
Faculty for Computer Science, Electrical Engineering and Mathematics
Department of Computer Science
Research Group Specification and Modelling of Software Systems

Master’s Thesis
Submitted to the Specification and Modelling of Software Systems Research Group

in Partial Fullfilment of the Requirements for the Degree of

Master of Science

Android App Analysis Benchmark
Case Generation

by
Stefan Schott

Thesis Supervisor:
Prof. Dr. Heike Wehrheim

and
Prof. Dr. Eric Bodden

Paderborn, April 8, 2021

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch
keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung
angenommen worden ist. Alle Ausführungen, die wörtlich oder sinngemäß übernommen worden
sind, sind als solche gekennzeichnet.

Ort, Datum Unterschrift

Contents

1 Introduction 1
1.1 Thesis’ Contents . 3

2 Fundamentals 5
2.1 Android Basics . 5

2.1.1 Application Components . 5
2.1.2 Inter-Component Communication (ICC) 6
2.1.3 Android Manifest File . 7
2.1.4 Application Resources and Layout . 8
2.1.5 Events and Callbacks . 8
2.1.6 Activity Lifecycle . 8
2.1.7 Android Package File . 9

2.2 Program Analysis . 10
2.2.1 Taint Analysis Tools for Android . 11
2.2.2 Benchmarks . 12

2.3 Fuzzing . 15
2.3.1 Grammar-based Fuzzing . 16

3 Concept 17
3.1 Generator Requirements . 18
3.2 Generator Overview . 18
3.3 Inputs . 20

3.3.1 Template . 21
3.3.2 Modules . 23

3.4 Verification . 30
3.4.1 Grammar . 30
3.4.2 Verificator . 31

3.5 Generation . 32
3.5.1 Preprocessor . 33
3.5.2 Source Generator . 35
3.5.3 Build Tool . 37

3.6 Outputs . 38
3.7 Integration of the Benchmark Case Generator in the Benchmarking Process . . . 39

v

4 Implementation 41
4.1 Implementation Details . 41
4.2 Structure . 42
4.3 Manual . 44

4.3.1 Installation . 44
4.3.2 Configuration . 44
4.3.3 Usage . 45
4.3.4 Extension . 47
4.3.5 Available Parameters . 51

5 Evaluation 53
5.1 RQ1: Is GenBenchDroid able to generate existing micro benchmark cases? . . 54
5.2 RQ2: How long does GenBenchDroid take to generate a benchmark case? . . . 57
5.3 RQ3: Fuzzing mode evaluation . 59
5.4 RQ4: Generation of real-world benchmark cases 61
5.5 Summary . 62

6 Related Work 65

7 Threats to Validity and Future Work 67

8 Conclusion 69

Bibliography 71

A Appendix 75
A.1 Provided Templates and Modules . 75
A.2 Used Technologies . 77
A.3 Evaluation Data . 78
A.4 Digital Appendix . 82

vi

Introduction
1

Smartphones nowadays are an omnipresent part of everyone’s life. In contrast to desktop com-
puters they record and deal with a lot of sensitive information like, for example, various sensor
data like the device’s GPS location, the user’s contact data and other sensitive information such
as the device’s IMEI number, which is used to uniquely identify a device. In most situations this
information cannot be leaked to the outside world. However, such leaks happen many times and
can happen due to various reasons. Such a leak might be due to malicious reasons, because the
developer of the application wants to steal data from the user. Another possible reason for a leak
may be because of a vulnerability inside of an application which is only accidentally part of the
application. Leaking sensitive information to the outside world however, may also happen on
purpose, if, for example, the user of the device wants to share a contact with a friend. For this
reason it is important to have adequate analysis tools which are able to detect leaks of sensitive
data in mobile applications and distinguish possibly malicious leaks from intended leaks. Since
Android devices make up by far the biggest share of the worldwide mobile operating system
market [19], it is especially important to have efficient and reliable analysis tools for Android
applications.

An analysis able to deal with sensitive data leakage is called taint analysis. A taint analysis
tracks the data flow of sensitive information throughout the application before it gets leaked to
the outside world. Such a leaking flow is called taint flow. Therefore, the main goal of a taint
analysis is to uncover all taint flows contained in applications.

Currently there are multiple tools available, which are able to perform a taint analysis on
Android applications. While Amandroid [49] and FlowDroid [26] currently are state of the
art, there are still many more analysis tools [25, 28, 31, 37, 38, 39, 40, 35, 54]. Two distinct
studies [44, 45] showed that many of these tools have some deficits and are not able to detect
sensitive data leaks in all kinds of applications. In the constant race of attacker, who tries to
steal data, and defender, who tries to create analysis tools to uncover stealing attempts before
they happen, such deficits can be very critical. In order to reveal these deficits and improve
taint analysis tools, many versatile benchmark cases are needed that can be used to evaluate the
performance of the various taint analysis tools. In general, benchmark cases are applications
that are specifically used to evaluate the performance of hardware or software. In the context of
Android taint analysis a benchmark case consists of a regular Android application which contains
one or more taint flows. Each taint flow consists of (1) a source that introduces sensitive data
into the application, (2) some data flow the sensitive data is passed through, and (3) a sink that
subsequently leaks the data to the outside world. Each of these parts of a taint flow can come
in different variations implementing, for example, reflection, recursion, various obfuscations and

1

data structures, or even all of the mentioned aspects combined. This means that there is a vast
amount of possibilities each taint flow can look like. Therefore, there needs to be a large amount
of versatile benchmark cases to be able to properly evaluate the performance of taint analysis
tools.

The current approach to evaluate Android taint analysis tools is the combined usage of
benchmark suites, which are collections of multiple benchmark cases. Almost all of them consist
solely of hand-crafted micro benchmark cases (very simple applications that usually contain
only one simple taint flow), that have been specifically created for the purpose of analysis tool
evaluation. This approach contains multiple drawbacks and issues. One issue is that the manual
creation of benchmark cases offers the potential for frequent implementation mistakes (Issue 1).
This is due to the vast amount of benchmark cases needed to cover all aspects a taint flow can
contain. Furthermore, the manual creation of these benchmark cases requires a lot of time and
effort from the creator. Another issue is that the reliance on micro benchmark cases may enable
an over-adaptation of analysis tools to micro benchmark cases (Issue 2). An analysis tool may be
able to uncover taint flows that contain reflection and recursion individually, but not combined.
The developer of the analysis tool would not detect this behavior, since micro benchmark cases
almost never combine multiple aspects. Another even clearer example for an over-adaptation of
an analysis tool to a benchmark case is that the file name of the micro benchmark case could
contain the aspect that is present in its taint flow. The benchmark case’s file name could be,
for example, ReflectionBenchmarkCase1.apk. The analysis tool could check the file name and
decide which analysis strategy to apply, based on the keyword Reflection. This may lead to
mistakenly good evaluation results, as this strategy can clearly not be successfully performed
for real-world applications. This issue may be in part overcome by the integration of real-
world applications in the analysis tool evaluation process. However, for almost all available
applications there is no ground-truth available that contains the expected analysis results (Issue
3). Without this information one cannot determine whether the analysis tool yielded the right
analysis results as only the amount of uncovered taint flows can be reported. The amounts
of falsely detected taint flows and taint flows that do not have been detected at all, are still
unknown. This thesis presents an Android app analysis benchmark case generation concept
that is able to help overcome the three above mentioned issues.

A template based approach for a benchmark case generator is developed that enables an on-
the-fly benchmark case generation. This approach allows for a generation of arbitrarily complex
benchmark cases containing an arbitrary amount of taint flows, each containing various user-
desired aspects. By automatically generating benchmark cases, the possibility of implementation
mistakes, as well as the required effort from the creator, drastically decreases. Furthermore, this
approach provides a mean for the user to easily extend the possible variety of taint flows and
therefore always be up-to-date with newly identified vulnerabilities. This generation process
helps overcome Issue 1, as only reusable code-snippets have to be created, in contrast to creating
a full application for each desired benchmark case.

Based on this concept a benchmark case generator called GenBenchDroid is implemented
to test the concept in practice and evaluate its performance. This evaluation results in Gen-
BenchDroid being a powerful tool that is able to efficiently regenerate hand-crafted benchmark
cases on-the-fly, containing various taint flows. Furthermore, GenBenchDroid’s capability of
efficiently generating versatile benchmark cases of various complexities is shown. By being able
to generate benchmark cases on-the-fly that combine all kinds of aspects, an over-adaption, like
described in Issue 2, can be prevented. Additionally, the evaluation shows that GenBench-
Droid is also able to generate benchmark cases that are comparable to real-world applications
and provide a proper ground-truth for them. This generation of a corresponding ground-truth
for benchmark cases that are comparable to real-world applications and integrating them into

2

Chapter 1. Introduction

the evaluation process helps overcome Issue 3. Therefore, GenBenchDroid can help overcome
all of the above mentioned issues, by generating numerous, arbitrarily complex benchmark cases
that are comparable to real-world applications which are suitable to be used in the process of
Android analysis tool evaluation. In addition to that, GenBenchDroid provides a fuzzing
capability that allows for an automatic generation of random, but valid, benchmark cases of
differing complexities, with no effort from the user required. The evaluation of this fuzzing
capability shows that GenBenchDroid is able to generate a meaningful benchmark suite with
an average deviation of around 1% for all investigated analysis metrics (in comparison to other
generated benchmark suites) by generating just 500 benchmark cases. This further shows Gen-
BenchDroid’s strength of generating a vast amount of various benchmark cases to make an
over-adaptation unlikely.

1.1 Thesis’ Contents
The first part of this thesis introduces fundamentals that are used in each chapter of the thesis.
Since the main purpose of the concept is the generation of analyzable Android applications, at
first various specifics of the Android system and the development of Android applications are
described (see Section 2.1). Next, the fundamentals of program analysis and more specifically
taint analysis are explained on the basis of a running example that stretches throughout the
thesis. In addition, the benchmarking process in general, its requirements and used metrics are
introduced. Furthermore, an overview of benchmark suites available for Android taint analysis
is given (see Section 2.2). Last, a short overview on the topic of fuzzing is given (see Section
2.3), because the developed concept is designed to allow for an additional fuzzing capability.

In Chapter 3, the Android app analysis benchmark case generation concept is described. All
requirements, the framework of a possible generator, as well as all components of its framework
are described in this chapter. Furthermore, all inputs, as well as the outputs are presented
in detail. Additionally, an overview of how to integrate a benchmark case generator into the
evaluation process of an analysis tool is given.

Based on the presented concept, a benchmark case generator (GenBenchDroid) is imple-
mented in Chapter 4. This chapter describes how the implementation of the resulting benchmark
case generator is connected to the underlying concept and also contains a user manual for the
benchmark case generator. The implemented benchmark case generator is evaluated in Chapter
5. This chapter shows that all requirements which are introduced in Section 3.1 are fulfilled and
furthermore offers an assessment of the performance of the benchmark case generator.

Afterwards an overview about similar benchmark case generator approaches for other appli-
cation areas, as well as current benchmarking solutions for Android devices is given (see Chapter
6). In addition to the related work, an overview over threats to the validity of the benchmark
case generation concept, as well as possible subjects of further work, is given in Chapter 7.
Finally, this thesis concludes with a summary of its results and achievements (see Chapter 8).

3

1.1 Thesis’ Contents

4

Fundamentals
2

This chapter introduces various topics that are used throughout the thesis. Since the application
area of this thesis is the Android system, several features that are unique to Android systems
are introduced, alongside fundamentals regarding program and especially taint analysis. At last
a short introduction to the topic of fuzzing is given.

2.1 Android Basics
This section describes various Android specifics that are fundamental to understanding the
behavior of Android applications. It introduces topics like basic components an application is
made off, lifecycles of these components and further Android application specific features.

2.1.1 Application Components

Each Android application is built from four different types of components [1]:

1. Activities

2. Services

3. Broadcast receivers

4. Content providers

Each type of component serves a distinct purpose.
An activity is responsible for user interaction. Each activity comes with its own user interface.

An application usually contains multiple activities that interact with each other. However, an
activity is also independent from other activities and can be started on its own. An example
for this behavior is the user’s contacts application. The user can use this application to view
his/her contacts, add a new contact or initiate a call to one of his/her contacts. Each of these
actions is encapsulated in its own activity. All of them are working together to form a fluent user
experience. However, each of these activities is also independent from the others. This behavior
can be observed when the user clicks on a text message containing shared contact-information
and instead of the contacts application’s main screen opening, the screen for adding contacts is
opened. Usually activities are the most common building blocks for Android applications and
also contain the biggest share of the application logic.

5

2.1 Android Basics

A service is responsible for handling actions that are performed in the background. Because
of this, a service does not provide a user interface. A service is usually started by another
component like an activity, and either runs until it finishes its task or until the Android system
needs to free up RAM for tasks that are more important at this point in time than the service.
The service running until it finishes is usually the case for services that the user is aware of, like
playing music in the background. The service being terminated by the Android system usually
happens for services that the user is not aware of, like syncing data in the background.

A broadcast receiver is a component that allows the system to deliver events to the appli-
cation, that are not performed by the application’s user. These events, that are emitted by
the system, are system-wide broadcast announcements that are delivered to all applications. A
broadcast receiver enables the application to react to these announcements without the appli-
cation currently running on the device. There are multiple use-cases for system-wide broadcast
announcements, such as notifying each application when the screen has been turned off, the
battery is low or a picture has been taken. Besides the system, other applications are also able
to broadcast announcements which can be picked up by a broadcast receiver. This might for
example happen, when a download is finished. While a broadcast receiver component does not
provide its own user interface, it can create a notification in the device’s status bar to notify the
user when a broadcast event occurs. However, usually a broadcast receiver is only intended to
start up another component which then handles the received event.

A content provider is a component that is responsible for managing sets of data that are
shared across multiple applications. If a content provider allows the modification of a certain
data set, another application is able to access and modify the data that is provided by the
content provider. One example for this is that an application with correct permissions is able to
access the user’s contacts, that are provided by a content provider, and read, as well as modify
them. This allows the Android system to share data sets across multiple applications, while still
maintaining a form of security through permissions that have to be requested by an application
before being able to access the data.

2.1.2 Inter-Component Communication (ICC)

Since an Android application is composed of multiple components, there needs to be a way for
a component to start up another component and to communicate with it. This communication
happens via intents. An intent defines a message that activates a component. There are two
types of intents: (1) explicit intents and (2) implicit intents. While an explicit intent is used
to activate a specific component, an implicit intent is used to activate any component that is
capable of performing a desired action. An explicit intent can, for example, be used to activate
a specific activity called TakePictureActivity, while an implicit intent can be used to activate
an arbitrary component that is able to take a picture.

An intent is not limited to components inside a single application. An application can, for
example, send an implicit intent that requests a component which is able to take a picture and
a component from a completely different application can receive this intent and start up its
component that is responsible for taking pictures.

An intent for an activity or service defines the action to be performed by the activated
component. It can also contain data that the component is requested to perform an action on.
In some cases the requested component needs to return a result to the application that requested
it once it finishes its task. This return of the result also happens via an intent. One example
for this is an activity that requests the contacts application to open and the user to select one
of his/her contacts. This selected contact is then returned to the original activity, that sent the
intent to the contacts application, via another intent [1].

6

Chapter 2. Fundamentals

2.1.3 Android Manifest File

The manifest file is an important configuration file for Android applications that serves multiple
purposes. It contains a declaration of all components of the application, the permissions that the
application requires, requested hardware and software features and various other information.
Components have to be declared so they can be seen by the system and started, if an explicit
or implicit intent is issued. Furthermore, the component’s capabilities have to be declared,
so the system knows what actions the component is able to perform. Required permissions are
declared, so that users have an overview about which permissions are required by the application
before installing it [3]. The required software and hardware features need to be declared, so that
an installation of the application on a device that does not provide enough capabilities can be
prevented [2].

Listing 2.1 shows an example of a manifest file. It is represented in an XML format and
depicts a photography application that consists of two activities. Each activity comes with its
own intent-filter. An intent-filter depicts the capabilities of the component and tells the system
to what kind of implicit intent this component is able to react. The first component that is
represented in the example is an activity called MainActivity. The action that is specified
by its intent-filter means that this activity is the main entry point to the application and it
starts when the application is initially launched when the user presses the launcher icon on
his/her device. Furthermore, it means that this activity does not need an intent to be started.
The second activity is called TakePictureActivity. This activity is responsible for taking the
pictures of the photography application. This capability is depicted by its intent-filter. When
an application issues an implicit intent of the type IMAGE_CAPTURE, this activity is able to react
to the intent. Since the application requires the device’s camera, the required permission, as
well as the requested hardware feature also have to be specified in the manifest file [5].

<manifest . . .>
<application . . .>

<activity android : name=" MainActivity ">
<intent−f i lter>

<action android : name=" android . i n t en t . a c t i on .MAIN" />
. . .

</ intent−f i lter>
</activity>

<activity android : name=" TakePictureAct iv i ty ">
<intent−f i lter>

<action android : name=" android . media . a c t i on .IMAGE_CAPTURE" />
. . .

</ intent−f i lter>
</activity>

</application>

<uses−permission android : name=" android . permis s ion .CAMERA" />

<uses−feature android : name=" android . hardware . camera " />
</manifest>

Listing 2.1: Android manifest file example (shortened)

7

2.1 Android Basics

2.1.4 Application Resources and Layout

An Android application usually consists of more resources than just its source code. Some
examples of additional resource files are image files, audio files and most importantly layout
files that describe the visual presentation of the application. Layout files contain the whole
user interface which usually consists of view elements like, for example, labels or dialogues,
and input elements like, for example, buttons, text-fields or check-boxes. This layout definition
is represented in XML format with a series of nested View and ViewGroup objects. A View
represents an element that is shown on the screen which the user often can interact with, like for
example a button or an element that provides information to the user, like a label. A ViewGroup
defines an invisible container that can be used to model the layout structure. Each user interface
element of an Android application belongs to one of these two categories. The layout definition
of the application is contained in its own file, so that the program and the presentation logic
are separated. Usually each activity comes with its own layout file. However, a single layout file
can also be used for multiple activities [6, 1].

2.1.5 Events and Callbacks

Because of the nature of mobile devices and applications, events play a big role in the devel-
opment of Android applications. Events can be incoming calls, specific sensor values that are
reached, the battery level falling below a certain threshold or any kind of user input. Events are
handled by so called event listeners. Event listeners are functions that are executed as soon as
the according event, that is listened to by the event listener, is detected. They are implemented
by using callbacks. A callback is a function that is passed as an argument to another part of the
application code and is expected to be executed at a given time, in the case of event listeners
whenever a specific event happens.

Figure 2.1 illustrates an example for listening to an event. When a user presses a button,
he/she triggers a button-pressed-event. The Android system monitors the button and detects
when the button is pressed by the user. Once the Android system detects that the button was
pressed by the user, it calls the supplied callback function which is then executed [4].

Button
presses

User

Callback Function
monitors calls

Android System

Figure 2.1: Listening to a button-pressed-event

2.1.6 Activity Lifecycle

An Android application consists of many components. Furthermore, in contrast to many other
programming paradigms that provide a single entry point to an application like the main()
method in programming languages like Java and C, an Android application may provide multiple
entry points to the same application. This means that each component of an Android application
can be in different execution states during its lifetime. If a user opens his/her contacts application
to call another person, the application opens and shows the user a list of all of his/her contacts.
But if the user clicks on shared contact information that has been sent to him/her by someone,
the contacts application directly opens the screen for adding contact information with the forms
already filled out with the shared contact information. This means that one component of the

8

Chapter 2. Fundamentals

application can already be in a running state, while the other component has not yet been
started at all. Furthermore, a mobile application often has to react to various events, which
additionally strengthens the need for multiple component states. This means that there is the
need for callback functions to handle these state transitions. One example for this is, if the
user watches a video on his/her device and receives a call, the video, as well as the component
playing the video, need to be paused and resumed once the call is finished.

Figure 2.2 illustrates the lifecycle of the activity component. After the launch of the activity,
the callback method onCreate() is executed. This method is always the first method that is
executed once an activity is started. Afterwards the activity reaches the state called Started
and directly thereafter enters the state Resumed, in which it stays until it is paused. When
the activity is no longer in focus, but parts of it are still visible on the device it enters the
Paused state. This may happen if the user’s device is in multi-window mode and the focus of
the user is on another application, while the paused one is still visible. When the user focuses
the paused application again, the currently paused activity is resumed again. If the user opens
up another application that covers the device’s whole screen and puts the current application
in the background, it reaches the Stopped state. Once the activity has finished its task or is
terminated by the user, it executes the onDestroy() callback, that is usually used to perform
cleanup operations like purging the memory or unregistering listeners, before it reaches the final
Destroyed state. Between every state transition there is a callback function that is executed
before the state transition that can be used to perform necessary operations. [8]

The service, broadcast receiver and content provider components have unique lifecycles as
well, that differ from the activity lifecycle. However, since activities are usually the most impor-
tant and common building block of an Android application, the lifecycles of the other components
will not be explained in detail.

onCreate()Launched
onStart()Created

onResume()Started

onPause()

ResumedonResume()

onStop()

Paused

onDestroy()

onStart()

Stopped

Destroyed

Figure 2.2: Illustration of the Android Activity Lifecycle, based on [8]

2.1.7 Android Package File

An executable Android application comes in form of an Android Package (APK) file. The APK
file is a container that contains, among other data, the application’s compiled source code, the
manifest file, the layout files and all the application’s resources, like, for example, images and
videos. Before an application can be installed on a device, Android requires the APK file to
be digitally signed with a certificate. The certificate contains the public key of a private/public
key pair and other metadata of the owner of the certificate. When an application is signed, the
certificate is attached to it and therefore the application is assigned to the owner of the certificate

9

2.2 Program Analysis

and his/her private key. Throughout the lifetime of the application the same certificate has to
be used. This way it is ensured that all future updates come from the owner of the certificate
[1, 7].

2.2 Program Analysis

Program analysis is the process of analyzing the behavior of applications in regard to some
properties. These properties can be, for example, safety, security, or correctness [43].

Program analysis can be divided into two categories, (1) static program analysis and (2)
dynamic program analysis. Static program analysis is typically run on an external system outside
of the operating environment. The analyzed application is not executed during the analysis,
only its source code is analyzed. Dynamic program analysis is run while the application to be
analyzed is executed. It usually is run on the same operating environment as the application.
Since dynamic program analysis is performed during the execution of the application under test,
it has access to all of the runtime information, allowing it to analyze data flows that are too
complex for a static program analysis. However, the downside of dynamic program analysis
is that it can only analyze data flows that are executed, which leads to static analysis usually
having a higher degree of code coverage. [29]

One of the techniques that is used to analyze a program is called data flow analysis. Data
flow analysis tracks the internal values of a program at each point in time and listens for changes
of these values [43].

A more specific type of data flow analysis, that is focused on the tracking of sensitive user
data, is called taint analysis. Taint analysis is performed to track flows of sensitive data, which
are called taint flows, throughout an application and to analyze whether the sensitive data is
leaked to the outside world. Figure 2.3 depicts such a taint flow. The sensitive data is introduced
into the application through a source. It is then propagated through some kind of data flow
throughout the application until it reaches a sink, where the sensitive data is leaked to the
outside world. The goal of a taint analysis is to find taint flows that introduce sensitive data
into the application and afterwards leak it to the outside world.

sensitive data
Source

sensitive data
Data flow Sink

Application

Figure 2.3: Depiction of a taint flow

Figure 2.4 illustrates a simple example of a taint flow. Sensitive data is introduced into the
application by reading the device’s IMEI (International Mobile Equipment Identity) number,
which serves as a unique identifier for a device. This depicts the source of the taint flow.
Afterwards the IMEI number is stored inside an array. Finally, the IMEI number is retrieved
from the array and sent to another device via SMS, which represents the sink of the taint flow.
Therefore, sensitive data, in form of the device’s IMEI number, has been introduced into the
application and subsequently leaked to the outside world. This example will be used as a running
example throughout the thesis.
Taint flows are not always as simple as depicted in Figure 2.4. Figure 2.5 shows a more complex

10

Chapter 2. Fundamentals

sensitive data
Get IMEI

sensitive data
Array Send SMS

Application

Figure 2.4: Simple taint flow (running example)

taint flow example. The user’s private contacts are introduced into the application. Afterwards
the data flow is branched into two flows. The first flow puts the user’s contacts into an array
which are then subsequently retrieved and passed on to another component of the application
via Inter-Component Communication. This component leaks the user’s contacts to the outside
world via sending an Email. The second flow writes the user’s contacts into a file and then
uploads the file to an external server. This means that there are two possible taint flows inside
the application.

Get Contacts

Array Send Email

Application

ICC

Write to file Upload file

sensitive data

Figure 2.5: More complex taint flow example

There are many possible scenarios for taint flows. A device contains a lot of sensitive data that
can be leaked in many ways. This data could be introduced by a reflectively loaded class, an
external library or a native function call. There could be multiple split flows and the sensitive
data could be sanitized (overwriting the data by something non-sensitive) before it reaches a
sink, rendering it a negative taint flow, which in contrast to a positive taint flow is a flow that
stretches from a source to a sink, but does not leak sensitive data. This variety of possibilities
that have to be handled during the analysis make taint analysis a non-trivial problem.

2.2.1 Taint Analysis Tools for Android

Currently there are multiple taint analysis tools available for Android applications. These tools
all provide different capabilities. One example for this discrepancy in capabilities is ICC. While
some tools are able to handle ICC, many other tools do not have this capability. There are
dynamic as well as static taint analysis tools available [51, 26, 49]. However, most of the
available tools perform only static analysis.

11

2.2 Program Analysis

The taint analysis tools that are currently the state of the art in Android taint analysis are
FlowDroid [26, 14] and Amandroid [49, 10]. Both of these tools are static analysis tools
and provide largely the same set of capabilities, with the exception of ICC, which is officially
supported by FlowDroid, but still has some unresolved issues [23, 24]. However, FlowDroid
is still the most widely used static-analysis tool for Android [44].

2.2.2 Benchmarks

A benchmark is a process in which the relative performance of hardware or software is assessed.
Often benchmarks are used to compare the performance of different hardware components of
a computer system like, for example, comparing the relative performance between multiple
CPUs. However, there are as well so called software-benchmarks that are used to compare the
relative performance of programs to each other. A typical use-case for software-benchmarks is
the assessment of the performance of analysis tools.

In the context of the evaluation of Android taint analysis tools, a benchmark consists of
multiple Android applications that have certain features [44]. Each individual application is
called benchmark case. Therefore, a benchmark consists of multiple benchmark cases. This
collection of benchmark cases is often also called benchmark suite. For the evaluation of Android
taint analysis tools there are multiple types of benchmark cases that are used. Often used
benchmark case types are (1) micro benchmark cases and (2) real-world benchmark cases.

Micro benchmark cases are relatively small applications that only contain a few, often only
a single, taint flow. They are explicitly created to be used for the evaluation of analysis tools.
Listing 2.2 shows a micro benchmark case that contains the taint flow from the running example
(see Figure 2.4). As soon as the activity MainActivity is created, the device’s IMEI number is
put into an array. Afterwards it is retrieved from that array and sent to another phone via SMS.
This application represents a typical micro benchmark case. It contains only a single taint flow
with only a single source and sink. The purpose of this micro benchmark case is to check whether
the analysis tool is able to handle taint flows that pass the sensitive data through an array and
whether the tool is able to distinguish different array indexes. Other micro benchmark cases
focus on different aspects of applications like, for example, reflection, ICC or different kinds of
data structures. Usually each micro benchmark case only contains one of these aspects and they
are not combined inside a single benchmark case.

Real-world benchmark cases are applications that either are real-world applications or are
comparable to real-world applications. Real-world benchmark cases are usually bigger and more
complex than micro benchmark cases. They often contain multiple taint flows. They also often
contain very complex taint flows, which for example may contain reflectively loaded classes, ICC
throughout many components and multiple obfuscations inside a single taint flow. Real-world
benchmark cases are important in order to assess the performance of analysis tools when applied
to real-world applications. They help to avoid over-adaptation of analysis tools to benchmarks
that only contain micro benchmark cases.

import android . app . Ac t i v i ty ;
import android . content . Context ;
import android . os . Bundle ;
import android . te lephony . SmsManager ;
import android . te lephony . TelephonyManager ;

pub l i c c l a s s MainActivity extends Act i v i ty {

12

Chapter 2. Fundamentals

protec ted void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
TelephonyManager tm =

(TelephonyManager) getSystemServ ice (
Context .TELEPHONY_SERVICE

) ;

S t r ing [] array = new St r ing [1 0] ;
array [5] = tm . getDev ice Id () ;
array [4] = " no t a i n t " ;

SmsManager sm = SmsManager . ge tDe fau l t () ;
sm . sendTextMessage ("+49123 " , nu l l , array [5] , nu l l , nu l l) ;

}
}

Listing 2.2: Micro benchmark case example

Ground-Truth

A benchmark alone is only able to determine the relative performance of analysis tools, based on
the amount of vulnerabilities that have been found. If one tool is able to find more vulnerabilities
than the other it is regarded as the superior tool. In order to assess a tool’s performance inde-
pendently, a ground-truth is needed [32]. In the context of Android taint analysis the expected
results of the taint analysis are contained inside the ground-truth. It contains information about
all taint flows that are contained inside a benchmark case. It usually contains information like
the location of the source and the sink and also which statements comprise the source and the
sink. Furthermore, the ground-truth contains the information whether the taint flow is a posi-
tive or a negative taint flow. If the taint flow is a negative taint flow, it should not be detected
by an analysis tool. This way it is possible to check a tool’s proneness to false warnings.

While micro benchmark cases usually come with a ground-truth, since the applications are
explicitly created for the evaluation of analysis tools, real-world applications most of the time
do not provide a corresponding ground-truth. This matter of fact makes it often infeasible to
incorporate real-world benchmark cases into the evaluation process.

Android Benchmark Suites

Currently there are multiple benchmark suites for the evaluation of Android taint analysis tools
available. Each of them comes with a set of multiple benchmark cases that can be used to
evaluate the performance of an Android taint analysis tool in regard to different aspects.

DroidBench [13] is a benchmark suite that is exclusively comprised of micro benchmark
cases. It contains 190 different Android applications. Although it can be used for the evaluation
of static, as well as dynamic taint analysis tools, the benchmark cases provided by DroidBench
model problems that are mainly interesting for static analysis tools. DroidBench divides its
micro benchmark cases into 18 different categories. Some of these categories are Reflection,
Lifecycle and ICC. The Reflection category contains applications that implement reflectively
loaded classes, which contain the source or the sink of the application’s taint flow. The Life-
cycle category contains applications that model components at different lifecycle states, while
the ICC category contains applications with different types of ICC. DroidBench does not

13

2.2 Program Analysis

provide ground-truths that explicitly describe the contained taint flows of the benchmark case.
The contained locations of the sinks, sources and the flow between them are not provided in
a machine-readable format. The only provided information is the amount of leaks that the
benchmark case contains, in form of a comment inside the benchmark case’s source code. Fur-
thermore, the provided amount of leaks is sometimes even completely wrong. This fact makes
it impossible to automatically compare actual results against expected results [44].

ICC-Bench [17] is a benchmark suite that is as well exclusively comprised of micro bench-
mark cases. In comparison to DroidBench, ICC-Bench does not provide multiple categories
of benchmarks, but only consists of benchmark cases that implement ICC. However, it contains
in total 24 micro benchmark cases and therefore enables a more thorough analysis in regard to
ICC than DroidBench does. The provided ground-truth information is as imprecisely specified
as it is by DroidBench. It does not contain any information regarding the sources, sinks and
flows between them. The only information provided is the amount of leaks that are contained
in the application. This information is also provided in form of a comment inside a benchmark
case’s source code [44].

DIALDroid-Bench [12] is a benchmark suite that exclusively contains real-world bench-
mark cases. It contains 30 real-world Android applications. For each application only the APK
file is provided. The source code of the applications is not provided. Furthermore, there is no
ground-truth information provided at all. This fact makes it impossible to determine whether
an analysis tool was able to find all taint flows inside an application from DIALDroid-Bench.

TaintBench [22] is a benchmark suite that contains multiple real-world benchmark cases.
It contains 39 malicious real-world Android applications. Each of these applications comes with
its source code and a detailed ground-truth description. The ground-truth comes in form of a
JSON file that contains every source and sink, as well as their location inside the source code.
Furthermore, all intermediate flows between a source and a sink are described as well. It also
contains information that describes whether the taint flow is a positive or a negative flow. This
very detailed ground-truth allows for a automatic comparison of expected and actual analysis
results and therefore allows for a thorough evaluation of Android taint analysis tools.

Furthermore, there exists a tool which helps with the refinement of the mentioned missing
ground-truths and the subsequent execution of the benchmarks called BREW [44, 11]. It
provides aid in identifying the location of sources and sinks of a benchmark cases, as well as
declaring taint flows as positive or negative flows. However, these steps are still a manual process,
which have to be performed by a user. BREW only provides assistance in these steps.

Experimental Metrics

In order to evaluate the performance of Android taint analysis tools, different experimental
metrics have to be introduced. Table 2.1 introduces the four outcomes that an analysis tool can
produce and in which cases they are produced in the context of taint analysis. The expected
result describes each taint flow that is actually contained inside the analyzed application. The
goal of the analysis tool is to produce a correct analysis for each taint flow. Whenever the
analysis yields the same result as is expected, a correct analysis has been performed. Therefore,
a true positive and true negative outcome indicate a correct analysis of the taint flow, while a
false positive and false negative outcome show a false analysis of the taint flow.

In order to evaluate the performance of an analysis tool on a benchmark suite, one can
use the analysis tool to analyze all benchmark cases that are part of the benchmark suite and
accumulate all analysis outcomes. Afterwards one can calculate the precision and the recall
based on accumulated outcomes. The precision describes how many of the as positive declared
taint flows are actually positive flows and can be calculated as follows:

14

Chapter 2. Fundamentals

Outcome Expected result Analysis result Correct Analysis
True Positive (TP) taint flow taint flow 3

False Positive (FP) - taint flow 7

True Negative (TN) - - 3

False Negative (FN) taint flow - 7

Table 2.1: Possible analysis outcomes

precision = |TP|
|TP|+ |FP|

The recall describes how many of the encountered positive taint flows have been declared as
such and can be calculated as follows:

recall = |TP|
|TP|+ |FN|

In order to combine precision and recall into a single measure the F-measure is used. The
F-measure is the harmonic mean of the precision and the recall and can be calculated as follows:

F = 2× precision× recall
precision + recall

These three measures are often used for detection-related experiments and therefore are com-
monly used to evaluate the performance of analysis tools [36].

2.3 Fuzzing

Fuzzing is a test strategy where random input strings are generated for a program to uncover
failures, when the program is executed with these generated inputs. It uses a fuzz generator that
is responsible for generating random strings. These random strings are then used as input for
the program under test. This process is repeated until the program under test hangs, crashes,
produces an undesired output or asserts any kind of undesired behavior [53].

Figure 2.6 illustrates the application of a Fuzzer to test a program. The Fuzzer generates a
random input and supplies it to the program under test. Then the program is executed with
the supplied input. If the program behaved unexpectedly, a failure has been uncovered that
was triggered by the supplied input. If there was no unexpected behavior, the whole process is
repeated.

Since just generating arbitrary random inputs until a program, which is receiving this input,
crashes is a fairly naive and inefficient approach, there are many variations of fuzzing that aim to
integrate user-knowledge into the fuzzing process and thereby provide a more efficient approach.

random input
Fuzzer

[if unexpected behavior]

[if expected behavior]

Program Uncovered
failure

Figure 2.6: Fuzzing example

15

2.3 Fuzzing

2.3.1 Grammar-based Fuzzing

Grammar-based fuzzing is an advanced fuzzing technique that uses grammars to generate only
syntactically correct inputs for the program under test. This allows for a very systematic and
efficient testing process, since there are no invalid inputs supplied to the program under test.

Listing 2.3 depicts a grammar for arithmetic expressions. If, for example, one would want to
test a program that takes an arithmetic expression as its input, this grammar can be used. A
regular fuzzer would generate many inputs that do not form valid arithmetic expression and only
very few valid expressions. However, a grammar-based fuzzer supplied with the grammar from
Listing 2.3 will only generate valid inputs for the program under test. The fuzzer starts with
the <start> symbol and then expands one symbol after the other, choosing random alternatives
every time, until it reaches a valid arithmetic expression. This generated arithmetic expression
will then be supplied to the program under test. This approach clearly increases the efficiency
of the testing process by a large margin [53].

<s ta r t > : := <expr>
<expr> : := <term> + <expr> | <term> − <expr> | <term>
<term> : := <term> ∗ <fac to r> | <term> / <fac to r> | <fac to r>
<fac to r> : := + <fac to r> | − <fac to r> | (<expr>) | <int> | <int >.<int>
<int> : := <d i g i t ><int> | <d i g i t >
<d i g i t > : := 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Listing 2.3: Artithmetic Expression Grammar, based on [53]

16

Concept
3

The performance of benchmarks that are applied to Android taint analysis tools is strongly
dependent on the quality of the benchmark cases that are part of the benchmark. The proper
creation and selection of benchmark cases is not a trivial task and can contain many difficulties
as can be seen in Section 2.2. Prominent issues that contribute to these difficulties are:

1. Possible implementation mistakes in benchmark cases

2. Possibility of over-adaptation of analysis tools to micro benchmark cases

3. Missing, incomplete or incorrect ground-truth information for real-world benchmark cases

Taint flows usually come in many possible variations. Some taint flows may contain reflection,
while other taint flows may contain different kinds of obfuscation or ICC. This fact indicates that
a thorough evaluation of a taint analysis tool calls for a vast amount of micro benchmark cases
which all contain different aspects of possible taint flows. Creating this big amount of micro
benchmark cases is a time consuming and error prone task. Furthermore, an implementation
mistake in the benchmark case may lead to a wrong ground-truth description. If, for example,
a sink may be unreachable due to an unnoticed implementation mistake, the creator of the
benchmark case still assumes that the sink is reachable. Because of this assumption the creator
will provide a ground-truth that contains a taint flow that does in fact not exist inside the
benchmark case. This may lead to a false taint analysis tool evaluation.

Another issue that may happen due to an improper benchmark case selection is the possible
over-adaptation of taint analysis tools to the used benchmark cases. If the evaluation of a taint
analysis tool mostly relies on micro benchmark cases, the tool might struggle with the detection
of complex taint flows. A taint analysis tool might be able to detect taint flows that contain
reflection and taint flows that contain ICC individually, but it may struggle with taint flows
that contain reflection and ICC combined. Therefore, it might happen that a taint analysis tool
might get really high scores during the evaluation process, but still may struggle while analyzing
real-world applications.

The second issue might in part be mitigated by the incorporation of more real-world bench-
mark cases into the evaluation process. However, the integration of real-world benchmark cases
is often infeasible, because real-world applications almost never provide a corresponding ground-
truth. Furthermore, the manual creation of real-world benchmark cases is also a very tedious
task, since it usually takes a long time to create a single real-world Android application or the
corresponding ground-truth. This process is even more error prone than the creation of micro

17

3.1 Generator Requirements

benchmark cases since the degree of complexity of a real-world benchmark case is far larger.
Because of this, the evaluation of taint analysis tools has to mainly rely on the few real-world
benchmark cases that are currently available [22]. This may also lead to an over-adaptation of
taint analysis tools to the provided benchmark cases.

In order to help overcome these difficulties one possibility is to design a benchmark case
generator which is able to automatically generate benchmark cases of arbitrary complexity and
versatility. This chapter focuses on a conceptual design of such a generator.

3.1 Generator Requirements
A benchmark case generator has to fulfill multiple requirements to be able to help overcome the
above mentioned issues. Above all it has to be able to generate proper Android applications
in the form of APK files, since Android taint analysis tools require an APK file to perform a
taint analysis on. To fulfill this requirement, first the generator needs to be able to generate
all files that are required to compile an Android application. This means it has to generate the
source code of the application, the Android manifest file and the layout file, since these are the
minimum required files needed. Android apps can either be written in Java, Kotlin or C++
[1]. This thesis focuses on a generator concept that generates Java source code. Furthermore,
the generator needs to be able to generate applications that contain various kinds of taint flows.
This means that it needs to be able to produce taint flows that contain different aspects like,
for example, ICC, reflective class loads or different kinds of data structures. Additionally, it
needs to be able to generate arbitrary combinations of these aspects in a single taint flow. To
fulfill this requirement a modular concept is needed that allows the insertion of different kinds
of aspects into each taint flow the generated application contains. Additionally, the generator
needs to be able to generate applications of arbitrary size and complexity, to be able to produce
benchmark cases that are comparable to real-world applications. On this occasion it is also very
important to automatically generate the corresponding ground-truth for each benchmark case,
since a ground-truth is required in order to be able to use a benchmark case to properly evaluate
an analysis tool. Another important requirement for the generator is a mean of extensibility.
The generator should have the capability to offer the user a way to provide further aspects that
can be contained inside the generated taint flows. This means that, for example, if the user
wants to integrate a specific callback function from the Android activity lifecycle into the taint
flow, he/she should be able to do so. To summarize this gives us the following requirements:

1. Generate proper Android applications in form of APK files

2. Generated applications need to contain various types of taint flows of arbitrary complexity

3. Generate a corresponding ground-truth for each application

4. The generator should be extendable

The next section illustrates a design concept that is able to fulfill these requirements.

3.2 Generator Overview
Figure 3.1 shows an overview of the processing pipeline of the benchmark case generator. The
first input of the generator is a single template which denotes the generated benchmark case’s
starting structure, containing the structure for the source code, the Android manifest file and
the layout files. The second input is a set of modules. The modules contain information about
how the templates of the source code, the Android manifest file and the layout file (a single

18

Chapter 3. Concept

layout file for all activities) have to be filled. Each module contains information like specified
components, required permissions and the code snippet that should be inserted into the template.
They are successively inserted into the template. This combination of the template and the
modules is called template/modules configuration (TMC). The TMC determines the content of
the benchmark case after the generation. In the first step of the pipeline, the selection of the
template and modules is verified against a supplied grammar by the verificator. This step is
needed in order to verify, for example, that there is exactly one template provided in the TMC
and that the configuration is representing the right data flow branching structure, meaning that
if a module requires a specific amount of follow-up modules, the needed amount is specified in
the configuration. The verificator verifies that this amount of modules is always correct.

The grammar used by the verificator additionally enables fuzzing. This means that random,
but always valid, TMCs can be generated automatically.

If the provided TMC is valid, the specified modules and the template are supplied to the
preprocessor. The preprocessor takes care of Java language specific details like handling imports
and multiple declarations of variables across the modules. Furthermore, it analyzes the supplied
modules and generates a corresponding ground-truth that contains all taint flows, the location
of each taint flow’s source and sink, and whether the contained taint flow is a positive or a
negative flow (see Section 2.2).

The preprocessed template and modules are then passed forward to the source generator.
The source generator is responsible for inserting the modules into the template at the correct
position. This step will generate Java source code files, as well as the corresponding Android
manifest file and the layout file.

The generated files are then passed to a build tool. A build tool is a program that is capable of
compiling Android applications. It is responsible for compiling an APK file out of the provided
source files.

The outputs of the benchmark case generator are an APK file and its corresponding ground-
truth in form of an AQL-Answer [44], which contains information about all taint flows contained
in the generated benchmark case.

In the next sections each component, as well as the inputs and outputs, of the processing
pipeline of the benchmark case generator will be described in detail.

Modules

Template

[if valid]Verificator

Grammar

Processed
Template

& ModulesPreprocessor
Source
CodeSource

Generator

Benchmark Case Generator
Android

Package (APK)

Ground-Truth
(AQL-Answer)

Build Tool

Inputs Verification Generation Outputs

Legend

Figure 3.1: Overview of the processing pipeline of the benchmark case generator

19

3.3 Inputs

3.3 Inputs
This section introduces the inputs of the benchmark case generator. It describes the template,
as well as the modules in detail.

A template denotes the starting structure for every generated benchmark case. Each provided
TMC starts with a template. A template T contains the following information:

T = (S,M,L, F)

S denotes the structure of the source code of the starting component. M denotes the initial
structure of the Android manifest file, while L represents the initial structure of the layout file.
F describes the flow of the template.

The source code contains all necessary statements for the starting component, like the class
definition, the initial method definition and required imports. Furthermore, it contains a place-
holder which denotes where in the template the first module has to be inserted. Additionally,
it contains multiple placeholders that optionally can be filled by code-snippets provided by
modules.

The Android manifest file contains the declaration of the first component that is implemented
in S. Furthermore, it contains two placeholders. The first placeholder indicates the location
at which components that are newly introduced by a module have to be declared. The second
placeholder indicates the location where permissions, as well as needed software or hardware
features that are required by a module have to be declared.

The layout file contains the initial layout of the starting component. Even if the component
is not an activity and therefore does not require a layout file, as it provides no user interface,
the layout structure still has to be defined, in the case that a further module creates an activity
which needs a layout file. Additionally, it contains a placeholder for the location at which view
elements can be inserted by a module. This placeholder is necessary if a benchmark case has to
be generated that contains some kind of user interaction. This way a button can be placed into
the layout file and a callback function can be provided, that is executed, as soon as the button
is pressed.

In order to generate a proper ground-truth that contains information about each taint flow,
a declaration of the flow of the template is necessary. The flow information F is defined as

F = (className,methodSignature)

with className denoting the class name of the component and methodSignature denoting the
signature of the method containing the placeholder for the next module insertion.

Modules are the core building blocks of the benchmark case generator. While the template
denotes the starting point and the initial structure for the benchmark case to be generated,
modules represent the content of the benchmark case. They specify the content of the applica-
tion’s source code, the content of the Android manifest file and the content of the layout file.
Additionally, each module specifies a placeholder for the insertion location of the next module.
A moduleM can be described as following:

M = (T,C,A, F)

This means that each module contains four properties.
T describes the type of the module. T has the following value:

T = Source ∨ Bridge ∨ Sink

20

Chapter 3. Concept

C defines the code that the module generates. It also contains created methods, classes and
components.

A defines additional info that is necessary for the technical implementation, but not needed
in order to explain the concept. It contains information like required imports, permissions and
also component definitions, as well as view element definitions. This property can also be empty
if there are no such requirements for the module.

F is a set that describes the flows of further modules. This property is mandatory and can
not be empty, since it is necessary in order to generate a proper ground-truth. F can be defined
as following:

F = {(classNamei,methodSignaturei, statementSignaturei, leakingi)i | 1 ≤ i ≤ |Flows|}

|Flows| denotes the number of new branches a module creates. Each module creates at least one
branch. However, some modules may create more than only a single branch. Therefore, each
branch that is newly generated by the module needs to be tracked.

Like for the template, F contains the class name of the component, as well as the method
signature of the method containing the next module placeholder. But in contrast to templates,
this information may be empty inside a module. This is the case if the module does not alter
the program flow by creating new methods or classes. If the program flow is moved to another
method, but stays inside the same class as for the previous module, the className field may
be empty, but the methodSignature field is still specified.

The statementSignature field describes the signature of the statement, that interacts with
the sensitive data. This is especially the case for source and sink modules, where the sensitive
data is introduced into the application and leaked to the outside world.

The leaking field is a value that describes whether the module changes the current taint
flow, that it has been placed in, to a negative one. The value of the leaking field is 1, if the
module does not alter the taint flow. If the module sanitizes the taint flow by, for example,
replacing the sensitive data with some insensitive data, the value of leaking is 0. If the module
introduces unreachable code, the value of the leaking field is -1. This differentiation is necessary,
since after the insertion of a module that inserts unreachable code, the taintflow can never be
rendered into a positive one again, even if a new source is introduced.

The following sections will specify the available types of modules, present some examples of
the different module types and demonstrate how the application from the running example (see
Figure 2.4) can be replicated by this template and modules concept.

3.3.1 Template

The template that is used to generate a benchmark case which is semantically equivalent to the
hand-crafted benchmark case from the running example (see Figure 2.4) is called TBasic and is
defined as following:

TBasic = (SBasic,MBasic, LBasic, FBasic)

Listing 3.1 shows the content of SBasic. SBasic contains the structure of an activity. It contains
all necessary imports that each Android activity requires, the class declaration of the activity
MainActivity, the onCreate callback, which is executed as soon as the activity is started and
also the declaration of the variable sensitiveData that will hold the sensitive data throughout
the application. Furthermore, it contains exactly five placeholders that indicate the positions
for the following module that is inserted. Placeholders are depicted in green color and also by
being surrounded by double curly brackets.

21

3.3 Inputs

Some modules may require additional imports or global fields that have to be declared,
therefore an imports and a globals placeholder are provided. Other modules might come with
their own methods and therefore need to be able to insert them into the methods placeholder.
In order to be able to generate benchmark cases containing, for example, ICC or reflection, a
classes placeholder, where new components or classes are inserted into is also necessary. The
module placeholder continues the current program flow. The code statements that are inserted
into the module placeholder are executed first.

import android . app . Ac t i v i ty ;
import android . content . Context ;
import android . os . Bundle ;
{{ imports }}

pub l i c c l a s s MainActivity extends Act i v i ty {
{{ globals }}

protec ted void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y) ;
S t r ing s en s i t i v eData = " " ;
{{ module }}

}
{{ methods }}

}
{{ classes }}
Listing 3.1: Source code part of the template for the running example (see Figure 2.4) (SBasic)

Listing 2.1 shows the content of MBasic. It contains the structure of the Android manifest file.
Furthermore, it already contains the declaration of the component MainActivity as the starting
component, which should be launched, as soon as the application is started. Additionally, it
contains three placeholders. The permissions placeholder indicates the location where necessary
permissions and required hardware or software features have to be inserted. The components
placeholder indicates the insertion location for further Android components. If, for example,
a module creates a new activity to integrate ICC into the benchmark case, the newly created
activity needs to be declared there.

<manifest . . .>
{{ permissions }}

<application>
<activity android : name=" MainActivity ">

<intent−f i lter>
<action android : name=" android . i n t en t . a c t i on .MAIN" />
<category android : name=" android . i n t en t . category .LAUNCHER" />

</ intent−f i lter>
</activity>
{{ components }}

</application>

22

Chapter 3. Concept

</manifest>
Listing 3.2: Android manifest part of the template for the running example (see Figure 2.4)
(MBasic)

Listing 3.3 shows the contents of LBasic. It contains the layout structure of the generated
benchmark case. The RelativeLayout tag just serves as a container for possible future views
that are inserted by modules. LBasic can contain any arbitrary ViewGroup element, which is able
to serve as a container for views, as a root element. Besides the ViewGroup, LBasic contains one
placeholder: the views placeholder. It indicates the insertion location for objects of type View
like, for example, buttons.

<RelativeLayout . . .>
{{ views }}

</RelativeLayout>
Listing 3.3: Layout part of the template for the running example (see Figure 2.4) (LBasic)

The last element of TBasic is FBasic. FBasic has the following content:

FBasic = (MainActivity, void onCreate(android.os.Bundle))

This means that the class name of the component containing the module placeholder is
MainActivity and the signature of the method containing the module placeholder is
void onCreate(android.os.Bundle). This information is needed in order to determine the
exact taint flows that are contained in the generated benchmark case. This means that if, for
example, the first module that is inserted into the template is a source module, the exact location
of this source can be written inside the corresponding ground-truth.

3.3.2 Modules

Modules can come in different forms. However, there are three main types of modules:

1. Source modules

2. Sink modules

3. Bridge modules

3.1. Basic modules
3.2. Branching modules
3.3. Invoke modules
3.4. Sanitizing modules

Source modules contain a statement that can introduce sensitive data into the application.
They represent a source inside a taint flow. The first module that is inserted into the template
is usually a source module. But this is not always necessarily the case.

Sink modules contain statements that have the capability to leak sensitive information to the
outside world. They represent a sink inside a taint flow. There are many possibilities how such
a sink module could look like. The sensitive data could be sent via SMS, via email or uploaded
to a server and therefore be leaked to the outside world.

23

3.3 Inputs

Each taint flow concludes with a sink module. This means that each taint flow which is
started from a source module has to be concluded with a sink module in order to form a proper
taint flow. However, this conclusion with a sink module is not mandatory.

Bridge modules describe the data flow of the generated benchmark case. They usually are
placed in between a source module and a sink module. While each taint flow typically contains
only one source module and one sink module, a taint flow can contain an arbitrary number
of bridge modules. Bridge modules are used to integrate various aspects that obfuscate the
taint flow between a source and a sink. This means that bridge modules could, for example,
implement different kinds of data structures, various callbacks or ICC. However, bridge modules
may also be placed before or after a source or a sink module to further inflate the benchmark
case.

The main type of the module defines the value of the type property T ofM.

Bridge modules can be further divided into four sub-types:
Basic modules do not alter the program flow in any way. This means that the next module

will be inserted in the exact same method of the exact same component in which the basic
module has been inserted. Basic bridge modules typically are used to pass the sensitive data
through some kind of data structure like an array or a list. However, they can also be used to
implement, for example, reflective class loads.

Branching modules branch the current program flow into two or more program flows. This
means that there are multiple follow-up modules that have to be inserted next. Therefore, a
branching module has to specify more than just one placeholder for the insertion location for
the next module. They have to specify an additional placeholder for each additional program
branch that should be able to be continued by a follow-up module. Branching modules are
typically used to implement different control structures like if and else blocks, where one module
is placed into the if branch and another one is placed into the else branch. But they can also
be used to implement multiple conditional method calls, where each method handles another
following module. These methods may even be contained inside different classes or components.

Invoke modules alter the program flow, but do not create multiple program flow branches.
This means that the invoke module creates a new method or even a new component and shifts
the program flow to this newly created method or component. Invoke modules are used to
implement ICC. They can also be used to implement callback functions that are, for example,
invoked once a user event happens.

Sanitizing modules are special modules that are responsible for sanitizing the taint flow. This
means that the sanitizing module replaces the sensitive data that is contained inside a variable
with something that is not sensitive. Sanitizing modules therefore render a positive taint flow
into a negative one. Modules that introduce unreachable code into the generated benchmark
case are also considered sanitizing modules.

To generate a benchmark case that is semantically equivalent to the hand-crafted benchmark
case from the running example (see Figure 2.4) three modules are needed in addition to the
template, described in the previous section. The first module can be defined as following:

MIMEI = (Source, CIMEI, AIMEI, FIMEI)
This module represents a basic source module that reads the device’s IMEI number.

Listing 3.4 shows the content of CIMEI. This code snippet is responsible for reading the
device’s IMEI number and storing it inside a variable. Furthermore, it also contains the place-
holder for the next module insertion (). This means that the next module will be inserted at
the placeholders location. Since this module does not require global fields, additional methods,
further classes, component or views, the according fields are empty.

24

Chapter 3. Concept

module:
TelephonyManager tm = (TelephonyManager) getSystemServ ice (

Context .TELPHONY_SERVICE) ;
s en s i t i v eData = tm . getDevice Id () ;
{{ module }}

Listing 3.4: Content of CIMEI

In order to be able to read the device’s IMEI number, one import and one permission from
the Android system are required. The READ_PHONE_STATE permission is needed in order for the
application to be able to access the IMEI number of the device. Furthermore, the android
.telephony.TelephonyManager class has to be imported, since it provides the necessary capa-
bilities to access the device’s IMEI number. Both of these pieces of information are contained
inside AIMEI

The last field, FIMEI, describes the flow of the module:

FIMEI = {(ε, ε, ...TelephonyManager: java.lang.String getDeviceId(), 1)}

MIMEI is a basic module and creates no branching flows, therefore FIMEI contains only one
element. Since the module neither creates a new class nor a new method where the program
flow is shifted to, the first two fields are just empty. The third field describes the signature of
the method that introduces the IMEI number into the application. The fourth field describes
whether the sensitive data is sanitized by this module or not. In moduleMIMEI this is not the
case and therefore the value is 1.

The second moduleMArray that is needed can be defined as following:

MArray = (Bridge, CArray, AArray, FArray)

AArray = ∅

This module represents a basic bridge module that puts the sensitive data into an array and
retrieves it afterwards. Since arrays are part of the standard library of Java, no further imports
are needed. Furthermore, arrays do not require any permissions from the Android system and
therefore there are also no needed permissions specified. Views are also not a part of the module.
This means that the property AArray is empty. There are also no new components, methods or
global fields required. Therefore, only content for the module placeholder has to be specified.

Listing 3.5 lists the content of CArray. This code snippet is responsible for creating an array
with ten slots and then putting the sensitive data into the slot with index 5. Slot 4 of the array
is filled with data that is not sensitive. Afterwards the sensitive data is retrieved from the array.
Finally, a placeholder for the insertion location for the next module is provided. This module
can be used as an indicator during the evaluation process, whether a taint analysis tool is able
to differentiate between different array indexes.

module:
St r ing [] array = new St r ing [1 0] ;
array [5] = s en s i t i v eData ;
array [4] = " un s en s i t i v e data " ;
s en s i t i v eData = array [5] ;
{{ module }}

Listing 3.5: Content of CArray

25

3.3 Inputs

The flow of the module is described by FArray:

FArray = {(ε, ε, ε, 1)}

Module MArray is not a branching module, therefore there is only a single element in FArray.
Module MArray does not alter the flow of the application. There is no class or method that
is created by this module. Additionally, this module has no statement in it that introduces or
leaks sensitive data, therefore there is no statement signature that needs to be specified. Since
the sensitive data is not sanitized inside this module, the last value of the flow description is 1.

The final module MSMS that is needed to generate a benchmark case containing the taint
flow from the running example (see Figure 2.4) can be defined as following:

MSMS = (Sink, CSMS, ASMS, FSMS)

MSMS is a basic sink module that leaks the sensitive data via SMS to the outside world.
Listing 3.6 shows the content of CSMS. This code snippet is responsible for sending the

sensitive data via SMS to another device and therefore leaking the sensitive data. A generated
benchmark case could end with this module insertion, as a full taint flow is present in the appli-
cation, once a source and sink module have been provided. However, there is still a placeholder
for the next module insertion provided, in case the user of the generator would like to continue
the taint flow.

In order to be able to send an SMS to another device the SEND_SMS permission is required
from the Android system. Furthermore, to be able to utilize the SMS sending capability the
android.telephony.SmsManager class has to be imported into the application. This means
that both of these pieces of information are contained inside ASMS

module:
SmsManager sm = SmsManager . ge tDe fau l t () ;
sm . sendTextMessage ("+49 12345 " , nu l l , s ens i t i veData , nu l l , nu l l) ;
{{ module }}

Listing 3.6: Content of CArray

The flow FSMS of the moduleMSMS is described by:

FSMS = {(ε, ε, android.telephony.SmsManager: void sendTextMessage(...), 1)}

Like the previous two modules, MSMS is not a branching module and also does not generate
any methods or classes and therefore does not alter the program flow. However, the statement
sendTextMessage() is used to leak the sensitive data to the outside world, and therefore its
signature is specified in FSMS. Furthermore, the module does not sanitize the sensitive data and
therefore the last field of the flow description is 1 as well.

Module Examples

Since the running example only uses a basic bridge module which is usually the simplest type
of modules, this section will present some more module examples in order to showcase the
differences between each type. Furthermore, it will also present a more complex basic module
in order to show that basic modules may also be more complex thanMArray.

26

Chapter 3. Concept

• Invoke-Example: An example for an invoke module is the moduleMICC which employs
ICC into the generated application. It can be defined as following:

MICC = (Bridge, CICC, AICC, FICC)

AICC contains the for the module required imports, as well as the component definition of
the newly created activity that has to be inserted into the Android manifest file.
Listing 3.7 lists the content of CICC ofMICC. It contains two separate code snippets. One
of them is inserted into the module placeholder, while the other one is inserted into the
classes placeholder of the template. This module alters the program flow of the application.
It moves the flow to the newly generated activity NextActivity. The altering of the
program flow requires a new set of placeholders, as further modules have to be inserted
into new positions that are generated by the invoke module. Because of this, in addition
to the module placeholder, the previous globals and methods placeholders are removed and
new placeholders are provided. Furthermore, a new classes placeholder is provided, so
further modules can insert new classes.
FICC can be defined as following:

FICC = {(NextActivity, void onCreate(android.os.Bundle), ε, 1)}

Since the program flow changes to the onCreate method of the class NextActivity, this
has to be mentioned in the flow property FICC ofMICC.

module:
In tent i = new Intent (th i s , NextAct iv i ty . c l a s s) ;
i . putExtra (" l eak " , s en s i t i v eData) ;
s t a r tA c t i v i t y (i) ;

classes:
pub l i c c l a s s NextAct iv i ty extends Act i v i t y {

{{ globals }}

pub l i c void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y) ;
In tent i = ge t In t en t () ;
S t r ing s en s i t i v eData = i . ge tSt r ingExtra (" l eak ") ;
{{ module }}

}
{{ methods }}

}
{{ classes }}

Listing 3.7: Content of CICC

• Branching-Example: One example for a branching module is the moduleMRandomIfElse
which creates an if-statement with one if- and one else-branch. It can be defined as
following:

MRandomIfElse = (Bridge, CRandomIfElse, ARandomIfElse, FRandomIfElse)

27

3.3 Inputs

ARandomIfElse = ∅

ARandomIfElse is empty because no additional information, like for example imports or
permissions are required byMRandomIfElse.
Listing 3.8 lists the content of CRandomIfElse of MRandomIfElse. The module generates a
random number between 1 and 0 and executes the if-branch, if the number is bigger than
0.5 and executes the else-branch if the random number is less than or equal to 0.5. If the
else-branch is executed, a method called handleElse is executed and the sensitive data
is passed to it as a parameter. (The out-sourcing of the else-branch into the handleElse
method is only used to demonstrate the capability of one branch altering the program
flow, while the other branch not altering it. A module directly containing the module
placeholder inside the else-branch would be semantically equivalent to MRandomIfElse.)
This means that each branch has an execution probability of 50%. Because there are
two possible branches that can be executed, the program flow is branched and requires
multiple new slots for module insertions. One module can be inserted into the if-branch
and one module can be inserted into the method invoked by the else-branch. Because of
the presence of branches in the module, FRandomIfElse has to contain two elements, since
each module placeholder requires its own flow description:

FRandomIfElse = {(ε, ε, ε, 1)1, (ε, void handleElse(java.lang.String), ε, 1)2}

The first module placeholder does not alter the program flow, therefore the first ele-
ment of FRandomIfElse only contains empty values, besides the leaking attribute. However,
the second module placeholder does alter the program flow, since it is placed inside the
handleElse method. This altering of the program flow can be seen in the second element
of FRandomIfElse.

module:
i f (Math . random () > 0 . 5) {
{{ module }}

} e l s e {
handleElse (s en s i t i v eData) ;

}

methods:
pub l i c s t a t i c void handleElse (S t r ing data) {

St r ing s en s i t i v eData = data ;
{{ module }}

}
{{ methods }}

Listing 3.8: Content of CRandomIfElse

• Sanitization-Example: The last remaining type of bridge modules is a sanitization
module. Sanitization modules are important for generating negative taint flows. In doing
so it is important to fully sanitize a taint flow by using a sanitization module, as partial
sanitizations like, for example, replacing the sensitive data by a string with the same
length or only partially replacing it would still allow for conclusions on the sensitive data.

28

Chapter 3. Concept

Modules that provide the above mentioned functionality would therefore not fall into the
category of sanitization modules.
One example for a sanitization module is the module MSanitize which can be defined as
following:

MSanitize = (Bridge, CSanitize, ASanitize, FSanitize)
ASanitize = ∅

Listing 3.9 shows the content of CSanitize. MSanitize is a very simple module that only
consists of a single statement. It overwrites the variable containing the sensitive data and
therefore fully sanitizes the taint flow by not allowing any conclusions on the sensitive
data. The content of FSanitize is as following:

FICC = {(ε, ε, ε, 0)}

The program flow is not altered byMSanitize, therefore the flow property is mostly empty.
However, the module sanitizes the taint flow, therefore the leaking attribute of the element
in FICC has a value of 0.

module:
s en s i t i v eData = " unta int " ;
{{ module }}

Listing 3.9: Content of CSanitize

MSanitize is a very basic sanitization module that may be used in most of the use cases
where a full sanitization of the taint flow is required. However, there are other sanitization
options than just fully sanitizing the taint flow by replacing the contents of the variable
containing the sensitive data. A taint flow can be sanitized by introducing unreachable
code into it. If a source or a sink cannot be reached inside a taint flow, the taint flow is
sanitized as well.

• More complex Basic-Example: Often, basic modules may create additional methods
or classes that do not alter the program flow of the application. The module MRecursion
is an example for this behavior. MRecursion is a basic module that incorporates recursion
into the generated benchmark case. It can be defined as following:

MRecursion = (Bridge, CRecursion, ARecursion, FRecursion)
ARecursion = ∅

Listing 3.10 shows the content of CRecursion. MRecursion creates a method called rec that
recursively calls itself until a provided depth has been reached and then returns a supplied
value. At first, the sensitive data is temporarily stored inside another variable and the
sensitiveData variable is sanitized. Then the recursive function is called with a depth
parameter of 1000 and the temporarily stored sensitive data. After 1000 recursive calls the
sensitive data is returned. This value is then assigned to the previously sanitized variable
sensitiveData. Since the program flow has not been altered by MRecursion the value
of FRecursion looks like the following:

FRecursion = {(ε, ε, ε, 1)}

29

3.4 Verification

module:
St r ing recData = sen s i t i v eData ;
s en s i t i v eData = " " ;
s en s i t i v eData = rec (1000 , recData) ;
{{ module }}

methods:
pub l i c s t a t i c S t r ing rec (i n t depth , S t r ing data){

i f (depth > 0) {
return rec (depth − 1 , data) ;

} e l s e {
re turn data ;

}
}
{{ methods }}

Listing 3.10: Content of CRecursion

A list of all provided templates and modules together with a short description can be found in
Appendix A.1.

3.4 Verification
This section describes the capabilities and responsibilities of the verificator component in detail
and presents the grammar that is used by it.

3.4.1 Grammar

In order to determine whether a TMC is valid, a grammar is employed. Listing 3.11 shows
the grammar that represents the set of valid TMCs of the benchmark case generator. Symbols
that are surrounded by angle brackets denote non-terminals, while symbols inside quotes denote
terminals. The grammar starts at a <start> symbol which can be derived to a <template>
and a <module> symbol. The <template> symbol can be directly derived to a non-terminal
that indicates which template is used in the TMC. The three dots indicate that all available
templates are listed there and therefore the <template> symbol can be derived to any of these
templates. There is no empty rule for the <template> symbol. This signals that a template has
to be provided as the first part of the TMC in order to be a valid configuration.

The <module> symbol has three possible derivations. Based on the program flow that a
module can provide, it can be derived to the <linear> symbol, if there are no branches in the
module or to a <branching> symbol, if there is a branch in the program flow present in the
module. Furthermore, a module can also be derived to an empty word, meaning that there is no
necessity to provide a module at every position a <module> symbol is present. A linear module
only needs one follow-up module and therefore the <linear> symbol can directly be derived to a
<linearModule> symbol, which in turn can then be derived to a non-terminal representing the
module with linear program flow. In addition to the <linearModule> symbol, another <module>
symbol is derived, which then can be derived to the follow-up module or, if the end of the TMC
is reached, to an empty word. A branching module needs multiple follow-up modules, depending
on the amount of branches created by the module. Therefore, the <branching> symbol can be
derived to the symbol <2Branches> if it contains two branches, to the symbol <3Branches> if

30

Chapter 3. Concept

it contains three branches and so on. Since there are no modules with infinite branches, the
amount of required follow-up modules is finite and therefore the amount of possible derivations is
finite. The amount of branches a module creates and therefore the amount of follow-up modules
required, is denoted by parenthesis pairs which each contain a <module> symbol. This means
that a module that creates two branches comes with two parenthesis pairs, a module that creates
three branches comes with three parenthesis pairs and so on. Because of this precise amount of
follow-up modules, each needed amount of parenthesis pairs has to be explicitly defined in the
grammar instead of allowing the generation of an arbitrary amount of parenthesis pairs after a
branching module. This is important because of the fuzzing capability of the benchmark case
generator, since the generation of an arbitrary amount of parenthesis pairs could lead to a wrong
TMC. This way there could be, for example, a generation of three parenthesis pairs even though
the supplied branching module only creates two branches. This would lead to an invalid TMC.

Two branches can, for example, be created by an IfElse module that creates an If-statement
with one if- and one else-case. Three branches can be created by a 3Switch module that creates
a Switch-Statement containing three different cases.

The grammar is specifically designed to be easily extensible, in order to allow for a proper
extensibility of the generator. If the user creates his/her own template or module he/she can
easily add it to the provided grammar with as few needed changes as possible. Because of this
extensibility aspect, the grammar is supplied to the benchmark case generator as an additional
input. However, this input is only changed, whenever the user adds another module or template.

<s ta r t > : := <template> <module>
<module> : := <l i n e a r > | <branching> | ε
<l i n ea r > : := <linearModule> <module>
<branching> : := <2Branches> | <3Branches> | . . .
<2Branches> : := <2BranchModule> " (" <module> ") " " (" <module> ") "
<3Branches> : :=

<3BranchModule> " (" <module> ") " " (" <module> ") " " (" <module> ") "
. . .
<template> : := " Bas ic " | . . .
<l inearModule> : := " IMEI" | " Array " | "SMS" | . . .
<2BranchModule> : := " I f E l s e " | . . .
<3BranchModule> : := "3 Switch " | . . .
. . .

Listing 3.11: Grammar that is used by the verificator

3.4.2 Verificator

The verificator is the first component of the processing pipeline of the benchmark case generator
which is depicted in Figure 3.1. It serves two distinct purposes: (1) verifying that the provided
TMC is a valid one and (2) generating random, but valid TMCs in order to enable fuzzing
capabilities.

The verificator uses the grammar described in Section 3.4.1 to verify whether the provided
TMC is valid or not. It does so by checking if there is a possible derivation that leads to the
provided TMC. If there is one, the provided configuration is valid, if not it is invalid. Figure 3.2
shows the derivation tree for the TMC C with

C = (Basic, IMEI,Array,SMS)

31

3.5 Generation

which is used in the running example (see Figure 2.4). The existence of such a derivation tree
for a TMC implies that this configuration is valid. If there is no derivation tree for a TMC, the
configuration is invalid.

<start>

<template>

Basic

<module>

<linear>

<linearModule>

IMEI

<module>

<linear>

<linearModule>

Array

<module>

<linear>

<linearModule>

SMS

<module>

ε

Figure 3.2: Derivation tree for the TMC C

The second capability, that the verificator in combination with the grammar provides, is fuzzing.
Having this grammar at hand allows to apply grammar-based fuzzing, which is a significantly
more efficient approach than plain fuzzing. In order to generate only valid TMCs, the verificator
that is used as a fuzzer starts at the <start> symbol and chooses a random derivation. Since
there is only one possible derivation, this one will be chosen. Afterwards there are multiple
possibilities. Therefore, one random derivation of the possible ones will be chosen. This process
is continued until there are only terminals left. At this point the derivation process is finished
and cannot be further continued.

Every template and module that is available to the generator can be part of the generated
configuration. This also means that not every configuration contains a taint flow. Configurations
that, for example, only use bridge modules are possible.

In order to generate a proper benchmark case that is desired by the user, only configurations
which do contain modules that are defined by the user are continued throughout the processing
pipeline of the benchmark case generator. Other generated TMCs are just discarded.

3.5 Generation

This section focuses on the generation of the necessary source code and resource files and the
subsequent build process of the Android application. It will introduce the three necessary
components: the preprocessor, the source generator and the build tool, in detail (see overview
in Figure 3.1).

32

Chapter 3. Concept

3.5.1 Preprocessor

The preprocessor is a component that is partly responsible for technical aspects. It preprocesses
the template and each module before inserting the modules into the template.

The first responsibility of the preprocessor is conflict resolving. Java is a programming
language that does not allow the declaration of multiple variables inside the same scope with
the same identifier. But this scenario may happen if, for example, the same module that does
not change the scope of the application, but declares a variable, is inserted twice, consecutively.
One example for this is the module MArray with the generated code snippet from Listing 3.5.
It creates an array with the identifier array and assigns the sensitive data to it. Having this
module twice, consecutively, in the TMC leads to invalid Java source code, since the variable
array is declared twice inside the same scope. This invalid source code cannot be compiled into
an Android application. But not only variables with the same identifier can create such invalid
Java source code. Method names and class names that are created by a module can also be
declared twice and therefore invalidate the source code.

In order to prevent this situation from happening, the preprocessor adds a unique numeral
identifier to each identifier. This means that each identifier has a number appended to it, which
is incremented whenever a new identifier has been found by the preprocessor. The only exception
to this rule is the variable sensitiveData which contains the sensitive data. Since each module
needs to be able to access the variable containing the sensitive data, no unique numeral identifier
is appended to this variable.

The second responsibility of the preprocessor is the handling of required permissions and
imports. It ensures that the specified, required imports and permissions are requested and that
there are no duplicate requests.

The third responsibility of the preprocessor is to keep track of branches inside the source code
and the according placeholders for the next module inside each branch. Whenever a branch is
created by inserting a branching module, the current source code contains multiple placeholders
for the next module insertion location. This number of branches, and the number of open
placeholders resulting from this, can be arbitrarily high, since branching modules can be nested
arbitrarily deep, creating many new branches. In order to be able to determine which module
has to be inserted into which placeholder, the preprocessor attaches a unique identifier to each
placeholder, as well as to the belonging module that needs to be inserted at the placeholder’s
location, whenever a new program flow branch is created. This way the source generator knows
into which placeholder each module has to be inserted.

The most important responsibility of the preprocessor is the generation of the corresponding
ground-truth for the generated benchmark case. It does so by generating a graph containing
the flow information of the template and each module. Since the template and each module are
processed by the preprocessor, the preprocessor is able to exactly track every taint flow inside
the application that is generated by the benchmark case generator. Each template and module
contains a property F , that specifies the flow of the corresponding template or module and also
the statements that are used to process the sensitive data throughout the application. Together
with the type information T of each module, the preprocessor is able to track every flow that
stretches from a source to a sink and therefore represents a taint flow. Furthermore, with the
value contained in F that describes whether the module sanitizes the taint flow or not, the
preprocessor can determine if the taint flow is a positive or a negative one. If a single module
along the taint flow sanitizes the taint flow, the whole taint flow becomes a negative one.
Figure 3.3 shows the information provided by each individual template and module of the TMC,
the generated ground-truth graph after the preprocessing of the TMC C and the corresponding
ground-truth of the running example (see Figure 2.4). The upper part of the Figure shows the
template and each module of the TMC before the preprocessing step. It shows the type and

33

3.5 Generation

Template: Basic

type: Source
locClass: MainActivity
locMethod: onCreate(...)
statement: getDeviceId(...)
flow: 1

Module: IMEI

type: Bridge
locClass: MainActivity
locMethod: onCreate(...)
statement: ε
flow: 1

Module: Array

type: Sink
locClass: MainActivity
locMethod: onCreate(...)
statement: sendTextMessage(...)
flow: 1

Module: SMS

class: MainActivity
method: onCreate(...)

type: Source
class: ε
method: ε
statement: getDeviceId(...)
leaking: 1

type: Bridge
class: ε
method: ε
statement: ε
leaking: 1

type: Sink
class: ε
method: ε
statement: sendTextMessage(...)
leaking: 1

TMC before preprocessing

TMC after preprocessing
(Ground-truth graph)

locClass: MainActivity
locMethod: onCreate(...)
statement: getDeviceId(...)
flow: 1

locClass: MainActivity
locMethod: onCreate(...)
statement: sendTextMessage(...)
flow: 1

Corresponding ground-truth

Figure 3.3: TMC before and after preprocessing of the running example (see Figure 2.4)

flow information the template and each module provide (normally the statement and method
signatures are provided, but to enhance readability in the figure, the identifiers are used instead).
The flow information of each template and module is explained in detail in the Sections 3.3.1
and 3.3.2.

The middle section of the figure shows the generated ground-truth graph after the template
and each module have been preprocessed. Each node N in the graph represents one module and
contains the following information:

N = (type, locClass, locMethod, statement,flow)

The properties type and statement are directly adopted from the module that the node repre-
sents. The properties locClass and locMethod indicate the position in the source code where
the corresponding module that is represented by the node is located at after insertion. The
property flow indicates whether there was a sanitization of the sensitive data beforehand or
not. The flow property of each node inside the graph is not equal to the leaking property of
the module. If the data has been sanitized before (insertion of a sanitization module with a
leaking value of 0), the value of flow for all following modules will change to 0 until the end of
the path is reached or a source introduces new sensitive data, changing the value back to 1 for
all following nodes.

The first node in the ground-truth graph represents the moduleMIMEI. It is a source module
that introduces sensitive data into the application. Since it is the first module, it is located at the
class and method specified by the template TBasic. The second node represents the bridge mod-
uleMArray. The previous module in the graph,MIMEI, does not change the insertion location
of the module to another class or method. Therefore, the previously by TBasic specified location
is further propagated. The same holds for the sink moduleMSMS. NeitherMArray norMIMEI
provide a new location, therefore the location specified by TBasic is further propagated. None of
the used modules sanitizes the taint flow, therefore the value of flow continues to be 1.

The lower section of the figure shows the ground-truth that can be generated from the
ground-truth graph. It can easily be generated by traversing the ground-truth graph and di-
rectly connecting source to sink nodes.

The ground-truth graph is not always linear. It can also come in form of a tree. Figure 3.4
shows a more complex example of a ground-truth graph in form of a tree. It shows a benchmark
case that retrieves the device’s IMEI number and then splits the program flow with a branching

34

Chapter 3. Concept

module that creates an if-statement with one if- and one else-branch. The first branch uses ICC
to create a new activity called NextActivity and propagates the sensitive data to it, where it is
subsequently leaked via SMS. This means that the moduleMICC moves the program flow and
therefore the insertion location for the follow-up module to the onCreate() method of the class
NextActivity. This can be observed in the properties of the node representing MSMS in the
upper branch.

The second branch continues the flow with the sanitizing module MSanitizer before leaking
the data via SMS. However, sinceMSanitizer sanitized the taint flow, it becomes a negative taint
flow. Therefore, there is no leak of sensitive data, which is indicated by the propagated value of
flow at the sink module.

TMC after preprocessing
(Ground-truth graph)

type: Source
locClass: MainActivity
locMethod: onCreate(...)
statement: getDeviceId(...)
flow: 1

type: Bridge
locClass: MainActivity
locMethod: onCreate(...)
statement: ε
flow: 1

type: Bridge
locClass: MainActivity
locMethod: onCreate(...)
statement: ε
flow: 0

type: Sink
locClass: NextActivity
locMethod: onCreate(...)
statement: sendTextMessage(...)
flow: 1

type: Sink
locClass: MainActivity
locMethod: onCreate(...)
statement: sendTextMessage(...)
flow: 0

type: Bridge
locClass: MainActivity
locMethod: onCreate(...)
statement: ε
flow: 1

Module: IMEI Module: IfElse

Module: ICC Module: SMS

Module: Sanitizer Module: SMS

Figure 3.4: Ground-truth graph of a more complex benchmark case

Every path inside the ground-truth graph that starts at a node representing a source module
and ends at a node representing a sink module (the source node has to come before the sink
node), represents a taint flow. The value of flow at a node representing a sink module indicates
whether the taint flow is a positive or a negative one.

3.5.2 Source Generator

The source generator is responsible for inserting the modules into the template. In order to
generate proper source code for a valid Android application, the modules have to be inserted
into the template one by one in the correct order. The correct order for the insertion process is
the order of the modules that is specified in the TMC, from left to right. In case that there are
branching modules present in the TMC, the modules are inserted in a breath-first manner.

Whenever a module M is inserted into a template T , the code snippets provided by M
are inserted into the corresponding placeholders in T . Additionally, all placeholders that are
provided by T are replaced by the placeholders provided byM. In case that placeholders inM
are left empty, the previous placeholders are retained. After the insertion of module M into
template T a new template T1 is created in which the next module is inserted into. This process
continues until all modules have been inserted. Once the last module in the TMC has been
inserted, a cleanup of all remaining placeholders is performed. Furthermore, all newly created
public classes are split into their own source file, since this is required in order to be able to
compile a valid Android application.

35

3.5 Generation

The following section describes the insertion process to generate the benchmark case from
the running example 2.4. Listing 3.12 shows the source code part of the template T ′

1 after
module MIMEI is inserted into template TBasic. The inserted parts are highlighted in green
color. The code snippet contained in module MIMEI is now part of the new template T ′

1 .
Furthermore, the location of the next module placeholder changed, since it was replaced by the
placeholder in MIMEI. All other placeholders have been retained, since MIMEI provided no
further content for the other placeholders.

. . .
pub l i c c l a s s MainActivity extends Act i v i ty {
{{ globals }}

protec ted void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y) ;
S t r ing s en s i t i v eData = " " ;

TelephonyManager tm = (TelephonyManager) getSystemService(
Context.TELPHONY_SERVICE);

sensitiveData = tm.getDeviceId();
{{ module }}

}
{{ methods }}

}
{{ classes }}

Listing 3.12: T ′
1 : After the insertion ofMIMEI into TBasic

Listing 3.13 shows the source code part of the resulting template T ′
2 after inserting the mod-

uleMArray into the newly generated template T ′
1 . The code snippet ofMArray is inserted into

the template. The module placeholder has been moved, while the other placeholders have been
retained.

. . .
pub l i c c l a s s MainActivity extends Act i v i ty {

{{ globals }}

protec ted void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y) ;
S t r ing s en s i t i v eData ;

TelephonyManager tm = (TelephonyManager) getSystemServ ice (
Context .TELPHONY_SERVICE) ;
s en s i t i v eData = tm . getDevice Id () ;

36

Chapter 3. Concept

String[] array = new String[10];
array[5] = sensitiveData;
array[4] = "unsensitive data";
sensitiveData = array[5];
{{ module }}

}
{{ methods }}

}
{{ classes }}

Listing 3.13: T ′
2 : After the insertion ofMArray into T ′

1

Listing 3.14 shows the final source code of template TFinal. This is the resulting template once
the last module of the TMC,MSMS, has been inserted into T ′

2 and final cleanup operations have
been performed. The last code snippet is inserted and all remaining placeholders are removed.

The same insertion and subsequent cleanup process is also performed for the Android man-
ifest file, as well as for the layout file.

. . .
pub l i c c l a s s MainActivity extends Act i v i ty {

protec ted void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y) ;
S t r ing s en s i t i v eData ;

TelephonyManager tm = (TelephonyManager) getSystemServ ice (
Context .TELPHONY_SERVICE) ;
s en s i t i v eData = tm . getDevice Id () ;

S t r ing [] array = new St r ing [1 0] ;
array [5] = s en s i t i v eData ;
array [4] = " un s en s i t i v e data " ;
s en s i t i v eData = array [5] ;

SmsManager sm = SmsManager.getDefault();
sm.sendTextMessage("+49 12345", null, sensitiveData, null, null);

}

}
Listing 3.14: TFinal: After the insertion ofMSMS into T ′

2 and final cleanup

3.5.3 Build Tool

The build tool is the last component in the processing pipeline of the benchmark case generator.
It is used to automatically manage and control the compilation process, as well as manage the

37

3.6 Outputs

required dependencies of the application. Its main task is to compile the source code into a
set of executable files that can be run on an Android system. These executable files are then
packaged together with the Android manifest file, the layout file and other resource files that
are required by the application into a container file. Finally, the build tool is responsible for
signing the resulting file, so it can be executed on an Android system. This container file is the
resulting APK file.

3.6 Outputs

The benchmark case generator generates two output files: (1) the APK file containing the
generated benchmark case and (2) the corresponding ground-truth description, that contains
information about the taint flows inside the generated benchmark case.

The generated APK file contains the Android application that represents the resulting bench-
mark case. This file can be used to install the application on an Android device or it can be
used as input for an Android taint analysis tool.

The ground-truth description is needed in order to correctly assess the performance of the
tested evaluation tool on the generated benchmark case. It contains the source-to-sink connec-
tions from the ground-truth graph that is generated by the preprocessor (see Section 3.5.1). The
ground-truth comes in form of an AQL-Answer [44], which is in XML format. The AQL-Answer
format is a format that is used to represent analysis results in a standardized form. This format
allows for an automatic comparison of the ground-truth to the analysis results of Android taint
analysis tools for the generated benchmark case.

Listing 3.15 shows the ground-truth of the generated benchmark case from the running
example (see Figure 2.4) in form of an AQL-Answer.

The AQL-Answer contains exactly one taint flow. The reference tag where the attribute
type has the value from contains the source of the taint flow. It shows that the getDeviceId()
statement inside the onCreate() method of the MainActivity class is responsible for introduc-
ing the sensitive data. Furthermore, it contains the path to the APK file and various hashes of
the file. The reference tag with the value to of the type attribute contains the taint flow’s
sink. It shows that the statement sendTextMessage() is responsible for leaking the sensitive
data to the outside world. Since the location of the sendTextMessage() statement is the same
as for the source statement, the method and classname values are the same as for the source.
In addition to the flow it contains one attribute called leaking. This attribute is provided for
every taint flow that is described inside the ground-truth. If the value of this attribute is true,
the taint flow is in fact a leaking one and therefore a positive taint flow. If the value is false,
the taint flow is a negative one.

This ground-truth description can easily be generated by traversing the ground-truth graph
from Figure 3.3.

<answer>
<flows>

<flow>
<reference type=" from ">

<statement> . . . getDev ice Id () . . .</statement>
<method> . . . onCreate (. . .) . . .</method>
<classname> . . . MainActivity</classname>
<app>

< f i l e>. . . / ExampleBenchmark . apk</ f i l e>

38

Chapter 3. Concept

<hashes> . . .</hashes>
</app>

</reference>
<reference type=" to ">

<statement> . . . sendTextMessage (. . .) . . .</statement>
<method> . . . onCreate (. . .) . . .</method>
<classname> . . . MainActivity</classname>

</reference>
<attributes>

<attribute>
<name>leak ing</name>
<value>true</value>

</attribute>
</attributes>

</ flow>
</ flows>

</answer>
Listing 3.15: Ground-truth in form of an AQL-Answer [44] for the running example (see Figure
2.4) (shortened)

The benchmark case generator is also able to generate a more detailed ground-truth description
for a benchmark case, by including every node from the generated ground-truth graph, instead
of only depicting the source-to-sink connections. This can, as well, be easily achieved by simply
traversing the ground-truth graph.

3.7 Integration of the Benchmark Case Generator in the Bench-
marking Process

Figure 3.5 shows the integration of the benchmark case generator (BCG) into the benchmarking
process of an Android taint analysis tool. At first the BCG generates an Android application
in form of an APK file that represents a benchmark case and a ground-truth that contains the
expected analysis results. This can either happen by providing a specific TMC to the BCG or
by randomly generating an Android application via fuzzing. The generated application is then
provided to the Android taint analysis tool. This analysis tool will perform an analysis on the
supplied application and try to find all positive taint flows contained inside it. The output of the
analysis tool, after finishing the analysis process, is an analysis-result, containing all taint flows
that have been found inside the application. If the analysis tool has been executed by the AQL-
System [44], the analysis result comes in form of an AQL-Answer. This analysis-result can then
be compared against the ground-truth that has been generated alongside the application by the
BCG, which contains a description about all taint flows contained inside the application. This
comparison can be automatically performed, since the analysis-results and the ground-truth are
both in the same format. If the found taint flows inside the analysis-result equal all the positive
taint flows listed inside the ground-truth, a correct analysis for the supplied application has
been performed. If the found flows inside the analysis-result do not equal the positive taint
flows listed inside the ground-truth, the analysis of the taint analysis tool on the application is
wrong. It means that the tool either was not able to find a positive taint flow that is inside the
generated application or it found a negative taint flow that just looks like a positive taint flow,

39

3.7 Integration of the Benchmark Case Generator in the Benchmarking Process

but does not leak sensitive data to the outside world. Based on the results, the performance
metrics, introduced in Section 2.2.2, can be determined.

This process can be repeated with various TMCs that represent applications with taint flows
that are containing different aspects like ICC, different kinds of data structures or reflection in
order to determine the strengths and weaknesses of the Android taint analysis tool.

Analysis resultAndroid Taint
Analysis Tool

[if equal]

[if unequal]

Comparison

Correct analysis

Wrong analysis
(missed flow or
found negative

flow)

Ground-truth

Android application (APK file)Benchmark Case
Generator

Figure 3.5: Example benchmarking process of an Android taint analysis tool

40

Implementation
4

While the previous chapter focused on the theoretical concept for a benchmark case generator,
this chapter will describe the implementation of the mentioned concept in form of an application
called GenBenchDroid, which is implemented in form of a Node.js application [21].

The first part of this chapter describes some details regarding the implementation of Gen-
BenchDroid and the most important technologies used during the implementation. Afterwards
the structure of GenBenchDroid is presented shortly. At the end of this chapter, a user man-
ual which describes the usage of GenBenchDroid and the corresponding GenBenchDroid
Editor, which is used for the creation of new templates and modules, is presented.

4.1 Implementation Details

The steps in the chapter describing the conceptual design of a benchmark case generator (see
Chapter 3) showed a detailed description of how each step in the processing pipeline has to be
performed in order to create a benchmark case generator. These steps can be summarized to
four main steps in GenBenchDroid:

1. Verification/Fuzzing: In this step, if the user provided his/her own TMC, the provided
TMC is verified and afterwards parsed into a tree structure. If the user did not provide
his/her own TMC, a random, but valid, TMC is generated.

2. Input Loading: The template and modules that have been specified in the TMC are
loaded.

3. Source Generation: During this step the necessary information to generate a ground-
truth is extracted. Furthermore, the specified template and modules are interweaved in
order to create the source code and additional resources needed to generate the benchmark
case.

4. Output Generation: Once the necessary source code and resource files are generated,
they can be compiled into an Android application in this step. Additionally, the ground-
truth file is generated.

In the first step, the user-provided TMC, which comes in form of a string, is verified. In
order to verify the TMC, a parser, which is generated from a provided grammar (see Section
3.4.1), is used. The parser is generated by nearley.js [30], which is a parser generator for Node.js

41

4.2 Structure

applications. This parser generation approach comes with the advantage that the grammar can
easily be extended and a new corresponding parser can be generated automatically from the
newly extended grammar. If the user did not provide a TMC and instead used the fuzzing
mode, a TMC, in form of a string, is automatically generated by using nearley.js’s unparse
functionality, which generates a random string based on the provided grammar. This way the
generated TMC will always be valid. Afterwards the TMC will be parsed into a tree structure
by using a tree parser in order to correctly handle the usage of branching modules.

The files containing the template and modules information corresponding to the specified
template and modules in the TMC are loaded in the Input Loading step. The files are in JSON
format and can therefore be automatically parsed by Node.js without the need of other libraries.

In the Source Generation phase the template and each module are preprocessed in order to
ensure that the finally generated source code is valid Java source code. Furthermore, the flow
information from the template and each module is extracted in order to create a corresponding
ground-truth graph. After preprocessing a module, it is inserted into the provided template.
For this insertion process, a custom template engine based on the existing template engine Han-
dlebars [16] is used. There is a multitude of other template engines available, which provide the
same capabilities as Handlebars. However, Handlebars was selected, as it is a logic-less template
engine. This means that the biggest part of the logic is not embedded in the template, but rather
in the processing of the template. This makes the creation of new templates and modules a lot
easier and more convenient, since the required logic is already provided by GenBenchDroid.
Once all modules have been inserted, the necessary source code and resource files are generated.

The Output Generation step is performed, after all necessary source code and resource files
are generated and are ready to be compiled into an executable Android application. To perform
this compilation process the build tool Gradle [15] is used. Gradle is the build tool that is most
commonly used for compiling Android applications, since it is the default build tool used by
Android Studio. It compiles the provided source code, as well as the resource files, and generates
an executable Android application if form of an APK-file. Additionally, the ground-truth graph,
which was generated during the preprocessing of the modules, is traversed and a ground-truth
file in form of an AQL-Answer is generated.

A list of further used technologies can be found in Appendix A.2.

4.2 Structure

The UML class diagram in Figure 4.1 illustrates the structure of GenBenchDroid. Cardi-
nalities, as well as some attributes and methods are omitted for more clarity. It consists of
one central System class. The System class has access to most of the other components which
are used one after another. The System class is invoked via the CLI class, which lets the user
interact with GenBenchDroid. The method start(...) in the CLI class is used to start
GenBenchDroid. Based on the provided parameters either the fuzzing or the manual mode is
executed. In case of the manual mode, the user directly provides a TMC in a string format. This
provided TMC in string format is verfied by the Verificator class. The Verificator class uses
a Grammar to perform this verification. If the user selects the fuzzing mode, the Verificator
class will automatically generate a valid TMC in string format by using the Grammar. This
TMC in string format is then parsed into a TMC object by the Tree Parser class. Based on
the provided or generated TMC object, the System class uses the load(...) method to load all
corresponding Template and Module objects. The loaded Template and Module objects are pre-
processed by the Preprocessor class before they are forwarded to the Template Engine class.
The Template Engine class inserts each Module object one by one into the Template object and
stores the intermediate results in the sourceContent, manifestContent and layoutContent

42

Chapter 4. Implementation

attributes. Once this procedure is finished, the System class invokes the getFileContents()
method of the Template Engine class to request the contents that have to be written into source
files. To generate these files the generateFile(...) method of the File Generator class is
invoked. After finishing the file generation, the build() method of the Build tool class is
called, which generates the corresponding Android Application object. Additionally, after a
successful compilation, the generateGroundTruth(...) method of the Preprocessor class is
invoked to generate the Ground-Truth object that corresponds to the generated application.

datastructure

Template

-template : String
-manifest : String
-layout : String
-className : String
-methodSignature : String

Module

-type : String
-imports : String
-globals : String
-module : String
-methods : String
-classes : String
-permissions : String
-components : String
-views : String

Flow

-className : String
-methodSignature : String
-statementSignature : String
-leaking : Boolean

outputs

Ground-truth Android application

CLI

+start(args: String) : void

Preprocessor

+preprocess(t : Template, m : List<Module>) : Template, List<Module>
+generateGroundTruth(t : template, m : List<Module>) : Ground-Truth

Template Engine

-sourceContent : String
-manifestContent : String
-layoutContent : String
+insert(content : String, m : Module) : String
+getFileContents() : List<String>

File Generator

+generateFile(content : String) : File

Tree Parser

+parse(tmc: String) : TMC

Build Tool

+build() : FileGrammar TMC

System

+load(c : TMC)

generates

Legend

Inputs Verification Generation Outputs

Verificator

+verify(tmc : String, g : Grammar) : Boolean
+fuzz(g: Grammar, args : String) : String

uses

loads

uses

generates

uses

loads

uses

uses
uses

reads

creates

uses

Figure 4.1: UML Class Diagram of GenBenchDroid (simplified)

43

4.3 Manual

4.3 Manual

This section explains the installation, configuration and usage of GenBenchDroid. It also
explains how to extend GenBenchDroid by creating new templates and modules.

4.3.1 Installation

The GenBenchDroid application is attached to this thesis (see Appendix A.4). It is contained
inside a repository that consists of several files. To be able to run the application, a Node.js [21]
version of 14.5 or higher has to be installed on the system. Furthermore, in order to automatically
build an Android application with Gradle, the Android Software Development Kit (SDK) [9],
which is already shipped with Android Studio, as well as the Java Development Kit (JDK) [18]
are additionally required. The following list shows where the mentioned applications can be
obtained from:

• Node.js: https://nodejs.org/

• Android SDK: https://developer.android.com/studio/

• JDK: https://oracle.com/de/java/technologies/javase-jdk15-downloads.html

Before the first execution of GenBenchDroid, several dependencies have to be installed. This
process can be automatically handled by the Node Package Manager (NPM) that is automati-
cally installed with Node.js. In order to trigger the installation process, the following command
has to be executed from the command-line inside the directory containing GenBenchDroid:

npm install

After executing the command, the installation process will take some seconds and after finishing
the process, a new folder named node_modules will appear inside the GenBenchDroid direc-
tory. This folder contains all the required dependencies. After this step GenBenchDroid is
ready to be configured.

4.3.2 Configuration

GenBenchDroid has to be configured before its usage. The configuration file is called .env
(conventional way of configuring Node.js applications) and can be found in the root directory of
GenBenchDroid. To configure GenBenchDroid the user has to set the following key-value
pairs:

• TEMPLATE_DIR: Specifies the location of the templates that are provided to Gen-
BenchDroid.

• MODULE_DIR: Specifies the location of the modules that are provided to GenBench-
Droid.

• OUTPUT_DIR: Specifies the location of where the generated files, like the APK file
containing the generated application and the corresponding ground-truth file should be
placed.

• PROJECT_NAME: Specifies the project name of the generated application. This property
will be used inside the Android Manifest file, as well as the package name for the generated
application.

44

https://nodejs.org/
https://developer.android.com/studio/
https://oracle.com/de/java/technologies/javase-jdk15-downloads.html

Chapter 4. Implementation

• ANDROID_SDK_DIR: Specifies the location of the Android SDK.

• JDK_DIR: Specifies the location of the JDK.

Listing 4.1 shows one example configuration for GenBenchDroid. After the configuration,
GenBenchDroid is ready to be used.

TEMPLATE_DIR = templates
MODULE_DIR = modules
OUTPUT_DIR = output
PROJECT_NAME = com . generated . app
ANDROID_SDK_DIR = path/ to /Android/Sdk
JDK_DIR = path/ to /Java/ jdk

Listing 4.1: Example content of the .env configuration file

4.3.3 Usage

GenBenchDroid allows for two different usage modes: (1) themanual mode and (2) the fuzzing
mode.

Manual mode

The manual mode allows the user to provide his/her own TMC. This way the user is able
to generate a benchmark case that is fully customized to his/her desires. In order to start
GenBenchDroid, the following command has to be executed from the command-line inside
the GenBenchDroid directory:

node app --configuration <TMC>

The placeholder <TMC> is replaced with the desired TMC in string format. The following
command shows the execution of GenBenchDroid with the running example (see Figure 2.4)
as argument:

node app --config "BasicTemplate ImeiSource ArrayBridge SmsSink"

This command will generate the benchmark case from the running example (see Figure 2.4). The
templates and modules are specified by their individual file names without their file extension.
The file that contains the template TBasic is called BasicTemplate.json. Therefore, the string
containing the TMC specifies the usage of this template by the token BasicTemplate.

The desired template has to always be the first token inside the provided string. Afterwards
no more templates can be provided, only further modules are valid tokens. Every token inside
the string containing the TMC has to be separated by spaces. Furthermore, the insertion order
of the modules is specified by the order of the configuration, from left to right.

In case that one of the provided modules is a branching module, each branch is indicated by
a parenthesis pair directly following the branching module. For every branch that is created by
the module, one parenthesis pair has to be provided. The following command shows the creation
of a benchmark case with a branching module contained inside the TMC:

node app --config "BasicTemplate RandomIfElseBridge (ArrayBridge) (SmsSink)"

45

4.3 Manual

The module MRandomIfElse, which is contained inside the file RandomIfElseBridge.json is a
branching module that creates two branches. Therefore, two parenthesis pairs are specified
directly afterwards. The content inside the first parenthesis pair shows the modules that are
inserted into the first branch, while the content inside the second parenthesis pair shows the
modules that are inserted into the second branch.

Parenthesis pairs may be nested arbitrarily deep, by inserting more branching modules.
However, they may also be left empty. This indicates that no further module is inserted into
the corresponding branch.

After the execution of the command, GenBenchDroid verifies that the provided configu-
ration is valid. If it is valid, GenBenchDroid will start the generation process. After finishing
the process successfully, the generated Android application and the other files can be found
inside the output directory that has been specified inside the configuration file.

Fuzzing mode

The fuzzing mode will generate a benchmark case from an automatically randomly generated
TMC. In order to execute the fuzzing mode, the following command has to be executed from
the command-line inside the GenBenchDroid directory:

node app --fuzz

After executing this command, GenBenchDroid will generate a random, but valid, TMC and
use this TMC to generate a benchmark case. It will use a random subset of all templates and
modules that are specified inside the grammar to create the TMC. The fuzzing mode can be
configured with a set of further parameters.

The depth parameter indicates the maximum amount of derivations that can be used to
generate the TMC. The higher this value is set, the longer the TMC can become. However, short
TMCs are still possible. The following command generates a random TMC with a maximum of
100 derivations:

node app --fuzz --depth 100

The minLength parameter indicates the minimum length of the generated TMC. The length of
a TMC is defined by the amount of tokens inside the TMC. The following command generates
a random TMC with a minimum length of 10 tokens.

node app --fuzz --minLength 10

The taintflow parameter indicates whether the generated TMC has to definitely contain a
taintflow inside it. The following command generates a random TMC that has a guaranteed
taintflow inside it.

node app --fuzz --taintflow

The contains parameter indicates that one or multiple specific modules have to be contained
inside the generated TMC. It can also handle substrings in order to not only specify one specific
module or template, but specify a set of templates or modules containing the substring. The
following command generates a random TMC which contains the module ArrayBridge and also
a random module that has Sink in its name.

node app --fuzz --contains ArrayBridge Sink

46

Chapter 4. Implementation

The ignore parameter is the counter-part to the contains parameter. It will only generate
benchmark cases that do not contain the specified modules.

All of the above mentioned parameters can also be combined. However, the user has to
consider to provide only sensible combinations of parameters, since no TMC with a minimum
length of 50 can be generated with a maximum derivation depth of 20.

4.3.4 Extension

One important capability of GenBenchDroid is its extendibility. The user can creates his/her
own templates and modules and provide them to GenBenchDroid. The templates and modules
are encoded in JSON format and can be created manually. To ease the creation process an
application called GenBenchDroid Editor has been developed, which is attached to the
thesis (see Appendix A.4). Figure 4.2 shows the GUI of the GenBenchDroid Editor. It
consists of two tabs, one for template creation and one for module creation. It contains all fields
that can be specified for a template and a module. Additionally, it contains a panel where the
flow of the template and, in case of module creation, a set of flows can be specified. It also
allows the user to load already existing templates or modules and modify them.

Before the first execution of the Modulebuilder, the following command has to be executed
from the command-line inside the directory containing GenBenchDroid Editor, in order to
install all needed dependencies:

npm install

After the installation process finished, the GenBenchDroid Editor can be started by exe-
cuting the following command:

npm start

Creating Templates

To create a new template, each of the specified text fields in the GenBenchDroid Editor
have to be filled in. The Source Code text field has to contain the structure of the Android
component that represents the entry point to the generated application. The following five
placeholders have to be specified inside it (placeholders are always wrapped inside double curly
brackets):

Placeholder Location Description
{{ imports }} required imports
{{ globals }} created global fields of further modules
{{ module }} source code of the next module
{{ methods }} created methods of further modules
{{ classes }} created classes/components of further modules

Table 4.1: Placeholders for created templates in the Source Code field

Additionally, in case of the component being an activity, it has to contain the onCreate call-
back where the corresponding layout file is set via the statement setContentView(R.layout
.Activity). Furthermore, a variable of type String called sensitiveData has to be declared
and initialized, right before the location of the module placeholder. This can happen in an
arbitrary lifecycle callback. And the final requirement is that the context of the activity has to

47

4.3 Manual

be stored in a global field called context.

The Android Manifest text field has to contain the structure of the Android manifest file for
the generated application. The first component that is created by the template has to be directly
defined in the Android Manifest text field. Furthermore, the following three placeholders have
to be specified inside it:

Placeholder Location Description

{{ project }} every location where the name of the project is required
(can be set inside the configuration file (see Section 4.3.2))

{{ permissions }} permission requests and used features declarations
{{ components }} description of components that are created by further modules

Table 4.2: Placeholders for created templates in the Android Manifest field

The Layout text field has to contain the structure of the layout file for the generated application.
It has to contain a ViewGroup as the outermost element and also specify one placeholder:

Placeholder Location Description
{{ views }} description of View elements that are created by further modules

Table 4.3: Placeholders for created templates in the Layout field

The Class Name text field inside the Flow section of the GenBenchDroid Editor has to
contain the name of the class that the module placeholder is placed in. The Method Signature
field has to contain the signature of the method the module placeholder is located at in a Jimple
[46] representation.

Creating Modules

When creating a new module, at first the type of the module has to be selected. Furthermore,
a unique name for the module has to be specified. If the component is a source module, it
has to contain the word "Source" inside its name. The same holds for sink modules (This
greatly increases the performance of the fuzzing mode, since not every module has to be loaded
beforehand to determine whether the generated application will contain a taint flow). The
text fields Imports, Globals, Methods, Classes, Permissions, Components and Views can be left
empty if not required. The only mandatory text field is the Module field. This field represents
the code snippet, that is inserted in the module placeholder of the previous module. It is the first
code of the module that will be executed by the generated application. This field can therefore
be used to invoke methods or classes that are created by the module. Each module has access
to the sensitiveData variable which contains the sensitive data and can freely interact with
it. If the created module changes the program flow by, for example, invoking a newly created
method, the user needs to make sure to make that variable, as well as the current context in a
variable called context, available to the next module.

There are only four placeholders that have to be defined inside the module:
If the program flow is not altered and therefore the location of the globals, methods and classes
placeholders does not change, the placeholders stay in the same text field. However, if the
program flow changes, the location of them may as well change. Since the Module text field is
mandatory, the location of the module placeholder always changes.

If the newly created module is a branching module, each of the four placeholders have to
be inserted for each created branch at the appropriate location. This means that if there a two

48

Chapter 4. Implementation

Placeholder Location Description
{{ globals }} created global fields of further modules
{{ module }} source code of the next module
{{ methods }} created methods of further modules
{{ classes }} created classes/components of further modules

Table 4.4: Placeholders that have to be specified inside newly created modules

branches in the module, each of the four placeholders has to be specified twice. This also has
to be performed, even if there are multiple placeholders of the same type right after each other.

Furthermore, whenever a new identifier is introduced by the user (besides the sensitiveData
and context identifier) every occurrence of it has to be wrapped inside a § and a $ symbol (e.g.
int §data$ = 123).

Describing the flow of the module is mandatory. The description of the flow is performed like
for the creation of templates. However, if the program flow is not altered by the module and the
location of the module placeholder does not change to another class or method, these fields can
be left empty. Furthermore, there are three additional properties. The Statement Signature field
has to contain the signature of the function that interacts with the sensitive data in a Jimple [46]
format. While this field is mandatory for source and sink modules, it can be left empty for bridge
modules. The leaking checkbox can be used to indicate whether the module continues the taint
flow or sanitizes it (if unchecked, the taint flow is rendered negative). The reachable checkbox
indicates that the following code is unreachable, meaning that the taint flow can never be turned
positive again. For every branch that is created by the module, one individual flow description
has to be created. The first flow description corresponds to the module placeholder that is the
furthest up in the generated source code, while the last one corresponds to the placeholder that
is the furthest down. The flow descriptions can be easily rearranged via drag and drop.

Adding to the Grammar

Whenever a new template or module has been created, it has to be added to the grammar, so it
can be used by GenBenchDroid. In order to add it to the grammar, the user has to modify the
file called grammar.ne, that is located inside the GenBenchDroid directory. At the bottom
of the file there are two symbols. If the user created a template he simply has to add it to the
template symbol. To add it he/she has to add a | symbol (indicates an OR-symbol) to the last
defined template and attach the name of the newly created template without the file extension to
it. The same procedure has to be performed for created modules. However, the created modules
need to be attached to the module symbol and also need to have an extra symbol attached to
them, based on the type of each created module. If the user created a linear module, he/she has
to attach a linear symbol to the module name. If the user created a branching module with
two branches, he/she has to attach a 2Branches symbol, if the created module contains three
new branches, the 3Branches symbol has to be attached. The number in the symbol indicates
the number of created branches.

Listing 4.2 shows an example of adding newly created modules and templates to the grammar.
Newly created modules and templates are highlighted in green color.

. . .
template −> " BasicTemplate " | . . . | "CreatedTemplate"
module −> " ImeiSource " l i n e a r | . . . | "CreatedLinearModule" l i n e a r |

49

4.3 Manual

"CreatedBranchingModule" 2Branches
Listing 4.2: Adding newly created templates and modules to the grammar

After the grammar has been modified, a new parser has to be compiled from the grammar. In
order to do so, the following command has to be executed from the command-line inside the
GenBenchDroid directory:

node app --compile

The modified grammar is then compiled into a parser that can be used by GenBenchDroid.
Now the newly created templates and modules can be used by it.

(a) Template creation tab (b) Module creation tab

Figure 4.2: GUI of the GenBenchDroid Editor

50

Chapter 4. Implementation

4.3.5 Available Parameters

Table 4.5 shows all parameters that are available to GenBenchDroid as well as their function-
ality and an example usage.

Parameter Functionality Example Usage
--configuration,
--config,
-c

Generate a benchmark case
with the provided TMC.

node app -c "BasicTemplate ImeiSource SmsSink"

Generates a basic benchmark case.

--fuzz,
-f

Activates fuzzing mode and
generates a random benchmark case
with a randomly generated TMC.

node app -f

Generates a random benchmark case.

--depth,
-d

Can only be used inside fuzzing mode.
Specifies the maximum amount of derivations
allowed to generate the TMC.
Default value: 25

node app -f -d 20

Generates a random benchmark case with at most
20 derivations.

--minLength,
-m

Can only be used inside fuzzing mode.
Specifies the minimum length of the
generated TMC.
Default value: 1

node app -f -m 10

Generates a random benchmark case with a
minimum TMC length of 10 tokens.

--taintflow,
-t

Can only be used inside fuzzing mode.
Specifies that there has to be a
guaranteed taint flow
inside the generated TMC.

node app -f -t

Generates a random benchmark case with a
guaranteed taint flow inside.

--contains
Can only be used inside fuzzing mode.
Specifies strings that have to contained
inside the generated TMC.

node app -f --contains ArrayBridge Sink

Generates a random benchmark case with a
TMC that contais an ArrayBridge and a random
module containing the word Sink.

--ignore
Can only be used inside fuzzing mode.
Specifies strings that cannot be contained
inside the generated TMC.

node app -f --ignore ArrayBridge

Generates a random benchmark case with a
TMC that does not contain an ArrayBridge.

--compile
Recompiles the grammar into a parser.
Has to be executed, whenever the grammar
has been changed or extended.

node app --compile

Recompiles the parser from the grammar.

Table 4.5: Available Parameters

51

4.3 Manual

52

Evaluation
5

The previous sections described a concept for a benchmark case generator. Based on this concept
a generator called GenBenchDroid has been implemented. In this chapter the performance of
GenBenchDroid will be evaluated in regard to various aspects. A direct comparison to other
tools however is not possible since there exist none which are similar enough (see Chapter 6).

• RQ1: Is GenBenchDroid able to generate existing micro benchmark cases?
Furthermore, do the generated micro benchmark cases provide the same analysis results as
their hand-crafted counter-parts when used to evaluate Android taintflow analysis tools?
To answer these questions, several micro benchmark cases from DroidBench will be
generated by GenBenchDroid and compared to their manually created counter-parts.
A manual review of the source code, as well as a comparison of analysis results will be
performed. Additionally, the executability of the generated benchmark cases will be tested
on an Android device.

• RQ2: How long does GenBenchDroid take to generate a benchmark case?
How does the amount of used modules influence the generation time?
In order to answer these questions, multiple benchmark cases, using TMCs of various
length, will be generated and the generation time will be measured. Furthermore, the
relation between benchmark case generation time and analysis time will be investigated.

• RQ3: How many benchmark cases have to be fuzzed to generate a meaningful benchmark
suite?
To answer this question multiple benchmark suites containing various amounts of bench-
mark cases will be generated by GenBenchDroid’s fuzzing mode and supplied to an
analysis tool in order to determine various statistical measures.

• RQ4: Is GenBenchDroid able to generate benchmark cases that are comparable to
real-world applications?
To answer this question a case study will be performed that investigates a generated
benchmark case that contains the same amount of taintflows with the same aspects that
a real-world application from TaintBench contains.

The following sections will address the research questions in detail. Furthermore, a summary of
the answers can be found at the end of this chapter.

53

5.1 RQ1: Is GenBenchDroid able to generate existing micro benchmark cases?

5.1 RQ1: Is GenBenchDroid able to generate existing micro
benchmark cases?

To answer RQ1, benchmark cases have been generated, using GenBenchDroid that are se-
mantically equivalent to micro benchmark cases from DroidBench 3.0 [13]. DroidBench
consists of 190 micro benchmark cases that are distributed among 18 categories. In order to
cover a wide variety of different categories of benchmark cases, templates and modules have been
created to regenerate one benchmark case from 13 categories of DroidBench. Five categories
have been omitted for the following reasons: three of the omitted categories of DroidBench
(DynamicLoading, Native, Selfmodification) require the usage of external files, like, for exam-
ple, native libraries. The usage of external files is currently not supported by GenBenchDroid
and is subject of further work. The other two omitted categories (InterAppCommunication,
Reflection_ICC) can be constructed by combining other categories of DroidBench.

Figure 5.1 illustrates the evaluation process. At first, one benchmark case from each category
of DroidBench (besides the above mentioned five categories) has been selected. This selection
has been performed in a way that the alphabetically first benchmark case of each category has
been selected. However, there were some derivations in order to ensure a mixture of benchmark
cases that contain a positive and benchmark cases that contain a negative taint flow. Based on
the selected benchmark cases, modules and templates have been created, so GenBenchDroid is
able to regenerate the selected benchmark cases. The created modules and templates have then
been supplied to GenBenchDroid in order to generate the benchmark cases (the configuration
used for the generation of each benchmark case can be found in Appendix A.3). A ground-truth
has been generated as well, however it was not needed for the current evaluation process, because
the topic of interest was only whether the regenerated benchmark cases yield the same analysis
results as the hand-crafted ones from DroidBench. After the generation of a benchmark
case, the APK-file has been decompiled and a manual review has been performed in order to
verify that the generated benchmark case contains the same taint flows as its manually created
counter-part and also to check that both benchmark cases are semantically equivalent. If these
properties were not achieved, the template/modules have been adjusted accordingly. Once the
taint flows did match each other and both benchmark cases were semantically equivalent, the
original benchmark case from DroidBench, as well as the one generated by GenBenchDroid
have been supplied to FlowDroid 2.7.1 [26] and Amandroid 3.1.2 [49] for an analysis.

based on

analysisBenchmark Case
from DroidBench

(APK)

Module
Module input

Module / Template
generate

GenBenchDroid
analysisGenerated

Benchmark Case
(APK)

reviewcreate / adjust

FlowDroid /
Amandroid

Figure 5.1: Benchmark case evaluation process

54

Chapter 5. Evaluation

Table 5.1 shows the results of the analysis. FlowDroid and Amandroid both yielded five
differing analysis results. FlowDroid was not able to uncover positive taint flows contained in
the benchmark cases PublicAPIField1, Clone1, ImplicitFlow1 and ImplicitFlow5. Furthermore,
it yielded a false warning for the benchmark case ArrayAccess1 that contains a negative taint
flow. Amandroid only failed to uncover the taint flow in the benchmark cases ImplicitFlow1
and ImplicitFlow5. However, Amandroid yielded three false warnings for the benchmark cases
FlowSensitivity1, ArrayAccess1 and SimpleUnreachable1. The most important result however,
is that the generated benchmark cases almost always yielded the same analysis results as their
manually created counter-parts.

This result indicates that GenBenchDroid is able to regenerate micro benchmark cases
from most categories of DroidBench 3.0.

?©= correct warning, ?= false warning, ©= missed leak, ©= no leak and no report,
multiple symbols = multiple taint flows inside benchmark case

Category Benchmark Case FlowDroid Amandroid
DroidBench Generated DroidBench Generated

Aliasing FlowSensitivity1 © © ? ?

AndroidSpecific PublicAPIField1 © © ?© ?©
ArraysAndLists ArrayAccess1 ? ? ? ?

Callbacks Button1 ?© ?© ?© ?©
EmulatorDetection Bluetooth1 ?© ?© ?© ?©

FieldAndObjectSensitivity FieldSensitivity2 © © © ©
GeneralJava Clone1 © © ?© ?©
ImplicitFlows ImplicitFlow1 ?©© ?© ?© ©© ©©
ImplicitFlows ImplicitFlow5 © © © ©

ICC ActivityCommunication1 ?© ?© ?© ?©
Lifecycle ActivityLifecycle4 ?© ?© ?© ?©
Reflection Reflection1 ?© ?© ?© ?©
Threading AsyncTask1 ?© ?© ?© ?©

UnreachableCode SimpleUnreachable1 © © ? ?

Table 5.1: Analysis results of FlowDroid and Amandroid on benchmark cases from Droid-
Bench and benchmark cases generated by GenBenchDroid

Nevertheless, this does not mean that GenBenchDroid is able to regenerate any benchmark
case from DroidBench 3.0 and obtain the same analysis result from all Android taint flow
analysis tools. During the evaluation process one benchmark case has been detected that, even
though it is semantically equivalent and contains the same taint flows, did not yield the same
analysis result from FlowDroid. The micro benchmark case ImplicitFlow1 of the ImplicitFlows
category from DroidBench contains two positive taint flows. In both flows the device’s IMEI
number is read and leaked by writing it to a log. However, in the first taint flow, the numbers
contained in the IMEI are directly replaced by characters, while in the second taint flow the
numbers are replaced by characters based on ASCII values. Listing 5.1 shows the decompiled
source code of the original benchmark case from DroidBench. Listing 5.2 shows the decompiled
source code of the by GenBenchDroid regenerated benchmark case. The obfuscateIMEI
method of the original benchmark case is equivalent to the obfuscateData2 method of the
regenerated benchmark case (besides some identifiers), and therefore both are omitted in the
listings. The same holds for the obfuscateIMEI and obfuscateData methods. Both benchmark
cases contain the same two positive taint flows and are semantically equivalent. However, the
original benchmark case, in comparison to the regenerated one, only reads the device’s IMEI
number once and stores it inside a variable. Furthermore, it also outsources the method call,
where the sensitive data is written into a log into its own method.

55

5.1 RQ1: Is GenBenchDroid able to generate existing micro benchmark cases?

Even when altering the modules used to generate the benchmark case, GenBenchDroid
was not able to regenerate an equal benchmark case due to compiler code changes.

While Amandroid was not able to uncover any of the taint flows contained inside the
original benchmark case, nor the regenerated one, FlowDroid managed to uncover one taint
flow inside the original benchmark case and even both taint flows in the regenerated one. This
may be due to an overshadowing effect that is present in FlowDroid, which prevents it from
finding a second taint flow, if two taint flows share a common part of the flow [22].

This result shows that even though GenBenchDroid may be able to generate semantically
equivalent micro benchmark cases, in some cases these regenerated benchmark cases do not offer
the same analysis results as their manually created counter-parts.

pub l i c void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y_ imp l i c i t_ f l ow1) ;
S t r ing imei = ((TelephonyManager) getSystemServ ice (" phone "))

. getDev ice Id () ;
writeToLog (obfuscateIMEI (imei)) ;
writeToLog (copyIMEI (imei)) ;

}

p r i va t e void writeToLog (St r ing message) {
Log . i ("INFO" , message) ;

}

. . .
Listing 5.1: ImplicitFlow1 from DroidBench

pub l i c void onCreate (Bundle savedIns tanceState) {
super . onCreate (savedIns tanceState) ;
setContentView (R. layout . a c t i v i t y) ;
Log . i ("INFO" , obfuscateData2 (((TelephonyManager)

getSystemServ ice (" phone ")) . getDev ice Id ())) ;
Log . i ("INFO" , copyData5 (((TelephonyManager)

getSystemServ ice (" phone ")) . getDev ice Id ())) ;
}

. . .
Listing 5.2: ImplicitFlow1 regenerated by GenBenchDroid

In addition to the analysis results, the executability of the regenerated benchmark cases has
been investigated. GenBenchDroid compiles all generated source code into Android APK-
files. This means that every generated APK-file does represent a valid Android application
that contains no compile-time errors. However, there may be still runtime errors present in the
generated APK-file. To determine whether the generated benchmark cases contain any runtime
errors, each application has been installed and executed on a virtual Android device (Google
Pixel 2), running Android 7.0 (API level 24). Every generated benchmark case was able to be

56

Chapter 5. Evaluation

executed on the Android device without any runtime error. This result indicates that benchmark
cases generated by GenBenchDroid are also suitable for Android taint flow analysis tools that
perform a dynamic analysis.

GenBenchDroid offers additional capabilities compared to DroidBench. It is able to
generate benchmark cases for categories that are not present in DroidBench.

One of these categories not present in DroidBench is Recursion. There are no benchmark cases
in DroidBench that make use of recursive function calls. However, such benchmark cases can
easily be generated by GenBenchDroid by using the provided SimpleRecursionBridge.

Furthermore, GenBenchDroid allows for a quick adjustment to new Android API releases.

Usually, whenever there is a new API release, many methods and classes become deprecated
and are replaced by something else. Instead of updating every benchmark case that contains a
deprecated method or class, for GenBenchDroid only the modules/templates using these dep-
recated methods or classes have to be updated. Once they have been updated, benchmark cases
using the updated module/template can easily be regenerated. Especially for modules/templates
that are used frequently, this saves the user a lot of time and effort.

5.2 RQ2: How long does GenBenchDroid take to generate a
benchmark case?

To answer RQ2, benchmark cases with various amounts of modules have been generated by
GenBenchDroid. Six benchmark cases with different module counts have been generated.
The used modules have been selected randomly.

Table 5.2 shows the six benchmark cases with their individual amount of modules. Further-
more, it shows what kind of benchmark case is represented with each module amount and how
many taint flows are approximately contained inside such a benchmark case.

Module count Represents Approx. Taint flows
4 Simple micro benchmark case 1
10 Complex micro benchmark case 1 – 2
25 Simple real-world application 3 – 6
100 Complex real-world application 20 – 40
500 Very complex real-world application 50 – 100
1000 Very complex real-world application 100 – 200

Table 5.2: Benchmark cases used for execution-time measurements

Figure 5.2 shows the results of the measurement of the execution-time of GenBenchDroid. All
executions and measurements have been performed on a desktop computer running Windows 10
with an AMD Ryzen 5 3600 CPU and 32 GB of physical memory. Each benchmark case has been
generated a total of 20 times and the average time of all generations has been calculated and can
be seen in the chart (The first startup of the Gradle daemon takes around eight seconds and has
been omitted in the evaluation as it only has to be started once after the computer is switched
on). The execution-time is divided into three different phases. In the verification phase the
provided TMC is validated against the supplied grammar. In the source-files generation phase
the required templates and modules are loaded, preprocessed and all necessary source-files, as

57

5.2 RQ2: How long does GenBenchDroid take to generate a benchmark case?

well as the ground-truth, are generated. In the compilation phase all source-files are compiled
into an executable Android APK-file.

One can observe that the time needed for the verification of the TMC can almost be neglected,
as it only takes a very small percentage of the total generation time. Furthermore, one can
observe that the time needed for the source-file generation also only takes a small percentage
of the total generation time when the module count is rather small. However, at some point
at around 500 modules the time needed for the generation of the source-files takes the biggest
share of the generated time, as the compilation time stays fairly constant, independent from the
amount of provided modules. Because of this behavior the time needed to generate very small
micro benchmark cases and real-world benchmark cases is roughly the same and takes around
three seconds for each generated benchmark case. Only when really complex benchmark cases
with a fairly high module count are generated the generation time substantially increases.

This result indicates that a full benchmark suite like, for example, DroidBench, which
consists of 190 micro benchmark cases, can be generated in less than ten minutes.

4 10 25 100 500 10000

5

10

15

20

2.99 3.02 3.1 3.6

7.94

20.8

Number of Modules

T
im

e
in

s

Compilation
Source-files generation
Verification

Figure 5.2: Time needed for GenBenchDroid to generate a benchmark case

Another interesting question is the relation between the generation time and the analysis time
of benchmark cases. Figure 5.3 shows the relation between the generation time needed by
GenBenchDroid and the analysis time needed by FlowDroid and Amandroid to analyze
the generated benchmark cases. One can see that the generation time is, as already mentioned
before, fairly constant until the module count becomes rather high. Only then the required
generation time increases substantially. Furthermore, it can be observed that benchmark cases
consisting of 25 modules or less take around the same time to be generated as they take to be
analyzed by FlowDroid and Amandroid. Only for more complex benchmark cases with more
than 25 modules a disparity between the generation and the analysis time can be observed. For
FlowDroid the analysis time stays fairly low compared to the generation time. The generation
of the benchmark case takes more and more time compared to the analysis. But this disparity
only becomes clearly noticeable, once the module count of the benchmark case becomes rather
high. The generation time for a benchmark case consisting of 500 modules takes around eight
seconds, while the analysis of this benchmark case with FlowDroid takes around four seconds.
This disparity further increases, as the module count increases.

However, for Amandroid the opposite can be observed. The increase of analysis time
compared to the generation time is really significant once the generated benchmark cases become

58

Chapter 5. Evaluation

bigger. The analysis of a benchmark case consisting of 500 modules takes Amandroid almost
four times longer than the generation of the benchmark case (more than 27 seconds). This
disparity still holds, even when the module count further increases.

These results indicate that for smaller benchmark cases (less than 25 modules) the generation
and the analysis almost have the same share among the total time needed for generation and
analysis of a benchmark case. For bigger benchmark cases however, the results depend on the
used analysis tool.

4 10 25 100 500 10000

20

40

60

Number of Modules

T
im

e
in

s
Amandroid
FlowDroid
GenBenchDroid

Figure 5.3: Relation between generation and analysis time

This experiment shows another capability of GenBenchDroid:

GenBenchDroid can be used to efficiently analyze the execution-times of Android app
analysis tools, since the size and complexity of the generated benchmark cases can easily be
scaled up.

This can help to uncover execution-time related flaws in analysis tools for large applications.

5.3 RQ3: How many benchmark cases have to be fuzzed to
generate a meaningful benchmark suite?

To answer RQ3, multiple benchmark suites consisting of various amounts of randomly generated
benchmark cases by GenBenchDroid’s fuzzing mode have been generated. The configuration
used for GenBenchDroid’s fuzzing mode in this experiment was the following:

1. The taintflow option has been provided in order to only generate benchmark cases
containing at least one positive or negative taint flow. However, a generated benchmark case
may also contain more than one taint flow.

2. The minLength option has been set to four. This means that every generated benchmark
consists of one template and at least three modules. This prevents the generation of benchmark
cases that only consist of one source and one subsequent sink.

In total, 70 benchmark suites have been generated consisting of 50, 100, 175, 250, 375, 500
and 750 benchmark cases. Ten benchmark suites have been generated consisting of each of the
mentioned amounts of benchmark cases. This means there were ten benchmark suites consisting
of 50 benchmark cases, ten benchmark suites consisting of 100 benchmark cases and so on. This

59

5.3 RQ3: Fuzzing mode evaluation

was done in order to compare the performance of the analysis tool using benchmark suites with
the same amount of benchmark cases.

After generating the benchmark suites, each of them was provided to FlowDroid 2.7.1 for
analysis. The exact analysis results can be found in Appendix A.3.

Based on the analysis results, the precision, recall and F-measure (see Section 2.2.2) have
been calculated for each benchmark suite.

Figure 5.4 shows the maximum difference between the analysis results (difference between the
benchmark suite with the highest measure and the one with the lowest). One can observe that
the maximum difference is very high for benchmark suites containing less than 200 benchmark
cases. Especially the recall diverts heavily for small benchmark suites. However, one can also
observe that at 250 benchmark cases the maximum difference for the precision does not decrease
further and mostly stays constant. For the recall and the F-measure this behavior can first be
observed at 500 benchmark cases.

0 200 400 600 8000

5

10

15

20

25

Number of benchmark cases

M
ax

im
um

D
iff
er
en

ce
in

%

Precision
Recall
F-measure

Figure 5.4: Maximum Difference between evaluation iterations with generated benchmark suites

Figure 5.5 shows the standard deviation of the analysis results. The standard deviation describes
the variation across all analysis iterations. A low value indicates that all values are close to the
mean.

One can observe that the forms of the curves are very similar to the curves in Figure 5.4.
There is a big decrease in the standard deviation until 250 benchmark cases are reached. For
the precision the biggest part of the decrease stops at this point. However, the recall and the
F-measure do still slightly decrease until 500 benchmark cases are reached. From there on all
curves stay mostly constant at a standard deviation of around 1%, which indicates very accurate
results for every test suite that will be generated with this amount of benchmark cases.

These results show that GenBenchDroid can generate a meaningful benchmark suite with
its fuzzing mode by generating 500 random benchmark cases with an expected deviation from
the average of around 1% for precision, recall and F-measure.

However, if the user is only interested in the precision or the F-measure of the analysis tool,
250 benchmark cases are sufficient to generate a meaningful benchmark suite with an expected
deviation of less than 2%.

60

Chapter 5. Evaluation

0 200 400 600 8000

2

4

6

Number of benchmark cases

St
an

da
rd

de
vi
at
io
n
in

%

Precision
Recall
F-measure

Figure 5.5: Standard deviation between evaluation iterations with generated benchmark suites

5.4 RQ4: Is GenBenchDroid able to generate benchmark cases
that are comparable to real-world applications?

To answer RQ4 a case-study was performed. Modules and templates have been created to be able
to generate a benchmark case that contains taint flows that are based on taint flows contained
inside a real-world application. The generated benchmark case is based on a application from
TaintBench [22]. TaintBench is a benchmark suite that consists of 39 real-world Android
applications that intentionally try to leak sensitive data from the device. TaintBench contains
the source code of these applications, as well as other important information like, for example,
the amount of positive, as well as negative, taint flows inside the application and furthermore
the various aspects contained in each taint flow.

An application from TaintBench contains, on average, five positive and one negative taint
flows. Since there is no application containing exactly five positive and one negative taint flows,
the application Samsapo has been selected as archetype for the benchmark case generated by
GenBenchDroid for the case-study, which is closest with four positive and one negative taint
flows.

Samsapo is a malicious application that sends a hyperlink, leading to the malicious APK-
file, to all of the user’s contacts and uploads SMS messages, as well as, phone numbers to a
remote server. Table 5.3 shows the aspects contained inside each of Samsapo’s taint flows. The
first taint flow is a positive one that consists of four different aspects. Array indicates that the
sensitive data is inserted into an array at some point. Collections means that the sensitive data
is inserted into a Java collections objects. This could, for example, be a LinkedList or a Map
object. Lifecycle indicates that there are Android lifecycle callbacks involved in the taint flow.
Finally, threading indicates that there are threading mechanism involved in the taint flow. All
these aspects are included in the taint flow before the sensitive data is leaked to the outside
world. The second taint flow consists of all the aspects which are also present in the first taint
flow. However, in addition, the sensitive data is appended to a string at some point. The third
taint flow consists only of one aspect. At some point, before leaking the sensitive data, reflection
is part of the taint flow. The fourth taint flow consists of all aspects that are also present in the
second one. While all previous taint flows are positive ones that leak data, the fifth taint flow
is a negative one that looks like a taint flow that stretches from a source to a sink, but does not
leak sensitive data.

61

5.5 Summary

+ = positive taint flow, − = negative taint flow
Taint flow 1 + Taint flow 2 + Taint flow 3 + Taint flow 4 + Taint flow 5 −

array appendToString reflection appendToString
collections array array
lifecycle collections collections
threading lifecycle lifecycle

threading threading

Table 5.3: Taint flows contained inside the Samsapo application from TaintBench

While the generated benchmark case (configuration can be found in Appendix A.3) is not se-
mantically equivalent to Samsapo, it contains the same amount of positive, as well as negative,
taint flows, which all contain the same aspects as Samsapo’s taint flows.

Once a module has been created that represents a certain aspect, it can easily be integrated
into any taint flow inside the generated benchmark case. This is due to the concept of Gen-
BenchDroid that allows for an arbitrary combination of templates and modules, allowing the
creation of arbitrary long and complex taint flows. The created taint flows can easily be ex-
tended by further aspects by simply creating new modules or using previously created modules
that represent the desired aspect.

This shows that GenBenchDroid is able to generate benchmark cases that contain similar
taint flows, which are present in real-world applications.

These generated benchmark cases can also be artificially inflated by inserting modules in between
the taint flows that are not related to the sensitive data. This way arbitrary complex benchmark
cases, for example, in regard to line of codes or depth of the call graph, can be generated which
are even more comparable to real-world applications, since real-world application usually contain
a lot of code that is unrelated to the contained taint flows.

5.5 Summary

At first in RQ1 it has been shown that GenBenchDroid is able to regenerate micro benchmark
cases from almost all categories of the benchmark suite DroidBench. However, it also has been
shown that due to compiler code optimizations one benchmark case from DroidBench could
not be regenerated, as the regenerated benchmark case yielded different results when analyzed
by FlowDroid.

In RQ2 it has been shown that the generation of a benchmark case consisting of 100 modules
or less takes GenBenchDroid around three seconds. This is almost the same time an analysis
of the resulting benchmark case by FlowDroid or Amandroid takes. A benchmark suite like
DroidBench can therefore be completely regenerated in less than 10 minutes. Furthermore, it
has been shown that Amandroid’s analysis time, in comparison to FlowDroid’s drastically
increases for benchmark cases with a high module count, revealing GenBenchDroid’s ability
to efficiently uncover execution-time related flaws in analysis tools.

Next, in RQ3 it has been shown that a meaningful benchmark suite can be created by using
GenBenchDroid’s fuzzing mode to generate 500 random benchmark cases, with an expected
deviation of around 1% from the average for precision, recall and F-measure.

Finally, in RQ4 GenBenchDroid’s ability to generate benchmark cases that are comparable
to real-world applications has been demonstrated in form of a case-study. An average malicious
application from TaintBench has been selected and a benchmark case containing similar taint

62

Chapter 5. Evaluation

flows as the selected application has been generated.
All research questions could be answered and alongside, the capabilities of GenBenchDroid

could be presented.

63

5.5 Summary

64

Related Work
6

Multiple benchmark case generators have been developed for various application areas. Yang
et al. have developed a benchmark case generator called Csmith [52] that aims at testing C
compilers for their correctness. It uses a grammar that spans a subset of the C language to
generate random, but valid C applications and provides them to a compiler in the hope to
uncover bugs. However, Csmith is only able to generate random applications and also does not
provide a ground-truth alongside the generated benchmark case.

Furthermore, there are multiple benchmark case generators that have been developed for
the area of energy consumption analysis. Bertran et al. have developed a benchmark case
generator called MicroProbe [27]. MicroProbe aims at generating benchmark cases that
can be used to analyze the energy consumption of multi-core/multi-threaded systems. The
generated benchmark cases are represented in an internal representation which is specific to
MicroProbe and can then be synthesized into a representation suiting the desired target
system. However, MicroProbe is limited to generating micro benchmark cases with little
complexity. Another benchmark case generator which aims at generating benchmark cases that
are suitable for analyzing energy consumption is called GenEE [34], which has been developed
by Eichler et al. GenEE, in comparison to MicroProbe, aims at creating benchmark cases
for the analysis of cyber-physical systems. It assembles randomly or by the user selected code-
pieces, which are responsible for (de-)activating device’s, like sensors or motor drivers, into
an application. Alongside the benchmark case, GenEE also generates the applications energy-
consumption profile and therefore provides a ground-truth that can be used to verify the energy-
consumption analysis of the benchmark case.

A benchmark case generator that has been developed by Wägemann et al. called GenE [48]
aims at creating benchmark cases for worst-case execution time analysis tools. GenE uses so
called patterns that contain code-snippets and insertion points for further patterns, which are
inserted into each other to generate a benchmark case. The user can also provide his/her own
patterns. In addition to the benchmark case, GenE generates a file that contains, among other
information, value ranges of variables, loop bounds or values triggering the most expensive
path contained inside the benchmark case. To generate a benchmark case, the user has to
specify desired benchmark characteristics. GenE’s design which uses user provided patterns
with insertion points is similar to GenBenchDroid’s modular design.

Despite the existence of many benchmark case generators, to the best of our knowledge, there
exists no generator that aims at Android app analysis. Currently benchmark suites containing
hand-crafted benchmark cases are used to evaluate the performance of Android taint analysis
tools. There are several benchmark suites which provide different types of benchmark cases.

65

DroidBench [13] is a benchmark suite that consists solely of micro benchmark cases which
span over a wide variety of categories. However, DroidBench does not provide proper ground-
truth information (see Section 2.2.2). It only provides the number of leaks each benchmark case
contains. This is an area that GenBenchDroid improves upon by automatically generating
detailed ground-truth information for every generated benchmark case. TaintBench [22] is a
benchmark suite that contains real-world benchmark cases. It provides 39 malicious applications
and detailed information about each taint flow inside them. ICC-Bench [17] is a benchmark
suite that aims at ICC. It consists of 24 micro benchmark cases that contain some form of ICC.
Like DroidBench, ICC-Bench also only provides the amount of taint flows contained inside
each application, instead of more detailed information. To evaluate an Android taint analysis
tool usually a combination of these benchmark suites is used.

To overcome the issue of imprecise or missing ground-truth information for taint analysis
in general, a tool for vulnerability-injection called LAVA (Large-scale Automated Vulnerability
Addition) [33] has been developed by Dolan-Gavitt et al. LAVA uses real-world applications
and inserts artificial vulnerabilities into them. These artificially malicious applications can be
used to evaluate taint analysis tools, since the vulnerabilities contained inside them are known
by the user. Such a vulnerability injection can also be performed by GenBenchDroid by using
a real-world application as template with an insertion placeholder for further modules.

Despite no benchmark case generators being available for the area of Android app analysis,
there are generators for other Android specific areas available. These generators mostly aim at
generating test inputs for Android applications in the hope to uncover bugs contained inside
them. Sapienz [42] is a tool that generates test inputs by using a combination of fuzzing and
systematic, as well as search-based exploration. IntelliDroid [50] also generates test inputs for
Android applications. However, IntelliDroid can be specifically configured to adjust to the
capabilities of dynamic analysis tools. DroidBot [41] also is a tool for test input generation for
Android applications. However, in contrast to the first two tools, DroidBot does not rely on
instrumentation (modification of the original application) and therefore the user does not have
to worry about inconsistencies between the tested and the original version of the application.

66

Threats to Validity and Future
Work

7
GenBenchDroid and the concept it is based on still offer some capabilities to be added.
GenBenchDroid and the underlying concept do not support the generation of benchmark
cases that require external files like, for example, native libraries. By extending the concept by
a way to include external files this could be achieved. Furthermore, GenBenchDroid relies on
the variable sensitiveData that contains the sensitive data throughout the application. This
possibly allows for an exploitation by taint analysis tools, which could specifically track the
flow of the variable sensitiveData. This may lead to an over-adaptation of analysis tools to
benchmark cases generated by GenBenchDroid. Additionally, the concept of only one variable
containing the sensitive data prohibits the creation of multiple taint flows which run in parallel
with different sensitive data. By extending GenBenchDroid’s concept by a way to store the
sensitive data in arbitrary variables and allowing for a more specific connection between modules
(specifying which sensitive variable is used by which module), these capabilities can be added
to GenBenchDroid.

Another improvement that can be employed in GenBenchDroid is the integration of a
more refined fuzzing procedure. Currently GenBenchDroid utilizes the unparsing functional-
ity of the underlying parser to generate random configurations, in order to only require a single
grammar, due to the desired extensibility. However, this implementation requires that Gen-
BenchDroid has to generate multiple configurations and discard the ones that do not fulfill
the specified criteria. Instead of this discarding process, a separate fuzzer that only generates
configurations with the desired properties could be integrated into the framework of GenBench-
Droid. This can either be done by implementing a grammar-based fuzzer which utilizes the
grammar that is already used by GenBenchDroid to verify configurations or by using an
already proven grammar-based fuzzer like, for example, Mozilla’s dharma [20] and employing
a model transformation mechanism [47] between the grammar used by GenBenchDroid and
the grammar used by the fuzzer, so that the grammar used by the fuzzer will be automatically
extended, whenever GenBenchDroid’s grammar is extended.

Furthermore, GenBenchDroid’s concept can be extended to be able to generate benchmark
cases for other platforms than just Android like, for example, iOS.

67

68

Conclusion
8

The main goal of the thesis is the development of a concept for an Android app analysis bench-
mark case generator that is able to generate benchmark cases of arbitrary complexity, which
can be used to evaluate the performance of Android taint analysis tools. This goal is achieved
by the concept that has been presented in this thesis.

The developed concept is based on a modular design, where each generated benchmark
case consists of a template, that denotes the starting point of the application and a set of
modules, that denote the content of the application. Furthermore, the concept of TMCs has been
introduced in order to be able to specify the desired order of the modules and to generate ground-
truth information that precisely describes every taint flow inside the generated benchmark case.
Each template and module contains various placeholders that denote the insertion location for
the next module. Based on this concept, a template and multiple modules can be combined to
generate a desired benchmark case. A benchmark case generator called GenBenchDroid has
been implemented based on this modular concept.

An evaluation of GenBenchDroid in regard to different aspects has been performed as well.
The evaluation showed that GenBenchDroid is able to regenerate micro benchmark cases from
all categories of DroidBench that do not require additional external files. GenBenchDroid is
even able to generate benchmark cases with properties that are not contained in DroidBench.
Furthermore, GenBenchDroid offers the capability to quickly adjust to new Android API
releases, which is problematic in current benchmark suites.

Additionally, it has been shown that GenBenchDroid is able to generate benchmark cases
that are comparable to real-world applications in regards to complexity and contained taint
flows. Alongside the benchmark case, GenBenchDroid also provides a ground-truth that
contains the expected analysis results of the generated benchmark case.

An execution time analysis of GenBenchDroid has been performed and compared to the
analysis time of FlowDroid and Amandroid which revealed a vast discrepancy between the
analysis time of FlowDroid and Amandroid for large benchmark cases. Because of the
easy scalability of benchmark cases generated by GenBenchDroid, these benchmark cases can
efficiently be used in analysis time evaluations of Android taint analysis tools.

GenBenchDroid’s fuzzing capabilities have been evaluated with the result that at 500
randomly generated benchmark cases a meaningful benchmark suite can be created that is able
to provide meaningful data when used to evaluate an analysis tool.

In summary, the concept, and its implementation in the form of GenBenchDroid, are
a powerful solution to the current issues that the evaluation of Android taint analysis tools
presents, which are (1) implementation mistakes in benchmark cases, (2) over-adaptation of

69

analysis tools to micro benchmark cases and (3) missing ground-truth information for real-world
benchmark cases. GenBenchDroid can easily be extended and adjusted to the user’s needs
and enable a thorough evaluation of analysis tools in regards to precision, recall and execution
time, by efficiently generating benchmark cases of varying complexity and corresponding ground-
truths, containing the expected analysis results.

70

Bibliography

[1] Android Developers Guide: App fundamentals. Accessed 2020-11-17. URL: https://
developer.android.com/guide/components/fundamentals#Components.

[2] Android Developers Guide: App Manifest Overview. Accessed 2020-11-18. URL: https:
//developer.android.com/guide/topics/manifest/manifest-intro.

[3] Android Developers Guide: Declare app permissions. Accessed 2020-11-18. URL: https:
//developer.android.com/training/permissions/declaring.

[4] Android Developers Guide: Input events overview. Accessed 2020-11-18. URL: https:
//developer.android.com/guide/topics/ui/ui-events.

[5] Android Developers Guide: Intents and Intent Filters. Accessed 2020-11-18. URL: https:
//developer.android.com/guide/components/intents-filters#ExampleSend.

[6] Android Developers Guide: Layouts. Accessed 2020-11-18. URL: https://developer.
android.com/guide/topics/ui/declaring-layout.

[7] Android Developers Guide: Sign your app. Accessed 2020-11-19. URL: https://
developer.android.com/studio/publish/app-signing.

[8] Android Developers Guide: Understand the Activity Lifecycle. Accessed 2020-
11-13. URL: https://developer.android.com/guide/components/activities/
activity-lifecycle.

[9] Android Studio and Android SDK. Accessed 2021-01-09. URL: https://developer.
android.com/studio/.

[10] Argus-SAF. Accessed 2020-12-01. URL: https://github.com/arguslab/Argus-SAF.

[11] Benchmark Refinement and Execution Wizard. Accessed 2020-12-01. URL: https://
foellix.github.io/BREW/.

[12] DIALDroid-Bench. Accessed 2020-11-25. URL: https://github.com/amiangshu/
dialdroid-bench.

[13] DroidBench 3.0. Accessed 2020-11-25. URL: https://github.com/
secure-software-engineering/DroidBench/tree/develop.

[14] FlowDroid. Accessed 2020-12-01. URL: https://github.com/
secure-software-engineering/FlowDroid.

71

https://developer.android.com/guide/components/fundamentals#Components
https://developer.android.com/guide/components/fundamentals#Components
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/training/permissions/declaring
https://developer.android.com/training/permissions/declaring
https://developer.android.com/guide/topics/ui/ui-events
https://developer.android.com/guide/topics/ui/ui-events
https://developer.android.com/guide/components/intents-filters#ExampleSend
https://developer.android.com/guide/components/intents-filters#ExampleSend
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/guide/topics/ui/declaring-layout
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/guide/components/activities/activity-lifecycle
https://developer.android.com/studio/
https://developer.android.com/studio/
https://github.com/arguslab/Argus-SAF
https://foellix.github.io/BREW/
https://foellix.github.io/BREW/
https://github.com/amiangshu/dialdroid-bench
https://github.com/amiangshu/dialdroid-bench
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/DroidBench/tree/develop
https://github.com/secure-software-engineering/FlowDroid
https://github.com/secure-software-engineering/FlowDroid

[15] Gradle build tool. Accessed 2021-01-20. URL: https://gradle.org/.

[16] Handlebars template engine. Accessed 2021-01-20. URL: https://handlebarsjs.com/.

[17] ICC-Bench. Accessed 2020-11-25. URL: https://github.com/fgwei/ICC-Bench.

[18] Java Development Kit. Accessed 2021-01-09. URL: https://www.oracle.com/de/java/
technologies/javase-jdk15-downloads.html.

[19] Mobiel Operating System Market Share Worldwide. Accessed 2021-03-19. URL: https:
//gs.statcounter.com/os-market-share/mobile/worldwide.

[20] MozillaSecurity dharma. Accessed 2021-03-10. URL: https://github.com/
MozillaSecurity/dharma.

[21] Node.js. Accessed 2021-01-09. URL: https://nodejs.org/.

[22] TaintBench. Accessed 2020-11-25. URL: https://taintbench.github.io/.

[23] Usage of IccTA in Flowdroid. Accessed 2020-12-01. URL: https://github.com/
secure-software-engineering/FlowDroid/issues/219.

[24] Wrong IccLink error using IccTA. Accessed 2020-12-01. URL: https://github.com/
secure-software-engineering/FlowDroid/issues/117.

[25] Maqsood Ahmad, Valerio Costamagna, Bruno Crispo, and Francesco Bergadano. Teicc:
targeted execution of inter-component communications in android. In Proceedings of the
symposium on applied computing, pages 1747–1752, 2017.

[26] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. Acm Sigplan
Notices, 49(6):259–269, 2014.

[27] Ramon Bertran, Alper Buyuktosunoglu, Meeta S Gupta, Marc Gonzalez, and Pradip Bose.
Systematic energy characterization of cmp/smt processor systems via automated micro-
benchmarks. In 2012 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 199–211. IEEE, 2012.

[28] Amiangshu Bosu, Fang Liu, Danfeng Yao, and Gang Wang. Collusive data leak and more:
Large-scale threat analysis of inter-app communications. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, pages 71–85, 2017.

[29] Dan Boxler and Kristen RWalcott. Static taint analysis tools to detect information flows. In
Proceedings of the International Conference on Software Engineering Research and Practice
(SERP), pages 46–52. The Steering Committee of TheWorld Congress in Computer Science,
Computer . . . , 2018.

[30] Kartik Chandra and Tim Radvan. nearley: a parsing toolkit for JavaScript, 2014. URL:
https://github.com/kach/nearley, doi:10.5281/zenodo.3897993.

[31] Xingmin Cui, Jingxuan Wang, Lucas CK Hui, Zhongwei Xie, Tian Zeng, and Siu-Ming Yiu.
Wechecker: efficient and precise detection of privilege escalation vulnerabilities in android
apps. In Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, pages 1–12, 2015.

72

https://gradle.org/
https://handlebarsjs.com/
https://github.com/fgwei/ICC-Bench
https://www.oracle.com/de/java/technologies/javase-jdk15-downloads.html
https://www.oracle.com/de/java/technologies/javase-jdk15-downloads.html
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://github.com/MozillaSecurity/dharma
https://github.com/MozillaSecurity/dharma
https://nodejs.org/
https://taintbench.github.io/
https://github.com/secure-software-engineering/FlowDroid/issues/219
https://github.com/secure-software-engineering/FlowDroid/issues/219
https://github.com/secure-software-engineering/FlowDroid/issues/117
https://github.com/secure-software-engineering/FlowDroid/issues/117
https://github.com/kach/nearley
https://doi.org/10.5281/zenodo.3897993

[32] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil
Robertson, Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated vulnerability
addition. In 2016 IEEE Symposium on Security and Privacy (SP), pages 110–121. IEEE,
2016.

[33] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea Mambretti, Wil
Robertson, Frederick Ulrich, and Ryan Whelan. Lava: Large-scale automated vulnerability
addition. In 2016 IEEE Symposium on Security and Privacy (SP), pages 110–121. IEEE,
2016.

[34] Christian Eichler, Peter Wägemann, and Wolfgang Schröder-Preikschat. Genee: A bench-
mark generator for static analysis tools of energy-constrained cyber-physical systems. In
Proceedings of the 2nd Workshop on Benchmarking Cyber-Physical Systems and Internet of
Things, pages 1–6, 2019.

[35] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Lan-
don P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an
information-flow tracking system for realtime privacy monitoring on smartphones. ACM
Transactions on Computer Systems (TOCS), 32(2):1–29, 2014.

[36] Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,
2006.

[37] Yu Feng, Isil Dillig, Saswat Anand, and Alex Aiken. Apposcopy: automated detection
of android malware (invited talk). In Proceedings of the 2nd International Workshop on
Software Development Lifecycle for Mobile, pages 13–14, 2014.

[38] Michael I Gordon, Deokhwan Kim, Jeff H Perkins, Limei Gilham, Nguyen Nguyen, and
Martin C Rinard. Information flow analysis of android applications in droidsafe. In NDSS,
volume 15, page 110, 2015.

[39] William Klieber, Lori Flynn, Amar Bhosale, Limin Jia, and Lujo Bauer. Android taint flow
analysis for app sets. In Proceedings of the 3rd ACM SIGPLAN International Workshop on
the State of the Art in Java Program Analysis, pages 1–6, 2014.

[40] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven
Arzt, Siegfried Rasthofer, Eric Bodden, Damien Octeau, and Patrick McDaniel. Iccta:
Detecting inter-component privacy leaks in android apps. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, volume 1, pages 280–291. IEEE, 2015.

[41] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a lightweight ui-guided
test input generator for android. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), pages 23–26. IEEE, 2017.

[42] Ke Mao, Mark Harman, and Yue Jia. Sapienz: Multi-objective automated testing for
android applications. In Proceedings of the 25th International Symposium on Software
Testing and Analysis, pages 94–105, 2016.

[43] Flemming Nielson, Hanne R Nielson, and Chris Hankin. Principles of program analysis.
Springer Science & Business Media, 2004.

[44] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do android taint analysis tools keep
their promises? In Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
331–341, 2018.

73

[45] Lina Qiu, Yingying Wang, and Julia Rubin. Analyzing the analyzers: Flowdroid/iccta,
amandroid, and droidsafe. In Proceedings of the 27th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, pages 176–186, 2018.

[46] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A java bytecode optimization framework. In CASCON First Decade
High Impact Papers, pages 214–224. 2010.

[47] Dániel Varró. Model transformation by example. In International Conference on Model
Driven Engineering Languages and Systems, pages 410–424. Springer, 2006.

[48] Peter Wägemann, Tobias Distler, Timo Hönig, Volkmar Sieh, and Wolfgang Schröder-
Preikschat. Gene: A benchmark generator for wcet analysis. In 15th International Workshop
on Worst-Case Execution Time Analysis (WCET 2015). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2015.

[49] Fengguo Wei, Sankardas Roy, and Xinming Ou. Amandroid: A precise and general inter-
component data flow analysis framework for security vetting of android apps. In Proceedings
of the 2014 ACM SIGSAC conference on computer and communications security, pages
1329–1341, 2014.

[50] Michelle Y Wong and David Lie. Intellidroid: A targeted input generator for the dynamic
analysis of android malware. In NDSS, volume 16, pages 21–24, 2016.

[51] Z. Xu, C. Shi, C. C. Cheng, N. Z. Gong, and Y. Guan. A dynamic taint analysis tool
for android app forensics. In 2018 IEEE Security and Privacy Workshops (SPW), pages
160–169, 2018. doi:10.1109/SPW.2018.00031.

[52] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs
in c compilers. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation, pages 283–294, 2011.

[53] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian Holler. The
fuzzing book, 2019.

[54] Daojuan Zhang, Rui Wang, Zimin Lin, Dianjie Guo, and Xiaochun Cao. Iacdroid: Pre-
venting inter-app communication capability leaks in android. In 2016 IEEE Symposium on
Computers and Communication (ISCC), pages 443–449. IEEE, 2016.

74

https://doi.org/10.1109/SPW.2018.00031

Appendix
A

A.1 Provided Templates and Modules
Templates that have been provided:

Name Description

BasicTemplate Creates a basic activity.
Modules are placed inside the onCreate callback.

OnPauseTemplate Creates a basic activity.
Modules are placed inside the onPause callback.

OnStartTemplate Creates a basic activity.
Modules are placed inside the onStart callback.

Table A.1: Provided templates

Modules that have been provided:

Name Type Description

AliasingSanitizerBridge Bridge
(Sanitizing)

Creates two instances of a newly created class.
One class receives the sensitive data, while the other does not.
Data from class without sensitive data is further propagated.

AppendToStringBridge Bridge
(Basic) Sensitive data is appended to another string via StringBuilder.

ArrayBridge Bridge
(Basic) Sensitive data is inserted into an array.

ArraySanitizerBridge Bridge
(Sanitizing)

Sensitive data is inserted into an array.
However, another field from the array, not containing the
sensitive data is further propagated.

AsyncTaskBridge Bridge
(Invoke)

A new AsyncTask is created and executed.
The sensitive data is passed to the AsyncTask’s
doInBackground method.

BluetoothDetectionBridge Bridge
(Basic)

The device is checked for Bluetooth device’s.
(This module can be used to check for Emulator behavior.)

ButtonCallbackBridge Bridge
(Invoke)

A button is created and the program flow is continued when
the button is pressed.

DatacontainerBridge Bridge
(Sanitizing)

A class with multiple data fields is created.
The sensitive data is assigned to one datafield.
However, the program flow is continued with data from a
data field that does not contain the sensitive data.

75

Name Type Description

IccGlobalFieldBridge Bridge
(Invoke)

A new activity is created that contains a static global field.
The sensitive data is assigned to the global field.

ImeiSource Source The device’s IMEI is stored inside the variable containing
the sensitive data.

ImplicitSmsSink Sink
Based on the length of the sensitive data an SMS with the
text "Hello World" is sent.
This module implicitly leaks info about the sensitive data (length).

ListBridge Bridge
(Basic) Sensitive data is inserted into a linked list.

ListCloneBridge Bridge
(Basic)

Sensitive data is inserted into a liked list.
Afterwards the list is cloned.

LogSink Sink The sensitive data is leaked by writing it to a log.

Obfuscation1Bridge Bridge
(Basic)

Numbers contained inside the sensitive data are converted to
characters.

Obfuscation2Bridge Bridge
(Basic)

Numbers contained inside the sensitive data are converted to
characters based on ASCII values.

PauseResumeLifecycleBridge Bridge
(Invoke)

Creates an activity with an onPause and onResume callback.
The sensitive data is set up in the onResume callback.
The program flow continues in the onPause callback.

PublicApiPointBridge Bridge
(Basic)

Creates an object of type Point.
The sensitive data is used to create the object.

RandomIfElseBridge Bridge
(Branching)

Creates an if-else control block and branches the program flow.
A random number is generated and based on the result either
the if-case or the else-case is invoked. (Both have a 50% chance)

Reflection1Bridge Bridge
(Basic)

Creates a new class and loads the class using reflection.
The sensitive data is provided to the loaded class.

SimpleIccBridge Bridge
(Invoke)

Creates a new activity and invokes it by creating an Intent.
The sensitive data is stored inside the Intent.

SimpleRecursionBridge Bridge
(Basic)

Creates a recursive function containing the sensitive data that
invokes itself 100 times.

SimpleSanitizationBridge Bridge
(Sanitizing) Overwrites the variable containing the sensitive data.

SimpleUnreachableBridge Bridge
(Sanitizing) Creates an if-block that can never be executed.

SmsSink Sink Leaks the sensitive data by sending an SMS containing it.

Table A.2: Provided modules

76

A.2 Used Technologies
Technologies that have been used for the creation of GenBenchDroid:

Name Description Used for Obtainable from

Node.js A runtime environment
for JavaScript applications. Executing the application https://nodejs.org/en

Dotenv
Module that is able to store and
load configuration outside the
program-code.

Configuring the application https://github.com/motdotla/dotenv

Handlebars A logic-less template engine. Foundation of the
Template Engine https://handlebarsjs.com

JS Beautifier Module that is able to format
source code.

Formatting the generated
source code https://github.com/beautify-web/js-beautify

Nearley.js A parser generator. Foundation of the
Verificator https://nearley.js.org

XML-formatter Module that is able to format
XML-files.

Formatting the generated
Android Manifest and
Layout file

https://github.com/chrisbottin/xml-formatter

Xmlbuilder2 Module that helps with the creation
of XML-files. Generating the ground-truth https://github.com/oozcitak/xmlbuilder2

Yargs Module that helps with the creation
of interactive command-line applications.

Providing and reading
command-line parameters https://yargs.js.org

Gradle
A build-automation tool. Can be used to
compile source code into executable
applications.

Compiling the generated
source code into an APK-file https://gradle.org

Table A.3: Used technologies for GenBenchDroid

Technologies that have been used for the creation of the GenBenchDroid Editor:

Name Description Used for Obtainable from

Node.js A runtime environment
for JavaScript applications. Executing the application https://nodejs.org/en

Electron
Framework that allows for
the creation of GUIs in
Node.js.

Creating the GUI of the
application https://www.electronjs.org

React
Library that helps with the
creation of performant and
reactive GUIs.

Creating the GUI of the
application https://reactjs.org

Material-UI UI library which provides
pre-styled React components.

Creating the GUI of the
application https://material-ui.com

react-beautiful-dnd
(rnd)

Library that provides drag
and drop capabilities for lists.

Creating the drag and
drop functionality for
the Flows section

https://github.com/atlassian/react-beautiful-dnd

Table A.4: Used technologies for the GenBenchDroid Editor

77

https://nodejs.org/en
https://github.com/motdotla/dotenv
https://handlebarsjs.com
https://github.com/beautify-web/js-beautify
https://nearley.js.org
https://github.com/chrisbottin/xml-formatter
https://github.com/oozcitak/xmlbuilder2
https://yargs.js.org
https://gradle.org
https://nodejs.org/en
https://www.electronjs.org
https://reactjs.org
https://material-ui.com
https://github.com/atlassian/react-beautiful-dnd

A.3 Evaluation Data

Configurations that have been used for generating the benchmark cases to answer RQ1 (see
Section 5.1) and RQ4 (see Section 5.4):

Benchmark Case Configuration
FlowSensitivity1 "BasicTemplate ImeiSource AliasingSanitizerBridge SmsSink"
PublicAPIField1 "BasicTemplate ImeiSource PublicApiPointBridge LogSink"
ArrayAccess1 "BasicTemplate ImeiSource ArraySanitizerBridge SmsSink"
Button1 "BasicTemplate ImeiSource ButtonCallbackBridge SmsSink"
Bluetooth1 "BasicTemplate ImeiSource BluetoothDetectionBridge SmsSink"
FieldSensitvity2 "BasicTemplate ImeiSource DatacontainerBridge SmsSink"
Clone1 "BasicTemplate ImeiSource ListCloneBridge LogSink"

ImplicitFlow1 "BasicTemplate ImeiSource Obfuscation1Bridge LogSink ImeiSource
Obfuscation2Bridge LogSink"

ImplicitFlow5 "BasicTemplate ImeiSource ImplicitSmsSink"
ActivityCommunication1 "BasicTemplate ImeiSource IccGlobalFieldBridge SmsSink"
ActivityLifecycle4 "BasicTemplate ImeiSource PauseResumeLifecycleBridge SmsSink"
Reflection1 "BasicTemplate ImeiSource Reflection1Bridge SmsSink"
AsyncTask1 "BasicTemplate ImeiSource AsyncTaskBridge SmsSink"
SimpleUnreachable1 "BasicTemplate ImeiSource SimpleUnreachableBridge LogSink"

Samsapo

"BasicTemplate ImeiSource ArrayBridge ListBridge
PauseResumeLifecycleBridge AsyncTaskBridge SmsSink ImeiSource
AppendToStringBridge ArrayBridge ListBridge
PauseResumeLifecycleBridge AsyncTaskBridge LogSink ImeiSource
Reflection1Bridge SmsSink ImeiSource AppendToStringBridge
ArrayBridge ListBridge PauseResumeLifecycleBridge AsyncTaskBridge
LogSink SimpleSanitizationBridge SmsSink"

Table A.5: Used configurations for the evaluation of GenBenchDroid

Detailed results of the fuzzing experiment in RQ3 (see Section 5.3):

78

50 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
31 3 10 6 91.17% 83.78% 87.32%
36 1 13 7 97.29% 83.72% 90%
38 0 11 5 100% 88.37% 93.87%
32 2 9 12 94.11% 72.72% 82.05%
30 3 14 8 90.9% 78.94% 84.5%
34 1 10 8 97.14% 80.95% 88.31%
39 3 13 2 92.85% 95.12% 93.97%
36 0 9 9 100% 80% 88.88%
42 2 3 8 95.45% 84% 89.36%
37 3 6 7 92.5% 84.09% 88.09%

Table A.6: Results of the fuzzing experiment with 50 fuzzed benchmark cases

100 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
69 4 21 11 94.52% 86.25% 90.19%
67 5 18 11 93.05% 85.89% 89.33%
67 4 21 12 94.36% 84.81% 89.33%
64 8 20 14 88.88% 82.05% 85.33%
75 1 16 11 98.68% 87.2% 92.59%
57 3 22 24 95% 70.37% 80.85%
77 6 17 13 92.77% 85.55% 89.01%
65 5 17 20 92.85% 76.47% 83.87%
73 4 16 17 94.80% 81.11% 87.42%
70 1 14 17 98.89% 80.49% 88.6%

Table A.7: Results of the fuzzing experiment with 100 fuzzed benchmark cases

175 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
111 10 39 31 91.75% 78.16% 84.41%
117 4 32 28 96.69% 80.68% 87.96%
107 13 31 24 89.16% 81.67% 85.25%
121 14 35 19 89.62% 86.42% 88%
115 11 30 33 91.26% 77.7% 83.94%
115 16 33 20 87.78% 85.18% 86.46%
113 12 35 24 90.4% 82.48% 86.25%
129 7 27 16 94.85% 88.96% 91.81%
127 8 23 29 94.07% 81.41% 87.28%
126 10 31 20 92.64% 86.30% 89.36%

Table A.8: Results of the fuzzing experiment with 175 fuzzed benchmark cases

79

250 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
184 13 33 33 93.4% 84.79% 88.88%
167 11 52 43 93.82% 79.52% 86.08%
165 11 54 36 93.75% 82.08% 87.53%
156 15 57 47 91.22% 76.84% 83.42%
183 12 40 34 93.84% 84.33% 88.83%
178 9 46 33 95.18% 84.36% 89.44%
174 11 46 35 94.05% 83.25% 88.32%
166 17 55 31 90.71% 84.26% 87.36%
158 11 64 33 93.49% 82.72% 87.77%
174 7 51 32 96.13% 84.46% 89.92%

Table A.9: Results of the fuzzing experiment with 250 fuzzed benchmark cases

375 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
248 21 74 65 92.19% 79.23% 85.22%
262 19 70 49 93.23% 84.24% 88.51%
253 25 72 50 91% 83.49% 87.09%
241 18 82 57 93.05% 80.87% 86.53%
245 29 63 68 89.41% 78.27% 83.47%
248 18 69 60 93.23% 80.51% 86.41%
231 26 89 50 89.88% 82.2% 85.87%
241 16 78 63 93.77% 79.27% 85.91%
251 18 61 62 93.3% 80.19% 86.25%
251 18 90 46 93.3% 84.51% 88.69%

Table A.10: Results of the fuzzing experiment with 375 fuzzed benchmark cases

500 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
318 29 109 72 91.64% 81.53% 86.29%
332 24 101 79 93.25% 80.77% 86.57%
337 39 79 70 89.62% 82.80% 86.07%
335 28 86 85 92.28% 79.76% 85.56%
329 24 113 73 93.20% 81.84% 87.15%
336 23 104 75 93.59% 81.75% 87.27%
310 27 92 77 91.98% 80.1% 85.63%
339 32 85 66 91.37% 83.7% 87.37%
332 27 95 75 92.47% 81.57% 86.68%
318 30 111 76 91.37% 80.71% 85.71%

Table A.11: Results of the fuzzing experiment with 500 fuzzed benchmark cases

80

750 fuzzed benchmark cases:
TP FP TN FN Precision Recall F-Measure
490 39 171 110 92.62% 81.66% 86.8%
504 46 154 117 91.63% 81.15% 86.08%
499 43 155 121 92.06% 80.48% 85.88%
513 39 144 102 92.93% 83.41% 87.91%
497 36 150 120 93.24% 80.55% 86.43%
501 40 152 98 92.6% 83.63% 87.89%
524 23 126 122 95.79% 81.11% 87.84%
514 37 141 128 93.28% 80.06% 86.16%
491 37 157 113 92.99% 81.29% 86.74%
495 39 153 112 92.69% 81.54% 86.76%

Table A.12: Results of the fuzzing experiment with 750 fuzzed benchmark cases

81

A.4 Digital Appendix
GenBenchDroid and the GenBenchDroid Editor are attached to this thesis. The versions
that are released with this thesis can be found in their individual GitLab repositories.

GenBenchDroid can be found in the following repository:

• https://git.cs.uni-paderborn.de/sschott/genbenchdroid

• Branch: main

• Commit: c0720d6e

• Commit-date: Apr 8, 2021

The GenBenchDroid Editor can be found in the following repository:

• https://git.cs.uni-paderborn.de/sschott/genbenchdroid-editor

• Branch: main

• Commit: 8d737de8

• Commit-date: Apr 6, 2021

82

https://git.cs.uni-paderborn.de/sschott/genbenchdroid
https://git.cs.uni-paderborn.de/sschott/genbenchdroid-editor

	Introduction
	Thesis' Contents

	Fundamentals
	Android Basics
	Application Components
	Inter-Component Communication (ICC)
	Android Manifest File
	Application Resources and Layout
	Events and Callbacks
	Activity Lifecycle
	Android Package File

	Program Analysis
	Taint Analysis Tools for Android
	Benchmarks

	Fuzzing
	Grammar-based Fuzzing

	Concept
	Generator Requirements
	Generator Overview
	Inputs
	Template
	Modules

	Verification
	Grammar
	Verificator

	Generation
	Preprocessor
	Source Generator
	Build Tool

	Outputs
	Integration of the Benchmark Case Generator in the Benchmarking Process

	Implementation
	Implementation Details
	Structure
	Manual
	Installation
	Configuration
	Usage
	Extension
	Available Parameters

	Evaluation
	RQ1: Is GenBenchDroid able to generate existing micro benchmark cases?
	RQ2: How long does GenBenchDroid take to generate a benchmark case?
	RQ3: Fuzzing mode evaluation
	RQ4: Generation of real-world benchmark cases
	Summary

	Related Work
	Threats to Validity and Future Work
	Conclusion
	Bibliography
	Appendix
	Provided Templates and Modules
	Used Technologies
	Evaluation Data
	Digital Appendix

