number of primary copies that have to be redis-

. n— . n—1 _n.
Vi€ {0,....,n—1} : ¢; = b/ Zj:Ol b; of the algorithm triputed for binj is bounded by 1 — w»times
can not be fulfilled for biri. This inhomogeneity is over- _ _ _Zlff L

the number of primary copies stored in inThis term can

be simplified tab; / >~ by.
It has to be shown in a first step, that the expected total
Algorithm 2 will terminate after biri with ¢; > 1. Based number of f|rst copies to be moved from bjrls_always
on the fact that all bins in the randé, .. ., i} exactly get at least as big as th_e precteo_l number of copies that_ have
the required demand in the expected case and that the datp P& moved from biry + 1 weighted by the size of bin
is evenly distributed over the bingi + 1),...,(n — 1)} 7 and binj +1. We will bound the number of primary
according to their capacities as well as the precondition of COPies inside biry andj + 1 by the probability that the

the algorithm and Lemma 2.1, the fairness of the algorithm while loop of Lir_w_l\/lirror regghes steg’), resp. step + L
follows. and the probability that birj, resp. 7 + 1 is taken if the

algorithm reaches the corresponding step and the number
In the next lemma we will show that Algorithm 2 is not Of ballsm. This can be done by showing that
only perfectly fair but is also competitive compared to an

come inside placeOneCopy for kii-1), where the weight
of bin i is adapted so that the demand of the bin is exactly
met after round of the while loop.

optimal algorithm in a dynamic environment. B b e bes . & j
o . L — T J'H(l—ék)zb_] = [
Lemma 3.2. LinMirror is 4-competitive in the expected 2.1, bt 3+1 N TR

case concerning the insertion of a new bin

o It is now possible to bound the expected number of first

¢; is inserted into the environment. After inserting binto from the bins to (i — 1) by:

the environment, the storage system consists o(t &f 1)

bins. To keep the property of fairness, part of the copies o

have to be moved from their current locations. In an optimal Do < Z % b;
=0 0

1—1
- : T bo < nb,zl ’ijﬁbi
case, a strategy has to redistribute at least a shage-of Do b im0 b

200000

180000
Assuming that the movement &f primary copies also 160000 -
triggers the movement éfsecondary copies, the total num- 138888]
ber of data movements induced by the movement of a pri- g 100000 -
S 80000 -
mary copy can be bounded By b;. 60000 |
Besides the replacements induced by the movement o ggggg:
first copies, it also happens that second copies are move 01
according to the insertion of bin For all primary copies © D © D D D w©
DA N O S
stored in binj with j < i it holds that the number of & 7P TS S
replacements for the corresponding secondary copies i & &\.@ & &&’ 0@.‘"’ & \\o@?’ s
bounded by, / 27:_7.1_%1 b;-times the number of first copies <
stored in binj. Notice that this term is very similar to the

term used for the replacement of primary copies, but in this
case the denominator only starts Gy+ 1) and not byj.
Based on this observation, it is again possible to show that

the number of secondary copies that have to be replaced foreplace blocks placed for the new / deleted bin but also for
a bin constantly decreases with the size of the bins. Thisother bins. If a bin is added at the beginning of the list,

Figure 3. Adaptivity of LinMirror.

can be done by showing that LinMirror is 2-competitive.
To reproduce this effect we checked different scenarios.
. -1 ; 3 We made four tests, removing and adding a bin at the begin
MG [—a) > 2 b S T) and the end of the list for heterogeneous and homogeneous
=10 il bjta 1=+2 00 il environments. Figure 3(a) shows the blocks placed on the
affected bin and the number of replaced blocks for every
followed by test. It can be easily seen that it makes a big difference at

which end the changes take place. For changing the biggest
b bibo by i—1 bin we replaced about 1.5 times of the blocks affected by
Tsecond < Z b—] o=t S = ’ij <2-b; the disk, while changing the smallest bin gives us a factor
rSLCRED DI TR D el Tt
J J of about 2.5.
o) o o To analyze this, we tested how this factor behaves for
Itis interesting to observe that it is not negligible, where , qitterent number of bins. Therefor we added a bin to 4
a disk is inserted. Assume for example that all disks haveup to 60 bins and measured the factor of replaced blocks
got the same size. Then the number of replaced first copiegyjyided by the block used on the newest disk. We performed
is m_uch bigger, if the disk is added_as Igstdisk_than itwould these tests for adding the new bin as the smallest and as
be, if Fhe disk Wou_ld be addgd as first dISk.. This can also beo biggest one. Again, we get nearly constant competitive
seen in the following experimental evaluations. O ratios of about 1.5 for adding the biggest disk and 2.5 for
adding the smallest disk.

Corollary 3.3. The algorithm LinMirror is4-competitive in

the expected case concerning the deletion of a bin
P g 3.2 k-fold Replication in linear time

Sketch.Bin i is removed from the environment. The proof
for the competitiveness is based again on the change of the In the previous section, we have presented the algorithm
probability ¢; for all bins j with j < 4. This probability LinMirror that is able to distribute mirrored data perfegctl
- n—1y H .
changes by thefactc,‘?c?'?w X by fair among a set of heterogeneous bins. Furthermore, we

dota >y bj=bi Again, it can be have shown that the adaptivity of the algorithm to changes
shown that this probability change, weighted with the prob- of the environment can be bounded against a best possible
ability that the algorithm proceeds up to stgpdecreases igorithm. In this section, we will generalize the approach
with increasingj and has a maximum fgr= 0. O of LinMirror to k-fold replication of data.

The algorithmk-Replication()is based on Algorithm 2
from the previous section. There is one significant change
in the algorithm. If a bin is chosen as primary copy for a
ball andk > 2, then the following copies are chosen by
a recursive decent into-Replication(with k£ decreased by
oné-. Again, it is necessary to introdué&, which can be

We will now have a closer look at the competitiveness of
the adaptivity with the help of the simulation environment.
Looking at the proofs for Lemma 3.2 it seems to make a dif-
ference at which position a new bin is added or removed. If
changes take place at the end of the list (where the smalles
bins are placed);; changes for every bigger bin and Lin-
Mirror is 4-competitive. Therefore we do not only have to 1The algorithm can also be used fer== 1 without loosing its prop-

Algorithm 4 k-Replication &, address, {bo,...,bn_1}) 20
Require: Vi € {0,...,n—1}:b; > bjy1 ANk -by < B

1.1+ 0

2:Vie{O,...,n—l}:éin-ci/Z;.:ilck 141 §

3: while i < ndo ' 127 I

4: rand «— Random value(ddress) € [0, 1) ¥10]

5. if rand < & then 81

6: Set volume as primary copy 61

7: if Kk == 2then 47

8: Set last copy to placeOneCopy(1, - .., bn—1) 27

o: return 0 N
10: else 8 Disks 10 Disks 12 Disks 10 Disks 8 Disks
1L if ¢; <1andé;i, > 1then Figure 4. Distribution for heterogeneous bins
12 bi1 b and k = 4.
13: end if
14: k-Replication(k — 1), address,
. ;{ggrlﬁ s bna}) J - b; additional data blocks have to be moved, leading to a
16 end if competitiveness of?. O
7. endif To test the practical behavior we simulated the behavior
18 ieit+l for the k-replication. Therefore we performed the samestest
19: end while for competitiveness and adaptivity as for LinMirror, inghi

case fork = 4 (see Figure 4). As can be seen, all tests
resulted in completely fair distributions.

The adaptivity behaves more complex. We have already
shown that it matters where in the list of bins a change hap-
pens. In Figure 5, we evaluate how the factor of replaced
blocks to the blocks on the affected bin behaves for differ-
ent numbers of homogeneous bins. For adding bins at the
beginning of the list, we get nearly a constant factor. For
adding it as smallest bin we get more interesting results.
Proof. The proof of the fairness dé-Replicationis based =~ The more disks are inside the environment, the worse the
on complete induction. The start of the proofis given, based competitiveness becomes. This is a result of the influence
on Lemma 3.1, fok = 2. We now assume that the strategy of the smallest disk to all other disks. In Lemma 3.5, we
is perfectly fair for a replication degree of and will show have shown that the competitiveness converges against an
thatitis then also perfectly fair for a replication factor-1. upper bound ok2. Settingk = 4, we get an upper bound
¢; ensures that the share for biis perfectly fair form + 1 of 16. The graph in Figure 5 lets us assume that there is a
after round: of the while loop, ifk-Replication(m)s also much lower bound at least for this example.
perfectly fair, given by the constraint of the induction.]

calculated similar té* for ¥ = 2 and which handles the
case that; can become bigger than 1 for the last bin that
can get the first copy of A-replication scheme.

Lemma 3.4. k-Replication is perfectly fair in the expected
case if a perfectly fair distribution scheme placeOneCapy i
chosen.

3.3 k-fold Replication in O(k)
Lemma 3.5. k-Replicationis k2-competitive in the ex-
pgcted case concerning the insertion or deletion of a new Using more memory and additional hash functions for
bin i. data distribution on heterogenous disks without redunglanc
we can improve the runtime of Redundant Shar@té).
For the first copy we only need a single hash function,
which computes for each disk the probability that it is

Sketch.The proof of Lemma 3.2 has shown that we have
not to move more thab; first copies. In the worst case we

have to move all following copies of these first copies, lead- ' s
ing tok - b, movements. gddifc)ional to Lemma 3.2?We have used as flrs;t_lcopy. We can compute the propabllmes by
also to consider second, third,. copies which are moved ?i'ih: Ci - r}!a'tﬁo(l _bc-jl))’.l.\;y'th rfl bflsebd on ?I%Otmgm 3.2 1
independent of the primary, secondary,copy according € sum ot Ine probauiiities has to be scalec o become L.
to the insertion of bin. This can be done via a recursive Then we use an algorithm for the placement of a single copy

. . o with the scaled probabilities as input. For every following
decent into the algorithm. For each additional copy, at mostCopy we need)(n) hash functions, one for each disk that

erties of fairness and adaptivity. could be chosen as primary disk in the previous step. For

(o2}

(53]
I

IN
I

replaced/used
N w

[
I

o

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60
bins

\—add as biggest —add as smallest\

Figure 5. Adaptivity of k-Replication for £k =4
and homogeneous bins.

each disk that could be used as primary copy in the previ-

ous step we take the subgét- 1,--- ,n — 1} of the disks
and compute a hash function that can derive the next copy.

To compute the group of target bins we now start with

the hash function for the first disk to get the first copy. De-
pending on the chosen disk in the step before we choose the
next hash function to get the next copy. The hash functions

can be chosen i®(1) and there are hash functions with

runtimeO(1). Therefore, we get to a runtime 6f(k). The

fairness and the adaptivity are granted by the hash function
The memory complexity i®)(k - n - s) wheres is the mem-

ory required for each hash function.

4 Conclusion and Acknowledgements

In this paper we presented the first data placement strate- [9

gies which efficiently support replication for an arbitrary

set of heterogeneous storage systems. These strateljies sti
leave room for several improvements. For example, can the

(2]

(3]

(4]

(5]

(6]

[7]

A. Brinkmann, K. Salzwedel, and C. Scheideler. Com-
pact, adaptive placement schemes for non-uniform
distribution requirements. IRroc. of the 14th ACM
Symposium on Parallel Algorithms and Architectures
(SPAA’02) Winnipeg, Manitoba, Canada, 2002.

P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row-diagonal
parity for double disk failure correction. IRroceed-
ings of the 3rd USENIX Conference on File and Stor-
age Technologies (FAST'04004.

T. Cortes and J. Labarta. Extending heterogeneity to
RAID level 5. INnUSENIX 2001Boston, 2001.

R. J. Honicky and E. L. Miller. A fast algorithm
for online placement and reorganization of replicated
data. InProc. of the 17th International Parallel & Dis-
tributed Processing Symposium (IPDPS 2Q@8)03.

R. J. Honicky and E. L. Miller. Replication Under
Scalable Hashing: A Family of Algorithms for Scal-
able Decentralized Data Distribution. Rroceedings
of the 18th International Parallel & Distributed Pro-
cessing Symposium (IPDPS 2002004.

N. L. Johnson and S. KotzUrn Models and Their
Applications John Wiley and Sons, New York, 1977.

8] D. Karger, E. Lehman, T. Leighton, M. Levine,

time efficiency be significantly reduced with less memory [10]

overhead? We also believe that it should be possible to con-
struct placement strategies that éxg:)-competitive for ar-
bitrary insertions and removals of storage devices. Is this

true and is this the best bound one can achieve?

We would like to thank Dr. Fritz Schinkel from Fujitsu

Siemens Computers for very helpful comments.

References

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVEN-
ODD: an optimal scheme for tolerating double disk
failures in RAID architectures. IRroceedings of the

21st Annual International Symposium on Computer

Architecture 1994.

10

11]

[12]

D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the World Wide Web. Rroc.

of the 29th ACM Symposium on Theory of Computing
(STOC) 1997.

] M. Mitzenmacher.The Power of Two Choices in Ran-

domized Load BalancingPhD thesis, University of
California at Berkeley, 1996.

D. A. Patterson, G. Gibson, and R. H. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID).
In Proceedings of the 1988 ACM Conference on Man-
agement of Data (SIGMOD).988.

C. Schindelhauer and G. Schomaker. Weighted dis-
tributed hash tables. IAroc. of the 17th ACM Sympo-
sium on Parallelism in Algorithms and Architectures
(SPAA 2005)July 2005.

S. A. Weil, S. A. Brandt, E. L. Miller, and
C. Maltzahn. CRUSH: Controlled, Scalable And De-
centralized Placement Of Replicated DataPhc of
SC20062006.

