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Abstract

Several methods, including order analysis, wavelet analysis and empirical mode decom-
position have been proposed and successfully employed for the health state estimation of
technical systems operating under varying conditions. However, where information such
as the speed of rotating machinery, component specifications or other domain-specific
information is unavailable, such methods are often infeasible. Thus, this paper investi-
gates the application of classical time-domain features, features from the medical field
and novel features from the highly comparative time-series analysis (HCTSA) package,
for the health state estimation of rotating machinery operating under varying conditions.
Furthermore, several feature selection methods are investigated to identify features as vi-
able health indicators for the diagnostics and prognostics of technical systems. As a case
study, the presented methods are evaluated on real-world and experimentally acquired vi-
bration data of bearings operating under varying speed. The results show that the selected
features can successfully be employed as health indicators for technical systems operating
under varying conditions.

1. Introduction

In his book, Umbaugh(1) presented some characteristics a suitable feature should possess.
In that light, independent of the diagnostics or prognostics task at hand, a suitable feature
as a viable health indicator should be distinctive, that is, capable of distinguishing between
potential fault or failure modes. It should be reliable, which implies its value does not
differ for similar fault or failure modes. It should be independent, meaning it is not
derivable from other features. It should be robust to noise or variations in operating
condition and, it should reflect possible changes in health state or degradation over the life
cycle of a technical system. Typically, health indicators are derived from time-, frequency
and, time-frequency domain analysis of condition monitoring data acquired over time(2).
In an attempt to find suitable health indicators for reliably estimating the current health
state and the remaining useful life (RUL) of technical systems and rotating machinery, in
particular, several techniques have been proposed in scholarly literature. A few notable
techniques are presented in the following paragraphs.

Classical time-domain features such as crest factor and kurtosis are easily imple-
mented and employed in trend analysis. They have found application as health indicators
in rotating machinery and components thereof, such as gears and bearings(3, 4). The crest
factor of a vibration signal, similarly known as the impact index, was developed by the
General Electric Company as a health indicator for bearings(5). The crest factor has found



numerous applications due to its simple implementation, simple interpretation and robust-
ness to variations in loading condition(6). However, in a report by Houser and Drosjack(6)

on the investigation of health indicators for helicopter gears and bearings, they found out
that the crest factor is not robust to noise and to variations in speed.

The statistical parameter, kurtosis, which denotes the fourth moment of a vibration sig-
nal, typically has a value of approximately three for healthy bearings and a value greater
than three otherwise(2). The advantages of kurtosis as a health indicator are that it is
independent of the bearing or application type and, its value can easily be tracked and
trended(2). However, Howard(2) additionally pointed out a major limitation of the kurto-
sis, which is that its value is not consistent, even in characteristic frequency bands, when
faults manifest into failure.

The spectrum and order analysis are widely accepted and employed techniques in
academia and industry. Faults are not only identified, but faulty components are corre-
spondingly localized irrespective of variations in speed when the kinematics of the com-
ponents under investigation are known(6). However, for situations where the shaft speed
varies, the shaft speed must be acquired (synchronous) with condition monitoring data.
Furthermore, characteristic frequencies of interest can be smeared by neighbouring fre-
quencies and masked by frequencies of other system components, thus introducing diffi-
culties in fault identification and localization. Further limitations are that such techniques
are not robust to noise and varying load(6).

Prominent techniques of the time-frequency domain analysis are the wavelet and the
Hilbert–Huang transform. They both allow for analysing stationary and non-stationary
signals, such as signals involving varying speed and load(2, 7). According to Peng et al.(7),
the wavelet transform is probably the best and widely employed time-frequency domain
technique for detecting bearing faults. There exist several wavelet families and variants,
each producing different analysis outcomes, depending on the application(2, 7). A major
limitation of the wavelet transform is that there is no consensus on the optimal mother
wavelet. A further drawback of the wavelet transform is the poor frequency resolution at
high frequencies, which can impair interpretation and fault identification(2, 7).

The key step of the Hilbert–Huang transform is the empirical mode decomposition. It
is not as computationally expensive as the wavelet transform, thus making it suitable for
signals with high sampling rates(7). Nonetheless, an underlying shortcoming of the em-
pirical mode decomposition is that it introduces aliasing. Therefore, it becomes difficult
if, at all possible, to identify faults or interpret results(7).

Although several attempts have been made to alleviate the shortcomings of the previ-
ously discussed techniques, these attempts have either increased complexity or decreased
interpretability(7). Given that the time-domain analysis is simple and this domain contains
vast information(2), this paper focuses on the time-domain analysis of vibration data to
find suitable health indicators that fulfil the presented characteristics for reliably estimat-
ing the current health state and the RUL of technical systems and rotating machinery in
particular. To this end, features from the medical field and novel features from the highly
comparative time-series analysis (HCTSA) package(8, 9) are investigated in addition to
classical time-domain features derived from vibration data.

The remainder of this paper is organized as follows. A brief overview of the em-
ployed feature extraction and feature selection techniques is presented in the next section.
Subsequently, the presented techniques are evaluated based on two case studies. On a
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concluding note, the results are discussed, and further research possibilities are proposed.

2. Overview of the employed methods

In this section, a brief overview of the employed feature extraction and feature selection
techniques is given while referencing related literature and highlighting key contributions.

2.1 Feature extraction techniques

Given that extensive research and application of classical time-domain features as health
indicators for rotating machinery and components thereof exist in scholarly literature, 13
classical time-domain features, as in described by Kimotho and Sextro(3), are extracted
here for comparison. These include, but are not limited to, crest factor, kurtosis and root
mean square.

The electromyography (EMG) feature extraction technique originates from the med-
ical field for the diagnostics of muscles(10, 11). The motivation for considering the EMG
feature extraction technique here are the works of Sánchez et al.(12), and Nayana and
Geethanjali(13), who successfully employed EMG features in addition to classical time-
domain features for gearbox and bearing fault diagnosis, respectively. Although both
works considered various fault types and operating conditions, the operating conditions
were kept constant per experiment. Moreover, they only considered vibration data ac-
quired under a controlled experimental setting. In this paper, 17 EMG features were
extracted from the MATLAB® EMG feature extraction toolbox as implemented by Too et
al.(10, 11) Of these, Nayana and Geethanjali(13) identified the features wavelength, Willison
amplitude, zero crossing and slope sign change as most relevant features for diagnosing
bearing faults. Further descriptions of the EMG features can be found in the paper by
Phinyomark(14).

The HCTSA package is a collection of features from interdisciplinary disciplines
such as physics, economics and medicine by Fulcher et al.(8, 9). Depending on the in-
put parameters, the approximately 1000 basic operations yields over 7700 characteristic
features. These features can be classified into the following groups as proposed by the
authors(15). Distribution; correlation; entropy and information theory; time-series model
fitting and forecasting; stationarity and step detection; nonlinear time-series analysis and
fractal scaling; Fourier and wavelet transforms, periodicity measures; symbolic transfor-
mations; statistics from biomedical signal processing; basic statistics, trend; and others.
The HCTSA package has found numerous application in the medical field, such as for
heartbeat classification(16) and stress level classification based on calcium dynamics(17),
and in engineering for diagnosing an industrial robotic arm based on movement measure-
ments(18). During the preparation of this paper, there was no published scholarly literature
that applied the HCTSA package for diagnostics or prognostics task of rotating machinery
and components thereof, while considering vibration data. A total of 3905 features were
extracted from the MATLAB® HCTSA package(8, 9).

Given the number of generated features, a manual selection of viable health indica-
tors from the set of the above-described features was no longer feasible. Thus, feature
selection techniques as described in the following section were utilized.
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2.2 Feature selection techniques

Feature selection techniques can generally be categorized in filter, wrapper and embed-
ded methods(19). The filter methods select a subset of features based on some relevance
measure, irrespective of a machine learning algorithm. The wrapper methods employ a
machine learning algorithm to rank a subset of features, depending on their predictive
performance. The embedded methods are implemented within a given machine learning
algorithm, as the name implies, and hence simultaneously rank a subset of features during
algorithm training(19, 20). This paper employs filter methods, as described in the follow-
ing sections since the goal is to find optimal health indicators independent of a specific
machine learning algorithm.

2.2.1 Filter methods for classification

There are several filter methods for classification tasks. Among these, reliefF and chi-
square test were employed as filter methods in this paper because they have successfully
found application in the diagnostics of a gearbox(12).

• ReliefF is a distance-based filter method, such that features are more relevant that
have a maximal distance between classes (interclass) and a minimal distance within
a class (intraclass). The class membership is typically determined by the k-nearest
neighbours algorithm(12, 21, 22).

• Chi-square test is a statistical test of the independence of two statistical variables.
As a filter method, features that are dependent of the target class are considered
more relevant(12).

2.2.2 Filter methods for regression

Monotonicity, prognosability and trendability are three prominent measures by Coble and
Hines(23) for determining optimal health indicators for the prognostics of technical sys-
tems. Prognosability and trendability both consider a fleet of systems, where run-to-
failure data is available. However, in this paper run-to-failure data is not available for
a fleet of systems. Thus, monotonicity, as well as an additional method (RReliefF), are
considered in this paper for comparison.

• Monotonicity generally implies a decreasing or increasing trend. As opposed to
the definition proposed by Coble and Hines(23), the general monotonic-relationship
can be evaluated with nonparametric statistical tests such as the Spearman’s rank
correlation coefficient, similarly known as Spearman’s rho(24, 25). This metric was
successfully employed as a health indicator to estimate the RUL of ball bearings(25).
Hence, it is considered in this paper.

• Regressional ReliefF (RReliefF) is a further development of the ReliefF for re-
gression problems. The relevance measure is based on the equivalent difference of
conditional probabilities(22).

5



3. Case Studies

Two case studies based on publicly available data sets were considered to evaluate the
feature extraction and feature selection techniques presented. A case study is considered
for detecting seeded faults on bearings under time-varying shaft speed, and the other case
study is considered for fault detection on a real-world wind turbine subjected to time-
varying wind speed.

3.1 Case Study: Fault detection of seeded bearing faults

The bearing data set considered here is publicly available, and a detailed description of
the experimental set-up can be found in the accompanying paper by Huang and Bad-
dour(26, 27). A total of 60 files, each comprising a 10 s vibration measurement sampled at
200 kHz and synchronously measured shaft speed, are made available. The bearing ex-
periments consist of five health states; namely, H: healthy, I: inner race fault, O: outer
race fault, B: ball fault, and C: combined fault of the preceding three fault cases. Each of
these health states was examined considering four different speed variations; namely, A:
increasing speed, B: decreasing speed, C: increasing, then decreasing speed and D: de-
creasing, then increasing speed. For each of the 20 different combinations, measurements
were acquired three times to mitigate measurement uncertainty.

Preliminary Analysis
A three-dimensional plot of the vibration data acquired from the first measurement in-

volving increasing speed and all health states is presented in Figure 1(a) to get an overview
of the data set. As evident from Figure 1(a), the healthy instance (H-A-1) can hardly be
distinguished from the outer ring (O-A-1) and ball fault (B-A-1) instances. However, the
inner ring (I-A-1) and combined fault (C-A-1) instances can easily be distinguished from
the healthy instance.

(a) (b) (c)

Figure 1: (a) Vibration data for the five health states while considering the first measure-
ment regarding increasing speed, (b) Mean-normalized vibration data for first-measured
healthy and inner ring fault instances, (c) Corresponding first-measured shaft speed for
healthy and inner ring fault instances
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Furthermore, as compared to the healthy instance, the maximum value of the vibration
amplitude has increased approximately tenfold for the latter fault instances. This increase
in the maximum vibration amplitude is clearly seen in Figure 1(b). Additionally, the
vibration intensity for the inner ring fault is higher than that for the healthy instance, even
at comparable or lower shaft speed, as can be deduced from Figures 1(b) and 1(c). Hence
features extracted in the time domain should capture this impulsiveness.

Given the high sampling rate of 200 kHz and increased processing time, frequency
analysis was conducted to discern if down-sampling was feasible without losing relevant
information. The frequency spectrum of the vibration data from the second measure-
ment involving the speed variations and health states is presented in Figure 2. As visible
from Figure 2, the vibration amplitudes above 40 kHz are not significantly distinguish-
able. Hence, it can be postulated that frequency components above 40 kHz are no longer
relevant for fault detection of the presented instances. Thus, it can be concluded that
down-sampling by a factor of two should not impair accurate fault detection. On a closer
look at Figure 2, it can be deduced that the inner ring fault instances can clearly be dis-
tinguished from all other health states due to the intensity of the vibration amplitude and
specifically at about 35 kHz. This frequency component at about 35 kHz is also slightly
visible by the instances of the ball fault. Thus, it can be postulated that this frequency
component corresponds to a bearing element’s resonance frequency, and it is independent
of the speed variations. Although only presented for the second measurement, the results
are comparable to the others.

Feature extraction and selection
To evaluate the effectiveness of the presented feature extraction and feature selection

methods under a noisy environment, the features described in section 2.1 are extracted
from raw and band-passed filtered vibration data. Via sensitivity analysis the bandpass
frequency range was set at [5.7; 17] kHz.

Figure 2: Waterfall plot of the frequency spectrum for the second measurement involving
all experimented speed variations and health states
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Since the primary goal of this case study is to distinguish between healthy and faulty
instances, irrespective of the time-varying shaft speed condition, the task can be gen-
eralized as a binary classification problem. Thus, the feature selection methods de-
scribed in section 2.2.1 for classification are employed to select two top-ranked fea-
tures. The two top-ranked features for both feature selection methods are exemplarily
depicted in Figure 3. As can be inferred from Figures 3(a) and 3(b), except for the feature
HCTSA RLF RAW 1, the features selected by reliefF do not allow a clear distinction be-
tween the different health states. On a closer look at the zoomed region of Figure 3(a), it
can be seen that HCTSA RLF RAW 1 allows at least to distinguish between healthy and
faulty instances. On the other hand, as can be seen from Figures 3(c) and 3(d), the fea-
tures selected by chi-square test allows for a distinctive clustering of the different health
states. Furthermore, as can be deduced from Figure 3(d), the features selected from the
filtered vibration data can be employed independently.
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Figure 3: Scatter plot of two top-ranked features: selected by reliefF from (a) raw and
(b) filtered vibration data, respectively; and selected by chi-square test from (c) raw and
(d) filtered vibration data, respectively. (Actual names of selected features can be found
in Table 1)
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Hence, it can be concluded from this case study that at least two independent fea-
tures from the HCTSA package can successfully be utilized as health indicators to detect
bearing faults, irrespective of the time-varying shaft speed condition.

3.2 Case Study: Fault detection on a real-world wind turbine

The data set evaluated in this case study involves real-world vibration data acquired from
six same-model wind turbines in a wind farm located in northern Sweden. The data set
is publicly available, and a detailed description of the wind turbine schematics and sen-
sor placement can be found in the accompanying paper by Martin del Campo Barraza et
al.(28, 29). Each provided 1.28 s vibration data is sampled at 12.8 kHz and axially measured
from the output shaft’s housing of the wind turbine gearbox. Additionally available is
the mean output shaft speed corresponding to each vibration measurement. The measure-
ments were recorded for approximately four years, with a 12-hour mean interval. The
turbines are labelled Turbine 1 through 6 as proposed by the authors(29). During the mea-
surement period, Turbine 2 had a possible electrical failure, Turbine 5 had two recorded
mechanical component failures, while the others had none. The possible electrical sen-
sor failure of Turbine 2 was detected and rectified shortly after commissioning. The first
failure recorded within Turbine 5 was an inner race fault of the output shaft bearing.
Consequently, this led to the replacement of this bearing after about 1.2 years after com-
missioning. The second failure recorded within Turbine 5 was likewise an inner race fault
but on one of the planetary gear bearings near the main shaft. As a consequence, the entire
gearbox was replaced after about two years after commissioning. Given the relevance of
the time of bearing and gearbox replacement, the corresponding timestamps are 1.5673
and 2.3708 years, respectively. In this paper, Turbine 5 is considered in detail, while the
other wind turbines are analysed for comparison.

Preliminary Analysis
Before the vibration measurements analysis, the measured speed at the output shaft

is analysed to investigate the underlying operating condition. As can be seen in Figure
4(a), the output shaft speed has a lower and upper bound at approximately 700 rpm and
1200 rpm, respectively. Although the output shaft speed is stationary per measurement, it
is nonstationary over the entire measurement period since a random speed sets in from the
operating range. Furthermore, as be inferred from Figure 4(a), Turbine 5 had a significant
downtime shortly after commissioning for reasons unfortunately not disclosed.

The shaft speed distributions over the presented turbines are analysed to investigate
if the turbines operated under similar operating conditions. As seen in Figure 4(b), all
wind turbines possess a trimodal distribution, whereby the local mode at approximately
700 rpm is not as pronounced as at about 800 rpm and 1150 rpm. Furthermore, as can be
inferred from Figure 4(b), all turbines have more or less similar speed distribution, with
Turbines 3, 4 and 5 subjected to roughly the same speeds on average and are possibly
geographically nearer than Turbines 1, 2 and 6, which also have more or less the same
average speed. Thus, in summary, the wind turbines are not only of the same model but
were subjected to similar operating conditions as well.
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(a)

median mean

(b)

Figure 4: (a) Scatter plot of the mean output shaft speed over the measurement period for
Turbine 5, (b) Violin plot(30) of the mean output shaft speed distribution over Turbines 1
through 6

Feature extraction and selection
Since Turbine 5 was monitored continuously from commissioning till at least one fail-

ure case occurred, the accompanying data can be considered run-to-failure data. Thus, the
main objective is to map each vibration measurement to a continuous value that represents
the possible degradation of the respective turbine. To this end, the presented feature ex-
traction and feature selection methods described in section 2.1 and 2.2.2, respectively, are
employed to extract and select a top-ranked feature from the raw vibration measurements.
The vibration measurements are not filtered, given the relatively low sampling rate in
comparison to the previous case study. Figures 5(a) and 5(b) depicts the top-ranked fea-
ture selected by Monotonicity and RReliefF, respectively, from raw vibration data over
the measurement period of Turbine 5.
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Figure 5: Scatter plot of the top-ranked feature selected from raw vibration data of Turbine
5 by (a) Monotonicity and (b) RReliefF, respectively. Actual names of selected features
can be found in Table 1. The timestamps 1.5673 and 2.3708 years correspond to bearing
and gearbox replacement, respectively
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Given that the actual mapping of health states to vibration data is unavailable, the
selected features cannot be validated by comparing them to a baseline or ground-truth.
However, significant regions within Figure 5(a) justifies that the top-ranked feature
(HCTSA MON RAW 1) determined by Monotonicity reflects the components’ degrada-
tion that occurred within Turbine 5, and thus reflects its continuous health state over the
measurement period. Firstly, as can be inferred from Figure 5(a), there is a monotonic
increase in the feature value from approximately 1.4 years, that is before the bearing
replacement (1.5673 years), which can be interpreted as possible degradation. Further-
more, soon after the bearing replacement, there is a minor decline in the feature value,
which suggests that multiple faults had occurred, and unfortunately, only one was lo-
calised. Secondly, in a period after the bearing replacement (1.5673 years) and before
the gearbox replacement (2.3708 years), there is a monotonic trend that ceased right after
the gearbox was replaced. On the other hand, the top-ranked feature selected by RReliefF,
as seen in Figure 5(b), is not sensitive to the degradation that occurred within Turbine 5.
Thus, this feature is not further considered.

The top-ranked feature determined by Monotonicity is also extracted from the raw
vibration data of the other wind turbines to investigate the effectiveness of the proposed
methods across the turbines. For a better comparison, the features are smoothed, normal-
ized in the range [0, 1] and presented in a line plot. Figure 6(a) exemplarily shows the
raw and smoothed feature values for Turbine 5 over the measurement period. As can be
seen, the feature characteristics are not smoothed out. Hence the same smoothing was
applied to the features of the other wind turbines. As can be seen in Figure 6(b), the fea-
ture values of Turbine 5 generally tends to be above the feature values of the other wind
turbines. This implies that a direct comparison of the feature values is not feasible over
the presented turbines. However, the feature values tend to be effective and consistent
per turbine. As can be deduced from Figure 6(b), the feature values of Turbines 1, 3, 4
and 6 lies at a constant level, which concurs with the fact that they were healthy over the
measurement period.
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Figure 6: Top-ranked feature selected from raw vibration data by Monotonicity: (a) Raw
and smoothed feature value over the measurement period for Turbine 5, (b) Normal-
ized and smoothed feature values over the respective measurement periods of Turbines 1
through 6. (Actual names of selected features can be found in Table 1)
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Furthermore, the possible electrical sensor failure that occurred in Turbine 2 soon after
commissioning is reflected by the distinctively high feature values up to about 0.3 years.
Hence, it can be concluded from this case study that the top-ranked feature selected from
the HCTSA package can successfully be utilized as an indicator to monitor the health of
wind turbines operating under real-world conditions.

4. Conclusion

The focus of this paper is finding distinctive, reliable, independent, and robust health in-
dicators for detecting faults in technical systems. To this end, classical features, features
from the EMG toolbox and from the HCTSA package were extracted from raw and filtered
vibration data. Furthermore, to select top-ranked features from the set of extracted fea-
tures, several feature selection methods were also presented for prospective diagnostics
and prognostics tasks. Two case studies were employed to evaluate the proposed tech-
niques. The first case study focused on fault detection of seeded bearing faults operating
under time-varying shaft speed, and the second case study focused on detecting fault on
a real-world wind turbine subjected to time-varying wind speed. From both case studies,
it can be concluded that features from the time-domain and specifically from the HCTSA
package can act as viable health indicators for technical systems and specifically for rotat-
ing machinery irrespective of the time-varying operating conditions. However, to reliably
localize the faulty component, for example, which bearing components are exactly dam-
aged, either the frequency, the time-frequency analysis or adequate labelled quality data
for training a pattern recognition or machine learning algorithm is indispensable.

As a future outlook, the embedded and wrapper feature selection methods can be
compared to the presented filter methods to evaluate their strengths and weaknesses for
diagnostics and prognostics of technical systems. Further case studies from other techni-
cal systems are planned and inevitable to further evaluate the proposed methods.
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A. Appendix

The actual names of features selected in this paper can be found in Table 1, as proposed
by the Authors of the respective toolboxes. Please see section 2.1 for further details.

Table 1: Actual names of selected features

Feature Actual name Category
HCTSA RLF RAW 1 MF arfit 1 8 sbc.minper Modelfit,arfit

HCTSA RLF RAW 2 MF arfit 1 8 sbc.hasInfper Modelfit,arfit

HCTSA RLF FILT 1 EX MovingThreshold 1 01.mediankickf Outliers

HCTSA RLF FILT 2 FC Surprise T1 20 2 udq 500.lq Information,symbolic

HCTSA CHI RAW 1 AC 40 Correlation

HCTSA CHI RAW 2 IN AutoMutualInfoStats diff 20 gaussian.pcrossmedian Information,correlation

HCTSA CHI FILT 1 SY StdNthDer 5 Entropy

HCTSA CHI FILT 2 SY StdNthDerChange.fexp rmse Entropy

HCTSA RRLF RAW 1 SY VarRatioTest 24682468 00001111.IIDperiodminpValue Vratiotest

HCTSA MON RAW 1 SP Summaries welch rect.linfitloglog mf a2 FourierSpectrum

15

https://www.mathworks.com/matlabcentral/fileexchange/23661-violin-plots-for-plotting-multiple-distributions-distributionplot-m
https://www.mathworks.com/matlabcentral/fileexchange/23661-violin-plots-for-plotting-multiple-distributions-distributionplot-m
https://www.mathworks.com/matlabcentral/fileexchange/23661-violin-plots-for-plotting-multiple-distributions-distributionplot-m
https://www.mathworks.com/matlabcentral/fileexchange/23661-violin-plots-for-plotting-multiple-distributions-distributionplot-m

	Introduction
	Overview of the employed methods
	Feature extraction techniques
	Feature selection techniques
	Filter methods for classification
	Filter methods for regression


	Case Studies
	Case Study: Fault detection of seeded bearing faults
	Case Study: Fault detection on a real-world wind turbine

	Conclusion
	Appendix

