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Abstract In this work, we propose a service infrastructure that provides
confidentiality of data in the cloud. It enables information sharing with
fine-grained access control among multiple tenants based on attribute-
based encryption. Compared to the standard approach based on access
control lists, our encryption as a service approach allows us to use cheap
standard cloud storage in the public cloud and to mitigate a single
point of attack. We use hardware security modules to protect long-term
secret keys in the cloud. Hardware security modules provide high security
but only relatively low performance. Therefore, we use attribute-based
encryption with outsourcing to integrate hardware security modules into
our micro-service oriented cloud architecture. As a result, we achieve
elasticity, high performance, and high security at the same time.

1 Introduction

Cloud computing [9] has become a popular computing model that allows
enterprises to outsource their IT infrastructure. Resource pooling, multi-
tenancy, and elasticity enable high availability of services at low costs. A
major concern with cloud computing is security [4]. Particularly, a Cloud
Service Provider (CSP) should not learn confidential information from the
data it stores or processes. Such restrictions are imposed by data privacy
laws, industry-specific regulation and standards, or by companies willing
to outsource data but worried about the confidentiality of their secrets.

Many solutions for protecting data confidentiality in the cloud have
emerged over time. Attribute-Based Encryption (ABE) has often been
proposed as a solution, but is not deployed in practice. Solutions not based
on ABE are already deployed. Cloud storage providers, e. g. Dropbox,3
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encrypt data before storage ensuring confidentiality from outsiders. Since
the provider encrypts the data, confidentiality against insiders is not guar-
anteed. Protection from insiders can be achieved by client-side encryption,
e. g. Cryptomator,4 or encryption as a service, e. g. Ciphercloud.5

The latter two solutions are sufficient for individuals, but fall short of
large organizations’ needs. Typically, large organizations have members
with heterogeneous rights to access data with rather complex policies
describing such access rights in a fine-grained manner. Both, encryption
as a service and client-side encryption do not provide fine grained access
control. Additionally, with encryption as a service the encryption provider
has access to plaintext data, requiring trust in the provider. Client side-
encryption partially negates the benefits of resource pooling in the cloud.

Our contribution. In this paper we present a novel approach to fine-grained
access control as a service. Our solution leverages the cloud’s resources,
while our design ensures confidentiality of data from the CSP. It is based
on three components that are integrated into a system for access control
as a service. Particularly, we have (1) a cloud-based service for Access
Control with Encryption (ACE), (2) a cloud design that complements our
ACE service, and (3) an infrastructure for identity and key management.

Our ACE service achieves fine-grained access control via Attribute-
Based Encryption (ABE) with outsourcing as defined in [7]. We exploit
outsourcing to design a cloud infrastructure complementing ACE such
that ACE can take advantage of the cloud’s resources to achieve efficiency.
At the same time, our solution ensures confidentiality of data even against
insider attacks. We furthermore show how to adapt the existing infrastruc-
ture for identity and key management of large-scale organizations to the
specifics of access control via ABE. This enables user revocation without
re-encryption through the application of standard mechanisms.

Related work and discussion. Our approach to ACE is based on ABE [12,1]
with outsourcing, as introduced by Green et al. [7]. In [7] outsourcing
enables mobile devices to perform ABE decryption by limiting their
computations to the security critical part of the decryption, while the
computationally expensive but non-critical part is performed by the cloud.
We use this mechanism within the cloud to execute the security critical
part of decryption on so-called hardware security modules, thus achieving
high security. We use standard cloud services for non-critical computations,
thus achieving efficiency.

4 https://cryptomator.org
5 https://ciphercloud.com
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Numerous papers identify issues with ABE that hinder its deployment
in the cloud, e. g. [14,15,16,17,18]. Issues include that (1) data integrity is
not protected, (2) fine-grained access control for write access is typically
ignored, and (3) user’s access cannot be revoked once granted. Zhao et
al. [18] suggest attribute-based signatures to address the first two issues.
This proposal is rather generic and can also be applied in our scenario.
However, this is beyond the scope of this paper.

Means to revoke users’ access rights are proposed in numerous papers
[14,15,16,17]. These papers specifically suggest modifications to ABE
schemes that allow user’s access rights to be revoked. Particularly, they
propose re-encrypting all ciphertexts that the revoked user had access
to, as well as updating all the remaining users’ cryptographic keys. This
approach is very costly for all parties involved, especially for the party who
re-encrypts the ciphertexts. Therefore, additional features are suggested
to reduce the load of some parties. For example, Yang et al. [15] and Yu et
al. [16] suggest to delay the re-encryption of a particular ciphertext until
some user actually requests the ciphertext. Yu et al. additionally use a
technique similar to outsourcing [7] in order to reduce users’ loads when
updating their keys: only the non-critical parts of the users’ keys need to
be updated, so key updates can be applied by a cloud server.

Achieving outsourced decryption [7] and user revocation, the scheme
of Zhang et al. [17] at a first glance looks most similar to our approach
to access control with encryption in the cloud. They consider the cloud’s
structure when outsourcing computations: decryption is outsourced to fog
nodes, i. e. cloud resources close (e. g. in a geographical sense) to the user.
Hence, Zhang et al. increase ABE’s efficiency using cloud resources, but
in contrast to us, do not fully deploy ABE in the cloud in a secure way.

Paper organization. In Section 2 we discuss how ABE can be used for
access control in the cloud. Section 3 gives a brief introduction to ABE
and some of its properties. Section 4 presents ACE and its complementing
cloud design. In Section 5 we present the infrastructure for identity and
key management. Section 6 presents proofs of concept concerning the ABE
schemes underlying ACE and the core technologies that we have used to
implement ACE. Finally, the paper is concluded in Section 7.

2 Approaches to ABE for Cloud Infrastructures

As a starting point, we consider two basic approaches for realizing access
control in the cloud via ABE. In the security-oriented approach (see
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Figure 1: ABE performed in a cloud environment.

Figure 1a), we store ABE encrypted data at a Cloud Service Provider
(CSP). Encryption and decryption of the data is handled by the user. In
the service-oriented approach (see Figure 1b), we also store ABE encrypted
data at a CSP, but encryption and decryption of the data is handled by
an encryption service in the public cloud on the user’s behalf.

In the security-oriented method, users do not have to trust the CSP,
because all data is encrypted by the users. Since users provide own re-
sources for ABE, this approach does not benefit from resource pooling and
elasticity in the cloud. This method also prohibits ABE’s tight integration
into complex applications where many services process the decrypted data.

The service-oriented approach offers resource pooling and elasticity.
Furthermore, it can be coupled with services for data processing. However,
this method requires users to ultimately trust the CSP.

In this work, we enhance the service-oriented approach with mecha-
nisms to obtain security similar to the security-oriented method while
preserving the elasticity of the service-oriented approach. To achieve this,
we partition the computations of ABE encryption and decryption into
sub-services according to their security and elasticity requirements.

3 Attribute Based Encryption with Outsourcing

We describe ABE-OS-KEM, a primitive that underlies the architecture
for our ACE service. We also cover security guarantees and requirements.

3.1 ABE-OS-KEM

Access control can be cryptographically enforced by Attribute-Based
Encryption (ABE) [1]. In ABE, ciphertexts are associated with access
structures. Access structures represent Boolean formulas consisting only
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of AND and OR operators. Users hold attributes, e. g. role descriptions,
represented by secret keys. Attribute sets represent interpretations of the
variables in Boolean formulas, and satisfy an access structure if their
interpretations satisfy the policy’s formula. Only attributes satisfying a
ciphertext’s policy are able to decrypt that ciphertext.

Our approach to protect the confidentiality of outsourced data follows
the KEM/DEM paradigm [8, Ch. 11.3]. The Data Encapsulation Mecha-
nism (DEM) with algorithms (Encrypt,Decrypt) takes keys from some key
space K. Our Key Encapsulation Mechanism (KEM) is based on ABE:
Definition 1. An ABE-KEM consists of algorithms
Setup: given a security parameter Λ, output public parameters pubABE

and a master secret mskABE.
KeyGen: given pubABE, mskABE and an attribute set AID, output a user

key skABE,ID.
Encaps: given pubABE and a policy A, output a symmetric key k ∈ K and

a ciphertext CTABE.
Decaps: given pubABE, skABE,ID and ciphertext CTABE, output a sym-

metric key k.
We require for all correctly set up systems, policies A, tuples (k,CTABE)←
Encaps(pubABE,A), and user keys skABE,ID, if the attributes in skABE,ID
satisfy A then Decaps(pubABE, skABE,ID,CTABE) = k.

Typically, the Decaps algorithm is computationally expensive [7]. There-
fore, [7] splits the Decaps algorithm into a computationally expensive part
that is not security critical, and a security critical part that is rather
efficient. Splitting Decaps yields a variant of ABE-KEM that we call ABE-
OS-KEM, as it allows to partially outsource computations to the cloud.

Definition 2. An ABE-OS-KEM consists of the following algorithms
Setup, KeyGen and Encaps, are as in Definition 1.
TransKey: given pubABE and skABE,ID, output a transformation key tkID

and a decapsulation key skPK,ID.
Transform: given pubABE, tkID and CTABE, output partially decrypted

ciphertext CTPK.
Decaps: given pubABE, skPK,ID and CTPK, output a symmetric key k.
We require for all correctly set up systems, policies A, tuples (k,CTABE)←
Encaps(pubABE,A), user keys skABE,ID, and key pairs (tkID, skPK,ID) ←
TransKey(pubABE, skABE,ID) if skABE,ID satisfies A then

Decaps(pubABE, skPK,ID,Transform(pubABE, tkID,CTABE)) = k.
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The original Decaps algorithm is split into two algorithms: Transform
and Decaps. The additional algorithm TransKey is required to produce
separate keys required by algorithms Transform and Decaps.

For our proof of concept implementation, we constructed an ABE-
OS-KEM based on the ciphertext-policy ABE scheme of Rouselakis and
Waters [11] and the outsourcing technique of Green et al. [7]. We present
our ABE-OS-KEM in Section 6.1.

3.2 Security of ABE-OS-KEM and protection of keys

For the security of our ABE-OS-KEM, we adopt the notion of security
against replayable chosen-ciphertext attacks (RCCA, see [7]): no reasonable
adversary learns any information about the key encapsulated in a certain
ciphertext, nor can that key be modified unnoticeably. These properties
even hold for adversaries with access to arbitrary transformation keys.

In an ABE-OS-KEM, we consider several types of keys for decryption.
Keys are categorized as critical and non-critical for security. Transfor-
mation keys (tkID) are non-critical. Critical keys are further classified as
user-specific and file-specific. Keys skABE,ID and skPK,ID are user-specific,
while the data encapsulation mechanism’s symmetric keys are file-specific.

Knowledge of a user key allows decryption of ciphertexts with policies
satisfied by the user key. Hence, such a key is security critical. An ABE-OS-
KEM being a KEM, each file is encrypted under an individual symmetric
key k. Thus, if a symmetric key leaks, the corresponding file leaks. Thus,
also the symmetric keys have to be considered as critical to security. In an
ABE-OS-KEM, transformation keys tkID are meaningless without their
respective decapsulation keys skPK,ID. Together the transformation keys
and decapsulation keys have the same decapsulation capabilities as the user
keys they are derived from. The order in which operation Transform and
Decaps are performed then give the classification of transformation keys
to be non-critical and decapsulation keys to be critical and user-specific.

4 Access Control with Encryption and Cloud Design

In this section, we describe our service for access control with encryption
in the cloud (ACE). Our goal is a service that provides the security of
the security-oriented approach from Section 2 and the elasticity of the
service-oriented approach. We first split ACE into sub-services based on
our ABE-OS-KEM and its keys. Then we present our model of a cloud.
Subsequently, we match ACE sub-services to the components of our cloud
design. Finally, we discuss our approach in terms of security and elasticity.
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Figure 2: The interaction during session initialization and the sub-services’
internal states after initialization. The user sets up the session with the
session service that computes a transformation key given to FileCrypt,
which relays the transformation key to the transformation service.

4.1 Access Control with Encryption via ABE

We aim to realize ACE via ABE using our ABE-OS-KEM. As discussed in
Section 3.2, several categories of keys exist in an ABE-OS-KEM. For each
of the categories, we establish a separate sub-service: a session service
handling user-specific keys, a FileCrypt service for file-specific keys, and
a transformation service handling non-critical keys. Hence, the session
service implements algorithms TransKey and Decaps, the transformation
service implements Transform and FileCrypt implements Encaps as well as
algorithms Encrypt and Decrypt of the data encapsulation mechanism.

We further explore our services’ interactions. Particularly, we discuss
how users set up a session with ACE and access files. We omit file uploads,
because they only involve the FileCrypt service.

The interactions for setting up a session of ACE are shown in Figure 2.
The session service uses the user’s key skABE,ID to compute transformation
key tkID and decapsulation key skPK,ID via algorithm TransKey. While
the service keeps the skPK,ID secret, tkID is handed over to FileCrypt and
forwarded to the transformation service in the public cloud.

For decryption, the sub-services interact as shown in Figure 3. When
the user requests an encrypted file, stored as (CTABE,CTk) in cloud
storage, the transformation service receives a copy of CTABE and applies
algorithm Transform. The resulting CTPK is given to the session service.
The session service applies the Decaps algorithm and gives the obtained
symmetric key k to FileCrypt. Applying the data encapsulation mecha-
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Figure 3: Interactions during file access. ABE ciphertext CTABE is trans-
formed into partially decrypted ciphertext CTPK by the transformation
service using the transformation key. The session service performs a Decaps
operation on CTPK using the decapsulation key skPK,ID and obtains k
which is used by FileCrypt to decrypt CTk. The user receives the result.

nism’s Decrypt algorithm to k and CTk received from the cloud’s storage
yields the plaintext data File that is given to the user.

4.2 Cloud design for ACE

As described in Section 2, our architecture for access control in the cloud
aims at realizing strong security as if access control and decryption were
performed at the user while leveraging the cloud’s computational resources
for those tasks. In order to achieve this goal, our cloud model must reflect
the security requirements imposed by the sub-services of ACE. Figure 4a
presents our cloud model. The design considers storage and computational
resources of the public cloud and complements them with a trusted cloud,
which consists of two components, a TC server and a TC-HSM.

A TC server is a server with dedicated technical and organizational
measures like remote attestation and memory encryption to protect the
integrity of executed software and to protect the confidentiality of processed
data. A TC-HSM is a tamper-resistant Hardware Security Module (HSM)
that provides a restricted and well-defined Application Programming
Interface (API). An HSM protects integrity and confidentiality of stored
data also against attackers with physical access to the device. Furthermore,
the TC-HSM API supports run-time initialization with user keys.
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Figure 4: The components of our cloud and their relation to ACE.

On the one hand, the TC server provides high computational power
and is able to dynamically assign its resources to executed services based
on their workload. On the other hand, the TC server is unable to protect
the confidentiality of data against adversaries with physical access. This
protection is provided by a TC-HSM at the cost of restricted flexibility
and power. In consequence, the components of our trusted cloud achieve
security by different means and thus establish different levels of security.
Both the TC-HSM and the TC server are secure. However, its stronger
guarantees make the TC-HSM fit to serve as a trust anchor for our cloud.

4.3 Security, execution of services

Our division of ABE-OS-KEM’s algorithms into services reflects the
security levels required by the algorithms based on the threat that exposing
their key inputs poses. Thus, the assignment of services to the components
of our cloud model must also reflect the expected levels of security. As a
result, we map our ACE sub-services, which implement the ABE-OS-KEM,
to the components of our cloud as shown in Figure 4b.

As discussed in Section 4.2, the TC-HSM provides the highest level
of security. It is thus fit to run the session service that works on security
critical user specific secrets. The TC server provides a level of security
that is sufficient to run the FileCrypt service that operates on file-specific
secrets. The public cloud’s compute servers provide no security guarantees,
so they may only operate on non-critical keys. The transformation service
can be run on such servers. For this assignment, the security needed by the
three categories of ABE-OS-KEM keys, and thus our services, match the
three levels of security provided by the components of our cloud model.
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4.4 Elasticity

The partitioning of our ACE service into sub-services does not only reflect
the sensitivity of keys. It also supports elasticity because each sub-service
can be scaled individually. This provides four dimensions of elasticity:
elasticity with respect to data storage, simultaneous access to multiple
files, the complexity of access policies, and the number of active users.

Data is always stored encrypted at the storage server in the public
cloud. Hence, storage can be dynamically (de-)provisioned based on the
needed amount, the expected reliability, and the acceptable latency.

For simultaneous processing of multiple files, we distinguish between
encryption (write access) and decryption (read access). Encryption of
data does not involve user keys and is performed on the TC server by the
FileCrypt service. Depending on the number of files to encrypt, the TC
server provisions resources for the FileCrypt service based on standard
load balancing mechanisms. Decryption of files additionally involves the
transformation service and the session service. The transformation service
is hosted in the public cloud with high elasticity. The session service is exe-
cuted on the TC-HSM with limited resources, but due to the initialization
(see Section 4.1), additional TC-HSMs can temporarily be initialized.

For decrypting files with complex access policies, we benefit from the
ABE-OS-KEM with a separated transformation and decapsulation step.
The complexity of Decaps at the constrained TC-HSM is independent of
the policy. Hence, additional resources for complex policies only need to
be provisioned for Transform that is executed in the public cloud.

Finally, the number of active users determines the amount of provi-
sioned HSMs for executing the session service. Resources for the FileCrypt
and transformation service are provisioned during active encryption or
decryption and are freed while no data is being accessed.

5 Infrastructure for Identity and Key Management

In this section, we describe identity management, rights management, and
key management for our ABE-based ACE service. Identity management
provides entities like users or hardware components with an identity
and revokes identities. Rights management is the assignment of access
rights, respectively attributes, to identities according to their roles. Key
management is the technical task of enforcing those rights using ABE and
includes key generation, key storage, and key revocation.
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5.1 Tasks

Identity and rights management. As a building block, our system uses
a classical Public Key Infrastructure (PKI) with a root certificate and
a corresponding Certification Authority (CA). In a technical sense, an
identity ID is a public key with a certificate. The CA provides an entity
with an identity by issuing a certificate for the entity’s public key. Standard
mechanisms like revocation lists (see [10, Chapter 13]) are used to revoke
an identity. An entity can prove its identity or establish a secure channel
with another entity based on its certificate.

An identity possesses a set of rights according to its role. In our case,
these rights correspond to a set of ABE-attributes (see Section 3). We
encode these attributes into the certificate of the identity during certificate
generation. This allows entities to check the rights of an identity.

ABE key storage. For our system, we apply client-side key management
to put the individual organizations in control of decryption keys (see [4]).
Therefore, in our system, each organization operates a dedicated service
for ABE key storage. The ABE decryption key skABE,ID of the user with
identity ID is then stored at the key storage of the user’s organization.

Based on the key storage, we modify the initialization of our ACE
service from Section 4.1 (see Figure 5, compare Figure 2). No user can have
direct access to her key. Instead, the user with identity ID authenticates
at the key storage to obtain a ticket for her key. The ticket is only granted
to the user if she has not been revoked by the CA. The user forwards the
ticket to the session service, who, via an authenticated channel, presents
the ticket to the key store and obtains the user’s key skABE,ID in return.

ABE key generation. For the generation of ABE user keys, we operate a
global key generation service that has access to the ABE master secret
key. Take note that the creation of user secret keys via algorithm KeyGen
is independent of any user identifier. Thus, organizations can request user
keys from the key generation service without providing user identifiers.
Organizations can store the obtained user secret keys in their respective key
storages and bind the keys to users later on. Note that the key generation
service itself is beyond our considerations.

Our system explicitly supports sharing of data between identities of
different organizations. Therefore, the ABE master secret key mskABE
and the corresponding public parameters pubABE (see Definition 1 and
Definition 2) are used globally for all participating organizations.
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Figure 5: ACE initialization with key storage: The user ID uses her cre-
dentials (e. g. password) to log in at the key storage, which checks the
user’s revocation status. If the user is not revoked, she is given a ticket
ticketID that she presents to the ACE session service. The session service
uses the ticket to obtain the user’s ABE key from the key store.

5.2 Discussion

Our system is dynamic, i. e. it is possible to add and revoke entities, as well
as changing entities’ access rights. Our system also provides separation
of duties among multiple parties. It distinguishes the technical aspects of
key management from the administrative task of rights management, and
it splits responsibilities between participating organizations.

Dynamic. To add users to the system, we generate an identity ID con-
sisting of a public/private key pair with a PKI-based certificate. New
identities are provided with secret ABE decryption keys according to
their role and corresponding attributes. To revoke/remove users from the
system we revoke their ID based on classical revocation mechanisms of
the PKI. This effectively revokes the user from the ACE service because it
prevents access to the user’s secret key skABE,ID at the key storage. Hence,
we implicitly add a key revocation mechanism to ABE by combining ABE
with classical PKI and a dedicated ABE key storage. Changing the access
rights of an entity can be realized by first revoking its identity and then
providing it with a new certificate that reflects the updated rights.

Separation of duties. Our setup supports distinguishing administrative
from technical duties by providing distinct services for identity and rights
management on the one side, and key storage and ABE key generation
on the other side. To separate responsibilities between organizations, each
organization implements its own identity management and operates its
own service for key storage. Nevertheless, an organization could operate
the key management service at a trusted third party or in the cloud.
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The CA and the ABE key generation service are operated by a trusted
global provider. To split responsibilities between organizations, we propose
a hierarchical PKI with an inter-organizational master CA and additional
organization-specific CAs. ABE key generation with access to the master
secret key mskABE is a single point of attack. To mitigate this risk, we
propose to apply techniques for distributing mskABE as in [6].

6 Proofs of concept — ABE-OS-KEM and Infrastructure

In this section we present proofs of concept for our definition of ABE-OS-
KEM and our cloud architecture. Particularly, we provide a description of
an ABE-OS-KEM and complement it a description of how to implement
our cloud architecture using cloud technology.

6.1 Our construction of RCCA secure ABE-OS-KEM

Our ABE-OS-KEM applies the ideas of outsourced decryption from [7] to
to the Rouselakis/Waters ciphertext-policy ABE scheme [11]. As in [7], we
achieve security against replayable chosen-ciphertext attacks (RCCA, [7])
via the Fujisaki-Okamoto transform [5]. Our architecture from Section 4.1,
and especially the separation between the session and FileCrypt services
relies on the properties of a key encapsulation mechanism. Therefore, we
have modified the original encryption scheme [7] to adhere to the definition
of a key encapsulation mechanism. Furthermore, we explicitly describe
our scheme in the efficient type-III setting of bilinear groups [3].

For convenience, we assume the data encapsulation mechanism used in
conjunction with our ABE-OS-KEM to use keys from {0, 1}Λ. The scheme
is defined as follows:

Setup(1Λ): compute RW master secret mskRW
ABE = α and public param-

eters pubRW
ABE = ((p,G1,G2,GT , e), {gi, ui, hi, vi, wi}i∈{1,2}, e(g1, g2)α),

where p is a Λ-bit prime, G1,G2,GT are groups of prime order p,
e : G1 × G2 → GT is a non-degenerate bilinear map and generator
g1 ∈ G1, generator g2 ∈ G2 and α ∈ Zp are chosen uniformly at ran-
dom. Parameters a, b, c, d ∈ Zp are chosen unifomly at random and are
used to compute ∀i ∈ {1, 2} : ui = gai , hi = gbi , vi = gci , wi = gdi .
Choose hash functions F : {0, 1}∗ → Zp, H1 : GT × {0, 1}Λ → Zp
and H2 : GT → {0, 1}Λ. Output pubABE = (pubRW

ABE, F,H1, H2) and
mskABE = mskRW

ABE.
KeyGen(pubABE,mskABE, AID): compute RW secret key for attribute set

AID, i. e. pick rID, ra1 , . . . , ra|AID|
$← Zp. Let K0 = gα1w

rID
1 , K1 = grID

1 ,
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and for all ai ∈ AID: Kai,2 = g
rai
1 ,Kai,3 =

(
u
F (ai)
1 h1

)rai
v−rID

1 . Output
skABE,ID = (K0,K1, {Kai,2,Kai,3}ai∈AID).

Encaps(pubABE,A): parse A as (M,ρ) with M ∈ Z`×np and row labelling
ρ : [`] → {0, 1}∗. Pick R

$← GT , k
$← {0, 1}Λ. Set s := H1(R, k)

and r := H2(R). Let C ′ = k ⊕ r. Pick y2, . . . , yn, t1, . . . , t`
$← Zp.

Set λ := M · (s, y2, . . . , yn)>; denote by λi the ith component of
λ. Let C := R · e(g1, g2)αs, C0 := gs2 and for all i ∈ [`]: Ci,1 :=
wλi

2 v
ti
2 , Ci,2 :=

(
u
F (ρ(i))
2 h2

)−ti
, Ci,3 := gti2 . Define CTABE :=

((M,ρ), C, C ′, C0, {Ci,1, Ci,2, Ci,3}i∈[`]). Output (k,CTABE).
TransKey(pubABE, skABE,ID): pick z

$← Zp and set skPK,ID := z and
tkID := (K ′0 = K

1/z
0 ,K ′1 = K

1/z
1 , {(K ′ai,2 = K

1/z
ai,2,K

′
ai,3 = K

1/z
ai,3)}).

Output (skPK,ID, tkID).
Transform(pubABE, tkID,CTABE): if the ciphertext is malformed or tkID

does not satisfy A = (M,ρ), output ⊥ and exit. Otherwise, let I ⊆ [`]
be a satisfying set of A with respect to tkID, i. e. there are bi ∈ Zp such
that

∑
i∈I biMi = (1, 0, . . . , 0), where Mi denotes the ith row of M .

Compute B′ :=
∏
i∈I

(
e(K ′1, Ci,1)e(K ′ρ(i),2, Ci,2)e(K ′ρ(i),3, Ci,3)

)bi and
B := e(K ′0, C0)/B′. Output CTPK = (C,C ′, B).

Decaps(pubABE, skPK,ID,CTPK): parse CTPK = (T0, T1, T2) and com-
pute R := T0/T

z
2 , k := T1 ⊕H2(R) and s := H2(R, k). Check whether

T0 = R · e(g1, g2)αs. If the check fails, output ⊥, otherwise output k.

The scheme’s correctness and selective RCCA security follow from the
respective properties of RW ciphertext-policy ABE [11] and the Fujisaki-
Okamoto transformation [5], after applying the obvious modifications
required due to outsourced decryption.

The major performance advantage of an ABE-OS-KEM in our archi-
tecture results from splitting the Decaps algorithm of an ABE-KEM into
two separate Transform and Decaps steps (cf. Definition 1 and Definition 2).
The complexity of Decaps in the ABE-OS-KEM is now independent of
skABE,ID and CTABE, and hence independent of the user’s permissions
and of the ciphertext’s policy. This allows us to handle users with a large
set of permissions and complex access policies in our cloud scenario that
involves resource constrained HSMs.

In concrete instantiations, arithmetic in G1 is much more efficient than
in G2 [3]. In our setting, the resource constrained HSM performs TransKey,
while the TC server executes Encaps. Our ABE-OS-KEM accounts for this
by placing user secrets Ki,j as arguments of TransKey in group G1 and
ciphertext components of Ci,j as arguments of Encaps in G2.
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6.2 Implementation

As a proof of concept, we have implemented our service architecture from
Section 4 based on the following technologies:

Docker: We have implemented the sub-services of our ACE service as
separate Docker6-based micro services. This supports elasticity and
multi-tenancy because we can create and destroy service instances for
each user, based on the current load situation.

Kubernetes: We use Kubernetes7 for orchestrating, scheduling, and
monitoring the ACE sub-services. We operate a Kubernetes cluster
that consists of four nodes. Each node runs with an Intel Xeon E3 at
2.3 GHz and 8 GB RAM.

RabbitMQ: We have implemented a queue between the FileCrypt service
and the session service based on RabbitMQ.8 Then, our queuing
mechanisms allows us to dynamically assign TC-HSMs to active users.

Amazon S3: The FileCrypt service is compatible with the Amazon S39

interface. Hence, we can use a commercial cloud storage provider to
host the encrypted files.

WebDAV: We have implemented a WebDAV service as the user front-
end to ACE, with the session service serving as its back-end. Our
implementation extends the Go10 WebDAV implementation to support
ABE policies. The extension passes policies as so-called WebDAV dead
properties to the FileCrypt service. Since standard WebDAV clients
do not support this mechanism, we have implemented a graphical user
interface that allows us to define policies for file upload (encryption).

Our implementation shows that it is practical to implement an ABE
service with modern cloud technology.

7 Future Work

As part of future research, we will enhance our design by various services.
In particular, we want to realize a service for searchable encryption as
introduced by Song et al. [13], granting authorized users the ability to
efficiently search encrypted data. Another line of future research aims
at including the multi-authority feature of Chase [2] into our cloud. The

6 https://docker.com
7 https://kubernetes.io
8 https://www.rabbitmq.com
9 https://aws.amazon.com/s3

10 https://golang.org/
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multi-authority feature allows the cloud resources of to be pooled among
multiple instantiations of the cloud, while keeping everything beyond the
hardware separate. This can help with removing the single trusted global
provider for key generation that we assume in Section 5.1.
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Figure 6: Interactions during file encryption/storage. The user sends her
plaintext File and an appropriate access structure A to the FileCrypt
service for processing. The service encrypts the data using our ABE-OS-
KEM and a complementary data encapsulation mechanism. The resulting
asymmetric and symmetric ciphertexts, CTABE and CTk, respectively,
are sent to the public cloud for storage.

A Storing Files with ACE

Figure 6 shows the encryption and storage procedure with our cloud
architecture that is missing in Section 4.1. We show it her for completeness.
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