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ABSTRACT
Outsourcing data to the cloud is becoming increasingly prevalent.

To ensure data con�dentiality, encrypting the data before outsourc-

ing it is advised. While encryption protects the secrets in the data,

it also prevents operations on the data. For example in a multi-user

se�ing, data is o�en accessed via search, but encryption prevents

search. Searchable encryption solves this dilemma. However, in a

multi-user se�ing not all users may be allowed to access all data,

requiring some means of access control. We address the question

how searchable encryption and access control can be combined.

Combining these technologies is required to achieve strong notions

of con�dentiality: if a ciphertext occurs as a search result, we learn

something about the underlying document, even if access control

does not let us access the document. �is illustrates a need to link

search and access control, so that search results presented to users

only feature data the users are allowed to access. Our searchable

encryption scheme with access control establishes that link.

KEYWORDS
Searchable encryption, inverted index, access control, authority

key customization, multi-authority ABE

1 INTRODUCTION
Searchable Encryption [21] enables data to be securely outsourced

to the cloud while maintaining the ability to search the data ef-

�ciently. If the data is outsourced by a company, multiple users

need to be considered. Typically not all are granted access to all

the company’s �les. Hence, there is a need for access control. Ac-

cess control can be applied independently of searchable encryption.

Indeed, such schemes have been proposed [27], but naturally, they

require �ltering of data according to the user’s access rights, which

potentially incurs signi�cant information leakage to the party per-

forming the �ltering. We aim at integrating searchable encryption

and access control to achieve be�er data protection.

Imagine Bob, an accountant, to search for “Kryptonite,” and

search yields hundreds of recently modi�ed �les. Even if access

control prevents Bob from accessing the �les, Bob can deduce what

his company’s R&D department is researching. �at information

should be hidden from Bob! Filtering the result with respect to

access control might reduce the amount of knowledge that Bob

∗
�e full version of this paper can be found at h�p://eprint.iacr.org/2017/679.

�is work was partially supported by the Federal Ministry of Education and Research

(BMBF) within the collaborate research project Securing the Financial Cloud (SFC),

grant 16KIS0058K, and the German Research Foundation (DFG) within the Collabora-

tive Research Centre On-�e-Fly-Computing (SFB 901).

ARES ’17, Reggio Calabria, Italy
© 2017 ACM. �is is the author’s version of the work. It is posted here for your

personal use. Not for redistribution. �e de�nitive Version of Record was published

in Proceedings of ARES ’17, August 29-September 01, 2017 , h�p://dx.doi.org/10.1145/
3098954.3098987.

gains. However, the party responsible for �ltering still gets to see

the original result to Bob’s query, so the information that Bob is

not supposed to obtain is obtained by some other party instead.

Our goal is to eliminate this leakage by integrating searchable en-

cryption and access control such that the server performing search

on Bob’s behalf only outputs �les that Bob can access and that

contain Bob’s search term. Moreover, even the server cannot learn

which of the �les not accessible to Bob contain Bob’s search term.

We call this paradigm searchable encryption with access control.

Related Work. Based on the seminal work of Song et al. [21], vari-

ous �avors of searchable encryption have been developed, providing

searchable encryption in di�erent se�ings. Searchable symmetric
encryption (SSE), in�uenced by Curtmola et al. [8, 9], originally

provides searchable encryption to single users. SSE [4, 5, 14, 24]

satis�es di�erent non-equivalent security notions [6, 8, 9, 11], in-

cluding UC-security [15]. Generic techniques to achieve multi-user

SSE are (proxy) re-encryption [25] and broadcast encryption [8].

SSE has been combined with oblivious RAM [18, 22], private infor-

mation retrieval [12] and blind storage [19] to limit what servers

or data owners can learn from participating in search.

Public key encryption with keyword search (PEKS) [2] provides

searchable encryption in se�ings with multiple data creators and a

single recipient, such as e-mail. Using proxy re-encryption, PEKS

allows for multiple recipients [10]. Due to the public key se�ing,

the security notion for PEKS is rather weak: the server performing

search can create a searchable ciphertext on its own and apply old

search requests to it, revealing what keywords have been searched

for. Another drawback with PEKS is that typically search requires

time linear in the number of document–keyword pairs which is

ine�cient—the optimal time is linear in the size of the result set.

Concerningmultiple recipients and access control, several schemes

have been proposed, o�en separating searchable encryption and

access control, relying on third parties for �ltering search results

[13] or formulating search queries [16, 17]. Recently, a�ribute-based
encryption with keyword search [23, 28] has been suggested, using

a�ribute-based encryption (ABE) to achieve access control.

For a comprehensive survey of searchable encryption in its var-

ious �avors, see [3]. Also, see [26] for several generic a�acks on

searchable encryption based on document collection dynamics.

Our contribution. We present searchable encryption with access
control. �at is, the searchable data’s access policy determines who

is allowed to search the data. We consider a single data owner
outsourcing a static document collection to a server, making the

collection searchable to many users with di�erent access rights.

�e server and the users are considered togetherwhen it comes to

security. We want an adversarial server to learn as li�le as possible

about the searchable document collection. �is must hold, even if

the adversary corrupts some users. We capture this in a leakage-
based security de�nition in the spirit of semantic security. Our
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security notion covers di�erent threats—document con�dentiality,

keyword secrecy, and security against chosen keyword a�acks—

that are typically considered separately. However, we assume the

server to answer honest users’ search queries correctly.

We give a generic construction of searchable encryption with

access control that is secure under our de�nition. Our construction

is based onmulti-authority a�ribute-based encryptionwith authority
key customization. Due to authority key customization, search
query formulation requires no interaction. We use techniques from

searchable symmetric encryption, resulting in a very e�cient search
process: during search, we do not check all document–keyword

pairs. Finally, we show that our construction can be realized based

on the Rouselakis/Waters multi-authority ABE scheme [20].

Comparison to other schemes. �e literature o�ers four schemes

that are of particular interest for a comparison with our construc-

tion. �e scheme of Kaci et al. [13] realizes searchable encryption

with access control based on the SSE-1 scheme of Curtmola et al.

[8], much like our construction. However, their scheme heavily

relies on trusted third parties and interaction. Particularly, in their

scheme users need assistance from a third party when formulating

search queries. Another third party is employed to �lter search re-

sults based on access rights, for which the party requires the user’s

keys. We drop the need for interaction for query formulation, and

get rid of explicit �ltering, as our index structure used for search

only allows the server to output search results matching the user’s

access rights. In [13] the server performing search is not presented

as a potential threat in any way. However, the setup of the scheme

implies that the server is assumed to be honest-but-curious.

Alderman et al. [1] also present a scheme based on the SSE-1 con-
struction [8]. �eir scheme is capable of serving multiple users and

integrates access control, while only using symmetric primitives.

�eir proposal is restricted to access policies where the set of access

rights is totally ordered. �is results in smaller runtime of their

scheme in comparison to ours. However, we realize more expressive

policies, which Alderman et al. stated as an open problem.

Sun et al. [23] realize searchable encryption with access control

in a se�ing with multiple data owners, as well as multiple users.

Due to allowingmultiple data owners, the scheme inherently allows

data to be dynamically added to the document collection. In the

scheme, search is based on the PEKS-approach. �eir construction

features user revocation via re-encryption of indexes and data.

For security, Sun et al. assume the server to be honest, i. e. it

answers queries correctly, but curious, i. e. it tries to learn as much

as possible about the document collection. On the other hand,

users are assumed to be malicious and to collude to access data

that they are not allowed to access. �is model strikes us as odd:

it is hard to argue that an honest-but-curious entity rejects the

o�er to gain additional information (here: user keys), if taking

advantage of the o�er cannot be detected. In particular, we think

that the server should be allowed to collude with users. But then,

the means of revocation proposed by Sun et al. fails, because it

relies on the server’s complete cooperation. If the server does not

cooperate, which cannot be detected, user revocation is useless. All

in all, the scheme from [23] is more advanced than ours in some

respects (multi-owner, dynamic addition of documents), but lacks

our construction’s security against more reasonable adversaries as

well as its e�ciency.

�e fourth scheme for our comparison is by Zheng et al. [28].

A major di�erence to us is in how they model access to search.

Particularly, they directly associate keywords with policies, thus

restricting what keywords a particular user is allowed to search

for. Hence, their scheme does not implement searchable encryption

with access control in the sense of our de�nition. In their scheme,

the search results presented to users are independent of access

policies of the data contained in the search result. For Zheng et

al., this is not a problem, since only servers are seen as a threat,

whereas users may be honest-but-curious and do not collude. �e

scheme from [28] relies on veri�ability of search results to ensure

that the server returns complete search results. In our model, the

server is assumed to return complete results. �e construction from

[28] can be modi�ed such that users obtain search results that only

feature data accessible to the user, but then our scheme is more

e�cient, due to its underlying data structures.

Paper organization. In Section 2, we present multi-authority

ciphertext-policy a�ribute-based encryption and searchable en-

cryption with access control. Section 3 presents authority key

customization. In Section 4 we provide our searchable encryption

scheme with access control. We conclude our paper in Section 5.

2 PRELIMINARIES
In this section we introduce our notation regarding a�ribute-based

encryption, describe multi-authority ciphertext-policy a�ribute-

based encryption, and de�ne searchable encryption with access

control. We also provide security de�nitions for these primitives.

2.1 Policies, attributes and keys
A �le’s access policy—or access structure—describes who is allowed

to access that �le. �e description is a Boolean formula over certain

a�ributes a user must have in order to get access. For example,

a�ributes can state that the user holds a particular position in a

company. We use the & operator to denote the conjunction of

access structures.

In Section 2.2, we present a�ribute-based encryption (ABE). In

such schemes, users hold a�ributes in the form of cryptographic

keys that are given to users by an a�ribute authority. We assume

that we can break down a user’s key into smaller sub-keys con-

sisting only of single a�ributes. �e key given to user uid speci�c

to a�ribute u is denoted ukuid,u and we write ukuid,A�ruid to de-

note all a�ribute keys given to user uid, while A�ruid denotes

uid’s a�ribute set. We o�en use a�ributes and the respective keys

interchangeably.

In the multi-authority se�ing of ABE that we use as a tech-

nique, multiple a�ribute authorities exist. �us, we prepend each

a�ribute’s name with the name of the authority that manages that

particular a�ribute, e. g. “AA:CEO” is the a�ribute CEO managed

by authority AA. We o�en express access structures in terms of

a�ributes.
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2.2 Attribute-based encryption
We now present a de�nition of multi-authority a�ribute-based

encryption [7] in the variant that we use to construct a searchable

repository of ciphertexts that provides access control.

De�nition 2.1. Amulti-authority ciphertext-policy a�ribute-based
encryption (MA-CP-ABE) scheme consists of the following proba-

bilistic polynomial time algorithms [20]:

GlobalSetup takes security parameter 1
κ
; outputs public

parameters pp
AuthSetup takes pp and authority identi�er θ ; outputs pub-

lic key pkθ and authority secret key mkθ
KeyGen takes pp,mkθ , user identi�er uid and a�ribute iden-

ti�er u; outputs a�ribute-speci�c user key ukuid,u
Enc takes pp, set {pk} of authorities’ public keys, access struc-

ture A and message msg; outputs ciphertext ct
Dec takes pp, set ukuid,A�ruid of a�ribute-speci�c user keys

and ct; outputs message msg
We require for all correctly set up systems and users with mes-

sage msg, ciphertext ct ← Enc(pp, {pk},A,msg) and user key

ukuid,A�ruid , ifA�ruid satis�esA then Pr[Dec(pp, ukuid,A�ruid , ct) =
msg] = 1.

Note that KeyGen produces a key that only holds one a�ribute,

but can trivially be extended to operate on a�ribute sets. �e user

uid’s key is the set containing keys for all her a�ributes A�ruid .

Security ofMA-CP-ABE. Due to space limitations, we only present

an intuition of the static security model for MA-CP-ABE. For a for-

mal description, we refer to Rouselakis andWaters[20]. �e security

notion considers a static adversary, i. e. it makes all its queries at

the same time. �e adversary chooses the participating a�ribute

authorities, of which some are statically corrupted. �e adversary

can query for user keys, which can only contain a�ributes man-

aged by non-corrupt authorities; the adversary can compute the

other a�ributes by itself. �e adversary chooses two messages of

equal length and an access structure and has to distinguish which

message was encrypted under the chosen access structure with-

out holding a user key able to decrypt, i. e. the challenge access

structure cannot be satis�ed by a�ributes managed by corrupted

authorities alone, or by adding such a�ributes to queried user keys.

2.3 Searchable encryption with access control
We now present a primitive for searchable encryption with access

control. Our de�nition captures scenarios where a single data

owner makes a static document collection available to a larger

group of registered users. Not all users can access and search all

documents, so access control is required. Nevertheless, we assume

that all registered users know which keywords are present in the

document collection, just not in which documents. �e document

collection is expected to be stored on some publicly accessible

server, e. g. in the cloud. Our discussion of searchable encryption

with access control includes a security de�nition, in which a (static)

adversary controls the storage server and can corrupt arbitrary

users.

De�nition 2.2. A searchable encryption scheme with access control
consists of six probabilistic polynomial time algorithms:

Setup takes security parameter 1
κ
; outputs public parame-

ters pp, master secret mk and owner key ok
KeyGen takes pp, mk, user identi�er uid and a�ribute set

A�ruid ; outputs user secret ukuid
Enc takes pp, ok and document collection DC; outputs index

structure Index and chiphertext set CT
Trpdr takes pp, ukuid and keyword kw; outputs search trap-

door tuid,kw
Search takes pp, Index and tuid,kw ; outputs result X ⊆ CT
Dec takes pp, ukuid and ciphertext ct; outputs document doc

We require for all correctly set up systems and search results X ←
Search(pp, Index, tuid,kw), for each doc ∈ DC: kw < doc, or kw ∈
doc and A�ruid does not satisfy doc’s access structure A(doc), or
there is ct ∈ X such that Dec(pp, ukuid , ct) = doc.

�e correctness property ensures completeness of search results:

each document is either present in the result (via its ciphertext) or

is excluded from the result set due to not containing the searched

keyword or the user not being allowed to access the document.

For security, we consider an adversary with full control over the

server, that can additionally corrupt users. Our goal is to minimize

what such adversaries can learn. What can be learned from our

system is expressed using stateful leakage functions. In our secu-

rity notion, we use leakage as input to a simulator, such that no

probabilistic polynomial time adversary can distinguish whether it

interacts with the real world, or with the simulator.

We break down the leakage given to the simulator to the di�erent

interactions in the system, i. e., deploying the encrypted document

collection, corrupting a user and performing search. �e respective

leakage functions share a common state to capture that interactions

may not be independent.

Consider the following experiments with a searchable encryption

scheme with access control Π, an adversary A and a simulator S,

respectively.

RealstaticΠ,A (κ)

(1) Setup: run (pp,mk, ok) ← Setup(1κ ); give pp to A.

(2) �eries: A outputs

• document collection DC,
• sequence QU = {(uidi ,A�ri )}

mU
i=1 of user creation

queries, where no uid can occur more than once,

• sequence QC = {uidi }
mC
i=1 of user corruption queries,

where each uid must also occur in a user creation

query and no user can be corrupted more than once,

• sequence QT = {(uidi , kwi )}
mT
i=1 of trapdoor queries,

where each uid must also occur in a user creation

query and no uid can refer to a corrupt user.

(3) Replies: compute (Index,CT ) ← Enc(pp, ok,DC), private
keys for the created users using the uids and a�ribute sets

from QU , and the requested honest user’s trapdoors; give

(Index,CT ), the trapdoors and corrupted user’s keys to A.

(4) Guess: A outputs a bit b. �e experiment outputs b.

Simstatic

Π,A,S
(κ)

(1) Setup: S gives pp to A.

(2) �eries: A outputs a document collection DC and se-

quences of queries QU , QC , QT as before.
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(3) Replies: given setup leakage L1(DC), user corruption leak-

age L2(uid) and query leakage L3(uid, kw), S computes

(Index,CT ), the honest user’s trapdoors and the corrupted

user’s keys; S gives (Index,CT ) and query responses toA.

(4) Guess: A outputs a bit b. �e experiment outputs b.

De�nition 2.3. A searchable encryption scheme with access con-

trol Π is (L1,L2,L3)-semantically secure against static adversaries,
if for all probabilistic polynomial time adversariesA there is a prob-

abilistic polynomial time simulator S such that | Pr[RealstaticΠ,A (κ) =

1] −Pr[Simstatic

Π,A,S
(κ) = 1]| is negligible, where the probabilities are

taken over the random bits of A, S and the experiments.

3 AUTHORITY KEY CUSTOMIZATION
Our searchable encryption scheme with access control that we

present in the next section users multi-authority ciphertext-policy

a�ribute-based encryption as a building block. For users to be able

to formulate search queries, they must hold an a�ribute for every

keyword that exists in a document collection. However, we neither

want search queries to be formulated in an interactive process with

an a�ribute authority, nor do we want long user keys.

Our notion of authority key customization for MA-CP-ABE

solves the dilemma. Authority key customization restricts an at-

tribute authority’s secret key in such a way that it can be used to

produce user keys for all the a�ributes managed by that authority,

but only for a single user. In our scenario customized authority keys

for a particular authority are given to users, so they can produce

the required keyword-speci�c a�ributes themselves, without being

able to produce arbitrary keys for themselves or other users.

De�nition 3.1. An MA-CP-ABE scheme provides authority key
customization via two probabilistic polynomial time algorithms

Customize takes pp, authority secret keymkθ and user iden-

ti�er uid; outputs customized authority key skθ,uid
CustKeyGen takes pp, skθ,uid and a�ribute identi�er u; out-

puts a�ribute-speci�c user key ukuid,u
We require keys derived via CustKeyGen to be functionally equiv-

alent to keys derived via KeyGen.

Security. We consider authority key customization to be secure if
it is computationally infeasible to compute an a�ribute ukuid′,u
from a polynomially large set of customized authority secrets

{skθ,uidi } with uidi , uid ′ for all i . For a formal treatment, con-

sider the following game AuthCustΠ,A (κ):
Trusted Setup Give pp← GlobalSetup(1κ ) to A.

Authorities �e adversary A outputs

• set {θ } of honest authorities’ identi�ers,
• set {pkθ } of corrupt authorities’ public keys.

Replies Compute (pkθ ,mkθ ) for every honest authority θ
output by A; give the computed public keys to A.

�eries A adaptively queries customized authority secrets

for honest authorities and user identi�ers of its choice. �e

experiment replies with the queried secrets.

Output A outputs a user key ukuid , and an access structure

A. �e experiment outputs 1 if (1) ukuid satis�es A, (2)
some a�ribute u from ukuid is managed by an honest au-

thority θ ′, (3) A has never queried a customized authority

secret for (θ ′, uid), (4) ukuid \ {u} does not satisfyA and (5)

for everymessagemsgDec(pp, ukuid , Enc(pp, {pk},A,msg)) =
msg, where {pk} includes the public keys of all authorities.
Otherwise, the experiment outputs 0.

�e conditions guarantee functional equivalence of the output key

to KeyGen-derived keys, and ensure that A cannot win trivially.

De�nition 3.2. An MA-CP-ABE scheme Π with authority key

customization provides secure authority key customization if for

su�ciently large κ and all probabilistic polynomial time adversaries

A Pr[AuthCustΠ,A (κ) = 1] is negligible, where the probability is

over the random bits of the experiment and the adversary.

Notice that the security de�nition for MA-CP-ABE schemes does

not consider authority key customization. However, we could adapt

the de�nition of MA-CP-ABE static security to consider authority

key customization, i. e. give the adversary access to customized

authority secrets created by honest authorities. �en we need to

require that the adversary did not query user secret keys or cus-

tomized authority secrets such that the set of a�ributes contained

in the queried user keys or managed by the corrupt authorities and

the a�ributes managed by honest authorities for which customized

authority secrets were queried satisfy the challenge access structure

A. Secure authority key customization then implies that statically

secure MA-CP-ABE scheme with authority key customization is

also secure under this modi�ed security notion, because customized

authority secrets are no help in creating keys for users other than

the one to whom the secret is customized.

Proof-of-concept. Authority key customization can be added to

the Rouselakis/Waters MA-CP-ABE scheme [20]. �e scheme uses

bilinear groups of prime order p with generator д and bilinear map

e; it uses hash functions F ,H that map bitstrings to the bilinear

group. �e a�ribute-speci�c key for a�ribute u is of the form

(Kuid,u ,Luid,u ) with Kuid,u = д
αθH (uid)yθ F (u)t and Luid,u = д

t

for random t ∈ Zp and (αθ ,yθ ) ∈ Zp × Zp being authority θ ’s
master secret. Authority key customization works as follows:

Customize(pp,mkθ , uid) Output skθ,uid = дαθ · H (uid)yθ ,
CustKeyGen(pp, skθ,uid ,u) Set Kuid,u = skθ,uidF (u)t and

Luid,u = д
t
for t ←

$
Zp , output ukuid,u = (Kuid,u ,Luid,u ).

It is easy to see that keys derived from the customized authority

secret are functionally equivalent to KeyGen-derived user secrets.

�e security of this construction is proven in the full version.

4 SEARCHWITH ACCESS CONTROL
Aiming at realizing a searchable encryption scheme with access

control, we rely on an index data structure to perform search e�-

ciently. Our scheme uses a data structure in�uenced by the data

structure underlying the SSE-1 scheme of Curtmola et al. [8].

Intuition. As in the SSE-1 scheme, we precompute all potential

search results and store these results in encrypted linked lists. Such
lists are symmetrically encrypted node by node, using a fresh key

for each node. With each node, we store a pointer to its successor,

as well as the successor’s symmetric key. �e nodes themselves are

stored at random locations—determined upon node creation—in a

memory array that leaves room for dummy entries. Dummy entries

are symmetrically encrypted bit strings that are indistinguishable

4
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from not yet decrypted list nodes. �e addresses and keys of list

heads are stored separately.

For each keyword–access structure pair kw,A from a document

collection, we create encrypted list DL[kw,A], that stores the par-
tial result consisting of documents that contain keyword kw and

have access structure A. Note that the list only stores pointers to

documents. For each keyword kw, we create encrypted list AL[kw]
that stores ABE-encrypted addresses and keys of lists DL[kw,A].
�e policy for the head of list DL[kw,A] is based on A. �e address

and key of the head of list AL[kw] is stored in hash table HT .
When a server executes search on users’ behalf, it needs to de-

crypt the ABE ciphertexts stored in listAL[kw]. However, the server
cannot be allowed to decrypt document ciphertexts. �erefore we

use MA-CP-ABE to realize multiple functionalities (MA-CP-ABE

authorities) that are controlled by a single authority in the sense of

searchable encryption with access control. �e functionalities split

a�ributes into three classes, based on a�ribute semantics. Func-

tionality Usr manages a�ributes that originally describe users, e. g.

their roles. Functionality Sys manages a�ributes that determine

users’ interactions with the system. Particularly, we use a�ributes

“Sys:dec” allowing �le decryption, and “Sys:srch” allowing search.
Functionality Srch is used for parameters of the interaction; when

searching for keyword kw, a key for a�ribute “Srch:fa(kw)” is de-
rived via some function fa. �e function serves to hide kw from the

server. We apply authority key customization to functionality Srch,
so users themselves can derive the keyword-speci�c a�ributes.

Scheme. Based in this intuition, we now construct SEAC, a search-
able encryption scheme with access control. Besides an MA-CP-

ABE schemeABEwith authority key customization and a symmetric

encryption scheme Sym, our construction uses three pseudorandom

functions f
l
, f

k
, fa as its underlying primitives.

Setup(1κ ) Sample PRF keys k
l
,k

k
,ka ←$

{0, 1}κ , set up ABE
and the functionalities pp′ ← ABE.GlobalSetup(1κ ) and
{(pkθ ,mkθ ) ← ABE.AuthSetup(pp′,θ )}θ ∈{Usr,Sys,Srch} .
Output (pp,mk, ok), where pp = (pp′, pkUsr , pkSys, pkSrch),
ok = (k

l
,k

k
,ka), mk = (mkUsr ,mkSys,mkSrch,kl,kk,ka).

KeyGen(pp,mk, uid,A�r) Ensure that a�ributes in A�r are
managed by functionality Usr . Set
uk′uid ← {ABE.KeyGen(pp

′,mkUsr ,A�r)}

∪ {ABE.KeyGen(pp′,mkSys, {“Sys:dec”, “Sys:srch”})}.
Let skSrch,uid ← ABE.Customize(pp,mkSrch, uid) and out-

put ukuid = (uk′uid , skSrch,uid ,kl,kk,ka).
Enc(pp, ok,DC) For each document doc from DC with ac-

cess structure A(doc), create document ciphertext ctdoc ←
ABE.Enc(pp′, {pkUsr , pkSys},A(doc)&“Sys:dec”, doc). Let

CT be the set of all generated document ciphertexts. Create

encrypted linked lists DL[kw,A] as outlined in the intu-

ition. Note that the lists store pointers to CT rather than

documents. Let D be the memory array of appropriate

size that stores the list nodes. Let 〈p,k〉 be the address

and key of the head of list DL[kw,A]. ABE encrypt 〈p,k〉
under policy A&“Sys:srch”&“Srch:fa(kw)” and store the ci-
phertext in encrypted list AL[kw]. Let A be the memory

array of appropriate size that stores the list nodes. Be-

fore symmetric encryption of the lists, all ABE ciphertexts

and dummy entires are padded to the same length. Let

〈p′,k ′〉 be the address and key of the head of list AL[kw].
Add tuple (f

l
(kw), 〈p,k〉 ⊕ f

k
(kw)) to hash table HT . Set

Index = (HT , A, D). Output (Index,CT ).
Trpdr(pp, ukuid , kw) LetU be the set of a�ributes from ukuid .

Let u = ABE.CustKeyGen(pp′, skSrch,uid , “Srch:fa(kw)”).
Set skkw ← (U \ {“Sys:dec”}) ∪ {u}. Output tuid,kw =
(f
l
(kw), f

k
(kw), skkw)

Search(pp, Index,CT , tuid,kw) Parse tuid,kw = (`,k, sk). Ini-
tialize X := ∅. Access HT entry `. If no such entry exits,

outputX . Otherwise parseHT [`]⊕k as the address and key

of the head of listAL[kw] and decrypt the list node by node.
Decrypt the contained ABE ciphertexts using skkw . If ABE
decryption fails, continue to the next list node. Otherwise,

access list DL[kw,A] referenced in the ABE ciphertext and

add all referenced document ciphertexts from CT to X .
Finally, return X .

Dec(pp, ukuid , ct) Let U be the set of a�ribute keys from

ukuid . Output doc = ABE.Dec(pp′,U , ct).

SEAC is correct: all potential search results are precomputed

and search simply recovers those partial results that are relevant to

the searched keyword and accessible to the searching user.

�e e�ciency of SEAC depends on the number of keyword–

access structure pairs. Let akw be the number of such pairs for

keyword kw, and let nkw be the number of documents contain-

ing kw. Furthermore, let amax be the size of the largest access

structure. �en our scheme creates an Index structure of size

O(
∑
kw(akwamax +nkw). Search is performed in time O(akwamax +

nkw), which is only slightly worse than the trivial lower bound

O(nkw). However, the additional costs allow for small leakage.

�e leakage that SEAC incurs to an adversary that controls the
server and may corrupt users can be described by three leakage

functions, that we discuss next. By id(doc) we denote the label

of document doc’s ciphertext in CT used for reference in the en-

crypted lists DL[kw,A]. We write id(kw) to refer to any identi�er

of keyword kw from { f
l
(kw), f

k
(kw), fa(kw)}.

Leakage L1(DC) from deploying the encrypted document col-

lection includes upper bounds on the number of distinct keywords,

the number of keyword–access structure pairs and the number of

keyword–document pairs. Additionally, for every document an

identi�er, its bit length and its access structure is leaked. All this

information can be directly extracted from Index and CT .
When corrupting user uid, leakage L2(uid) occurs. It includes

the corrupted user’s identi�er uid and a�ribute set A�ruid , all doc-
uments stored at the server such that the documents’ access struc-

tures are satis�ed by A�ruid , and all keyword–access structure

pairs occurring in the document collection. �is leakage occurs

because corrupting a user reveals the user’s key fromwhich uid and

A�ruid can be extracted. Given the user’s key, the adversary is able

to decrypt ciphertexts that the user is allowed to access, revealing

the corresponding documents. As mentioned, we assume users to

know the set of keywords occurring in the document collection, so

corrupting a user relates keywords kw to their identi�ers id(kw).
Using algorithm Trpdr, all access structures of documents contain-

ing kw can be revealed. �is revelation is only possible due to the

combined knowledge of the server and the corrupt user.
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Processing a query for keyword kw on behalf of user uid leaks

L3(uid, kw), which includes the user’s identi�er uid and a�ribute

set, id(kw), the access structures of documents that contain the

searched keyword and the identi�ers of documents that both are

accessible to user uid and contain the keyword kw. �e user identi-

�er, the user’s a�ribute set and id(kw) can be extracted from the

trapdoor. Access structures of documents containing kw are used

in list AL[kw] to protect references to DL lists. �ose of the DL lists

accessible due to the trapdoor reveal the identi�ers of documents

containing kw and being accessible by user uid.

Theorem 4.1. SEAC is (L1,L2,L3)-semantically secure against
static adversaries when instantiated with statically secure multi-
authority ciphertext-policy a�ribute-based ABE encryption and eaves-
dropping-secure symmetric encryption Sym.

�e proof is omi�ed due to space limitations, but is presented in

the full version.

Realization. We point out that our generic SEAC construction

relies on the new notion of authority key customization for multi-

authority a�ribute-based encryption. As shown in Section 3, au-

thority key customization can be added to the Rouselakis/Waters

MA-CP-ABE scheme [20]. Hence, the Rouselakis/Waters MA-CP-

ABE lends itself for implementing SEAC.

5 EXTENSIONS AND CONCLUSION
We have shown how to generically construct a searchable docu-

ment collection that can be outsourced to the cloud without com-

promising data con�dentiality. In SEAC, access control is tightly
integrated into search. As a result, SEAC searches e�ciently even

though search respects access rights and the entity performing

search learns li�le about documents excluded from search results.

Our scheme uses multi-authority a�ribute-based encryption to

split a�ributes for access control into three classes, based on their

semantics. To one such class, Srch, we apply our notion of authority

key customization. �is allows users to produce search trapdoors

without help from a third party. Particularly, search trapdoors

contain a proper subkey of a user’s key, so the server can search

using the user’s access rights. �is may seem like a breach of the

user’s privacy. In the full version we show how user anonymity—

among the set of users with the set of identical access rights—can

be achieved for the Rouselakis/Waters MA-CP-ABE scheme [20]

that can be used to realize SEAC.
Our SEAC scheme only supports static document collections.

Future research must address document dynamics, because other

approaches clearly allow documents to be added to the collection

over time. An interesting question is how server’s answers can be

made veri�able in order to force the server to execute search cor-

rectly. �is is especially interesting in combination with dynamic

document collections. We are particularly interested in the price we
need to pay for such features in terms of leakage. A third question we

ask is, whether techniques such as policy hiding for MA-CP-ABE

are compatible with our approach to searchable encryption with

access control and how they a�ect e�ciency.
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