
Dynamic and Redundant Data Placement
(Extended Abstract)

A. Brinkmann, S. Effert, F. Meyer auf der Heide
Heinz Nixdorf Institute
Paderborn, Germany

brinkman@hni.upb.de,{fermat, fmadh}@upb.de

C. Scheideler
TU München

München, Germany
scheideler@in.tum.de

Abstract

We present a randomized block-level storage virtualiza-
tion for arbitrary heterogeneous storage systems that can
distribute data in a fair and redundant way and can adapt
this distribution in an efficient way as storage devices en-
ter or leave the system. More precisely, our virtualization
strategies can distribute a set of data blocks among a set
of storage devices of arbitrary non-uniform capacities so
that a storage device representing x% of the capacity in the
system will get x% of the data (as long as this is in princi-
ple possible) and the different copies of each data block are
stored so that no two copies of a data block are located in
the same device. Achieving these two properties is not easy,
and no virtualization strategy has been presented so far that
has been formally shown to satisfy fairness and redundancy
while being time- and space-efficient and allowing an effi-
cient adaptation to a changing set of devices.

1 Introduction

The ever-growing creation of and demand for massive
amounts of data requires highly scalable data management
solutions. The most flexible approach is to use a pool of
storage devices that can be expanded as needed by adding
new storage devices or replacing older devices by newer,
more powerful ones. Probably the most elegant way of hid-
ing the management of such a system from the users is to
use storage virtualization, i.e. to organize the storage de-
vices into what appears to be a single storage device. This
will help to hide the complexity of the storage system from
the users, but coming up with a highly effective and flexible
storage virtualization is not easy.

Storage virtualization solutions vary considerably, espe-
cially because there is no generally accepted definition of
how and at which level storage virtualization is supposed
to provide an interface to the users. We will address the
problem of block-level storage virtualization. That is, we

assume that all data in the system is organized into blocks
of uniform size that have to be assigned to storage devices
in the given pool. One approach to keep track of this as-
signment as the system evolves is to use rule-based or table-
based placement strategies. However, table-based methods
are not scalable and rule-based methods can run into frag-
mentation problems, so a defragmentation has to be per-
formed once in a while to preserve scalability.

In this paper, we will follow a different approach, which
is based on hashing. The basic idea behind hashing is to
use a compact functionh in order to map balls with unique
identifiers out of some large universeU into a set of bins
calledS so that the balls are evenly distributed among the
bins. In our case, the balls are the data blocks and the bins
are the storage devices. Given a static set of devices, it is
easy to construct a hash function so that every device gets
a fair share of the data load. However, standard hashing
techniques cannot adapt well to a changing set of devices.

Fortunately, there are hashing schemes that can adapt to
a changing set of devices without creating a large overhead.
The most popular is probably the consistent hashing scheme
by Karger et al. [8], which is able to evenly distribute a
single copy for each data block about storage devices and
to adapt to a changing number of disks. However, in real
systems, storing just a single copy of a data block can be
dangerous because if a storage device fails, all of the blocks
stored in it cannot be recovered any more. A simple alter-
native is to store multiple copies of each data block, but as
will be demonstrated in this paper, it is not an easy task to
distribute these copies among the storage devices so that in
the following every storage device has a fair share of the
data load (meaning that every storage device with x% of
the available capacity gets x% of the data and the requests)
and that the redundancy property (meaning that the copies
of each data block are distributed so that no two copies are
stored on the same device) are kept.

In fact, all hashing strategies proposed so far for non-
uniform storage systems can only satisfy the two conditions
in special cases. In this paper, we first derive a formula for

1

the maximum number of data blocks a system of arbitrary
non-uniform storage devices can store if the fairness and
the redundancy conditions above have to be satisfied. Then
we illustrate why it is not easy to satisfy fairness and re-
dundancy at the same time, and afterwards we propose the
first hashing strategies that can satisfy both conditions for
arbitrary non-uniform storage systems.

1.1 The Model

The model for our investigations is based on an exten-
sion of the standard balls into bins model (see e.g. [7, 9]).
Let {1, . . . , M} be the set of all identifiers for the balls and
{1, . . . , N} be the set of all identifiers for the bins. Suppose
that the current number of balls in the system ism ≤ M
and that the current number of bins in the system isn ≤ N .
We will often assume for simplicity that the balls and bins
are numbered in a consecutive way starting with 0 (but any
numbering that gives unique numbers to each ball and bin
would work for our strategies).

Suppose that bini can store up tobi (copies of) balls.
Then we define its relative capacity asci = bi/

∑n
j=1 bj .

We require that for every ball,k copies have to be stored
in the system for some fixedk. In this case, a trivial upper
bound for the number of balls the system can store while
preserving fairness and redundancy is

∑n

j=1 bj/k, but it can
be much less than that in certain cases, as we will see. The
k copies of a ball will be called aredundancy group. Even
though we just focus on plain mirroring, all results inside
this paper are also valid for other redundancy techniques.
Placement schemes for storing redundant information can
be compared based on the following criteria (see also [2]):

• Capacity Efficiency: A scheme is calledcapacity ef-
ficient if it allows us to store a near-maximum amount
of data blocks. A replication scheme is calledǫ-
competitive if it is able to store at least(1 − ǫ)-times
the amount of data that could be stored by an optimal
strategy. Capacity efficiency can be shown in the ex-
pected case or with high probability. We will see in the
following that the fairness property is closely related to
capacity efficiency.

• Time Efficiency: A scheme is calledtime efficientif it
allows a fast computation of the position of any copy
of a data block.

• Compactness: We call a schemecompact if the
amount of information the scheme requires to com-
pute the position of any copy of a data block is small
(in particular, it should only depend onN andm in a
logarithmic way).

• Adaptivity: We call a schemeadaptiveif it allows us
to redistribute a near-minimum amount of copies in the

case that there is any change in the set of data blocks,
storage devices, or their capacities. A placement strat-
egy will be calledc-competitive concerning operation
ω if it induces the (re-)placement of (an expected num-
ber of) at mostc times the number of copies an optimal
strategy would need forω.

Our aim is to find strategies that perform well under all of
these criteria.

1.2 Previous Results

Data reliability and the support for scalability as well as
the dynamic addition and removal of storage systems is one
of the most important issues in designing storage environ-
ments. Nevertheless, up to now only a limited number of
strategies has been published for which it has formally been
shown that they can perform well under these requirements.

Data reliability is achieved by using RAID encoding
schemes, which divide data blocks into specially encoded
sub-blocks that are placed on different disks to make sure
that a certain number of disk failures can be tolerated with-
out losing any information [10]. RAID encoding schemes
are normally implemented by striping data blocks according
to a pre-calculated pattern across all the available storage
devices, achieving a nearly optimal performance in small
environments. Even though extensions for the support of
heterogeneous disks have been developed [4], adapting the
placement to a changing number of disks is cumbersome
under RAID as all of the data may have to be reorganized.

In the following, we just focus on data placement strate-
gies which are able to cope with dynamic changes of the
capacities or the set of storage devices (or bins) in the sys-
tem. Good strategies are well known for uniform capaci-
ties without replication, that is, all available bins have the
same capacities and only one copy of each ball needs to be
stored. In this case, it only remains to cope with situations
in which new bins enter or old bins leave the system. Karger
et al. [8] present an adaptive hashing strategy that satisfies
fairness and is 1-competitive w.r.t. adaptivity. In addition,
the computation of the position of a ball takes only an ex-
pected number ofO(1) steps. However, their data structures
need at leastn log2 n bits to ensure that with high probabil-
ity the distribution of the balls does not deviate by more than
a constant factor from the desired distribution.

Adaptive data placement schemes that are able to cope
with arbitrary heterogeneous capacities have been intro-
duced in [2]. The presented strategies Share and Sieve are
compact, fair, and (amortized)(1 + ǫ)-competitive for ar-
bitrary changes from one capacity distribution to another,
whereǫ > 0 can be made arbitrarily small. Data placement
schemes for heterogeneous capacities that are based on ge-
ometrical constructions are proposed in [11]. Their linear
method combines the standard consistent hashing approach

2

in [8] with a linear weighted distance measure. A second
method, calledlogarithmic method, uses a logarithmic dis-
tance measure between the bins and the data.

First methods with dedicated support for replication are
described in [5][6]. The proposedRush (Replication Un-
der Scalable Hashing)-strategy maps replicated objects to
a scalable collection of storage servers according to user-
specified server weighting. When the number of servers
changes, the Rush variants try to redistribute as few objects
as possible and all variants guarantee that no two replicas of
an object are ever placed on the same server. The drawback
of the Rush-variants is that they require that new capacity is
added in chunks, where each chunk is based on servers of
the same type and the number of disks inside a chunk has to
be sufficient to store a complete redundancy group without
violating fairness and redundancy. The use of sub-clusters
is required to overcome the problem if more than a single
block of a redundancy group is accidently mapped to a the
same hash-value. This property leads to restrictions for big-
ger numbers of sub-blocks. Extensions of the Rush-family
are presented in [12].

1.3 Contributions of this Paper

In this paper, we present the first data placement strate-
gies which efficiently support replication for an arbitrary
set of heterogeneous storage systems. We will show that
for any number of storage devices, the strategies are always
able to be capacity efficient, time efficient and compact and
that they are able to support adaptivity with a low competi-
tive ratio in comparison to a best possible strategy.

In order to design capacity efficient strategies for arbi-
trary heterogeneous systems, several insights are necessary.
In Section 2, we start with a precise characterization of the
conditions the capacities of the storage devices have to sat-
isfy so that redundancy and fairness can be achieved at the
same time without wasting any capacity in the system. With
this insight, we derive a recursive formula for the maximum
number of data blocks that we can store in a given system
without violating the redundancy condition. This formula
will be important to calculate the capacity each storage de-
vice can contribute to the redundant storage.

After showing that trivial placement strategies cannot
preserve fairness and redundancy at the same time, we
present in section 3 a placement strategy for two copies and
then generalize this to a placement strategy for an arbitrary
fixed numberk of copies for each data block, which are able
to run inO(k). The strategies have a competitiveness ofk2

for the number of replacements in case of a change of the
infrastructure. Hence, as long ask is fixed (which should
normally be the case), we expect our placement strategies
to perform well in practice. In fact, the experiments per-
formed so far and reported in this paper support this claim.

2 Limitations of existing Strategies

In this chapter we will present limitations of existing data
placement strategies. First, in Section 2.1, we derive a tight
bound for the number of data items (balls) that can be stored
in a system ofn bins with given capacities, if, for each item,
k copies have to be stored in different bins. In Section 2.2,
we will demonstrate that the standard replication approach
to produce the copies by usingk data distributions indepen-
dently (the trivial approach) is not able to fully exploit the
available storage capacity.

2.1 Capacity Efficiency

We consider storage systems consisting ofn bins. Letbi

be the number of balls that can be stored in a bini, B =
∑n−1

i=0 bi the total number of copies that can be stored in
all bins andBj =

∑n−1
i=j bi. Assume thatk divides B.

Such a storage system is said to allow acapacity efficient
k-replication scheme, if it is possible to distributek copies
of each ofm = B/k balls over all bins, so that thei′th bin
getsbi copies, and no more than a single copy of a ball is
allowed to be stored in one bin. In the following lemma we
will give an necessary and sufficient condition for a storage
system to allow a capacity efficientk-replication scheme.

Lemma 2.1. Given an environment consisting out ofn bins.
Each bin can storebi balls, where we assume w.l.o.g. that
∀i ∈ {0, . . . , n − 1} : bi ≥ bi+1. A perfectly fair data
replication strategy is able to optimally use the capacity of
all bins if and only ifb0 ≤ B/k.

Sketch.We will assume w.l.o.g. inside this proof thatB =
k ·m, wherem ∈ N is an arbitrary integer value. Ifm is
not an integer value, it would be necessary to split copies
of balls to be able to optimally use the available storage
capacity.

We will show in a first step that it is not possible to op-
timally use the available capacity ifk · b0 > B. To store
b0 > B/k copies in bin0 without violating the require-
ments of a validk-replication scheme, additional(k−1) ·b0

copies have to be stored in the bins{1, . . . , (n − 1)}. This
is not possible, because fromB1 < B − b0 andb0 > m it
follows that

∑n−1
i=1 bi < (k − 1) · b0.

In the second part of the proof we will show that it is pos-
sible to storek-copies ofm balls, ifk ·b0 ≤ B by construct-
ing an optimal distribution of the balls. We will place in
each step of the construction the copies for one ball. The re-
maining capacity of each bini before each stepj is denoted
asbj

i andb0
i = bi. Furthermore,Bj =

∑n−1
i=0 bj

i . Each step
starts by taking thek bins with biggestbj

i and places1 copy
of the ball on each of thek bins. Afterwards, the construc-
tion decrements their remaining capacities by1 for the next
step. It is shown in the full version of this paper that from

3

∀i ∈ {0, . . . , (n− 1)} : bj < k ·Bj it immediately follows
that∀i ∈ {0, . . . , (n − 1)} : bj+1 < k · Bj+1 and that the
construction successfully terminates afterm steps.

We have shown in Lemma 2.1 that it is possible to opti-
mally use the available storage capacity for ak-replication
scheme, if∀i ∈ {0, . . . , n− 1} : bi ≤ k · B. Nevertheless,
it is not always possible to influence the construction of the
storage environment. Therefore, it is interesting to know
how many data can be stored in a storage environment, even
if the environment does not fulfill the pre-conditions given
in the previous Lemma.

Lemma 2.2. Given an environment consisting out ofn bins.
Each bin can storebi balls, where we assume w.l.o.g. that
∀i ∈ {0, . . . , n− 1} : bi ≥ bi+1. The maximum number of
balls that can be stored in the system using ak-replication
scheme withk ≤ i is

Bmax =

∑n−1
i=0 b′i
k

, where

{

b′0 = min(b0, 1/k ·
Pn−1

j=0
b′j)

b′i = min(bi, b
′

0) ∀i > 0

Sketch.In a first step, we will show that it is not possible to
store more thank copies ofBmax balls in the environment
without violating the constraint that no more than a single
copy of a ball is allowed to be stored in one bin. This part
of the proof will be performed by contradiction:

If it would be possible to store copies of more thanBmax

balls in the environment, it would follow that at least one
bin would have to store more thanb′i balls. The number of
balls stored in a bini can only be bigger thanb′i if b′i−1 <
bi−1, otherwiseb′i = bi and the capacity constraints of that
bin i would be exceeded by storing more thanbi copies in
that bin. According to the definition ofb′i, b′i < bi is only
possible if alsob0 6= b′0. Lets now assume thatb0 > 1/k ·
∑n−1

j=0 bj . Based on Lemma 2.1, it is not possible in this
case to optimally use the available storage capacity for a
k-distribution of copies.

The second part of the proof directly follows from
Lemma 2.1. Based on the definition ofb′0, all adjusted ca-
pacitiesb′i follow the requirement that enables an optimal
capacity utilization.

In the remainder of this paper we will assume that the
input to the different replication strategies is set in a way
that bi = b′i for every i ∈ {0, . . . , n − 1} and that it is

Algorithm 1 optimalWeights(k, {b0, . . . , bn−1})

1: if b0 > 1
k−1

∑n−1
i=1 bi then

2: optimalWeights((k − 1), {b1, . . . , bn−1})

3: b0 = ⌊ 1
k−1 ·

∑n−1
i=1 bi⌋

4: end if

therefore possible to optimally use the available capacity
of the bins. The coefficientsb′i can be calculated in time
O(k · n) based on Algorithm 1.

2.2 The trivial data replication approach

Data replication can be performed by different strategies.
The most well known strategies are RAID schemes, which
evenly distribute data according to a fixed pattern over ho-
mogeneous bins. Another important strategy, which is of-
ten used in Peer-to-Peer networks, is to use a distributed
hashing functions, like Consistent Hashing or Share, and to
makek independent draws to getk different bins. We will
show in the following that this strategy leads to the loss of
the properties of fairness and capacity efficiency.

Definition 2.3. A replication strategy is called trivial, if
it performsk draws to achievek-replication with k ≥ 2
according to a fair data distribution scheme fork = 1,
where the probability that a bin is the target for thei-th
draw only depends on its constant relative weight compared
to the other bins participating in thei-th draw and not on
k. Furthermore, for a trivial replication strategy, exactly
all bins that have not been the target of one of the draws
{1, ..., i− 1} take part in drawi.

We will show in this section that the trivial approach to
data replication is not able to fulfill the requirement of fair-
ness for anyk ≥ 2. Before formalizing this, we will give
a simple example that explains the drawback of the trivial
approach for data replication. Figure 1 shows a system that
consists out of 3 bins, where the first bin has got twice the
capacity of bin 2 and bin 3. The data distribution scheme
should distribute data over the bins fork = 2. It is easy to
see that it is possible to distribute the data fork = 2 per-
fectly fair by putting each first copy in the first bin and the
second copy alternatingly in the second and third bin.

In the case of a trivial data replication strategy, the prob-
ability that the larger bin is not the target for the first copy
in the setting from Figure 1 isp = 1 − 1/2 = 1/2. If the
first bin is not taken in the first draw, the probability that it
also not taken in the second draw isp = 1 − 2/3 = 1/3
and it follows that the probability that it is not taken at all
is 1/6. To enable an optimal packing of the balls, the larger
bin has to be taken in every random experiment, while the
trivial strategy wastes1/6-th of the capacity of the biggest
bin and1/12 of the overall capacity.

The following lemma will show that the trivial approach
to makek independent draws from the bins leads, especially
for a small number of heterogeneous bins, to a significant
waste of capacity.

Lemma 2.4. Assume a trivial replication strategy that has
to distributek copies ofm balls overn > k bins. Further-
more, the biggest bin has a capacitycmax that is at least

4

First Copy

Second Copy
()21 3p = −

()11 2p = −

()11 4p = −

Figure 1. Distributing data according to a triv-
ial strategy for k = 2.

(1 + ǫ) · cj of the next biggest binj. In this case, the ex-
pected load of the biggest bin will be smaller than the ex-
pected load required for an optimal capacity efficiency.

Sketch.Inside this proof we assume w.l.o.g. that it is pos-
sible to find a valid data distribution for ak-replication that
is able to optimally distribute copies overn bins in a way
that each binl gets a share of exactlycl of all copies. Fur-
thermore, we assume that the bins are ordered according to
their capacity and thatc0 = cmax > c1. In this case, bin0
has got to get an expected load ofk · c0 ·m balls. Therefore,
the probability that no copy of a ball is placed on bin0 has
to be smaller thanp0 = (1−k · c0) for each random experi-
ment. In the following we will show by complete induction
over the number of copiesk that the probabilityp0 that no
copy of a ball is placed in bin0 is bigger than the required
probability, which proofs Lemma 2.4.

For every strategy that distributes data fair over the bins
for k = 1, the probability that a bin is not chosen in the first
step is(1 − ci). In the following,γj denotes the relative
capacity of the bin that has been chosen in drawj. The
probability that a bini is not chosen in the second step is
(

1− ci

1−γ1

)

. We will start for k = 2. In this case, the

probability that bin0 is not chosen has to be bigger than
(1− 2 · c0).

p0 = (1 − c0)

„

1 −
c0

1 − γ1

«

> 1 − 2 · c0

γ1=ǫ·c0
⇔

(1 − c0)

„

1 −
c0

1 − ǫ · c0

«

> 1 − 2 · c0 (1)

⇔ c0 > ǫ · c0,

which is true for eachǫ < 1. The induction step for
(k − 1)→ k is shown in the full version of the paper.

As it can be seen in the proof of Lemma 2.4, it is neces-
sary to ensure that larger bins get their required share of the
replicated balls.

3 The Redundant Share Strategy

The analysis of trivial data replication strategies has
shown that these strategies suffer from not being able to ef-
ficiently use larger bins, especially if the number of bins
is small. The Redundant Share strategies presented inside
this section overcome the drawback of trivial data replica-
tion strategies by favoring larger bins in the selection pro-
cess. We will start by describing a data replication strategy
for a 2-fold mirroring that orders the bins according to their
weightsci and iterates over the bins. Therefore, the strategy
needsO(n) rounds for each selection process. After pre-
senting this restricted replication strategy, we will present
a generalizedk-replication strategy that is able to distribute
balls perfectly fair over all bins and that also has linear run-
time. Finally, we will present time efficient strategies built
upon the restricted strategies, which are also able to work
for k-fold mirroring with arbitraryk in O(k).

All strategies presented in this section are not only able
to distribute data fair about the bins, but also to keep the
property of fairness in case of dynamic insertion or deletion
of bins. We will show that the number of necessary replace-
ments can be bounded against an optimal adversary. Fur-
thermore, all strategies are always able to clearly identify
the i-th of k copies of a data block. This property is a key
requirement, if data is not replicated by ak-mirror strategy,
but is distributed according to an erasure code, like Parity
RAID, Reed-Solomon Codes or EvenOdd-strategies [1][3].
In case of an erasure code, each sub-block has a different
meaning and therefore has to be handled differently.

3.1 Mirroring in linear Time

The input values for the Algorithm 2 LinMirror are the
capacities of the binsbi and the virtual address of the ball
that should be distributed over the bins. It is important to
notice that we will usek and 2 interchangeable inside this
subsection.

The algorithm works in rounds. The task of the while
loop is to select the bin for the first copy of the ball. There-
fore it iterates over all bins in descending order of their
capacitiesbi and selects the location for the primary copy
based on a random process. An invariant of the algorithm is
that it is not possible to place a copy of a ball in a bini after
the i-th round of the while loop. It follows that the algo-
rithm has to ensure that the probability that a ball is placed
in bin i is equal to the required share2 · ci after thei-th
round of the while loop.

The calculation of the probability̌ci that bini is the tar-
get for a ball is based on the recursive nature of the algo-
rithm (even if the algorithm is formulated without explicit
recursion). It just assumes that secondary copies have been
evenly distributed over the binsi, . . . , n− 1, so the task of

5

Algorithm 2 LinMirror (address, {b0, . . . , bn−1})

Require: ∀i ∈ {0, . . . , n− 1} : bi ≥ bi+1 ∧ 2 · bi ≤ B

1: ∀i ∈ {0, . . . , n− 1} : či = 2 · bi/
∑n−1

j=i bj

2: i← 0
3: while i < n− 1 do
4: rand← Random value(address,bin i)∈ [0, 1)
5: if rand < či then
6: Set volumei as primary copy
7: Set secondary copy to

placeOneCopy(address, či, bi+1, . . . , bn−1)
8: return
9: end if

10: i← i + 1
11: end while

roundi is to find a valid mirroring for the binsi, . . . , n− 1.
Each round starts by selecting a random value between 0

and 1, which is calculated based on the address of the data
block b and the name of the bini, which has to be unique
inside the environment. If the random value is smaller than
the adapted weighťci of the bini in an iteration step of the
while loop, the bin is chosen as primary copy. The sec-
ond copy is chosen by a strategyplaceOneCopythat has to
be able to distribute balls fair over bins without replication.
The input of placeOneCopy are all bins which have not yet
been examined in the while-loop. Therefore, the second
copy of the mirror is distributed over all bins with smaller
weightcj than the weight of the primary copyci.

Algorithm 2 contains an inhomogeneity in the usage of
placeOneCopy if̌ci > 1 for a bin i and∀j < i : čj <
1. The inhomogeneity is based on the recursive nature of
the algorithm and occurs, if the subset{i, . . . , n − 1} of
bins does not fulfill the requirements of the algorithm that
2 · bi <

∑n−1
j=i bj . In this case it is not sufficient to evenly

distribute the secondary copies of preceding bins over the
subset, instead it is required to favor bini. The function
placeOneCopy overcomes this problem in round(i− 1) by
adjusting the probabilities for the data distribution of the
secondary copies for primary copies placed in bin(i − 1)
before calling a fair data distribution strategy for the place-
ment of the secondary copy.

The adjustmentb0 = b∗ in Algorithm 3 has to ensure
that bini is able to get the required amount of balls. This is
done in the following way. In a first step, the percentage of
secondary copies already assigned to bini up to stepi − 2
is calculated by setting

si−2

i =

i−2
X

j=0

čj ·
bi

Pn−1

l=j+1
bl

·

j−1
Y

o=0

(1 − čo)

!

(2)

Equation 2 sums the percentage of the secondary copies
assigned to bini for primary copies stored in the bins

Algorithm 3 placeOneCopy(address, č, {b0, . . . , bn−1})

1: čnew = 2 · b0/
∑n−1

i=0 bj

2: if č < 1 andčnew > 1 then
3: b0 = b∗

4: end if
5: Call fair data distribution strategy for one copy with pa-

rameters(adress, b0, . . . , bn−1)

0, . . . , (i − 2). čj denotes the probability that binj is cho-
sen as primary copy in roundj, bi/

∑n−1
l=j+1 bl the probabil-

ity that bin i is chosen as secondary copy for that primary
copy and

∏j−1
o=0(1 − čo) the probability that the while loop

reaches thej-th round for a ball. In the next step, we will
calculate the maximum percentage of primary copies that
can be assigned to bini by settingči = 1.

pi =
i−1
Y

j=0

(1 − čo) (3)

Therefore, the number of secondary copies that have to
be assigned to bini from the primary copies stored in bin
i− 1 is

si = 2 · ci − si−2

i − pi (4)

Based on Equation 4, we are now able to calculateb∗

from:

si =
b∗

b∗ +
Pn−q

l=i+1
bl

· či−1 ·

i−2
Y

j=0

(1 − čj) (5)

To test the fairness of the described algorithm we im-
plemented it in a simulation environment. We started the
tests with 8 heterogeneous bins. The first has a capacity of
500,000 blocks, for the other bins the size is increased by
100,000 blocks with each bin, so the last bin has a capacity
of 1,200,000 blocks. To show what happens if we replace
smaller bins by bigger ones we added two times two bins.
The new bins are growing by the same factor as the first
did. Then we removed two times the two smallest bins. Af-
ter each step we measured how much percent of each bin
is used. As it can be seen in figure 2, the distribution for
heterogeneous bins is fair.

Lemma 3.1. LinMirror is perfectly fair in the expected case
if a perfectly fair distribution scheme inside placeOneCopy
is chosen.

Proof. The expected share of bini is the sum of the first and
second copies of balls stored in that bin. A second copy of
a ball can only be assigned to a bin, if the first copy of that
ball is stored in a binj with j < i.

6

0

1

2

3

4

5

6

7

8

9

10

8 Disks 10 Disks 12 Disks 10 Disks 8 Disks

%

Figure 2. Distribution for heterogenous bins.

The proof is based on the recursive nature of the algo-
rithm. We start the proof for bin0. Its demand can only
be satisfied by primary copies. Therefore, the probability
that this bin is chosen as primary copy has to be equal to
its demand, which is fulfilled by settinǧc0 = 2 · ci. It
is important to notice that placeOneCopy evenly distributes
the second copies according to the demands of the remain-
ing bins{1, . . . , (n − 1)}. Therefore, the problem in the
next round reduces to the problem to finde a valid mirroring
scheme for the bins{1, . . . , (n− 1)}, which is achieved by
the same mechanisms as for bin 0.

This recursive nature is broken for the case thatči be-
comes bigger than 1. This is the case if the precondition
∀i ∈ {0, . . . , n − 1} : ci = bi/

∑n−1
j=0 bj of the algorithm

can not be fulfilled for bini. This inhomogeneity is over-
come inside placeOneCopy for bin(i−1), where the weight
of bin i is adapted so that the demand of the bin is exactly
met after roundi of the while loop.

Algorithm 2 will terminate after bini with či ≥ 1. Based
on the fact that all bins in the range{0, . . . , i} exactly get
the required demand in the expected case and that the data
is evenly distributed over the bins{(i + 1), . . . , (n − 1)}
according to their capacities as well as the precondition of
the algorithm and Lemma 2.1, the fairness of the algorithm
follows.

In the next lemma we will show that Algorithm 2 is not
only perfectly fair but is also competitive compared to an
optimal algorithm in a dynamic environment.

Lemma 3.2. LinMirror is 4-competitive in the expected
case concerning the insertion of a new bini.

Sketch.Assume that a new storage systemi with a demand
ci is inserted into the environment. After inserting bini into
the environment, the storage system consists out of(n + 1)
bins. To keep the property of fairness, part of the copies
have to be moved from their current locations. In an optimal
case, a strategy has to redistribute at least a share ofξ =

ci/
∑n

i=0 ci of all balls to keep this property. In the case of
LinMirror, all data blocks for which the strategy produces a
new target disk have to be moved from their current location
to the new disk.

Lets assume that the new storage system has the biggest
share and we will seti = 0 and the index of all other bins
will be increased by one. W.l.o.g. we will assume that the
index of the other bins has already bin increased by one
before the insertion of the new bin 0. In this case, an ex-
pected share ofξ = c0/

∑n

i=0 ci of all balls will be placed
as primary copy on bin 0 and an additional share ofξ of
all balls will become the second copy of a first copy that
is placed on bin 0, leading to an expected number of2 · ξ
block movements, which directly involve the new disk. The
random valuerand for stepi of the while loop only depends
on the block number and the name of the bini, which does
not change by the insertion of a new disk. Therefore, ad-
ditional changes of the placement of first copies can only
occur, if či changes after the insertion of bin 0. Based on
Algorithm 2, či does not change after the insertion of bin 0
for all i > 0. Therefore, no additional balls will be replaced
after the insertion of bin 0 and LinMirror is 2-competitive
in the expected case, if a new bin with the biggest capacity
is inserted.

What happens if the new disk has not the biggest capac-
ity? If a bin i is inserted that has not the biggest share, it
has only an influence on the probabilitiesčj for j < i. The
expected number of primary copies that have to be redis-

tributed for binj is bounded by

(

1−
(
Pn−1

l=j
bl)−bi

Pn−1

l=j
bl

)

-times

the number of primary copies stored in binj. This term can
be simplified tobi/

∑n−1
l=j bl.

It has to be shown in a first step, that the expected total
number of first copies to be moved from binj is always
at least as big as the expected number of copies that have
to be moved from binj + 1 weighted by the size of bin
j and binj + 1. We will bound the number of primary
copies inside binj and j + 1 by the probability that the
while loop of LinMirror reaches stepj, resp. stepj + 1.
and the probability that binj, resp. j + 1 is taken if the
algorithm reaches the corresponding step and the number
of ballsm. This can be done by showing that

m · bi · čj
Pn−1

l=j
bl

·

j−1
Y

k=0

(1− čk) ≥
bj

bj+1

·
m · bj+1 · čj+1
Pn−1

l=j+1
bl

·

j
Y

k=0

(1− čk)

It is now possible to bound the expected number of first
copiesΓfirst to be moved after the insertion of a new bini
from the bins0 to (i− 1) by:

Γfirst ≤

i−1
X

j=0

bj

b0

·
bi

Pn−1

l=0
bl

· b0 ≤
bi

Pn−1

l=0
bl

·

i−1
X

j=0

bj ≤ bi

7

Assuming that the movement ofΓ primary copies also
triggers the movement ofΓ secondary copies, the total num-
ber of data movements induced by the movement of a pri-
mary copy can be bounded by2 · bi.

Besides the replacements induced by the movement of
first copies, it also happens that second copies are moved
according to the insertion of bini. For all primary copies
stored in binj with j < i it holds that the number of
replacements for the corresponding secondary copies is
bounded bybi/

∑n−1
l=j+1 bl-times the number of first copies

stored in binj. Notice that this term is very similar to the
term used for the replacement of primary copies, but in this
case the denominator only starts by(j + 1) and not byj.
Based on this observation, it is again possible to show that
the number of secondary copies that have to be replaced for
a bin constantly decreases with the size of the bins. This
can be done by showing that

m · bi · čj
Pn−1

l=j+1
bl

·

j−1
Y

k=0

(1 − čk) ≥
bj

bj+1

·
m · bi · čj+1
Pn−1

l=j+2
bl

·

j
Y

k=0

(1 − čk)

followed by

Γsecond ≤

i−1
X

j=0

bj

b0

·
bi · b0
Pn−1

l=1
bl

≤
bi

Pn−1

l=1
bl

·

i−1
X

j=0

bj ≤ 2 · bi

It is interesting to observe that it is not negligible, where
a disk is inserted. Assume for example that all disks have
got the same size. Then the number of replaced first copies
is much bigger, if the disk is added as last disk than it would
be, if the disk would be added as first disk. This can also be
seen in the following experimental evaluations.

Corollary 3.3. The algorithm LinMirror is4-competitive in
the expected case concerning the deletion of a bini.

Sketch.Bin i is removed from the environment. The proof
for the competitiveness is based again on the change of the
probability čj for all bins j with j < i. This probability

changes by the factorčjnew

čjold

=
Pn−1

l=j
bj

Pn−1

l=j
bj−bi

. Again, it can be

shown that this probability change, weighted with the prob-
ability that the algorithm proceeds up to stepj, decreases
with increasingj and has a maximum forj = 0.

We will now have a closer look at the competitiveness of
the adaptivity with the help of the simulation environment.
Looking at the proofs for Lemma 3.2 it seems to make a dif-
ference at which position a new bin is added or removed. If
changes take place at the end of the list (where the smallest
bins are placed),̌ci changes for every bigger bin and Lin-
Mirror is 4-competitive. Therefore we do not only have to

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

he
t.

re
m

. b
ig

he
t.

re
m

. s
m

all

he
t.

ad
d

big

he
t.

ad
d

sm
all

ho
m

. r
em

. s
m

all

ho
m

.re
m

. b
ig

ho
m

.a
dd

 sm
all

ho
m

. a
dd

. b
ig

b
lo

ck
s

used replaced

Figure 3. Adaptivity of LinMirror.

replace blocks placed for the new / deleted bin but also for
other bins. If a bin is added at the beginning of the list,
LinMirror is 2-competitive.

To reproduce this effect we checked different scenarios.
We made four tests, removing and adding a bin at the begin
and the end of the list for heterogeneous and homogeneous
environments. Figure 3(a) shows the blocks placed on the
affected bin and the number of replaced blocks for every
test. It can be easily seen that it makes a big difference at
which end the changes take place. For changing the biggest
bin we replaced about 1.5 times of the blocks affected by
the disk, while changing the smallest bin gives us a factor
of about 2.5.

To analyze this, we tested how this factor behaves for
a different number of bins. Therefor we added a bin to 4
up to 60 bins and measured the factor of replaced blocks
divided by the block used on the newest disk. We performed
these tests for adding the new bin as the smallest and as
the biggest one. Again, we get nearly constant competitive
ratios of about 1.5 for adding the biggest disk and 2.5 for
adding the smallest disk.

3.2 k-fold Replication in linear time

In the previous section, we have presented the algorithm
LinMirror that is able to distribute mirrored data perfectly
fair among a set of heterogeneous bins. Furthermore, we
have shown that the adaptivity of the algorithm to changes
of the environment can be bounded against a best possible
algorithm. In this section, we will generalize the approach
of LinMirror to k-fold replication of data.

The algorithmk-Replication()is based on Algorithm 2
from the previous section. There is one significant change
in the algorithm. If a bin is chosen as primary copy for a
ball andk > 2, then the following copies are chosen by
a recursive decent intok-Replication()with k decreased by
one1. Again, it is necessary to introduceb∗, which can be

1The algorithm can also be used fork == 1 without loosing its prop-

8

Algorithm 4 k-Replication (k, address, {b0, . . . , bn−1})

Require: ∀i ∈ {0, . . . , n− 1} : bi ≥ bi+1 ∧ k · b0 < B
1: i← 0
2: ∀i ∈ {0, . . . , n− 1} : či ← k · ci/

∑n−1
j=i ck

3: while i ≤ n do
4: rand← Random value(address) ∈ [0, 1)
5: if rand < či then
6: Set volumei as primary copy
7: if k == 2 then
8: Set last copy to placeOneCopy(bi+1, . . . , bn−1)
9: return

10: else
11: if či < 1 andči+1 > 1 then
12: bi+1 ← b∗

13: end if
14: k-Replication((k− 1), address,

{bi+1, . . . , bn−1})
15: return
16: end if
17: end if
18: i← i + 1
19: end while

calculated similar tob∗ for k = 2 and which handles the
case thaťci can become bigger than 1 for the last bin that
can get the first copy of ak-replication scheme.

Lemma 3.4. k-Replication is perfectly fair in the expected
case if a perfectly fair distribution scheme placeOneCopy is
chosen.

Proof. The proof of the fairness ofk-Replicationis based
on complete induction. The start of the proof is given, based
on Lemma 3.1, fork = 2. We now assume that the strategy
is perfectly fair for a replication degree ofm and will show
that it is then also perfectly fair for a replication factorm+1.
či ensures that the share for bini is perfectly fair form + 1
after roundi of the while loop, ifk-Replication(m)is also
perfectly fair, given by the constraint of the induction.

Lemma 3.5. k-Replication is k2-competitive in the ex-
pected case concerning the insertion or deletion of a new
bin i.

Sketch.The proof of Lemma 3.2 has shown that we have
not to move more thanbi first copies. In the worst case we
have to move all following copies of these first copies, lead-
ing tok · bi movements. Additional to Lemma 3.2, we have
also to consider second, third,. . . copies which are moved
independent of the primary, secondary,. . . copy according
to the insertion of bini. This can be done via a recursive
decent into the algorithm. For each additional copy, at most

erties of fairness and adaptivity.

0

2

4

6

8

10

12

14

16

18

20

8 Disks 10 Disks 12 Disks 10 Disks 8 Disks

%

Figure 4. Distribution for heterogeneous bins
and k = 4.

k · bi additional data blocks have to be moved, leading to a
competitiveness ofk2.

To test the practical behavior we simulated the behavior
for the k-replication. Therefore we performed the same tests
for competitiveness and adaptivity as for LinMirror, in this
case fork = 4 (see Figure 4). As can be seen, all tests
resulted in completely fair distributions.

The adaptivity behaves more complex. We have already
shown that it matters where in the list of bins a change hap-
pens. In Figure 5, we evaluate how the factor of replaced
blocks to the blocks on the affected bin behaves for differ-
ent numbers of homogeneous bins. For adding bins at the
beginning of the list, we get nearly a constant factor. For
adding it as smallest bin we get more interesting results.
The more disks are inside the environment, the worse the
competitiveness becomes. This is a result of the influence
of the smallest disk to all other disks. In Lemma 3.5, we
have shown that the competitiveness converges against an
upper bound ofk2. Settingk = 4, we get an upper bound
of 16. The graph in Figure 5 lets us assume that there is a
much lower bound at least for this example.

3.3 k-fold Replication in O(k)

Using more memory and additional hash functions for
data distribution on heterogenous disks without redundancy,
we can improve the runtime of Redundant Share toO(k).
For the first copy we only need a single hash function,
which computes for each disk the probability that it is
used as first copy. We can compute the probabilities by
pi = či ·

∏i−1
j=0(1 − čj), with či based on algorithm 3.2.

The sum of the probabilities has to be scaled to become 1.
Then we use an algorithm for the placement of a single copy
with the scaled probabilities as input. For every following
copy we needO(n) hash functions, one for each disk that
could be chosen as primary disk in the previous step. For

9

0

1

2

3

4

5

6

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

bins

re
p

la
ce

d
/u

se
d

add as biggest add as smallest

Figure 5. Adaptivity of k-Replication for k = 4
and homogeneous bins.

each diskl that could be used as primary copy in the previ-
ous step we take the subset{l + 1, · · · , n− 1} of the disks
and compute a hash function that can derive the next copy.

To compute the group of target bins we now start with
the hash function for the first disk to get the first copy. De-
pending on the chosen disk in the step before we choose the
next hash function to get the next copy. The hash functions
can be chosen inO(1) and there are hash functions with
runtimeO(1). Therefore, we get to a runtime ofO(k). The
fairness and the adaptivity are granted by the hash function.
The memory complexity isO(k ·n · s) wheres is the mem-
ory required for each hash function.

4 Conclusion and Acknowledgements

In this paper we presented the first data placement strate-
gies which efficiently support replication for an arbitrary
set of heterogeneous storage systems. These strategies still
leave room for several improvements. For example, can the
time efficiency be significantly reduced with less memory
overhead? We also believe that it should be possible to con-
struct placement strategies that areO(k)-competitive for ar-
bitrary insertions and removals of storage devices. Is this
true and is this the best bound one can achieve?

We would like to thank Dr. Fritz Schinkel from Fujitsu
Siemens Computers for very helpful comments.

References

[1] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVEN-
ODD: an optimal scheme for tolerating double disk
failures in RAID architectures. InProceedings of the
21st Annual International Symposium on Computer
Architecture, 1994.

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Com-
pact, adaptive placement schemes for non-uniform
distribution requirements. InProc. of the 14th ACM
Symposium on Parallel Algorithms and Architectures
(SPAA’02), Winnipeg, Manitoba, Canada, 2002.

[3] P. Corbett, B. English, A. Goel, T. Grcanac,
S. Kleiman, J. Leong, and S. Sankar. Row-diagonal
parity for double disk failure correction. InProceed-
ings of the 3rd USENIX Conference on File and Stor-
age Technologies (FAST’04), 2004.

[4] T. Cortes and J. Labarta. Extending heterogeneity to
RAID level 5. InUSENIX 2001, Boston, 2001.

[5] R. J. Honicky and E. L. Miller. A fast algorithm
for online placement and reorganization of replicated
data. InProc. of the 17th International Parallel & Dis-
tributed Processing Symposium (IPDPS 2003), 2003.

[6] R. J. Honicky and E. L. Miller. Replication Under
Scalable Hashing: A Family of Algorithms for Scal-
able Decentralized Data Distribution. InProceedings
of the 18th International Parallel & Distributed Pro-
cessing Symposium (IPDPS 2004), 2004.

[7] N. L. Johnson and S. Kotz.Urn Models and Their
Applications. John Wiley and Sons, New York, 1977.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the World Wide Web. InProc.
of the 29th ACM Symposium on Theory of Computing
(STOC), 1997.

[9] M. Mitzenmacher.The Power of Two Choices in Ran-
domized Load Balancing. PhD thesis, University of
California at Berkeley, 1996.

[10] D. A. Patterson, G. Gibson, and R. H. Katz. A Case
for Redundant Arrays of Inexpensive Disks (RAID).
In Proceedings of the 1988 ACM Conference on Man-
agement of Data (SIGMOD), 1988.

[11] C. Schindelhauer and G. Schomaker. Weighted dis-
tributed hash tables. InProc. of the 17th ACM Sympo-
sium on Parallelism in Algorithms and Architectures
(SPAA 2005), July 2005.

[12] S. A. Weil, S. A. Brandt, E. L. Miller, and
C. Maltzahn. CRUSH: Controlled, Scalable And De-
centralized Placement Of Replicated Data. InProc of
SC2006, 2006.

10

