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A B S T R A C T

The transition from traditional fuel-based bus transportation towards electric bus systems is regarded as a
beacon of hope for emission-free public transport. In this study, we focus on battery electric bus systems, in
which charging is possible at a variety of locations distributed at terminal stations over the entire bus network.
In such systems, two intertwined planning problems to be considered are charging location planning and
electric vehicle scheduling. We account for the interdependent nature of both planning problems by adopting a
simultaneous optimization perspective. Acknowledging the existence of parameter uncertainty in such complex
planning situations, which is rooted in potential changes of values of several environmental factors, we analyze
the solution sensitivity to several of these factors in order to derive methodological guidance for decision
makers in public transportation organizations. Based on the formulation of a new mathematical model and
the application of a variable neighborhood search metaheuristic, we conduct sensitivity analysis by means of
numerical experiments drawing on real-world data. The experiments reveal that it is not possible to identify
persistent structures for charging locations by an a priori analysis of the problem instances, so that rather a
simultaneous optimization is necessary. Furthermore, the experiments show that the configuration of electric
bus systems reacts sensitively to parameter changes.
1. Introduction

Electric buses are regarded as a beacon of hope for emission-free
public transport. An electric bus achieves a 19%–32% reduction in
𝐶𝑂2 emission from a life-cycle perspective compared to a diesel bus
making the deployment worthwhile (Zhou et al., 2016). The transition
from traditional fuel-based bus systems towards electric bus systems
is stimulated by the Sustainable Development Goals of the United
Nations (UN, 2020) and by several (trans)national regulations. For
example, the European Union targets electric vehicle sales shares up
to 65% by 2030 for urban buses (European Parliament & Council,
2019). In some countries this is expressed in bans on the purchase
of non-electric buses, such as in Norway and the Netherlands from
2025 (Government of Norway, 2016; Government of the Netherlands,
2017). Similar measures also apply outside the EU (see e.g. IEA, 2020).
Resulting in growing pressure on public transport companies all over
the world not only to replace their diesel buses with electric buses, but
also to provide appropriate charging infrastructure.

While the term electric bus often refers to both fuel cell electric buses
as well as battery electric buses (BEB), we will focus on the latter type1 as
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1 Hence, the terms electric bus and battery electric bus are used synonymously in this paper.

this technology is strategically favored by the majority of bus operators
in Europe (see UITP, 2018). BEB can be further distinguished in respect
to their charging concept. In Europe, the opportunity charging concept
(charging is possible at a variety of locations distributed over the entire
bus network) and the depot charging concept (charging is possible only
at one or several depots) are the most common. In terms of total
cost of ownership, opportunity charging is superior to depot charging
according to several studies (Jefferies and Göhlich, 2020; Nicolaides
et al., 2019; Vilppo and Markkula, 2015) and therefore subject of this
work.

Key planning problems to be considered for the widespread in-
troduction of battery electric buses include two broad categories: (i)
Setting up the charging infrastructure aims at determining the locations
of charging stations to be installed for the electrification of a single bus
line (Berthold et al., 2017) or a whole bus network with predefined bus
routes (Kunith et al., 2017; Xylia et al., 2017a); thereby, it represents a
long-term planning problem. (ii) Scheduling electric buses, respecting
their limited range and charging times, addresses the problem of as-
signing electric buses to cover a given set of timetabled trips, with the
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network of charging stations already given as input (Wen et al., 2016;
Adler and Mirchandani, 2017). This planning problem is of operational
nature and has been coined the Electric Vehicle Scheduling Problem
(EVSP) (Reuer et al., 2015).

Electric vehicle scheduling in practice is usually approached given
an electric infrastructure as result of preceding infrastructure planning
and implementation, establishing an overall sequential planning pro-
cess of BEB transportation systems. However, dependencies between
both planning problems also exist in the opposite direction when plan-
ning the electric infrastructure benefits from anticipating scheduling
requirements in order to enable cost-efficient schedule operations. The
resulting interdependent nature of both planning problems call for
a simultaneous optimization of electric charging infrastructure and
electric vehicle schedules, which allows public transport bus operators
to achieve lower cost and more rider- and customer-friendly schedules
than achievable through a sequential planning process (Olsen and
Kliewer, 2020a). Aiming at tapping the potential of a simultaneous
planning process, some scholars (e.g. Rogge et al., 2018) provide meth-
ods that consider the scheduling of battery buses and the optimization
of charging infrastructure in a joint process.

The above-mentioned planning problems need to account for a va-
riety of environmental factors. These factors refer to the technological
configuration, including battery capacity size and charging power of
charging stations (Göhlich et al., 2018) as well as the levels of energy
consumption of electric buses (An, 2020; Vepsäläinen et al., 2018),
the infrastructure in terms of whether mixed or fully electrified fleets
are considered, the charging process in terms of whether only full or
also partial charging is allowed, and economic parameters, such as
investment costs for electric buses and charging stations. Accounting
for parameter uncertainty due to changes of the environmental factors,
some optimization approaches – either targeting finding optimal so-
lutions (or identifying bounds), or focusing on (meta-/mat-)heuristic
approaches – have applied sensitivity analysis, which is a valuable
methodology to quantify relationships between changes of objective
values and changes of environmental parameter values. In considering
such uncertainties while planning the charging infrastructure, which is
characterized by the fact that decisions once made cannot be revised
during the gradual expansion of charging infrastructure, it is important
to incorporate persistent structures. The term persistent structure denotes

kernel set of charging locations which enables feasible and sufficiently
ow-cost bus operations independent of variations in environmental
actors.

To our best knowledge, prior research has not accounted for both
he need for simultaneous planning of the electric charging infras-
ructure and electric vehicle schedules to realize a BEB transportation
ystem and the need to account for parameter uncertainty by means of
ensitivity analysis. Addressing this research gap, the objective of our
ork is the application of a method which simultaneously optimizes
oth charging locations and vehicle schedules, and the computational
nalysis of gained results across parameter settings for various problem
nstances in order to answer the following question: To what extent does
he application of a metaheuristic solution approach to the joint problems
f charging location planning and electric vehicle scheduling allow finding
ersistent structures within the charging infrastructure? Insights in this
ssue are valuable to guide future methodological research on obtaining
olution robustness.

In order to answer our research question, we suggest a new mathe-
atical model for the simultaneous optimization of charging locations

nd vehicle schedules of electric bus systems. Accounting for the com-
utational complexity of solving large-scale instances, we implement
Variable Neighborhood Search (VNS) metaheuristic, which has been

ffective in a variety of application areas (Hansen et al., 2010, 2019;
ansen and Mladenović, 2001). Drawing on several real-world in-

tances and empirical data, we computationally apply VNS on various
roblem instances of different size with different topological character-
2

stics. Our computational experiments focus on the analysis of solution
robustness against changes of three environmental factors: i) the ratio
between investment costs per electric bus and those per charging
station, ii) technological variations concerning size of battery capacity
and power of charging stations and iii) varying energy consumption
due to fluctuations in temperature and traffic volume.

The remainder of this paper is organized as follows. Section 2
presents literature related to the optimization of charging locations
and vehicle schedules for electric bus systems. In Section 3 we provide
the problem specification and suggest a mixed-integer linear problem
formulation. In Section 3.3, we propose our solution method using a
problem-specific metaheuristic. In Section 4, we describe the setting
and the results of our computational experiments, and we discuss the
findings. Section 5 concludes our work with a summary of our study
and an outlook on future research.

2. State of the art: Charging location planning and electric vehicle
scheduling

Research related to the problem considered in this paper can be
distinguished along the fields of Charging Location Planning for ur-
ban and suburban electric bus systems, Electric Vehicle Scheduling in
public transport, and approaches addressing both problems simulta-
neously. Research related to issues of Total Cost of Ownership, the
Vehicle Routing Problem, private electric vehicles, in-motion charging
technology, or charging scheduling are out of scope of our review.
We further limit our literature review to articles which suggest opti-
mization approaches, such as mathematical problem formulations or
problem-specific solution methods.

We classify papers along the following attributes as they were iden-
tified in the introduction (compare Table 1). Technological Configuration
refers to the consideration of the power of the charging stations (P) or
the battery capacity of the electric buses (B) as decision variables. The
attribute Mixed Fleet is assigned to an approach if the considered bus
fleet consists of both electric buses and fuel-based buses, resulting in
the need to assign one of these bus types to each bus route. Partial
Charging refers to the possibility that buses are not necessarily fully
charged during a charging process, but may be charged to a state of
charge (SoC) that is below the battery capacity. Moreover, we label
those studies which perform a Sensitivity Analysis in order to account for
a change of energy consumption (E), the power of charging stations (P),
the battery capacity of electric buses (B), or the cost of buses, charging
stations or energy (C). Finally, studies where optimal solutions or the
gap to the optimal solution are obtained are labeled as Exact Solution.

The charging location planning for urban electric bus systems is,
in contrast to private electric vehicles, characterized by predetermined
and fixed routes of the vehicles. All approaches dealing with the use
of this problem address the primary goal of determining the locations
of charging stations to be installed to enable the operation of a given
timetable by electric buses, at least partially. Xylia et al. (2017b), Wei
et al. (2018) and Kovalyov et al. (2020) consider gradual electrification
of a bus system and therefore assume a mixed fleet. The models
suggested in these studies are used to select specific routes that are par-
ticularly suitable to be operated by electric buses and that, therefore,
need to be equipped with charging infrastructure. In contrast, many
other approaches exist where the charging infrastructure is determined
so that all pre-selected routes can be served by a fully electrified bus
fleet (Chen et al., 2013; Berthold et al., 2017; Kunith et al., 2017;
Wang et al., 2017; Liu et al., 2018; Cheng et al., 2019; Lin et al., 2019;
He et al., 2019; An, 2020). Most of these approaches also incorporate
partial charging.

The EVSP in public transport is a new variant of the traditional
VSP, which has been well studied in the OR literature (Bunte and
Kliewer, 2009). The EVSP addresses the problem of assigning electric
buses to cover a given set of timetabled trips, with the network of
charging stations already given as input. Apart from a few exceptions

where a mixed fleet is considered (Paul and Yamada, 2014; Sassi and
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Charging
Location
Planning

Chen et al. (2013) P,B ∙ ∙

Berthold et al. (2017) ∙ E ∙

Kunith et al. (2017) B ∙ E,P ∙

Xylia et al. (2017b) ∙ ∙ P ∙

Wang et al. (2017) ∙ B,C ∙

Wei et al. (2018) ∙ ∙

Liu et al. (2018) P,B ∙ E ∙

Cheng et al. (2019) ∙ E,C ∙

Lin et al. (2019) ∙

He et al. (2019) P,B ∙ C ∙

Kovalyov et al. (2020) P,B ∙

An (2020) ◦ E ∙

Electric
Vehicle
Scheduling

Wang and Shen (2007)

Chao and Xiaohong (2013)

Li (2014) ∙

Paul and Yamada (2014) ∙ ∙ P

Wen et al. (2016) ∙ P,B

Ke et al. (2016) B

Adler and Mirchandani (2017) ∙

Sassi and Oulamara (2017) ∙ ∙ ∙

van Kooten Niekerk et al. (2017) ∙ ∙

Jiang et al. (2018) ∙ C

Tang et al. (2019) P,B ∙

Guo et al. (2019) ◦ ∙

Messaoudi and Oulamara (2019)

Olsen et al. (2020) ∙ P ∙

Janovec and Koháni (2020) ∙ ∙

Rinaldi et al. (2020) ∙ ∙

Liu and Ceder (2020) ∙

Zhou et al. (2020) ∙ ◦

Simultaneous
Approach

Rogge et al. (2018) B ∙

Li et al. (2019) ∙ B,C ∙

Häll et al. (2019) B ∙

Yao et al. (2020) B P,B

Lu et al. (2021) ∙

Legend: E - energy consumption; P - power of charging stations; B - battery capacity of electric buses;
C - costs for buses or charging stations or energy; ∙ - The respective attribute is fulfilled; ◦ - From reading
the paper, we could not figure out whether partial charging is allowed
Oulamara, 2017; Olsen et al., 2020; Rinaldi et al., 2020; Zhou et al.,
2020), most studies dealing with this problem assume the bus fleet to
be fully electrified. While in early papers dealing with the EVSP (Wang
and Shen, 2007; Chao and Xiaohong, 2013; Li, 2014) as well as in
some more recently published papers (Adler and Mirchandani, 2017;
Ke et al., 2016; Tang et al., 2019; Messaoudi and Oulamara, 2019),
buses are required to get fully charged once a charging process has
launched, in recent literature partial charging is possible, allowing for
a more efficient use of electric buses (Wen et al., 2016; van Kooten
Niekerk et al., 2017; Jiang et al., 2018; Janovec and Koháni, 2020; Liu
and Ceder, 2020). Among the fully electrified approaches, only in Guo
et al. (2019) it is not apparent whether partial charging is allowed.

In the literature, only few approaches exist which consider both the
optimization of charging infrastructure and the scheduling of battery
3

buses simultaneously, acknowledging interdependencies between the
two partial problems. In Li et al. (2019) and Lu et al. (2021), timetabled
trips are assigned to a mixed fleet of electric buses and fuel-based buses,
and the problem of locating refueling stations at terminal stops (Li
et al., 2019) or depots (Lu et al., 2021) is addressed simultaneously.
Methodologies for the cost-optimized planning of fully electrified bus
fleets and their corresponding charging infrastructure are presented
by Rogge et al. (2018) and Yao et al. (2020) only for the depot charging
concept and by Häll et al. (2019) also for the opportunity charging con-
cept. However, none of these approaches cover the complete charging
location planning in its original sense as either the charging locations
are fixed by only considering depot charging or the number of charging
stations is predetermined (cf. Häll et al., 2019).
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The classification of studies along problem types and the above-
mentioned attributes is summarized in Table 1. We put emphasis to
two specific characteristics of the body of literature: First, only very
few studies have considered the interdependencies between charging
location planning and electric vehicle scheduling through simultaneous
studies. Second and from a methodological perspective, sensitivity
analysis has become common practice, accounting for the nature of un-
certainty of several exogenous factors. Drawing on both observations,
we contribute to the literature by suggesting a model that simul-
taneously addresses charging location planning and electric vehicle
scheduling subject to the opportunity of partial charging and subject to
a fully electrified battery bus fleet with fast charging technology. We
refer to the considered problem as the ‘‘Charging Location and Electric
Vehicle Scheduling Problem’’ (CLEVSP).

3. Mathematical model and VNS-based solution approach for the
CLEVSP

In this section, we provide the specification of our planning problem
CLEVSP and suggest a new mathematical model for this problem.
We also describe a VNS-based metaheuristic, which we use in our
numerical experiments to solve real-world CLEVSP instances.

3.1. Problem specification

We consider the problem CLEVSP, which simultaneously optimizes
the charging infrastructure and the vehicle schedules of an opportunity
charging electric bus system, assuming a fully electrified homogeneous
bus fleet situated in one depot. The objective is to minimize the sum of
i) investment costs into charging infrastructure and electric buses, and
(ii) operational costs resulting from implementing vehicle schedules,
while ensuring the operation of a given timetable.

A vehicle schedule is defined as the assignment of timetabled trips to
vehicles, represented through a list of bus rotations. A bus rotation refers
to a sequence of vehicle activities, including service trips, deadhead
trips, waiting times, and charging processes of vehicles. Based on a
given timetable, a service trip transports passengers along the route of a
us line between two terminal stops, from a departure stop to an arrival
top, and is specified by a departure and arrival time. We refer to all
ther trips as deadhead trip, which are required to connect two service
rips or the depot with a service trip. The characteristics of a deadhead
rip, including distance and duration, depend on the pair of terminal
tops that are connected. Deadhead trips as well as waiting times are
ot given in advance but result from the combination of service trips.
his logic also applies to charging processes, which are required when
bus needs to recharge in order to ensure its battery capacity will not

all below a required level of battery capacity during subsequent trips.
charging process is characterized by the location where it takes place

nd its duration. Possible locations for charging are the depot and all
erminal stops specified in the timetable, provided they are equipped
ith charging capabilities. The duration of a charging process depends
n the waiting time, the energy levels before and after charging (which
n our case does not need to equal the battery capacity since we allow
artial charging) and the charging power available.

We assume that the depot has charging capabilities so that buses
lways leave the depot with a fully charged battery. Since we consider
homogeneous fleet, all buses have the same battery capacity and

hus the same range. The average energy consumption differs between
ervice trips and deadhead trips, due to different speeds and passenger
oads. Moreover, we assume identical charging power for all charging
tations of the charging infrastructure as well as linear charging power
unctions as approximation for often nonlinear charging times in prac-
ice (Olsen and Kliewer, 2020b). We further suppose that each terminal
top has access to the power grid and is thus a candidate for a charging
tation.
4

Based on the above assumptions, the task is to jointly determine an
lectric vehicle schedule (in terms of bus rotations), a bus fleet (in terms
f the numbers of electric buses required), and a charging infrastructure
in terms of potential locations of charging stations and their total
umber) which are cost-minimal with regard to the sum of investment
osts into charging infrastructure and electric buses, and operational
osts resulting from vehicle schedules, subject to the above-mentioned
onstraints.

Fig. 1 illustrates a sample solution for a problem instance with
our service trips (ST1, …, ST4) represented as nodes; deadhead trips

are indicated through directed edges. The depicted solution includes a
vehicle schedule consisting of two rotations ([Depot, ST1, ST3, Depot]
and [Depot, ST2, ST4, Depot]), which require one electric bus each. For
two service trips ST2 and ST3, the arrival and departure stops and the
departure and arrival times are shown in the right part of Fig. 1. For
example, ST2 leaves terminal stop 𝐴 at 9:30 and reaches terminal stop
𝐵 at 10:20. Since terminal stop 𝐵 has a charging station, the bus serving
ST2 can charge its battery at this stop 𝐵 immediately after ST2. Note
hat the arrival stop of ST2 and the departure stop of ST3 represent
he same location (terminal stop 𝐵). As a result, charging processes for
oth buses can be executed at the same terminal stop 𝐵, resulting in
he need to equip only one terminal stop with charging capabilities.

.2. Mathematical model

The mathematical problem formulation is based on a directed graph
s it is shown for a sample solution in Fig. 1; its construction is based on
he ideas of Freling and Paixão (1995). The input for the model is a set
f service trips 𝐼 = {1,… , 𝑛}, which is ordered by increasing departure

time. Then, the directed graph can be represented as 𝐺 = (𝑉 ,𝐴), with
odes 𝑉 = 𝐼∪{𝑛 + 1} and edges 𝐴 = {(𝑖, 𝑗)}∪ (𝑛+1, 𝑖)∪(𝑖, 𝑛+1). Here, the
epot corresponds to the node 𝑛 + 1, all other nodes represent service
rips. A directed edge (𝑖, 𝑗) ∈ 𝐴 indicates a deadhead trip, including
epot trips which connect the depot 𝑖 with a service trip 𝑗 or a service
rip 𝑖 with the depot 𝑗, and connecting trips which connect two service
rips 𝑖 and 𝑗 by requiring a bus either to physically move between two
erminal stops or to remain at a single terminal stop when this stop is
oth the arrival stop of service trip 𝑖 and the departure stop of service
rip 𝑗 (virtual connecting trip). Set 𝐴′ ⊂ 𝐴 defines all connecting trips.
or each connecting trip (𝑖, 𝑗) ∈ 𝐴′, the following inequation holds:

𝑖 + 𝛾𝑖,𝑗 + 𝛿𝑖,𝑗 ≤ 𝛼𝑗 (1)

here 𝛼𝑖 and 𝛽𝑖 denote the departure time and the arrival time of a
ervice trip 𝑖, respectively, and 𝛾𝑖,𝑗 refers to the duration of and 𝛿𝑖,𝑗 to
he idle time before/after the deadhead trip (𝑖, 𝑗) ∈ 𝐴′.

Furthermore, the set 𝑆 indicates all departure and arrival stops of
ervice trips that are eligible for the installation of a charging station,
hich are synonymously referred to as stops in the following. The sets
𝑠 and 𝐷𝑠 are used for the assignment between departure and arrival

tops and service trips. While 𝑂𝑠 contains the service trips starting at
top 𝑠, the service trips ending at stop 𝑠 are included in 𝐷𝑠. The set 𝐵
omprises the number of all available electric buses. An overview of
he notation for sets, variables and parameters used in the model can
e found in Appendix A.

We use the following decision variables: Binary variables 𝑥𝑖,𝑗,𝑏 with
𝑖, 𝑗) ∈ 𝐴, are used to indicate (with value 1) whether service trip 𝑗 (or
he depot) directly follows service trip 𝑖 (or the depot) in a bus rotation
erved by bus 𝑏. These variables determine the sequence of service trips
hat are operated within a bus rotation. Each bus rotation starts and
nds with a depot trip, contained in the set 𝐴 as (𝑛+1, 𝑖) or (𝑖, 𝑛+1). The
lanning of other vehicle activities within the sequence of a rotation is
one by assigning the activity, for example a charging process, to the
eparture or arrival of a service trip. Hence, binary variables 𝑦𝑎𝑟𝑟𝑖 and
𝑑𝑒𝑝
𝑖 are used to map charging processes to the departure and arrival
tops of service trips. For example, 𝑦𝑎𝑟𝑟𝑖 = 1 implies that a charging
rocess takes place at the arrival stop of the service trip 𝑖. Otherwise,
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Fig. 1. Sample Solution for a problem with four service trips.
the variable is assigned value 0. The analogous logic applies to 𝑦𝑑𝑒𝑝𝑖 with
reference to the departure stop. Finally, the binary variable 𝑧𝑠 is used to
determine whether a charging station must be set up at stop 𝑠 (𝑧𝑠 = 1)
or not (𝑧𝑠 = 0). The continuous variables 𝑡𝑎𝑟𝑟𝑖,𝑏 and 𝑡𝑑𝑒𝑝𝑖,𝑏 specify the
charging time in minutes that the bus 𝑏 needs at the arrival or departure
stop of the service trip 𝑖, respectively. The continuous variables 𝑙𝑎𝑟𝑟𝑖,𝑏 and
𝑙𝑑𝑒𝑝𝑖,𝑏 refer to the energy levels of a bus 𝑏 before and after the operation of
service trip 𝑖. The energy a bus holds right before it executes service trip
𝑖 is equal to 𝑙𝑑𝑒𝑝𝑖,𝑏 given in kilowatt hour, including the charged energy
in a possibly preceding charging process (if 𝑦𝑑𝑒𝑝𝑖 = 1). Similarly, 𝑙𝑎𝑟𝑟𝑖,𝑏
represents the energy level of the bus 𝑏 at the arrival stop of the service
trip 𝑖, which if a charging process takes place after the service trip 𝑖
(marked by 𝑦𝑎𝑟𝑟𝑖 = 1) already takes into account its energy increase.

The overall mathematical model is given below.

min
∑

𝑏∈𝐵

∑

(𝑖,𝑗)∈𝐴
(𝑐𝑓𝑖𝑥𝑖,𝑗 + 𝑐ℎ𝑜𝑢𝑟𝑖,𝑗 + 𝑐𝑘𝑚𝑖,𝑗 )𝑥𝑖,𝑗,𝑏 +

∑

𝑠∈𝑆
𝑐𝑠𝑧𝑠 (2)

Subject to:
∑

{𝑗∶(𝑖,𝑗)∈𝐴}
𝑥𝑖,𝑗,𝑏 −

∑

{𝑘∶(𝑘,𝑖)∈𝐴}
𝑥𝑘,𝑖,𝑏 = 0 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (3)

∑

𝑏∈𝐵

∑

(𝑖,𝑗)∈𝐴
𝑥𝑖,𝑗,𝑏 = 1 ∀ 𝑖 ∈ 𝐼 (4)

∑

𝑖∈𝐼
𝑥𝑛+1,𝑖,𝑏 ≤ 1 ∀ 𝑏 ∈ 𝐵 (5)

𝑙𝑎𝑟𝑟𝑖,𝑏 = 𝑙𝑑𝑒𝑝𝑖,𝑏 −
∑

{𝑗∶(𝑖,𝑗)∈𝐴}
𝑛𝑖𝑥𝑖,𝑗,𝑏 +

𝑝
60

𝑡𝑎𝑟𝑟𝑖,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (6)

𝑙𝑑𝑒𝑝𝑗,𝑏 ≥ 𝑙𝑎𝑟𝑟𝑖,𝑏 − 𝑛𝑖,𝑗𝑥𝑖,𝑗,𝑏 +
𝑝
60

𝑡𝑑𝑒𝑝𝑗,𝑏 −𝑀
(

1 − 𝑥𝑖,𝑗,𝑏
)

∀ (𝑖, 𝑗) ∈ 𝐴; ∀ 𝑏 ∈ 𝐵 (7)

𝑙𝑑𝑒𝑝𝑗,𝑏 ≤ 𝑙𝑎𝑟𝑟𝑖,𝑏 − 𝑛𝑖,𝑗𝑥𝑖,𝑗,𝑏 +
𝑝
60

𝑡𝑑𝑒𝑝𝑗,𝑏 +𝑀
(

1 − 𝑥𝑖,𝑗,𝑏
)

∀ (𝑖, 𝑗) ∈ 𝐴; ∀ 𝑏 ∈ 𝐵 (8)

𝑙𝑑𝑒𝑝𝑖,𝑏 ≤ 𝑐𝑎𝑝
∑

{𝑘∶(𝑘,𝑖)∈𝐴}
𝑥𝑘,𝑖,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (9)

𝑙𝑎𝑟𝑟𝑖,𝑏 ≤ 𝑐𝑎𝑝
∑

{𝑗∶(𝑖,𝑗)∈𝐴}
𝑥𝑖,𝑗,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (10)

𝑙𝑎𝑟𝑟𝑛+1,𝑏 = 𝑐𝑎𝑝
∑

𝑖
𝑥𝑛+1,𝑖,𝑏 ∀ 𝑏 ∈ 𝐵 (11)

𝑙𝑑𝑒𝑝𝑖,𝑏 −
∑

{𝑘∶(𝑘,𝑖)∈𝐴}
𝑛𝑖𝑥𝑘,𝑖,𝑏 ≥ 𝑑

∑

{𝑘∶(𝑘,𝑖)∈𝐴}
𝑥𝑘,𝑖,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (12)

𝑙𝑎𝑟𝑟𝑖,𝑏 −
∑

{𝑗∶(𝑖,𝑗)∈𝐴}
𝑛𝑖,𝑗𝑥𝑖,𝑗,𝑏 ≥ 𝑑

∑

{𝑗∶(𝑖,𝑗)∈𝐴}
𝑥𝑖,𝑗,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (13)

𝑙𝑑𝑒𝑝𝑛+1,𝑏 ≥ 𝑑
∑

𝑖∈𝐼
𝑥𝑖,𝑛+1,𝑏 ∀ 𝑏 ∈ 𝐵 (14)

𝑡𝑑𝑒𝑝𝑖,𝑏 ≤
∑

{𝑘∶(𝑘,𝑖)∈𝐴}
𝛿𝑘,𝑖𝑥𝑘,𝑖,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (15)

𝑡𝑎𝑟𝑟𝑖,𝑏 ≤
∑

𝛿𝑖,𝑗𝑥𝑖,𝑗,𝑏 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (16)
5

{𝑗∶(𝑖,𝑗)∈𝐴}
𝑡𝑎𝑟𝑟𝑖,𝑏 + 𝑡𝑑𝑒𝑝𝑗,𝑏 ≤ 𝛿𝑖,𝑗𝑥𝑖,𝑗,𝑏 +𝑀
(

1 − 𝑥𝑖,𝑗,𝑏
)

∀ (𝑖, 𝑗) ∈ 𝐴′; ∀ 𝑏 ∈ 𝐵 (17)
∑

𝑖∈𝐼∶𝑖∈𝑂𝑠

𝑦𝑑𝑒𝑝𝑖 +
∑

𝑖∈𝐼∶𝑖∈𝐷𝑠

𝑦𝑎𝑟𝑟𝑖 ≤ 𝑀𝑧𝑠 ∀ 𝑠 ∈ 𝑆 (18)

𝑡𝑑𝑒𝑝𝑖,𝑏 ≤ 𝑀𝑦𝑑𝑒𝑝𝑖 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (19)

𝑡𝑎𝑟𝑟𝑖,𝑏 ≤ 𝑀𝑦𝑎𝑟𝑟𝑖 ∀ 𝑖 ∈ 𝐼 ; ∀ 𝑏 ∈ 𝐵 (20)

The objective function (2) is composed of two parts: the costs result-
ing from the vehicle schedule and the costs for charging infrastructure.
The number of rotations in the vehicle schedule determines the number
of buses needed to serve the given timetable. For a given solution,
the number of edges leaving the depot is equal to the number of bus
rotations in the vehicle schedule. Therefore, the investment costs per
electric bus 𝑐𝑓𝑖𝑥𝑖,𝑗 are assigned to the pull-out depot trip (𝑛 + 1, 𝑖) ∈ 𝐴.
In addition, each deadhead trip incurs personnel costs 𝑐ℎ𝑜𝑢𝑟𝑖,𝑗 per hour of
operation and energy consumption costs 𝑐𝑘𝑚𝑖,𝑗 per kilometer driven. The
personnel and energy costs for service trips are not considered in the
objective function since they are always the same for a given instance.
Fixed investment costs per charging station 𝑐𝑠 are caused by the instal-
lation of charging technology at terminal stops and add up over the
entire bus network to the total costs for charging infrastructure.

Note that investment costs are by orders of magnitude higher than
operational costs. Possible cost differences between two feasible solu-
tions with different infrastructure and fleet make-up will be greater
than cost differences because of, for example idle time reductions. As
a result, the trade-off on the long-term level between the number of
vehicles and the number of charging stations will be treated with higher
priority than the trade-off on the operational level between idle time,
charging time, and deadhead time and consumption.

The first three constraints of the model address vehicle scheduling
requirements. Eqs. (3) and (4) guarantee that each service trip is
assigned to exactly one bus rotation. The explicit assignment of a bus to
exactly one rotation is guaranteed by constraint (5). Each vehicle can
leave the depot only once to start a rotation.

Constraints (6) to (8) serve to maintain the energy balance for the
entire vehicle schedule. Constraint (6) addresses the energy balance
for a service trip. It ensures that the energy level 𝑙𝑎𝑟𝑟𝑖,𝑏 of the bus 𝑏 at
the destination of the service trip 𝑖 is equal to the energy level 𝑙𝑑𝑒𝑝𝑖,𝑏 at
the origin of the service trip minus the energy consumption 𝑛𝑖 during
the service trip 𝑖 plus the energy charged at the destination of the
service trip (charging power 𝑝 of the charging station multiplied by the
charging time 𝑡𝑎𝑟𝑟𝑖,𝑏 ). The same principle applies to constraints (7) and
(8), which address the energy balance during a deadhead trip (𝑖, 𝑗) ∈ 𝐴
(including depot trips and connecting trips).

The charging processes must be limited by an upper bound for the
energy level. Constraints (9) and (10) limit the maximum energy level
of each bus to the specified battery capacity 𝑐𝑎𝑝. The energy level
variables 𝑙𝑑𝑒𝑝𝑖,𝑏 and 𝑙𝑎𝑟𝑟𝑖,𝑏 get the value zero when a bus 𝑏 does not serve
the considered service trip 𝑖. Eq. (11) guarantees that each bus leaves
the depot with a fully charged battery. Note that the variable 𝑙𝑎𝑟𝑟𝑛+1,𝑏
represents the energy level of the bus 𝑏 at the beginning of its rotation.
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The lower bound for the discharge of the battery 𝑑, defined as an
bsolute safety level during operation, is specified in formula (12) for
ervice trips, in formula (13) for connecting trips and in constraint (14)
or depot trips. By using the binary variable 𝑥𝑖,𝑗,𝑏 on both sides of the
nequality, the energy level gets the value zero when a bus does not
erve the respective trip. Constraint (14) ensures that buses are required
o arrive at the depot with at least a minimum level of energy.

The duration of a charging process at a terminal stop must not
xceed the idle time of the bus spent at this stop. While constraint (15)
nsures this for all departure stops of the service trips, constraint (16)
efers to all arrival stops of the service trips. If charging processes take
lace before and after a connecting trip (𝑖, 𝑗) ∈ 𝐴′ the time summed up

for both charging processes may not exceed the actual idle time 𝛿𝑖,𝑗 of
a bus 𝑏. This is ensured by constraint (17)

The assignment of the departure and arrival stops of service trips
to terminal stops is considered in constraint (18) using sets 𝑂𝑠 and
𝐷𝑠. Only if a charging station is installed at terminal stop 𝑠 (𝑧𝑠 = 1),
charging processes can occur there. A distinction is made between
charging processes 𝑦𝑑𝑒𝑝𝑖 at the departure stop of the service trip 𝑖 and
charging processes 𝑦𝑎𝑟𝑟𝑖 at the arrival stop of the service trip 𝑖.

Finally, constraints (19) and (20) ensure that charging times greater
than zero can occur only at those departure and arrival stops of the
service trips where a charging station is installed.

The size of the presented model in terms of number of decision
variables as well as number of constraints depends mainly on the size of
the set 𝐴 representing all possible deadhead trips resulting from feasible
combinations of given service trips in set 𝐼 . The number of deadhead
trips |𝐴| grows quadratically as a function of the number of service trips
𝑛 (with 𝑛 = |𝐼|). Since decision variables 𝑥𝑖,𝑗,𝑏 as well as constraints
(7) and (8) are defined over the set 𝐴, the numbers of variables and
constraints both grow asymptotically quadratically in 𝑛 (i.e., 𝑂(𝑛2)).

3.3. VNS-based solution approach

Our problem CLEVSP is a generalization of the "Alternative-Fuel
Vehicle Scheduling Problem" (AF-VSP, see Adler (2014)), which is
equivalent to the EVSP. The generalization is rooted in the additional
problem of finding locations for charging stations. As any instance of
the AF-VSP can be reduced to an instance of CLEVSP straightforward
in polynomial time and the AF-VSP, like all VSP with path-length con-
straints, has proven to be NP-hard (Bodin and Golden, 1981), CLEVSP
is NP-hard, too. Accounting for this computational complexity, we
propose a Variable Neighborhood Search (VNS) metaheuristic in this
section. Metaheuristics based on VNS have been successfully applied to
real-world combinatorial optimization problems in a variety of appli-
cation areas (cf. Hansen et al., 2010, 2019; Hansen and Mladenović,
2001).

We draw our solution method upon the approach of Olsen and
Kliewer (2020a). It consists of two consecutive algorithms: a construc-
tion algorithm for generating initial solutions based on the savings
algorithm (Clarke and Wright, 1964), and an improvement algorithm
applying VNS (Mladenović and Hansen, 1997).

In both algorithms, ensuring feasible rotations is of particular im-
portance. Thus, we first describe a procedure for achieving feasibility
before proceeding with a description of the algorithms.

3.3.1. Feasibility procedure
The feasibility procedure serves two important functions: i) Check-

ing whether vehicle rotations are valid in terms of the model constraints
presented in Section 3 referring to time and energy. ii) Returning a
set of charging procedures and charging stations to be installed, if
necessary, to make rotations feasible which cannot be executed with
the energy of one battery load. Iterating over the sequence of successive
service and deadhead trips, the feasibility procedure, which is based on
recursion, checks whether and when the SoC falls below the specified
minimum energy level. In case of a shortfall, all terminal stops of
6

previous service trips and the spent waiting times there are screened
backwards for the possibility to insert charging processes. All deter-
mined charging possibilities are ordered by decreasing utilization and
the incident of the foreseen terminal stop, selecting the first, in order to
shift charging procedures from less to more highly frequented charg-
ing stations and reduce the number of charging stations. In the case
that no charging possibility can be identified, the procedure returns
‘‘infeasibility’’ for the corresponding bus rotation.

3.3.2. Construction algorithm
Starting from bus rotations each containing one service trip, the

savings algorithm iteratively merges two rotations into a single one
to achieve cost savings, terminating when no further cost-reducing
mergings are possible. Merging of two bus rotations occurs if it results
in a new feasible bus rotation and the cost savings generated are the
highest calculated for all possible combinations of rotations in the
current iteration. Feasibility of a bus rotation is fulfilled by satisfying
the constraints regarding time and energy mentioned in Section 3. Cost
savings refer to the aggregate of savings of fixed costs for vehicles
and charging stations as well as operational costs saved by merging
rotations.

3.3.3. Improvement algorithm
The improvement algorithm aims at finding a sequence of new

solutions with decreasing objective values. The applied VNS method
relies on both stochastic and deterministic changes of neighborhoods.
In our case, the bus rotations within the vehicle schedule are selected
for the definition of a neighborhood 𝑁𝑘, where size 𝑘 ∈ N defines
the number of selected bus rotations which are modified. The max-
imum neighborhood size is given by 𝑘𝑚𝑎𝑥 ∈ N. Starting point of
each iteration of the improvement algorithm is a solution that consists
of a vehicle schedule specified by bus rotations 𝑅, charging stations
𝐶 and an objective function value that is currently the lowest one
found. The incumbent solution is modified in a perturbation phase
and a subsequent local search. The application of the method SHAKE
implements the perturbation phase where a random recombination of
two bus rotations of the defined neighborhood is generated (l. 5 in
Algorithm 1). During the local search, the method BESTIMPROVE-
MENT aims at improving the randomized solution by applying two
different neighborhood operators (l. 6 in Algorithm 1). In the next
step, the objective function values of the improved and the incumbent
solution are compared (l. 7 in Algorithm 1). If the improved solution
is better than the incumbent, the method NEIGHBORHOODCHANGE
accepts it and changes the neighborhood to the smallest possible size;
otherwise the size of the neighborhood is increased. The improvement
algorithm terminates when a predefined computation time is exceeded.
Algorithm 1 provides an overview of the VNS.

Algorithm 1 Improvement algorithm based on VNS
Input: bus rotations 𝑅, charging stations 𝐶, 𝑡𝑚𝑎𝑥, 𝑘𝑚𝑎𝑥
Output: bus rotations 𝑅, charging stations 𝐶

1: 𝑡 ← 0
2: while 𝑡 < 𝑡𝑚𝑎𝑥 do
3: 𝑘 ← 1;
4: while 𝑘 ≤ 𝑘𝑚𝑎𝑥 do
5:

(

𝑅′, 𝐶 ′) ← SHAKE(𝑅,𝐶, 𝑘);
6:

(

𝑅′′, 𝐶 ′′) ← BESTIMPROVEMENT
(

𝑅′, 𝐶 ′, 𝑘
)

;
7: (𝑅,𝐶, 𝑘) ← NEIGHBORHOODCHANGE((𝑅,𝐶) ,

(

𝑅′′, 𝐶 ′′) , 𝑘);
8: end while
9: 𝑡 ← 𝐶𝑃𝑈𝑇𝐼𝑀𝐸();

10: end while
11: return (𝑅,𝐶);

In the remainder of this section, we describe the aforementioned
two neighborhood operators as they are used in the method BESTIM-
PROVEMENT.
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2-Opt operator. In order to find improving solutions referring to the
SP facet of the problem, we use a modified r-Opt operator. r-Opt is
type of local search operator commonly used for solving traveling

alesman problems or vehicle routing problems. In essence, r-Opt op-
rations replace a set of r basis edges with r non-basis edges. In our
pecification of the operator, replacements result in solutions where
asis edges are part of two different vehicle rotations. In this approach,
e set the number of edges r to 2, following a recommendation of Olsen
nd Kliewer (2020a)). The solution resulting from a replacement is only
ccepted if it yields a significant improvement of the current local-best
bjective function value. The improvement is measured by means of
he prospect saving, which must be strictly positive and non-marginal
o be significant. Since potential reductions of charging system costs are
xplicitly considered in this operator, it tends to prefer solutions with
ewer numbers of installed charging stations.

ervice trip translocation. The service trip translocation operator is an
dapted node translocation procedure. In contrast to the aforemen-
ioned 2-Opt approach, this operator modifies the vehicle schedule
y removing service trip nodes from their current vehicle rotation
nd inserting these into an other rotation. This operator is used for
onsolidation of vehicle schedules. Thus, trips can only be translocated
rom shorter towards longer vehicle rotations. As a result, the operator
rimarily helps to reduce the number of vehicles and the amount of
dle time between service trips.

. Parameter sensitivity study

In this section we present a method to identify persistent structure
ithin the charging locations for an electrified bus transport system (cf.
ection 1). To this end, we demonstrate how sensitivity analyses on a
ultitude of feasible solutions to the CLEVSP can be conducted and

nterpreted, so as to draw managerial implications and help with the
ong-term planning of charging infrastructures.

In the following, we formulate hypotheses regarding persistent lo-
ation structures and test them by analyzing two important features:
he incidence (whether a stop was equipped with a charging system)
nd the utilization (the number of charging processes at a stop).

ypothesis 1. Persistent structures within the charging infrastructure
an be identified by means of a priori analysis of the problem instances.
opological properties (i.e. the centrality with respect to the distance
o all other stops) and timetable-related properties (i.e. the number
f arrivals and departures) are predictors for the charging stations
ncidence and utilization.

ypothesis 2. The most important input parameters forming the in-
ividual configurations have an impact on the composition of the
harging infrastructure. Charging system incidence and utilization are
ubject to the combination of parameter values as well as to selected
ubsets of these parameters.

.1. Experiments design

To perform the sensitivity analysis and to check the hypotheses
ormulated above, we analyze problem solutions, created by simulta-
eously solving the CLEVSP considering all combinations of plausible
alues for relevant technological and monetary domain parameters.
able 2 gives an overview of parameter values.

echnological parameters. For this study, we have focused on varying
hree central parameters, which restrict the driving range of a BEB
ignificantly: Battery capacity, charging power at installed charging
ystems and the energy consumption per kilometer. These parameters
ave obvious implications on how resulting solutions are constituted.
higher battery capacity allows for longer runs without recharging,

hereas an increase in charging power leads to lower charging times
nd, thus, increases the number of feasible service trip combinations
7

ith respect to planned arrival, dead run, and departure times. Varying
able 2
arameter settings for scenarios.
Category Parameter Specification

Investment cost

Bus acquisition cost
(in MU)

400.000 600.000 800.000

Charging system cost
(in MU)

300.000 400.000 500.000

Technological
properties

Service trip consumption
(in kWh/km)

1.5 2.25 3

Deadhead consumption
(in kWh/km)

1 1.5 2

Battery capacity
(in kWh)

200 300 500

Charging power
(in kW)

150 300 600

Operational cost

Energy price
(in MU/kWh)

0.1

Personnel cost
(in MU/h)

20

the energy consumption changes the overall range limitation. With
an increased energy consumption vehicles will have to be charged
more frequently and the number of feasible service trip combina-
tions decreases. The assumed capacities approximate currently realistic
(200kWh), future increased (300kWh) and very optimistic (500kWh)
values. Charging system characteristics equal a panthograph charging
system, as currently available on the market.2 With regard to the
energy consumption, service trips with passenger load and dead run
trips with curb-weight must be considered differently. Thus, we use
two parameters, deadhead consumption vs. service trip consumption,
where the latter is assumed to be higher than the former. Raab et al.
(2019) calculate three scenarios for the consumption per km of different
vehicle types for peak and off-peak times, yet without any distinction
between service trips and deadhead trips. As detailed by the authors,
consumption estimates are subject to many factors, including heating
and air-conditioning. Thus, we approximate realistic values for assumed
worst, mean, and best case scenarios, in accordance to Raab et al..‘

Economic parameters. These consist of the two most important cost
factors: Bus acquisition cost as the investment cost for procuring a bat-
tery electric bus and charging system costs reflecting the costs for the
installation of a charging system.3 We chose market values as detailed
in Göhlich et al. (2018) corroborated by knowledge from the practical
application. Note that for this study, differences in depreciation are
implicitly accounted for in the proportion of charging system costs and
bus acquisition costs. Accordingly, values for the respective parameters
were chosen to reflect that electric buses exhibit higher depreciation.
Moreover, a constant energy price based on European energy prices
for businesses (cf. eurostat - European Commission, 2021) is assumed.
Similarly, personnel costs are based on an average value for personnel
costs for bus drivers in Germany (cf. Bundesagentur für Arbeit, 2019).

Overall, we combine all possible parameter values — consumption
(service trip and deadhead consumption are conjointly varied), battery
capacity, charging power, bus investment and charging system costs
(s. Table 2). Each of the five parameters can have one of three values,
which leads to a total of 35 = 243 variations.

Problem instances. We perform the sensitivity analysis as outlined
above for three real-world problem instances derived from public bus
transport networks and timetables for different cities in Germany.4
Table 3 gives an overview of the respective characteristics, such as the
number of terminal stations as well as the number of service trips in the

2 https://new.abb.com/ev-charging/products/pantograph-down accessed
n June 15, 2021.

3 Costs include those related to acquisition and installation. The cost for the
nstallation of a converter and outlet/pantograph are not modeled explicitly.

4
 Overall, we calculate three times all 243 variations.

https://new.abb.com/ev-charging/products/pantograph-down
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Table 3 Table 4

Problem instance description.

Instance/Property INST01 INST02 INST03

Size Small Medium Large
Number of terminal stations 34 206 88
Number of service trips 424 867 1296

LB (Number of vehicle rotations) 29 67 51

timetable and a lower bound for the number of bus rotations obtained
by VSP solution without range limitations.

4.2. Performance and convergence

The experiments are executed on a regular desktop computer (AMD
RyzenTM 5 3400G @3.7 GHz with RadeonTM Vega Graphics). The solu-
tion algorithm is implemented in C# and run using mono on a Ubuntu
20.04. Analyses are performed with Python 3.8, in particular using
pandas and numpy for data management, statsmodels for regression
analysis, and matplotlib for visualizations.

The VNS heuristic exhibits acceptable convergence behaviors for all
problem instances and for most parameter configurations. As presented
in Figs. 2, convergence is much more stable for the smaller instances
than for the largest.

In Fig. B.1 we can see that for all instances and most parameter con-
figurations, the total run-time (15,000 iterations) of the VNS algorithm
was well below 10 h, which is acceptable for commercial applications.
It is apparent that for the medium-size instance the algorithm exhibits
many extreme run-times and an increased average run-time. It stands
to reason that this additional complexity arises from the significantly
larger number of terminal stops, leading to an increased effort to solve
the charging scheduling problem.

For the smaller instance, we can find a strong positive correla-
tion between the total run-time and consumption per trip kilometer
(0.44915) and less pronounced negative correlations for the battery
capacity and charging power (−0.288 and −0.191). These results are
plausible, as the probability of finding energy-infeasible rotations is
increased with higher trip consumption and lower battery capacity
charging power. The number of charging opportunities to be evaluated
after a local search operator is applied grows accordingly. The medium
and large instance do not exhibit such effects which fits the observed
variance in solution composition, as discussed in the next section.

4.3. Numerical results

The implemented VNS algorithm performs reasonably well for the
purpose of this paper. Resulting solutions for the problem instances
reach acceptable quality with respect to the known optimal number of
vehicles in use (s. Table 3). As can be seen in Fig. 3(a), considering
the two characteristics – number of vehicles and charging stations
– the algorithm yields similarly distributed solutions for instances
INST02 and INST03. Both dot clouds are bi-modal with a vertical split.
INST01 requires fewer vehicles in every solution. In addition, fewer
charging stations are build than for most solutions for the other prob-
lem instances. The individual distributions of both characteristics (see
Fig. 3(b)) show that the medium and large instances must have a rather
similar solution space. The number of vehicles needed is less dispersed
than the number of charging stations, which holds true especially for
the larger instances. This fits that degrees of freedom in this optimiza-
tion problem in large part stem from the location planning, rather
than the vehicle scheduling. Considering both figures, the existence of
outlying solutions is apparent. There are three solutions without any
charging stations installed and a very high number of vehicles in use. In
these instances, the solutions could not be improved by adding charging
stations. Generally, utilization and incidence exhibit a medium positive
correlation (values between 0.37 and 0.5). If a stop is equipped with
a charging station, it will be frequently used for recharging. This is
consistent with the logic within the algorithm which aims at reducing
8

charging system investments.
Correlation matrix for incidence vs centrality and timetable features (INST01).
Incidence AvgSquaredDist Closeness TripFreq

Incidence 1.000000 −0.113332 −0.067885 0.149901
AvgSquaredDistance −0.113332 1.000000 −0.877671 0.061452
Closeness −0.067885 −0.877671 1.000000 0.508906
TripFreq 0.149901 0.061452 0.508906 1.000000

Table 5
Correlation matrix for utilization vs centrality and timetable features (INST01).

Utilization AvgSquaredDist Closeness TripFreq

Utilization 1.000000 −0.113332 −0.067885 0.149901
AvgSquaredDistance −0.113332 1.000000 −0.877671 0.061452
Closeness −0.067885 −0.877671 1.000000 0.508906
TripFreq 0.149901 0.061452 0.508906 1.000000

Table 6
Overview over model and coefficient significance in fitted LR and PR models.

Sign. Batt. Sign. Cons. Sign. Inter. Sign. Mod.

Incidence (Logistic Regression Models)

INST01 11 (73.333%) 10 (66.667%) 11 (73.333%) 15 (44.118%)
INST02 54 (91.525%) 53 (89.831%) 31 (52.542%) 59 (67.045%)
INST03 67 (72.043%) 53 (56.989%) 72 (77.419%) 93 (45.146%)

Utilization (Poisson Regression Models)

INST01 15 (88.235%) 15 (88.235%) 16 (94.118%) 17 (50.000%)
INST02 56 (94.915%) 52 (88.136%) 44 (74.576%) 59 (67.045%)
INST03 67 (73.626%) 48 (52.747%) 81 (89.011%) 91 (44.175%)

Legend: Significance level (𝑝 ≤ 0.05); coefficients counted only for sign. models.
Batt. = Battery Capacity; Cons. = Consumption, Inter. = Intercept.

4.4. Stable and persistent structures

While we can draw conclusions about the composition of a resulting
charging infrastructure by looking at the incidence, an additional con-
sideration of the actual utilization gives an insight into how integral a
charging station is as part of the charging infrastructure in a solution.

4.4.1. Testing Hypothesis 1
To analyze whether topological or timetable-related feature offered

sufficient information to predict charging infrastructure design, three
features are introduced in this paper. The average squared distance –
such that the overall distance of stop 𝑖 would be expressed as 𝐷(𝑖) =
∑

𝑗∈𝑆 𝑑𝑖𝑗 2

‖𝑆‖ where 𝑑𝑖𝑗 is the kilometer distance between 𝑖 and 𝑗 – and
closeness centrality – defined as 𝐶𝐶 (𝑖) =

‖𝑆‖
∑

𝑗∈𝑆 𝑑𝑖𝑗
as detailed in Freeman

(1978) – based on the available deadhead matrix are measured to ac-
count for topological properties. The timetable importance is measured
by the number of service trips departing from the respective stop (trip
frequency).

Correlation analysis yields no discernible pattern of dependence
between either of these properties with neither the average utilization,
nor the average incidence of charging stations (see Tables 4 and 5). The
obtained correlation coefficients indicate a weak linear relationship, at
best. There is not enough evidence to support the notion of the ability
to identify stable patterns or even persistent structures in the charging
infrastructure, just by analyzing the topological or timetable-related
properties of stops. This hypothesis is rejected, accordingly.

4.4.2. Testing Hypothesis 2
In order to measure the dependence of the features incidence and

utilization, we performed correlation analysis against the input param-
eters for each individual stops. Note that consumption per service trip
kilometer was used as a proxy for the overall consumption.

In summary, both features are uncorrelated with the charging
power, and the two cost parameters. However, we find medium and
strong correlations with the available battery capacity (negative) and
the assumed consumption (positive). The correlation can be observed
in the data relating to all three problem instances (see Fig. 4) and
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Fig. 2. Convergence behavior for three problem instances. Each graph shows the individual convergence for each parameter setting as well as an average convergence graph (red).

(To inspect this figure in more detail, we kindly refer the reader to the full-color high-res image included in the web version of this article.)
Fig. 3. Overview over solutions for three problem instances.
Fig. 4. Overview over retrieved solutions for the problem instances. Rows represent parameter charging power, battery capacity, consumption, charging system cost, and bus

investment cost (top to bottom). Columns represent terminal stops.
is more pronounced for utilization than for incidence. This means,
that, on the one hand, an increased battery capacity is related with
both, fewer charging processes at an installed station, and a lower
tendency of the algorithm to install a charging system. On the other
hand, a greater energy consumption per kilometer is associated with
the opposite effect.
9

Furthermore, several stops are equipped with charging systems in
very few solutions. Neither their incidence, nor utilization, correlate
with the input parameters. It stands to reason that the instances in
which these are used as charging stations would be a random occur-
rence, and had the stop been blacklisted for example, the algorithm
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Table 7
Descriptive analytic measures for the distribution of coefficients in significant LR and PR models.
Instance Coef. 25% 50% 75% max mean min std

Incidence (Logistic Regression Models)

INST01 Batt −4.079 −2.598 −1.331 −0.787 −7.425 −37.825 12.406
Cons 1.342 2.175 4.385 41.241 7.498 0.155 12.812
intercept −2.865 −1.286 1.730 37.751 4.042 −4.730 13.712

INST02 Batt −3.270 −2.832 −2.078 −0.765 −2.739 −5.014 0.918
Cons 1.420 1.782 2.334 3.888 1.933 −0.529 0.806
intercept −1.444 −0.676 −0.146 1.076 −0.821 −3.693 1.047

INST03 Batt −4.504 −3.472 −2.817 −0.240 −4.417 −65.362 6.527
Cons 1.362 1.864 2.659 53.583 3.078 −0.000 6.121
intercept −2.826 −2.191 −0.877 1.306 −3.082 −55.662 6.601

Utilization (Poisson Regression Models)

INST01 Batt −1.691 −1.208 −0.941 −0.603 −1.555 −3.643 0.938
Cons 0.996 1.121 1.752 3.219 1.386 0.277 0.831
intercept −2.377 −1.042 1.303 3.479 −0.541 −3.635 2.288

INST02 Batt −2.426 −2.117 −1.762 −0.448 −2.070 −3.438 0.542
Cons 1.023 1.280 1.628 2.307 1.288 −0.432 0.456
intercept −1.330 −0.650 0.113 2.873 −0.645 −3.869 1.251

INST03 Batt −3.625 −2.705 −2.361 −0.218 −3.625 −53.081 5.382
Cons 0.993 1.280 1.752 63.293 3.257 −0.000 10.146

intercept −2.870 −2.233 −0.999 1.828 −3.854 −65.490 10.485
would have compensated by moving the few charging processes to
another stop.

Since we were able to establish a correlation between utilization and
incidence and some input parameters, we want to gain more insights
into the dependencies for the location planning problem. To corrobo-
rate the findings from the correlation analysis, a logistic regression (LR)
and Poisson regression (PR) model were fitted for each stop, regressing
incidence – and utilization, respectively – over the normalized input
parameters battery capacity and consumption as predictors.

Charging station incidence is the response variable for a binomial
logistic regression model. In logistic regression, the goal is to use an
additive model of input features (predictors) to predict the probability
of the outcome to be in one class — in our case this is the probability
that stop becomes a charging station. The charging station utilization is
a count variable. Hence, we assumed Poisson distribution and fitted a
PR model to investigate the association between the input parameters
as outlined above and the number of charging processes in a solution.

In the following, we analyze the fitted models with respect to two
aspects, model significance and coefficient significance. We first check
for model significance. If a fitted model shows significance, we continue
to check the significance of the estimated parameters, as a means to
assess, whether varying parameter inputs are predictors for utilization
and incidence. If, for the LR case, a fitted model is not significant,
we must assume that the probability for a stop to be equipped with
a charging station cannot reliably be described through this model. In
conclusion, the incidence for this stop would not be explainable by the
variation in the selected input parameters. Similarly, for the PR case, if
a model is not significant, the number of charging processes at a stop
cannot be adequately predicted, using the selected predictors.

Model significance. As a first step, we checked whether significant
models – with respect to the log-likely-hood ratio (LLR) – can be fitted
using logistic and Poisson regression.5 For our instances, this holds true.
However, as is evident in column "Sign. Mod’’. in Table 6, less than half
of all estimated models in INST01 is significant at the 5% level. The
portion of significant models is highest for the medium-sized instance
INST02, indicating greater fluctuation in the charging infrastructure
due to parameter variations. For the charging station utilization, the
regression results are similar.

In conclusion, significant LR and PR models cannot be fitted for all
stops. In INST01 and INST03, for over half of all stops, the probability

5 For more information on model diagnostics, please refer to Tables B.1,
.2, and B.3 (for LR) and B.4 B.5, and B.6 (for PR) in Appendices B.3 and B.4.
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of becoming a charging station cannot be adequately modeled using
LR. In INST02 67.05% of stops allow for a regression model to be fit.
Moreover, the utilization cannot be reliably explained for at least half
the stops in INST01 and INST03, and for about a third in INST02.

Furthermore, whether an LR or PR model will be significant is only
very weakly correlated with the structural properties from the previous
section. However, medium positive correlation is present between the
number of solutions in which a stop becomes a charging station and the
significance of the respective regression model. This can be explained
through the increase in variance in the outcome variable leaving more
information for the model.

Coefficient significance. If a model is significant, it is informative to
look at the estimated coefficients which for both, LR and PR, contain
information about the strength and direction of a relationship with the
outcome variable. Within the significant LR and PR models, significance
of the estimated coefficient for the input parameters on 5% level is high
which confirms the results of the correlation analysis (s. Table 6).

As can be observed in Table 7, the coefficients are distributed in
an expected manner. Battery capacity exerts a strong negative impact
on charging station incidence and utilization, whereas the consumption
has a positive effect. Thus, higher battery consumption decreases the
probability of becoming a charging station for the respective stop. This
effect will barely be compensated for by an increased consumption. A
similar behavior is apparent for the utilization model.

The model significance in all problem instances is positively corre-
lated with overall charging station incidence. The more frequent a stop
is equipped with a charging station, the more likely will it be possible to
fit an LR or PR regression model. This is related to another coefficient
which is estimated, the intercept. In LR and PR models the intercept
can be interpreted as the baseline condition — if all other parameters
are at their smallest possible values. For the incidence this can be
translated into the probability that a stop becomes a charging station
when the normalized input parameters are 0. Stops with particular
relevance for the charging infrastructure – i.e. frequently used charging
locations – exhibit relatively large intercepts and in comparison small,
yet significant coefficients for other input parameters. For charging
locations with little importance for the overall charging infrastructure
this relation is inverted.

The presented analysis of correlations and regression models yields
an understanding of the impact of the selected parameters on the charg-
ing infrastructure. From correlations, conclusion can be drawn about
important parameters for the problem instance. Regression analyses
helps to gain further insights into the (in-)stability of charging locations

and to discern important and unimportant charging locations. Two
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possible explanations may lead to a stop having insignificant LR or PR
model: (1) The stop must be of negligible importance, hence instances
in which it is equipped with a charging station are ‘noise’. (2) The stop
is part of the majority of charging infrastructures for the respective
problem instance, regardless of the combination of technological and
economic factors. Thus, it is a candidate for a persistent charging
infrastructure. The underlying interplay of utilization and incidence is
illustrated in Figs. B.2, B.3, and B.4 in Appendix B.2.

4.5. Discussion

We have demonstrated how the analysis of a multitude of solutions
for the CLEVSP based on realistic assumptions about environmental
parameters can support the planning process of a robust charging
infrastructure for the electrification of a public transport bus system.
The analysis and interpretation of structural information does not
suffice to determine persistent structure and stable locations. While
the analysis shows, that charging station where installed at stops with
higher centrality and timetable importance, these are not the sole
factors influencing charging station incidence and utilization. The anal-
ysis of relationships between incidence and utilization and the input
parameters renders a more reliable approach. This approach allows for
the distinction of parameter-dependent parts of the resulting charging
infrastructure – i.e. stops which are stable only with respect to non-
variance in specific parameters – and parts which will be integral for
any or the majority of possible charging infrastructure for the respective
problem instance. We have demonstrated how regression analysis can
yield further information about how and to what extend the input
parameters will effect the location planning aspect of the CLEVSP. This
helps in finding locations which are suitable to support an optimal
vehicle schedule for BEBs.

Limitations. The presented approach depends on the employed solution
algorithm and drawn conclusions are in part subject to the implemented
logic. This dependence is not unwanted, since it is expected that the
VSP solution will be relatively stable and as such remain similar, as
long as no fundamental changes to the underlying timetable occur.
In practice, it would be advisable to create the solutions with a VSP
algorithm similar to the one used in operation.

With respect to the environmental parameters, this study does not
include possible adverse and complementary effects between the se-
lected parameters such as vehicle weight and battery capacity, battery
capacity and vehicle cost. Furthermore, charging systems allow infinite
parallel charging processes and no distinction is made between individ-
ual components — i.e. converter and charging system. This might lead
to an underestimation of the overall charging system cost. However,
from previous studies we can assume that parallel charging does occur
very infrequently.

5. Conclusions

In this paper, we address the issue of finding robust opportu-
nity charging infrastructure for fully electrified urban bus systems
under simultaneous optimization of charging infrastructure locations
and vehicle schedules. We analyze the existing literature and identify a
research gap consisting in CLEVSP-solution sensitivity to technological
and economical parameters. To fill this gap, this paper proposes a new
mathematical model, which optimizes both the charging infrastructure
and vehicle schedules in a joint process. As large-scale problem in-
stances cannot be solved exactly, we implement a VNS-based heuristic
in order to be able to calculate solutions for realistic problem sizes to
deliver a basis for detailed experimental analysis. We conduct com-
prehensive computational experiments based on real-world instances
corresponding to existing anonymized bus networks and vary several
parameter values in order to control for the robustness and sensitivity
of results.
11
The experiments indicate that for each of the three studied bus
networks, certain terminal bus stops can be identified by the VNS,
which are designated for the installation of charging infrastructure in a
majority of the parameter settings and thus resemble persistent struc-
tures. Comparing our results with the topological and timetable-related
properties of the instances shows that it is not possible to trivially
identify persistent structures within the charging infrastructure by an a
priori analysis of the problem instances. This supports our assumption
that the two combinatorial optimization problems are mutually depen-
dent and thus require an algorithmic approach in determining locations
for charging infrastructure.

Furthermore, our results highlight that the configuration of electric
bus systems in terms of charging infrastructure, bus fleet, and vehicle
schedules reacts to varying degrees sensitively to changes in tech-
nological parameters consisting of battery capacity, charging power,
and energy consumption, as well as economic parameters in form of
investment costs for charging stations and electric buses. The highest
sensitivity of the location decisions for the charging infrastructure is
revealed to changes in battery capacity as well as energy consumption.

We envision further avenues for research. Our analysis approach
can support the derivation of instructions for a gradual expansion
of the electric bus fleet and the charging infrastructure. In order to
conduct appropriate studies, the approach used in this paper needs to
be enhanced to include consideration of mixed fleets and to develop
a meta-model for gradually increasing the proportion of electric buses
in the fleet. Therefore, to solve more complex problem instances, the
solution approach can be enhanced by the incorporation of further
neighborhood operators, which tackle the location planning of charging
stations more explicitly.
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Appendix A. Notation

See Table A.1.
Table A.1
Notation overview.

Sets Description

𝐼 Service trips (ordered by increasing departure time)

𝑉 Vertices (Service trips and depot)

𝐴 Arcs (Possible connecting and depot trips)

𝐴′ Possible connecting trips

𝑆 Terminal stops

𝑂𝑠 Service trips with stop 𝑠 ∈ 𝑆 as departure stop

𝐷𝑠 Service trips with stop 𝑠 ∈ 𝑆 as arrival stop

𝐵 Electric buses

Parameters Description Range/Unit

𝛼𝑖 Start time of service trip 𝑖 ∈ 𝐼 [min]

𝛽𝑖 End time of service trip 𝑖 ∈ 𝐼 [min]

𝑛𝑖 Energy consumption of service trip 𝑖 ∈ 𝐼 [kWh]

𝛾𝑖,𝑗 Duration of deadhead trip (𝑖, 𝑗) ∈ 𝐴 [min]

𝑛𝑖,𝑗 Energy consumption of deadhead trip (𝑖, 𝑗) ∈ 𝐴 [kWh]

𝛿𝑖,𝑗 Idle time before/after deadhead trip (𝑖, 𝑗) ∈ 𝐴 [min]

𝑐𝑓𝑖𝑥𝑖,𝑗 Investment costs per electric bus executing the depot trip (𝑖, 𝑗) ∈ 𝐴 [MU]a

𝑐ℎ𝑜𝑢𝑟𝑖,𝑗 Personnel cost for deadhead trip (𝑖, 𝑗) ∈ 𝐴 and service trip 𝑖 ∈ 𝐼 [MU]

𝑐𝑘𝑚𝑖,𝑗 Energy consumption costs for deadhead trip (𝑖, 𝑗) ∈ 𝐴 and service trip 𝑖 ∈ 𝐼 [MU]

𝑐𝑠 Investment costs per charging station [e]

𝑝 Charging power of a charging station [kW]

𝑑 Lower limit for battery discharge [kWh]

𝑐𝑎𝑝 Battery capacity of an electric bus [kWh]

𝑀 Big M

Variables Description Range/Unit

𝑥𝑖,𝑗,𝑏 Deadhead trip (𝑖, 𝑗) ∈ 𝐴 is executed by bus 𝑏 {0, 1}

𝑦𝑎𝑟𝑟𝑖 Charging process at the arrival stop of service trip 𝑖 ∈ 𝐼 {0, 1}

𝑦𝑑𝑒𝑝𝑖 Charging process at the departure stop of service trip 𝑖 ∈ 𝐼 {0, 1}

𝑧𝑠 Charging station at bus stop 𝑠 ∈ 𝑆 {0, 1}

𝑡𝑎𝑟𝑟𝑖,𝑏 Charging time of bus 𝑏 ∈ 𝐵 at the arrival stop of service trip 𝑖 ∈ 𝐼 R+/[min]

𝑡𝑑𝑒𝑝𝑖,𝑏 Charging time of bus 𝑏 ∈ 𝐵 at the departure stop of service trip 𝑖 ∈ 𝐼 R+/[min]

𝑙𝑎𝑟𝑟𝑖,𝑏 Energy level of bus 𝑏 ∈ 𝐵 at the arrival stop of service trip 𝑖 ∈ 𝐼 R+/[min]

𝑙𝑑𝑒𝑝𝑖,𝑏 Energy level of bus 𝑏 ∈ 𝐵 at the departure stop of service trip 𝑖 ∈ 𝐼 R+/[min]

aMU: monetary units.
12



EURO Journal on Transportation and Logistics 10 (2021) 100049M. Stumpe et al.
Appendix B. Results

B.1. Performance

See Fig. B.1.

Fig. B.1. Absolute observed run-time per problem instance.
13
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B.2. Composite analysis graphs

See Figs. B.2–B.4.

Fig. B.2. Graphical overview of the found solutions for INST01. Rows represent solutions and columns represent stops. The western graph depicts the input parameters (blue:
low value; red: high value). The eastern graph compares normalized numbers of vehicle and charging stations in a solution. The southern plot compares the average utilization
(yellow), number of departing service trips (orange) and the centrality (purple) of the respective stop. The center plot depicts whether a stop equipped with a charging system
and how frequently it is utilized (green: low; yellow: high) relative to other charging stations in the solution. (To inspect this figure in more detail, we kindly refer the reader to
the full-color high-res image included in the web version of this article.)
14
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Fig. B.3. Graphical overview of the found solutions for INST02. Rows represent solutions and columns represent stops. The western graph depicts the input parameters (blue:
low value; red: high value). The eastern graph compares normalized numbers of vehicle and charging stations in a solution. The southern plot compares the average utilization
(yellow), number of departing service trips (orange) and the centrality (purple) of the respective stop. The center plot depicts whether a stop equipped with a charging system
and how frequently it is utilized (green: low; yellow: high) relative to other charging stations in the solution.
15
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Fig. B.4. Graphical overview of the found solutions for INST03. Rows represent solutions and columns represent stops. The western graph depicts the input parameters (blue:
low value; red: high value). The eastern graph compares normalized numbers of vehicle and charging stations in a solution. The southern plot compares the average utilization
(yellow), number of departing service trips (orange) and the centrality (purple) of the respective stop. The center plot depicts whether a stop equipped with a charging system
and how frequently it is utilized (green: low; yellow: high) relative to other charging stations in the solution.
16
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B.3. Logistic regression results

See Tables B.1–B.3.

Table B.1
Estimated model parameters for INST01 (significance levels: ‘.’ 0.05; ‘*’ 0.01; ‘**’ 0.005; ‘***’ 0.001).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0001 37.751 −37.8251 41.2408 −53.545 7.338e−16*** −18.696 0.6508
0002 1.5647*** −1.8316*** 1.1542* −134.69 1.259e−07*** −118.80 0.1180
0004 0.35 −1.0658** 0.1555 −168.38 0.002910* −162.54 0.03468
0005 1.8943*** −2.9327*** 3.6724*** −114.94 2.764e−17*** −76.815 0.3317
0006 −1.6827*** −0.2469 −0.634 −84.766 0.4029 −83.857 0.01072
0007 −3.5807*** 0.6486 −5.028e−16 −38.494 0.7215 −38.167 0.008478
0008 −1.487*** −0.0182 −0.0848 −113.42 0.9780 −113.40 0.0001958
0010 −2.6865*** 0.2757 0.7925 −82.666 0.2648 −81.337 0.01607
0011 −4.8762*** −1.664 2.5586 −28.133 0.03781. −24.858 0.1164
0012 −1.6917*** −0.772 −0.2613 −82.666 0.2968 −81.451 0.01469
0013 3.9142*** −4.0974*** 5.066*** −69.100 7.571e−14*** −38.888 0.4372
0014 −4.2995*** −4.0765 1.7236 −20.394 0.05419 −17.479 0.1429
0015 −1.0386*** −0.768 0.1472 −127.45 0.1304 −125.42 0.01598
0016 −3.5167*** −2.2723 −1.6889 −11.592 0.3911 −10.653 0.08100
0018 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0019 0.5863. −1.4174*** 2.0009*** −150.97 5.836e−10*** −129.71 0.1408
0020 −1.2367*** −0.8823. 0.5967 −127.45 0.02477. −123.76 0.02902
0021 −1.4411*** −1.2452* 0.8483. −117.91 0.001898* −111.64 0.05315
0022 −3.1448*** −0.7874 1.8502* −73.817 0.003300* −68.103 0.07740
0023 −34.8813 −64.8608 32.3555 −11.592 0.01154. −7.1294 0.3849
0024 −1.0546*** −0.693 0.7569. −144.05 0.01628. −139.93 0.02859
0025 −2.8074*** −2.598* 2.1749** −78.334 1.172e−06** −64.677 0.1743
0026 36.8646 −37.2393 35.7029 −58.989 2.028e−18*** −18.249 0.6906
0027 −0.8776* −0.8702. −0.1498 −126.17 0.07999 −123.64 0.02002
0028 −3.6949*** −4.0612** 3.4577*** −73.817 2.136e−10*** −51.550 0.3017
0029 −2.2669*** −1.0791. 1.5298* −100.17 0.0004956** −92.559 0.07597
0030 −0.7733* −0.9008. −1.509e−16 −134.69 0.05601 −131.81 0.02140
0031 −3.9982*** −1.6838 2.0062 −38.494 0.02144. −34.651 0.09982
0032 −1.2862*** −2.0168*** 0.7513 −111.87 3.597e−05** −101.63 0.09147
0033 −2.9234*** −3.8758*** 3.7034*** −110.29 1.556e−17*** −71.586 0.3509
0034 −4.7303*** −9.303*** 9.1626*** −138.00 8.958e−43*** −41.185 0.7016

Table B.2
Estimated model parameters for INST02. (significance levels: ‘.’ 0.05; ‘*’ 0.01; ‘**’ 0.005; ‘***’ 0.001).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0001 −4.2995*** −4.0765 1.7236 −20.394 0.05419 −17.479 0.1429
0003 −3.6846*** −2.4168. 2.2024. −47.797 0.0009893** −40.878 0.1447
0004 −1.2193*** −3.1632*** 0.9329. −108.68 2.346e−08*** −91.110 0.1617
0005 −4.382* −83.3303 −1.283e−16 −6.4910 0.3320 −5.3883 0.1699
0006 −2.4724*** −3.3495* 1.2656 −61.608 0.0001165** −52.550 0.1470
0007 −2.9857*** −1.7196. 1.3927 −56.302 0.01013. −51.710 0.08157
0008 −4.382* −83.3303 −1.916e−15 −6.4910 0.3320 −5.3883 0.1699
0009 −4.1194*** −2.0575. 2.6611* −47.797 0.0006193** −40.410 0.1545
0010 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0011 −1.872*** −4.3942*** 1.5617* −88.843 2.176e−09*** −68.898 0.2245
0012 −34.8813 −64.8608 32.3555 −11.592 0.01154. −7.1294 0.3849
0014 −4.7517* −59.9943 1.7105 −11.592 0.07290 −8.9730 0.2259
0015 −2.1187*** −7.3443. 0.3087 −44.794 0.0001010** −35.593 0.2054
0016 −2.17*** −1.4983* 1.8372*** −108.68 3.317e−06** −96.062 0.1161
0017 −2.6482*** −3.5635* 1.6663. −64.165 1.296e−05** −52.911 0.1754
0018 −2.4401*** −2.7423* 1.1826 −64.165 0.0004296** −56.412 0.1208
0019 0.0047 −4.1225*** 2.6525*** −166.70 9.191e−27*** −106.75 0.3596
0020 −1.4408*** −4.7671*** 1.3623* −100.17 3.029e−11*** −75.949 0.2418
0021 −1.9808*** −2.188. −0.5045 −50.711 0.02930. −47.181 0.06961
0022 −2.8174*** −6.2506. 0.8332 −35.176 0.001739* −28.821 0.1807
0023 −0.9145* −3.5315*** 2.2029*** −147.67 1.969e−18*** −106.90 0.2761
0026 −3.8289*** −2.6577 2.0276. −38.494 0.005175* −33.230 0.1367

(continued on next page)
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Table B.2 (continued).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0027 −3.2351*** −4.1505. 1.2721 −35.176 0.005560* −29.984 0.1476
0028 0.0316 −4.5551*** 2.501*** −164.96 8.165e−28*** −102.59 0.3781
0029 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0030 −0.9809* −3.2375*** 1.8073*** −140.10 9.547e−15*** −107.82 0.2304
0031 −0.8774* −3.8042*** 1.5805*** −134.69 3.708e−15*** −101.46 0.2467
0033 −0.3298 −3.9713*** 1.5287*** −150.97 8.331e−19*** −109.34 0.2757
0035 −2.1444*** −3.8223*** 1.5729* −80.522 1.474e−07*** −64.792 0.1954
0036 −0.7111. −2.7051*** 1.9166*** −155.36 3.895e−15*** −122.18 0.2136
0038 1.1266*** −6.4637*** 4.9924*** −164.96 6.296e−40*** −74.696 0.5472
0039 −2.4577*** −5.7639* 1.0897 −50.711 3.806e−05** −40.535 0.2007
0040 1.3059*** −5.7594*** 4.6158*** −161.20 1.528e−36*** −78.731 0.5116
0041 −0.1496 −3.9449*** 3.1448*** −167.69 1.527e−27*** −105.94 0.3682
0042 0.641. −5.9822*** 3.6481*** −168.43 5.926e−38*** −82.714 0.5089
0043 1.3033*** −7.1942*** 4.6209*** −166.93 3.203e−43*** −69.085 0.5862
0044 0.7326. −6.2442*** 3.836*** −168.42 2.782e−39*** −79.639 0.5271
0045 0.5819. −5.5728*** 4.1416*** −167.97 1.055e−36*** −85.132 0.4932
0046 −2.4007*** −6.6371. 0.3679 −38.494 0.0008472** −31.420 0.1838
0047 −1.0092** −2.7589*** 1.5211*** −136.92 1.249e−11*** −111.82 0.1834
0048 0.3757 −4.9501*** 3.1877*** −168.33 1.248e−32*** −94.872 0.4364
0050 1.2622*** −6.0237*** 5.0407*** −161.20 8.735e−38*** −75.869 0.5293
0051 −2.6862*** −3.957** 1.9709* −69.100 5.065e−07*** −54.604 0.2098
0052 0.1654 −4.4155*** 2.8948*** −167.84 3.239e−29*** −102.24 0.3908
0053 −3.9982*** −1.6838 2.0062 −38.494 0.02144. −34.651 0.09982
0054 −0.5924 −4.712*** 2.6587*** −155.36 6.807e−26*** −97.408 0.3730
0057 −2.2249*** −4.8446** 1.6115. −73.817 5.739e−08*** −57.144 0.2259
0058 −1.5736*** −4.0127*** 0.8532 −84.766 2.799e−07*** −69.677 0.1780
0060 −1.809*** −3.98*** 1.3856. −88.843 1.831e−08*** −71.027 0.2005
0061 −2.6007*** −3.8309** 1.9994* −73.817 1.666e−07*** −58.209 0.2114
0062 −2.4776*** −3.3236*** 2.6138*** −100.17 1.235e−11*** −75.052 0.2507
0064 −1.7144*** −2.8174*** 1.2892. −98.370 3.756e−07*** −83.575 0.1504
0066 −0.7733* −2.9743*** 2.6362*** −161.20 4.147e−20*** −116.57 0.2769
0067 −2.181*** −3.4668*** 1.5571* −80.522 4.959e−07*** −66.005 0.1803
0068 −3.7072*** −2.6446. 2.3981* −50.711 0.0002163** −42.273 0.1664
0069 −2.8566*** −2.9668* 1.7491. −61.608 7.411e−05** −52.098 0.1544
0070 −5.555* −4.8289 3.601 −24.366 0.002629* −18.425 0.2438
0072 −2.4367*** −4.0777* 1.4425. −64.165 7.909e−06** −52.417 0.1831
0074 −76.6138 −0.7013 72.5039 −6.4910 0.3196 −5.3504 0.1757
0075 −2.7096*** −5.2785 −3.976e−16 −28.133 0.01933. −24.187 0.1403
0078 −3.1573*** −3.3062 0.5282 −28.133 0.06763 −25.439 0.09575
0080 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0081 −5.4345* −4.1161 3.126 −20.394 0.01669. −16.301 0.2007
0082 −2.5822*** −2.7428** 2.1109** −84.766 2.041e−07*** −69.362 0.1817
0083 −2.6199*** −3.3864*** 2.2447** −82.666 1.750e−08*** −64.805 0.2161
0086 −2.5818*** −4.5215*** 2.1657* −76.100 7.058e−09*** −57.330 0.2466
0089 −3.5951*** −2.6311. 2.0058. −44.794 0.001854* −38.503 0.1404
0090 −3.2581*** −47.2474 −9.509e−16 −16.165 0.03567. −12.831 0.2062
0092 −3.737*** −4.7348 1.3381 −24.366 0.02609. −20.720 0.1496
0093 −23.3344 −3.343 20.895 −16.165 0.009759* −11.535 0.2864
0094 −6.8163*** −0.2398 4.719. −38.494 0.0009695** −31.555 0.1803
0095 −2.8045*** −58.7986 −1.0851 −16.165 0.02736. −12.566 0.2226
0096 −2.5046*** −3.571** 1.8962* −76.100 2.825e−07*** −61.020 0.1982
0098 −2.0771*** −7.0002. −2.286e−16 −41.696 0.0003214** −33.653 0.1929
0102 −3.0169*** −2.3758* 2.0124* −66.661 5.515e−05** −56.855 0.1471
0103 −2.7079*** −6.0886** 2.1715* −66.661 8.451e−09*** −48.072 0.2789
0108 −2.5748*** −2.5696. 0.7701 −50.711 0.009667* −46.072 0.09148
0109 −2.0796*** −4.5041* 0.8376 −61.608 2.509e−05** −51.015 0.1719
0111 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0112 −2.0089*** −3.4837** 1.1328 −76.100 5.700e−06** −64.025 0.1587
0113 −5.719* −2.8909 3.5658 −24.366 0.009082* −19.665 0.1929
0114 −1.2559*** −2.8086*** 1.5742*** −127.45 7.705e−11*** −104.17 0.1827
0116 −3.9613*** −3.3349 1.7442 −28.133 0.02236. −24.333 0.1351

(continued on next page)
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Table B.2 (continued).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0117 −5.2056* −2.2723 1.6889 −11.592 0.3911 −10.653 0.08100
0118 −3.5456*** −3.0442* 2.677* −61.608 2.785e−06** −48.817 0.2076
0119 −3.5051*** −2.9103* 3.0079*** −73.817 3.321e−08*** −56.597 0.2333
0120 −2.6651*** −3.7289 2.442e−16 −31.728 0.03366. −28.337 0.1069
0124 −0.4539 −3.2557*** 1.9245*** −157.91 3.329e−18*** −117.67 0.2549
0125 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0126 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0127 −3.5715*** −3.2423* 2.8362** −64.165 4.816e−07*** −49.619 0.2267
0128 −2.8261*** −2.9542* 2.0577* −71.485 2.966e−06** −58.756 0.1781
0130 −4.382* −83.3303 −2.003e−15 −6.4910 0.3320 −5.3883 0.1699
0131 −0.0454 −3.8384*** 1.3893** −157.30 2.097e−19*** −114.29 0.2734
0134 −3.0198*** −4.8726. 1.4017 −41.696 0.0005674** −34.222 0.1793
0135 −23.329 −3.343 20.8896 −16.165 0.009759* −11.535 0.2864
0138 −4.3869*** −4.7706 2.2155 −24.366 0.01085. −19.843 0.1856
0140 −2.3692*** −3.2412. 0.7258 −53.545 0.001764* −47.204 0.1184
0141 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0144 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0145 −12.1279 −2.4694 10.652 −35.176 1.151e−05** −23.803 0.3233
0146 −34.8811 −64.8608 32.3553 −11.592 0.01154. −7.1294 0.3849
0147 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0149 −0.0776 −3.4519*** 2.5734*** −167.53 2.315e−23*** −115.41 0.3111
0154 −1.2998*** −2.6529*** 1.2895* −119.35 1.007e−08*** −100.93 0.1543
0155 −4.728*** −0.7027 1.0589 −16.165 0.6891 −15.792 0.02304
0156 −2.228*** −2.4864* 1.1487 −73.817 0.0002274** −65.428 0.1136
0160 −2.4508*** −2.9077* 1.3352. −66.661 0.0001159** −57.598 0.1360
0162 −3.65*** −1.0736 0.9151 −31.728 0.3623 −30.713 0.03200
0163 −34.8813 −64.8608 32.3555 −11.592 0.01154. −7.1294 0.3849
0164 −2.3565*** −2.3177** 1.8641** −90.823 1.140e−06** −77.138 0.1507
0165 −3.5167*** −2.2723 −1.6889 −11.592 0.3911 −10.653 0.08100
0167 −4.7547*** −4.264. 3.2361. −35.176 0.0002271** −26.786 0.2385
0168 −5.4201*** −1.2595 3.8289* −44.794 0.0003416** −36.812 0.1782
0169 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0172 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0173 −3.8023*** −2.346 1.7546 −35.176 0.02091. −31.308 0.1100
0175 −4.3869*** −4.7706 2.2155 −24.366 0.01085. −19.843 0.1856
0177 −40.4982 −63.5719 37.2401 −6.4910 0.1093 −4.2771 0.3411
0178 −4.0707*** −1.8781 1.3174 −24.366 0.1910 −22.711 0.06794
0182 −1.4825*** −2.7016** 0.2766 −82.666 0.0001636** −73.948 0.1055
0183 −2.2792*** −1.8678. 7.849e−17 −50.711 0.07390 −48.106 0.05137
0184 −2.803*** −3.6665. 1.3568 −50.711 0.0004350** −42.971 0.1526
0188 −1.5592*** −2.508*** 1.608** −117.91 5.679e−09*** −98.919 0.1610
0189 −0.5258 −3.4718*** 1.631*** −150.18 7.720e−17*** −113.08 0.2470
0190 −34.8811 −64.8608 32.3554 −11.592 0.01154. −7.1294 0.3849
0192 −3.0684*** −2.8412. 1.4582 −47.797 0.002537* −41.820 0.1250
0193 −0.7636. −3.2972*** 1.5979*** −143.09 8.300e−15*** −110.67 0.2266
0195 −5.0039* −50.6181 2.5716 −16.165 0.01133. −11.684 0.2772
0196 −34.8813 −64.8608 32.3555 −11.592 0.01154. −7.1294 0.3849
0197 −0.5462. −2.3228*** 1.158* −150.97 2.772e−10*** −128.97 0.1458
0198 −2.1908*** −4.8147. 2.033e−17 −41.696 0.002201* −35.577 0.1467
0199 −3.4096*** −3.705. 1.8052 −41.696 0.001048* −34.835 0.1645
0200 −5.2056* −2.2723 1.6889 −11.592 0.3911 −10.653 0.08100
0202 −55.6619 −65.3615 53.5825 −16.165 0.001175* −9.4185 0.4173
0203 −0.8388* −3.1473*** 1.0321. −128.72 8.151e−11*** −105.49 0.1805
0204 −1.5221*** −3.5309*** 2.3542*** −129.96 6.642e−16*** −95.012 0.2689
0205 −1.6888*** −2.4504*** 1.7405*** −116.44 4.862e−09*** −97.295 0.1644
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Table B.3
Estimated model parameters for INST03. (significance levels: ‘.’ 0.05; ‘*’ 0.01; ‘**’ 0.005; ‘***’ 0.001).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0001 0.8162* −3.6495*** 2.5674*** −165.29 1.056e−24*** −110.08 0.3340
0002 −0.4509 −3.3896*** 3.3293*** −167.69 9.313e−26*** −110.06 0.3437
0004 −0.5559. −2.9139*** 2.0648*** −159.63 2.501e−17*** −121.41 0.2395
0005 −4.5595*** −2.8606 2.1938 −24.366 0.03697. −21.069 0.1353
0006 1.0763*** −3.4312*** 2.4956*** −160.17 1.049e−22*** −109.57 0.3160
0007 −1.6132*** −1.5672** 1.2524* −116.44 3.619e−05** −106.21 0.08783
0008 −4.9366*** 0.7933 0.7827 −20.394 0.6607 −19.980 0.02032
0009 −0.6615. −3.7477*** 2.251*** −153.97 1.128e−20*** −108.04 0.2983
0010 −1.1668** −2.0783* −0.5288 −84.766 0.001263* −78.092 0.07874
0011 0.7398. −5.014*** 3.8818*** −166.45 7.753e−34*** −90.212 0.4580
0012 −2.2513*** −0.9858 0.8315 −80.522 0.05775 −77.670 0.03541
0013 −2.0505*** −1.021 −2.5849. −38.494 0.01670. −34.401 0.1063
0015 −1.514*** −1.991*** 1.2818* −116.44 1.884e−06** −103.26 0.1132
0016 −0.1319 −3.5749*** 2.4486*** −166.19 2.882e−23*** −114.29 0.3123
0017 −3.5447*** 0.9517 6.096e−16 −44.794 0.4281 −43.946 0.01894
0018 −3.3259*** −2.6566* 2.3149* −61.608 2.498e−05** −51.011 0.1720
0019 −36.6057 1.2927 32.2141 −11.592 0.08215 −9.0923 0.2156
0020 0.7694* −2.847*** 2.7002*** −158.50 5.658e−20*** −114.18 0.2796
0021 0.116 −4.058*** 3.8879*** −167.69 3.370e−30*** −99.828 0.4047
0022 −1.3111*** −1.125* 1.8925*** −153.25 1.620e−08*** −135.31 0.1171
0023 −0.9716** −2.0389*** 1.3026** −141.12 1.583e−08*** −123.16 0.1273
0024 −3.3766*** −3.3824. 1.548 −38.494 0.004642* −33.121 0.1396
0026 −2.6498*** −2.5817. 0.594 −44.794 0.02293. −41.019 0.08428
0027 −0.1481 −2.8317*** 1.8345*** −165.29 4.571e−17*** −127.67 0.2276
0028 −2.7096*** −5.2785 −4.763e−16 −28.133 0.01933. −24.187 0.1403
0029 −2.9982*** −1.8715 −0.6269 −24.366 0.3092 −23.193 0.04817
0030 0.026 −4.6316*** 2.948*** −166.70 6.713e−30*** −99.527 0.4030
0033 −1.4388*** −1.8724*** 1.1558* −117.91 6.878e−06** −106.02 0.1008
0034 −1.0912*** −2.2487*** 1.3923** −135.82 3.619e−09*** −116.38 0.1431
0035 −3.5918*** −0.5401 1.4147 −47.797 0.1399 −45.830 0.04115
0036 −3.7708*** −1.6425 1.0796 −28.133 0.2186 −26.613 0.05405
0037 −3.2581** −63.572 −44.8323 −6.4910 0.1093 −4.2771 0.3411
0038 −1.7359*** −2.4902*** 1.7771*** −114.94 4.139e−09*** −95.639 0.1679
0039 −0.5636. −2.8444*** 1.1864* −145.90 3.305e−12*** −119.46 0.1812
0040 −0.736* −2.2511*** 1.5019*** −151.75 4.406e−11*** −127.91 0.1571
0041 −1.701*** −1.8012*** 1.7331*** −123.51 1.007e−07*** −107.40 0.1304
0042 −1.3478*** −2.0772*** 1.7819*** −136.92 6.208e−10*** −115.72 0.1548
0043 −0.1435 −2.8475*** 1.7004*** −164.24 1.583e−16*** −127.86 0.2215
0044 −0.5021 −2.8321*** 1.562*** −154.67 1.938e−14*** −123.10 0.2041
0045 −4.3167*** −0.7386 2.218. −41.696 0.03200. −38.254 0.08255
0046 −2.6322*** −1.99. 0.5424 −47.797 0.05440 −44.885 0.06091
0047 0.6194. −2.9735*** 2.3537*** −164.96 3.337e−20*** −120.11 0.2719
0048 −1.9195*** −1.2264. 1.0618. −100.17 0.003047* −94.375 0.05784
0049 0.3202 −2.9972*** 2.117*** −168.33 8.455e−20*** −124.42 0.2609
0050 −4.11*** −0.7013 −3.628e−16 −16.165 0.8927 −16.051 0.007024
0051 −0.8652* −2.3086*** 1.8021*** −152.51 1.584e−12*** −125.34 0.1782
0052 −0.6765. −2.1197*** 1.9281*** −161.20 3.742e−13*** −132.59 0.1775
0053 −0.2194 −2.8978*** 2.8412*** −168.38 7.892e−22*** −119.79 0.2886
0054 −0.6035. −2.8931*** 1.8683*** −156.02 5.980e−16*** −120.97 0.2247
0055 0.4785 −4.6745*** 3.457*** −168.09 6.193e−32*** −96.228 0.4275
0056 0.5166 −3.6476*** 2.38*** −168.19 2.005e−24*** −113.62 0.3244
0057 −0.355 −3.0196*** 1.7059*** −159.08 1.517e−16*** −122.65 0.2290
0058 0.2585 −4.7619*** 3.2998*** −168.33 6.245e−32*** −96.483 0.4268
0059 −3.2581** −63.572 −44.8323 −6.4910 0.1093 −4.2771 0.3411
0060 −0.9264** −2.0237*** 1.3421** −144.05 7.896e−09*** −125.39 0.1295
0061 −2.0345*** −0.5266 0.4755 −88.843 0.3507 −87.796 0.01179
0062 −2.5516*** −1.9051 −1.145e−15 −41.696 0.1254 −39.620 0.04980
0063 −0.2378 −2.0028*** 1.7507*** −167.34 1.658e−12*** −140.22 0.1621
0064 −3.9567*** −0.7329 1.7456 −41.696 0.08591 −39.242 0.05887
0065 −1.4482*** −2.8586*** 1.3933* −113.42 5.802e−09*** −94.454 0.1672
0066 −1.923*** −2.4139*** 1.4315* −96.537 2.175e−06** −83.498 0.1351

(continued on next page)
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Table B.3 (continued).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0067 −0.7084* −1.9314*** 2.6407*** −167.53 9.499e−17*** −130.63 0.2202
0070 −0.2114 −4.0206*** 3.5774*** −168.19 3.043e−29*** −102.52 0.3904
0071 −1.1865*** −2.4327*** 1.7246*** −138.00 3.709e−11*** −113.99 0.1740
0072 0.2027 −3.3548*** 2.1393*** −168.09 9.936e−22*** −119.73 0.2877
0073 −2.6347*** −1.113 1.5565* −82.666 0.002187* −76.540 0.07410
0074 −4.2762*** 0.6407 0.519 −28.133 0.7091 −27.789 0.01222
0075 −1.5324*** −0.958. 0.2994 −101.93 0.09236 −99.552 0.02337
0076 −0.1377 −3.1856*** 1.7133*** −162.61 3.939e−18*** −122.53 0.2465
0077 −3.6933*** −0.765 2.0899* −58.989 0.006684* −53.981 0.08490
0078 −1.8036*** −1.9313* 0.661 −84.766 0.001830* −78.463 0.07437
0079 −0.2617 −2.3365*** 1.4648*** −163.04 1.100e−12*** −135.51 0.1689
0080 −3.0882*** −2.2859 −0.7876 −20.394 0.2777 −19.113 0.06282
0081 −0.975* −4.0192*** 2.1886*** −142.12 5.045e−19*** −99.988 0.2964
0082 −0.9869* −2.9258*** 1.4076** −133.54 1.620e−11*** −108.70 0.1861
0083 −1.5166*** −2.9091*** 2.2731*** −133.54 3.028e−14*** −102.41 0.2331
0084 −0.6081. −2.5739*** 1.6602*** −155.36 1.369e−13*** −125.74 0.1907
0085 −0.4721 −1.7767*** 1.2138** −159.63 1.563e−08*** −141.66 0.1126
0086 −0.747. −2.4766*** 0.9856. −138.00 3.122e−09*** −118.42 0.1419
0087 −2.4915*** −2.6449** 2.0244** −86.825 2.872e−07*** −71.762 0.1735
0088 −2.2795*** −2.1635. 0.7591 −64.165 0.005743* −59.005 0.08041

B.4. Poisson regression results

See Tables B.4–B.6.
Table B.4
Estimated model parameters for INST01. (significance levels: ‘.’ 0.05; ‘*’ 0.01; ‘**’ 0.005; ‘***’ 0.001).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0001 3.4787*** −1.2505*** 1.0494*** −2930.5 0.000*** −1101.8 0.6240
0002 1.3034*** −1.2076*** 0.9961*** −905.87 2.614e−82*** −718.02 0.2074
0004 0.0512 −0.6285*** 0.6182*** −406.23 2.545e−08*** −388.75 0.04305
0005 1.908*** −1.4863*** 1.2756*** −1508.2 3.829e−251*** −931.62 0.3823
0006 −1.8756*** −0.0646 −0.4027 −94.835 0.6623 −94.423 0.004345
0007 −3.6074*** 0.6235 −1.647e−16 −38.663 0.7306 −38.349 0.008119
0008 −1.3757*** 0.0582 0.0909 −171.20 0.9372 −171.13 0.0003790
0010 −2.5776*** 0.2849 0.6908 −98.703 0.2417 −97.283 0.01439
0011 −4.8796*** −1.6 2.4765 −28.208 0.04162. −25.029 0.1127
0012 −1.7609*** −0.553 −0.0938 −101.44 0.4470 −100.63 0.007937
0013 2.4672*** −1.6912*** 1.0632*** −1668.9 0.000*** −843.15 0.4948
0014 −4.3117*** −3.9835 1.6682 −20.427 0.05743 −17.570 0.1399
0015 −1.3324*** −0.5106 0.2962 −150.86 0.1785 −149.14 0.01142
0016 −3.543*** −2.2491 −1.6682 −11.600 0.3946 −10.670 0.08017
0018 −34.7257 −49.5184 31.4298 −6.4931 0.1111 −4.2958 0.3384
0019 0.7138*** −1.0018*** 1.2939*** −766.40 5.519e−66*** −616.13 0.1961
0020 −1.0418*** −0.8178* 0.7171* −216.14 0.0001706** −207.47 0.04014
0021 −1.4472*** −1.0465** 1.1207*** −192.98 1.528e−06** −179.59 0.06939
0022 −3.1538*** −0.6027 1.7524* −83.934 0.002286* −77.853 0.07245
0023 −53.796 −66.3303 51.1933 −11.600 0.01235. −7.2054 0.3788
0024 −1.2323*** −0.5477 0.5524 −171.73 0.02311. −167.96 0.02194
0025 −2.7644*** −2.159* 1.7524* −82.548 8.421e−06** −70.863 0.1416
0026 2.8703*** −1.0725*** 1.0147*** −1684.6 0.000*** −824.10 0.5108
0027 −0.9446*** −0.789. 0.0822 −181.29 0.02984. −177.77 0.01937
0028 −3.6355*** −3.3448** 2.8613*** −74.844 3.667e−09*** −55.420 0.2595
0029 −2.3767*** −0.8968 1.2803* −102.82 0.001600* −96.382 0.06261
0030 −0.8252*** −0.9409** 0.2767 −200.51 0.001927* −194.25 0.03118
0031 −3.6775*** −1.8351 1.6682 −42.598 0.01884. −38.626 0.09323
0032 −1.538*** −1.6809** 0.5794 −115.73 0.0002061** −107.24 0.07334
0033 −2.2514*** −3.6427*** 2.6966*** −189.19 2.729e−29*** −123.42 0.3476
0034 −2.9567*** −2.959*** 3.2189*** −146.69 6.308e−25*** −90.965 0.3799
21
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Table B.5
Estimated model parameters for INST02. (significance levels: ‘.’ 0.05; ‘*’ 0.01; ‘**’ 0.005; ‘***’ 0.001).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0001 −4.3117*** −3.9835 1.6682 −20.427 0.05743 −17.570 0.1399
0003 −3.7052*** −2.2491. 2.0386. −48.098 0.001497* −41.594 0.1352
0004 −1.4662*** −2.6097*** 0.73 −117.11 1.915e−07*** −101.64 0.1321
0005 −4.3944* −58.791 −2.511e−16 −6.4931 0.3333 −5.3944 0.1692
0006 −2.2173*** −3.3641* 0.8109 −68.810 9.167e−05** −59.513 0.1351
0007 −3.0402*** −1.6. 1.2803 −56.775 0.01380. −52.492 0.07544
0008 −4.3944* −58.791 −8.860e−16 −6.4931 0.3333 −5.3944 0.1692
0009 −4.1244*** −1.8984 2.4765. −48.098 0.0009683** −41.158 0.1443
0010 −34.7268 −49.5517 31.431 −6.4931 0.1111 −4.2958 0.3384
0011 −1.8506*** −4.3099*** 1.3417* −111.10 1.625e−11*** −86.257 0.2236
0012 −53.796 −66.3303 51.1933 −11.600 0.01235. −7.2054 0.3788
0014 −4.7551* −52.6697 1.6682 −11.600 0.07487 −9.0078 0.2234
0015 −2.233*** −6.9969. 0.2736 −45.047 0.0001519** −36.254 0.1952
0016 −1.9869*** −1.1953* 1.3541*** −136.39 7.192e−06** −124.55 0.08683
0017 −2.3694*** −3.7483** 1.3137. −77.617 1.261e−06** −64.034 0.1750
0018 −2.5285*** −2.5236* 1.0449 −64.848 0.0007896** −57.704 0.1102
0019 −0.1246 −2.3486*** 0.9322*** −309.77 8.318e−30*** −242.81 0.2162
0020 −1.7357*** −3.5904*** 1.1669* −110.59 3.669e−10*** −88.862 0.1965
0021 −1.8941*** −2.1012. −0.6092 −58.161 0.01649. −54.056 0.07058
0022 −2.8764*** −6.0117. 0.7683 −35.309 0.002165* −29.173 0.1738
0023 −1.0907*** −2.4914*** 1.3045*** −194.36 6.575e−18*** −154.80 0.2036
0026 −3.9521*** −2.2491 2.1197. −42.598 0.003722* −37.004 0.1313
0027 −3.2746*** −3.9835. 1.1903 −35.309 0.006719* −30.306 0.1417
0028 −0.0881 −2.5853*** 0.9633*** −322.89 5.707e−34*** −246.34 0.2371
0029 −34.7271 −49.3546 31.4312 −6.4931 0.1111 −4.2958 0.3384
0030 −0.9734*** −2.5813*** 1.0175*** −186.55 3.269e−15*** −153.19 0.1788
0031 −1.0251*** −2.8574*** 0.9995** −174.66 4.070e−15*** −141.53 0.1897
0033 −0.351. −2.8376*** 0.6466* −236.29 6.135e−21*** −189.75 0.1970
0035 −2.0108*** −3.6248*** 1.1273. −90.583 1.178e−07*** −74.629 0.1761
0036 −0.8412*** −1.731*** 0.9482*** −209.86 2.693e−12*** −183.22 0.1269
0038 1.1026*** −2.9557*** 1.3889*** −864.31 6.885e−185*** −440.26 0.4906
0039 −2.5414*** −5.3812. 0.958 −51.065 6.888e−05** −41.482 0.1877
0040 1.4268*** −2.9466*** 1.5597*** −1217.8 1.619e−306*** −513.68 0.5782
0041 −0.0546 −2.5515*** 1.3091*** −387.74 5.094e−50*** −274.24 0.2927
0042 0.3258* −2.6784*** 1.154*** −456.71 2.258e−63*** −312.46 0.3158
0043 0.5003*** −6.502*** 3.7658*** −4049.8 0.000*** −575.74 0.8578
0044 0.367** −3.2201*** 1.5226*** −571.35 1.881e−106*** −327.91 0.4261
0045 0.4726*** −2.3143*** 1.1266*** −502.68 2.942e−65*** −354.09 0.2956
0046 −2.4884*** −6.3743. 0.3349 −38.663 0.001095* −31.846 0.1763
0047 −1.2028*** −1.9968*** 1.1046*** −178.61 1.877e−11*** −153.91 0.1383
0048 0.1808 −2.8057*** 1.3427*** −460.43 1.085e−68*** −303.94 0.3399
0050 1.8282*** −3.0818*** 1.6465*** −1810.6 0.000*** −632.89 0.6505
0051 −2.6132*** −3.6248* 1.5712. −73.112 1.185e−06** −59.467 0.1866
0052 0.0915 −2.2663*** 1.105*** −397.08 3.357e−43*** −299.28 0.2463
0053 −4.0165*** −1.6 1.9091 −38.663 0.02527. −34.985 0.09513
0054 −0.5786* −3.4433*** 1.5416*** −301.58 8.510e−44*** −202.41 0.3288
0057 −2.243*** −4.4925** 1.3417. −80.946 3.935e−08*** −63.896 0.2106
0058 −1.7767*** −3.6248*** 0.7683 −89.197 4.865e−07*** −74.661 0.1630
0060 −1.8591*** −3.8284*** 1.2165* −104.74 9.622e−10*** −83.977 0.1982
0061 −2.7633*** −2.9324** 1.8468* −80.946 4.525e−07*** −66.338 0.1805
0062 −2.3016*** −2.7751*** 1.884*** −115.63 5.058e−11*** −91.926 0.2050
0064 −1.8825*** −2.3123*** 1.1071. −108.72 1.025e−06** −94.928 0.1268
0066 −0.7933*** −1.9523*** 1.4694*** −272.02 1.770e−25*** −215.02 0.2095
0067 −2.2128*** −3.2262*** 1.3075. −87.711 3.949e−07*** −72.967 0.1681
0068 −3.7222*** −2.4349. 2.1972. −51.065 0.0003792** −43.188 0.1543
0069 −2.9135*** −2.7053* 1.5489. −62.217 0.0001606** −53.481 0.1404
0070 −5.5277* −4.6093 3.4475 −24.418 0.003161* −18.661 0.2358
0072 −2.4055*** −3.8442* 1.1669 −68.117 1.031e−05** −56.635 0.1686
0074 −39.8527 −0.6931 35.7267 −6.4931 0.3211 −5.3571 0.1750
0075 −2.7733*** −5.1423 6.812e−16 −28.208 0.02119. −24.354 0.1366

(continued on next page)
22



EURO Journal on Transportation and Logistics 10 (2021) 100049M. Stumpe et al.
Table B.5 (continued).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0078 −3.1992*** −3.2262 0.5053 −28.208 0.07206 −25.578 0.09325
0080 −34.6479 −49.5334 31.352 −6.4931 0.1111 −4.2958 0.3384
0081 −5.4237* −3.9835 3.0265 −20.427 0.01837. −16.430 0.1957
0082 −2.585*** −2.4091** 1.8101** −94.835 1.688e−07*** −79.241 0.1644
0083 −2.4587*** −3.053*** 1.6682* −90.296 6.709e−08*** −73.778 0.1829
0086 −2.6557*** −3.9835** 1.8468* −80.253 1.490e−08*** −62.232 0.2246
0089 −3.6201*** −2.4707. 1.8636. −45.047 0.002609* −39.098 0.1321
0090 −5.1158*** 6.1889*** −7.572e−11 −16.183 1.000 −256.53 −14.85
0092 −3.7604*** −4.6093 1.2803 −24.418 0.02842. −20.857 0.1458
0093 −41.8712 −3.2262 39.3513 −16.183 0.01059. −11.635 0.2810
0094 −6.7648*** −0.2185 4.5534. −38.663 0.001253* −31.980 0.1728
0095 −2.8624*** −67.6384 −1.0449 −16.183 0.02869. −12.632 0.2194
0096 −2.5929*** −3.2262** 1.6682* −80.253 3.907e−07*** −65.498 0.1839
0098 −2.233*** −6.9969. 0.2736 −45.740 0.0001519** −36.948 0.1922
0102 −3.0643*** −2.1314* 1.7796* −67.424 0.0001363** −58.523 0.1320
0103 −2.7499*** −5.3034* 1.7796* −67.424 5.723e−08*** −50.748 0.2473
0108 −2.6625*** −2.6097. 0.8848 −54.649 0.004405* −49.224 0.09927
0109 −2.2009*** −4.1503* 0.7211 −62.217 5.328e−05** −52.377 0.1582
0111 −34.7411 −49.1592 31.4452 −6.4931 0.1111 −4.2958 0.3384
0112 −2.1505*** −3.2262** 1.0449. −80.253 5.774e−06** −68.191 0.1503
0113 −5.7024* −2.7751 3.4475 −24.418 0.01036. −19.848 0.1872
0114 −1.3738*** −2.1423*** 1.0996** −155.38 3.910e−10*** −133.72 0.1394
0116 −3.9792*** −3.2262 1.6682 −28.208 0.02500. −24.519 0.1308
0117 −5.2113* −2.2491 1.6682 −11.600 0.3946 −10.670 0.08017
0118 −3.5519*** −2.7053* 2.3655* −62.217 8.814e−06** −50.578 0.1871
0119 −3.5641*** −2.5473* 2.8111*** −84.340 6.500e−09*** −65.488 0.2235
0120 −2.7302*** −3.6248 −8.348e−16 −31.830 0.03681. −28.528 0.1037
0124 −0.6897*** −2.0016*** 1.133*** −249.67 2.801e−19*** −206.95 0.1711
0125 −34.7243 −49.5251 31.4285 −6.4931 0.1111 −4.2958 0.3384
0126 −34.6694 −49.1533 31.3735 −6.4931 0.1111 −4.2958 0.3384
0127 −3.5683*** −2.8434* 2.4765* −64.848 1.982e−06** −51.717 0.2025
0128 −2.9269*** −2.4707* 1.8636* −75.538 6.805e−06** −63.640 0.1575
0130 −4.3944* −58.791 −8.799e−16 −6.4931 0.3333 −5.3944 0.1692
0131 −0.492* −2.5918*** 0.9933*** −252.62 1.183e−23*** −199.83 0.2090
0134 −3.0673*** −4.6093. 1.2803 −41.905 0.0008074** −34.783 0.1699
0135 −41.8751 −3.2262 39.3552 −16.183 0.01059. −11.635 0.2810
0138 −4.3921*** −4.6093 2.1197 −24.418 0.01227. −20.018 0.1802
0140 −2.3444*** −3.2262* 0.6092 −57.468 0.001213* −50.753 0.1168
0141 −34.6479 −49.5334 31.352 −6.4931 0.1111 −4.2958 0.3384
0144 −34.7028 −49.5164 31.4069 −6.4931 0.1111 −4.2958 0.3384
0145 −60.4302 −2.2491 58.7576 −35.309 1.792e−05** −24.379 0.3095
0146 −53.7961 −66.3303 51.1934 −11.600 0.01235. −7.2054 0.3788
0147 −34.7303 −49.3017 31.4345 −6.4931 0.1111 −4.2958 0.3384
0149 −0.0345 −2.3743*** 1.1957*** −383.90 2.460e−43*** −285.79 0.2556
0154 −1.5328*** −2.1129*** 0.9527* −128.85 1.802e−07*** −113.32 0.1205
0155 −4.7374*** −0.6931 1.0449 −16.183 0.6924 −15.816 0.02272
0156 −2.3368*** −2.2491* 0.9933 −74.844 0.0005050** −67.254 0.1014
0160 −2.5384*** −2.6519* 1.1669 −67.424 0.0002503** −59.131 0.1230
0162 −3.6777*** −1.0416 0.8848 −31.830 0.3734 −30.845 0.03095
0163 −53.796 −66.3303 51.1933 −11.600 0.01235. −7.2054 0.3788
0164 −2.4279*** −1.7559** 1.7248*** −112.30 4.385e−07*** −97.662 0.1304
0165 −3.543*** −2.2491 −1.6682 −11.600 0.3946 −10.670 0.08017
0167 −4.7306*** −3.9835. 3.0265. −35.309 0.0003375** −27.315 0.2264
0168 −5.3919*** −1.1453 3.6267* −45.047 0.0005172** −37.480 0.1680
0169 −34.7268 −49.5517 31.431 −6.4931 0.1111 −4.2958 0.3384
0170 −52.6057 −3.9835 50.4464 −20.427 0.001561* −13.965 0.3164
0172 −34.7145 −49.5562 31.4187 −6.4931 0.1111 −4.2958 0.3384
0173 −3.825*** −2.2491 1.6682 −35.309 0.02424. −31.589 0.1054
0175 −4.3921*** −4.6093 2.1197 −24.418 0.01227. −20.018 0.1802
0177 −34.6969 −49.5222 31.4011 −6.4931 0.1111 −4.2958 0.3384
0178 −4.0892*** −1.8351 1.2803 −24.418 0.1983 −22.800 0.06627
0182 −1.5682*** −2.5236** 0.1112 −87.018 0.0002151** −78.574 0.09704

(continued on next page)
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Table B.5 (continued).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0183 −2.3728*** −1.7784 −3.187e−16 −51.065 0.08403 −48.589 0.04850
0184 −2.8639*** −3.4311. 1.2246 −51.065 0.0006883** −43.784 0.1426
0188 −1.7381*** −1.8796*** 1.2518** −134.49 6.030e−08*** −117.87 0.1236
0189 −0.5452* −2.7053*** 0.9407*** −242.89 6.420e−22*** −194.10 0.2009
0190 −53.796 −66.3303 51.1933 −11.600 0.01235. −7.2054 0.3788
0192 −3.1162*** −2.6769. 1.3417 −48.098 0.003528* −42.451 0.1174
0193 −0.8028*** −2.4129*** 0.8051* −193.56 5.986e−14*** −163.11 0.1573
0195 −4.9914* −65.6951 2.4765 −16.183 0.01227. −11.783 0.2719
0196 −53.796 −66.3303 51.1933 −11.600 0.01235. −7.2054 0.3788
0197 −0.4724* −1.8984*** 0.4482 −220.60 2.335e−11*** −196.12 0.1110
0198 −2.2949*** −4.6093. −3.384e−16 −41.905 0.002786* −36.022 0.1404
0199 −3.4398*** −3.4969. 1.6682 −41.905 0.001472* −35.383 0.1556
0200 −5.2113* −2.2491 1.6682 −11.600 0.3946 −10.670 0.08017
0202 −65.49 −53.0811 63.2928 −16.183 0.001372* −9.5917 0.4073
0203 −1.0687*** −2.5437*** 0.6199 −145.98 1.348e−09*** −125.56 0.1399
0204 −1.6845*** −2.6472*** 1.6682*** −156.03 2.036e−15*** −122.20 0.2168
0205 −1.8753*** −1.9199*** 1.2803** −120.89 2.531e−07*** −105.70 0.1257

Table B.6
Estimated model parameters for INST03. (significance levels: ‘.’ 0.05; ‘*’ 0.01; ‘**’ 0.005; ‘***’ 0.001).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0001 0.6081*** −2.5638*** 1.7185*** −800.58 9.161e−153*** −450.50 0.4373
0002 0.0878 −2.319*** 1.5743*** −530.95 4.554e−74*** −362.07 0.3181
0004 −0.65*** −2.1168*** 1.7096*** −362.67 2.347e−40*** −271.42 0.2516
0005 −4.5667*** −2.7751 2.1197 −24.418 0.04022. −21.205 0.1316
0006 2.3272*** −2.4729*** 1.7002*** −3132.6 0.000*** −1247.1 0.6019
0007 −1.6158*** −1.4869*** 1.3464*** −169.79 7.428e−09*** −151.07 0.1102
0008 −5.3562*** 1.2589 1.2803 −25.111 0.2687 −23.797 0.05234
0009 0.0856 −3.4385*** 1.3137*** −468.67 7.707e−67*** −316.44 0.3248
0010 −1.3722*** −1.9448* −0.4319 −89.197 0.001462* −82.669 0.07318
0011 1.6868*** −2.5779*** 1.6996*** −1828.9 0.000*** −819.09 0.5521
0012 −2.3432*** −0.6931 0.8524 −93.420 0.06303 −90.656 0.02959
0013 −2.1625*** −0.9601 −2.4765. −38.663 0.01974. −34.737 0.1015
0015 −1.37*** −2.0688*** 1.0262* −158.72 3.240e−09*** −139.17 0.1232
0016 0.215 −2.304*** 1.2803*** −511.76 7.535e−60*** −375.62 0.2660
0017 −3.5709*** 0.9062 −5.901e−16 −45.047 0.4456 −44.238 0.01794
0018 −3.2442*** −2.7209* 2.3073** −78.716 3.587e−07*** −63.875 0.1885
0019 −42.0326 1.2589 37.631 −11.600 0.08415 −9.1246 0.2134
0020 2.8733*** −2.5235*** 1.6463*** −4911.0 0.000*** −1825.8 0.6282
0021 1.0258*** −2.6674*** 1.7985*** −1179.5 1.697e−257*** −588.31 0.5012
0022 −1.2023*** −0.8334*** 1.4884*** −262.74 3.229e−13*** −233.98 0.1095
0023 −1.0953*** −1.5889*** 1.2081*** −219.59 1.648e−12*** −192.46 0.1236
0024 −3.4106*** −3.2262. 1.4467 −38.663 0.005833* −33.518 0.1331
0026 −2.7189*** −2.4707. 0.5524 −45.047 0.02702. −41.436 0.08016
0027 0.0717 −2.2491*** 1.4274*** −519.96 1.189e−60*** −381.98 0.2654
0028 −2.7733*** −5.1423 −2.969e−16 −28.208 0.02119. −24.354 0.1366
0029 −3.0429*** −1.8351 −0.6092 −24.418 0.3166 −23.268 0.04710
0030 0.1642 −2.5158*** 1.2446*** −458.77 1.926e−57*** −328.18 0.2847
0033 −1.2803*** −1.8831*** 0.8848* −162.14 4.141e−08*** −145.14 0.1048
0034 −1.0301*** −1.5759*** 0.9833*** −207.76 4.558e−10*** −186.25 0.1035
0035 −3.488*** −0.5335 1.3863 −55.342 0.09826 −53.022 0.04192
0036 −3.2039*** −2.2491 0.7683 −37.101 0.08043 −34.580 0.06793
0037 −3.2958** −83.0849 −50.1306 −6.4931 0.1111 −4.2958 0.3384
0038 −1.3253*** −2.2827*** 1.1967*** −175.22 3.430e−12*** −148.83 0.1507
0039 −0.4957* −2.2696*** 0.6763* −236.09 7.680e−16*** −201.29 0.1474
0040 −0.6079** −1.7807*** 0.8348*** −243.22 8.663e−14*** −213.14 0.1237
0041 −1.6323*** −1.4113*** 1.2336*** −155.41 2.132e−07*** −140.05 0.09884
0042 −0.6553*** −1.9584*** 0.9995*** −269.25 6.368e−17*** −231.96 0.1385

(continued on next page)
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Table B.6 (continued).

Stop Intercept Batt. Cons. LL-Null: LLR 𝑝-value: Log-Likelihood: Pseudo R-squ.:

0043 0.1382 −2.5608*** 1.1254*** −452.48 8.487e−50*** −339.49 0.2497
0044 −0.6507*** −1.9719*** 1.2359*** −281.53 2.498e−22*** −231.79 0.1767
0045 −4.3137*** −0.9096 2.3073. −45.740 0.01317. −41.410 0.09466
0046 −2.7673*** −1.7784 0.7066 −51.759 0.04973. −48.757 0.05798
0047 0.3238* −1.6767*** 1.2347*** −513.78 9.860e−53*** −394.03 0.2331
0048 −1.6366*** −1.3933* 0.5939 −118.93 0.001537* −112.45 0.05447
0049 0.2522. −1.8317*** 1.4575*** −602.71 5.057e−68*** −447.76 0.2571
0050 −4.126*** −0.6931 −1.893e−16 −16.183 0.8939 −16.071 0.006932
0051 −0.7401*** −2.1197*** 1.4744*** −301.61 4.779e−28*** −238.70 0.2086
0052 −0.6131*** −1.4085*** 1.1382*** −296.33 6.587e−17*** −259.07 0.1257
0053 0.2624. −1.9785*** 1.7699*** −736.07 3.093e−104*** −497.73 0.3238
0054 −0.269 −2.316*** 1.0189*** −326.90 4.597e−28*** −263.96 0.1926
0055 1.0646*** −2.7573*** 1.6095*** −1060.3 2.325e−219*** −556.85 0.4748
0056 0.6398*** −2.39*** 1.5225*** −774.95 2.479e−122*** −494.94 0.3613
0057 −0.2371 −2.1884*** 1.0388*** −328.24 1.697e−28*** −264.30 0.1948
0058 0.3448* −2.854*** 1.8948*** −752.36 3.949e−149*** −410.65 0.4542
0059 −3.2958** −83.0849 −50.1306 −6.4931 0.1111 −4.2958 0.3384
0060 −1.0499*** −1.7438*** 1.3528*** −237.70 2.260e−16*** −201.67 0.1516
0061 −1.7988*** −0.7635 0.1821 −101.66 0.2085 −100.09 0.01542
0062 −2.6237*** −1.8351 −6.659e−16 −41.905 0.1356 −39.907 0.04767
0063 −0.1218 −1.552*** 0.9806*** −356.55 1.469e−23*** −303.97 0.1475
0064 −3.9605*** −0.9096 1.8636. −45.740 0.03724. −42.450 0.07194
0065 −1.2696*** −2.4624*** 0.8683. −151.96 1.093e−09*** −131.32 0.1358
0066 −1.6863*** −2.2007*** 1.1433* −135.14 4.404e−08*** −118.20 0.1253
0067 −0.7534*** −1.0543*** 1.3347*** −287.77 4.590e−17*** −250.15 0.1307
0070 −0.323. −2.0922*** 1.7127*** −412.75 1.239e−55*** −286.32 0.3063
0071 −1.3341*** −1.9775*** 1.4615*** −196.41 4.359e−15*** −163.34 0.1684
0072 0.5318*** −2.4617*** 1.3226*** −643.30 5.664e−89*** −440.10 0.3159
0073 −2.6925*** −1.3993* 1.9642*** −116.68 5.653e−07*** −102.30 0.1233
0074 −4.2866*** 0.6235 0.5053 −28.208 0.7154 −27.873 0.01187
0075 −1.5512*** −0.9262. 0.22 −118.52 0.06232 −115.75 0.02342
0076 −0.4049. −1.8738*** 1.2617*** −331.43 2.141e−28*** −267.71 0.1922
0077 −3.8692*** −0.448 2.1754* −66.235 0.003151* −60.475 0.08696
0078 −2.0661*** −1.4916* 0.8224 −94.835 0.002589* −88.879 0.06281
0079 −0.2322 −1.9505*** 1.0678*** −341.88 2.004e−27*** −280.41 0.1798
0080 −3.1288*** −2.2491 −0.7683 −20.427 0.2836 −19.167 0.06169
0081 −1.3377*** −2.369*** 1.7318*** −219.09 4.159e−22*** −169.86 0.2247
0082 −0.6776** −2.2491*** 0.7015* −218.95 1.529e−13*** −189.44 0.1348
0083 −1.3268*** −2.1831*** 1.7293*** −235.98 1.344e−21*** −187.92 0.2037
0084 −0.6913*** −1.8569*** 1.171*** −264.96 3.214e−19*** −222.37 0.1607
0085 −0.5441* −1.4869*** 0.7804*** −249.41 6.164e−12*** −223.60 0.1035
0086 −0.4509. −2.316*** 0.4906. −229.96 2.515e−14*** −198.65 0.1362
0087 −2.4035*** −2.7053*** 1.793*** −105.84 4.858e−09*** −86.695 0.1809
0088 −2.3803*** −2.0085. 0.6794 −64.848 0.008387* −60.067 0.07373
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