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Abstract
Several features computed from an audio signal have been shown
to depend on the distance between the acoustic source and the
receiver, but at the same time are heavily influenced by room
characteristics and the microphone setup. While neural networks,
if trained on signals representing a large variety of setups, have
shown to deliver robust distance estimates from a coherent-to-
diffuse power ratio (CDR) feature map at the input, we here push
their modeling capabilities by additionally using the network as
feature extractor. It is shown that distance estimation based on
short-time Fourier transform (STFT) features can achieve a smaller
estimation error and can operate on shorter signal segments com-
pared to the previous CDR-based estimator.

1 Introduction
Localizing an acoustic source relative to the position and orien-
tation of a compact microphone array amounts to estimating its
direction of arrival (DoA) and its distance relative to the center of
the array. Position estimation from acoustic signals finds multiple
applications, such as steering a camera or realizing location-based
services in the smart home. Furthermore, audio signal processing
algorithms, e.g., acoustic beamforming [1] or blind source separa-
tion (BSS) based signal extraction [2, 3], can profit from position
information. Additionally, tasks like synchronizing audio streams
from distributed microphones [4, 5] or determining the geome-
try of wireless acoustic sensor networks (WASNs) [5, 6] require
knowledge of the distances between sources and microphones in
order to find a unique solution that reflects physical reality.

DoA estimation can be solved by employing knowledge about
the array geometry and estimating the time-difference of arrival of
the impinging audio signals at the microphones. There exist many
methods for DoA estimation, e.g., those based on probabilistic
models [7] or deep neural networks (DNNs) [8]. In contrast to
that, acoustic distance estimation has found less attention. This
may in part be because distance estimation from acoustic signals
is heavily influenced by the room characteristics and therefore
deemed less reliable. Thus, in unknown environments a distance
estimator has either to infer the room characteristics from the
microphone signals to adapt its estimation algorithm accordingly,
or the distance estimation procedure has to be trained on a variety
of rooms to generalize well to a target environment [9]. Hence,
the existing distance estimation methods can be categorized into
two classes.

First, there are methods which utilize prior knowledge about
the room characteristics, e.g., previously measured room impulse
responses (RIRs) [10] or the absorption coefficients of walls and
other surfaces [11]. However, such prior knowledge is in general
not available and furthermore, would be costly to obtain.

Second, there are learning-based methods, which typically use
a training phase to adapt to a specific room. A common feature for
these learning-based approaches is the direct-to-reverberant energy
ratio (DRR) which was for example used to train a Gaussian
mixture model (GMM) in [12], a Gaussian process (GP) in [13] or
a DNN in [14]. For binaural setups other features in combination
with classifiers have been proposed, e.g., Gaussian maximum-
likelihood schemes based on the magnitude-squared coherence
[15] or Gaussian classifiers and support vector machines trained on
statistical measures, e.g., the standard deviation of interaural level
differences of the recorded speech signals [16]. These learning-
based approaches to distance estimation only work accurately if

the acoustic environments of the training and deployment phase
share very similar characteristics w.r.t. reverberation and room
dimensions.

In this contribution we build upon the convolutional recurrent
neural network (CRNN) based distance estimator we proposed
in [9]. It uses a time-frequency representation of the coherent-to-
diffuse power ratio (CDR) as input feature map and shows good
generalization capabilities by exposing the CRNN to multiple
different acoustic environments during training. Thus, there is no
implicit need for an adaptation of the CRNN to the specific room
in which it should be applied, if the room is similar to some of
those seen during training.

The CDR is a feature extracted from the microphone signals’
short-time Fourier transforms (STFTs) that does not reflect the
full information present in the phase and magnitude of the STFTs.
Prior works on CDR-based distance estimation [9, 17] have al-
ready shown that the distance estimator can benefit from additional
features, e.g., DoA or acoustic environment information which
both can be extracted from the STFT. So, presenting additional
STFT features to a CRNN for distance estimation promises to
outperform previous CDR-based approaches, since it gets direct
access to all relevant information, some of which we highlight
below.

The STFT coefficients well reflect the inter-channel level dif-
ference (ILD) information which is strongly linked to the source-
microphone distance [16] and also the information contained in
the CDR. Furthermore, the magnitude spectrum obtained from
an STFT includes additional information which can be used to
decide upon speech activity [18] as well as information about
room characteristics [19]. Therefore, we propose here to use the
STFT directly as a key input feature for a DNN.

In an extensive experimental study, we compare the STFT
with the CDR and ILD features, including various combinations
of all. Particular attention is paid to the dependence of the distance
estimation accuracy on the length of the signal from which it is
gleaned, since reducing the required signal length would improve
the usefulness of distance estimation in dynamic scenarios.

The remainder of the paper is organized as follows: The
investigated features for distance estimation are discussed in Sec. 2.
Subsequently, our approach to CRNN-based distance estimation
is introduced in Sec. 3. Finally, simulation results are presented in
Sec. 4 before we end the paper by drawing conclusions in Sec. 5.

2 Investigated Features
We consider a closely spaced pair of microphones which is placed
in a reverberant room. Moreover, we assume that this microphone
pair records a single acoustic source, giving rise to the recorded
microphone signals as follows:

yi(t) = hi(t)∗x(t)+vi(t) with i ∈ {1,2}. (1)

Here, x(t) denotes the source signal, hi(t) the room impulse re-
sponse modeling the sound propagation from the source position
to the i-th microphone and vi(t) white sensor noise. The ∗ oper-
ator denotes a convolution. In the following we discuss features
which represent distance-related quantities or side information
being beneficial for distance estimation.

2.1 Coherent-to-Diffuse Power Ratio
Brendel et al. proposed to use the CDR for learning-based distance
estimation [13], showing that the distance between microphone



and sound source is reflected by the power ratio between coherent
and diffuse components of the recorded audio signals. Thereby,
the coherent signal component is caused by the direct path and the
early reflections, while the diffuse component comes from the late
reflections and sensor noise.

Here, the DoA-independent CDR estimator which was pro-
posed in [20, Eq. 12] is utilized to gather a time-frequency rep-
resentation CDR(l,k), where l denotes the frame index and k
the frequency bin index. Since bounding the feature to the in-
terval [0,1] is advantageous for the CRNN training, the CDR is
transformed to the so-called diffuseness D(l,k) with

D(l,k) =
1

1+CDR(l,k)
, (2)

which is finally used as input feature map of the CRNN.
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Figure 1: Relationship between the averaged diffuseness and the
source-microphone distance: Each data point corresponds to a
randomly drawn source-microphone constellation. The legend in
the plot shows the dimensions of the considered rooms and the
corresponding reverberation time T60.

Due to the fact that the diffuseness is based on a power ratio
it does not reflect all available information contained in the mi-
crophone signals. For example, information whether a coherent
source is active in a time-frequency bin gets lost by calculating the
power ratio. However, the CDR is only useful when a coherent
source is active.

Furthermore, the relationship between the (averaged) diffuse-
ness and the source-microphone distance d depends on the room
characteristics, e.g., the reverberation time T60, as shown in Fig. 1.
Hereby, the averaged diffuseness ζ is defined by

ζ =
1

T · (kmax−kmin +1)

T−1

∑
l=0

kmax

∑
k=kmin

D(l,k), (3)

with T denoting the number of time frames and kmin and kmax
corresponding to the limits of the considered frequency interval.
Although it was shown in [9] that further side information, e.g.,
information about the room characteristics, is reflected by the
time-frequency representation of the diffuseness to some extent,
the estimator might benefit from a more direct representation of
this information.

2.2 STFT-Related Features
The source-microphone distance can be estimated based on statis-
tical information extracted from binaural signals as it was shown
in [16]. Many of the statistical quantities for distance estimation
proposed in literature can be derived directly from the STFT of
the microphone signals. We briefly discuss two of them in the
following before we explain how the STFT can be used directly
as a feature.

2.2.1 Inter-Channel Level Differences

As described in [16], the standard deviation σILD of the ILDs

ILD(l,k) =
|Y1(l,k)|
|Y2(l,k)|

(4)

calculated from the STFTs Yi(l,k), i ∈ {1,2}, of the microphone
signals corresponds to a distance-related feature. Neglecting the
sensor noise and expressing ILD(l,k) in dB results in

ILD(dB)(l,k) = 20log10
|Y1(l,k)|
|Y2(l,k)|

(5)

= 20log10
|H1(l,k)X(l,k)|
|H2(l,k)X(l,k)|

(6)

= 20log10 |H1(l,k)|−20log10 |H2(l,k)| (7)

=H
(dB)
1 (l,k)−H(dB)

2 (l,k), (8)

with X(l,k) denoting the STFT of the source signal and Hi(l,k),
i ∈ {1,2}, the STFTs of the RIRs.

Based on this representation of ILD(dB)(l,k), it is shown
in [16] that the standard deviation of ILD(dB)(l,k) is a function of
the source-microphone distance d:

σILD =

√√√√√T−1
∑
l=0

kmax

∑
k=kmin

(
ILD(dB)(l,k)−µILD(dB)

)2

T · (kmax−kmin +1)
(9)

= f
(
σ2

1(d)+σ
2
2(d)

)
, (10)

whereby µILD(dB) corresponds to the mean of ILD(dB)(l,k). σ2
i (d),

i ∈ {1,2}, denotes the variance of the RIR corresponding to the
i-th microphone which is defined as

σ2
i (d) =

T−1
∑
l=0

kmax

∑
k=kmin

(
H

(dB)
i (l,k)−µ

H
(dB)
i

)2

T · (kmax−kmin +1)
, (11)

with µ
H

(dB)
i

denoting the mean of H(dB)
i (l,k).

In [21] the relationship between σ2
i and the distance d was

derived which is given by

σ2
i (d) =

1+2r
(1+r)2 , with r =

d2
c

d2 . (12)

Here, dc corresponds to the critical distance of the room being
dependent on the room volume and the reverberation time T60.
As shown in Fig. 2 the relation between σILD and the source-
microphone distance exhibits a similar behavior as the relation
between the averaged diffuseness and the source-microphone dis-
tance however being less dependent on the room characteristics.

We provide the raw ILDs expressed in dB as a single feature
map to the CRNN and let the CRNN extract the distance-related
high-level features. Due to the fact that the source activity infor-
mation which is contained in the magnitude of the STFT [18] gets
lost when the ILD features are calculated the distance estimator
might profit from the magnitude of the STFT of one microphone
signal as an additional feature map.

2.2.2 Inter-Channel Phase Differences

Inter-channel phase difference (IPD) features, i.e., the difference
of the phases of the microphone signals’ STFTs, provide useful
side information, e.g., information about the reverberation time
T60 [22]. This knowledge of room characteristics is helpful be-
cause most distance-related features significantly depend on room
characteristics. In addition to that, the phase differences deliver
DoA information which can be beneficial for distance estima-
tion [17]. Before providing them to the CRNN the sine and cosine
of the IPDs are taken as proposed in [23]. This results in two
feature maps emphasizing those frequency bands which best show
the phase differences compared to raw IPD features.
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Figure 2: Relationship between the standard deviation of the ILDs
and the source-microphone distance: Each data point corresponds
to a randomly drawn source-microphone constellation. The legend
in the plot shows the dimensions of the considered rooms and the
corresponding reverberation time T60.

2.2.3 Direct Usage of the STFT

The STFT of the microphone signals can be interpreted as a very
general representation of distance information and useful side in-
formation. While the use of the STFT ensures that no information
is lost, its dependence on the distance is not as apparent as it is
with hand-crafted features such as the CDR. Therefore, the first
part of the CRNN proposed in the next section is designed to act
as a powerful feature extractor to gather the information important
for distance estimation from the STFT coefficients.

For this purpose, the STFTs of both microphone signals are
presented in terms of their magnitudes and phases to the CRNN.
Using the STFTs of the microphone signals as features results in
four input feature maps. From the magnitude maps information
about source activity and distance-related ILDs can be inferred,
and the phase maps contain beneficial side information about the
DoA and the reverberation time T60.

3 CRNN-Based Distance Estimation
The CRNN-based distance estimator used in this paper is an
adapted version of the distance estimator we proposed in [9].
Both handle distance estimation as a classification task. Therefore,
the distances are quantized with a granularity of 0.1 m and the
working range is restricted to distances below a maximum distance
dmax. To learn a mapping between input features and distances
that also generalizes to unseen acoustic environments, the CRNN
is exposed to data from different acoustic environments during
training. The architecture of the chosen CRNN is summarized in
Tab. 3.

The CRNN gets aB×M×F×T dimensional time-frequency
representation of the microphone signals as input, which corre-
sponds to the results of the feature extraction process explained
in Sec. 2. Here, B denotes the size of the mini-batches, M the
number of input feature maps, F the number of frequency bins
and T the number of time frames. For example, M=4 holds if
the STFT (magnitude and phase of the two microphone signals) is
directly used as input feature.

First, there is a convolutional module consisting of a 2D convo-
lutional neural network (CNN) intended for extracting high-level
feature maps, followed by a 1D CNN intended to combine the
information of neighboring frames by processing all of their fre-
quencies. Each of the three blocks of the 2D CNN comprises two
2D convolutional layers with 64 channels using a kernel of size
7×3 and a stride of one. After the two 2D convolutional layers a
max pooling layer with stride four along the frequency dimension
follows. Unlike the CRNN architecture that we proposed in [9],
no pooling is performed along the time dimension to allow shorter
signal segments as input to the estimator. The 1D CNN consists
of two 1D convolutional layers with 512 channels, a kernel of size
3 and a stride of one.

Block Output shape

Feature Extraction B×M ×F ×T
2×Conv2D(7×3;64) B×64×F ×T

MaxPool2D(4×1) B×64×bF/4c×T
2×Conv2D(7×3;64) B×64×bF/4c×T

MaxPool2D(4×1) B×64×bF/16c×T
2×Conv2D(7×3;64) B×64×bF/16c×T

MaxPool2D(4×1) B×64×bF/64c×T
Reshape B×64 · bF/64c×T

2×Conv1D(3;512) B×512×T
2×GRU(256) B×256

fcReLU(256) B×256
fcSoftmax(C) B×C

Table 1: Architecture of the proposed CRNN: Each conv{1,2}D
layer includes batch normalization and ReLU activation. Dropout
with a probability of 0.5 is applied to the outputs of the hidden lay-
ers of the recurrent and the fully connected part. b·c corresponds
to the flooring operator.

The sequence of feature vectors generated by the convolu-
tional module is processed by a recurrent module consisting of
two gated recurrent unit (GRU) layers with 256 units per layer.
Thereby, the recurrent module is intended to extract temporal
information from the feature vector sequence and to summarize
all information of the processed signal segment for a final single
decision on the distance for the entire segment. Therefore, only
the last output vector is forwarded to the final classification layers.

The final fully connected module contains a hidden layer with
256 units and ReLU activation function and a final classification
layer with C units and Softmax activation function. Here, C
corresponds to the number of considered distance classes.

4 Experiments
We use a simulated data set corresponding to the setup in Fig. 3 to
evaluate the performance of the distance estimators utilizing the
different features which are described in Sec. 2. The data set is
split into a training set consisting of 100k, a validation set of 1000
and an evaluation set of 10k source microphone pair constellations.
Each of the source microphone pair constellations is placed in a
room whose width and depth are randomly drawn from [5m,7m].
All rooms have a fixed height of 2.4 m and all microphones and
acoustic sources are placed on the same height of 1.15 m. The
reverberation time T60 of the rooms is uniformly drawn at random
from [0.2s,0.7s].
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Figure 3: Simulated setup: The gray area visualizes the area in
which the microphones (red dots) and the acoustic source (blue
dot) are randomly placed.

To achieve an approximately uniform distribution of the dis-
tances across all random constellations of the data set, the fol-
lowing procedure is used: First, the two microphones having a



spacing of 5 cm are placed with a random position and orientation
within the considered area and the distance is uniformly drawn
at random from [0.3m,dpos]. Here, dpos corresponds to the min-
imum of dmax=5m and the largest possible distance so that the
source could be placed in the considered area. Subsequently, the
DoA is drawn at random. If the acoustic source would have to
be placed outside the considered area for the drawn distance and
DoA, the DoA is increased until the source position is within the
considered area. Note that the desired uniform distribution of the
distances is achieved via a modification of the DoA distribution, to
which we pay less importance. For each source microphone pair
constellation the RIRs are generated by the image source method
utilizing the implementation of [24].

The acoustic source signals are random samples from the
TIMIT database [25] that are trimmed to the specific length under
consideration for the experiments. Samples for training purposes
are taken from the TIMIT train set, while test samples are from
the TIMIT test set. At test time 100 speech samples are randomly
drawn and reverberated for each source microphone pair constella-
tion of the evaluation set. Subsequently, each reverberated speech
sample is cut into segments of the considered length, whereby all
resulting segments are used for the experimental evaluation.

The distance is linearly quantized with a granularity of 0.1 m
resulting in C=48 distance classes. All distance estimators are
trained for 500k iterations using the Adam optimizer [26] with
a mini-batch size of B=32 and a learning rate of 3 ·10−4. After
training the best performing checkpoint w.r.t. the mean absolute
error (MAE) of the distance estimates on an independent validation
set is chosen. The STFT used for the extraction of all investigated
features utilizes a Blackman window with a length of 25 ms and a
shift of 10 ms. As described in [13] a forgetting factor of λ=0.95
is used to estimate the power spectral densities which are needed
to calculate CDR(l,k).

We employ the MAE and the accuracy of the distance classifi-
cation as performance metrics. Here, the MAE, i.e., the average
absolute difference between the estimated distance and the ground
truth distance before quantization, is calculated over all reverber-
ated speech segments. Although the fine-granular quantization
of distances can quickly result in a confusion with a nearby dis-
tance class, such a confusion still results in a small distance error.
Therefore, in addition to the values for the classical definition of
accuracy, we also state values for an extended accuracy that allows
a confusion with the next-closest distance class w.r.t. the ground
truth distance before quantization.

Feature Seg. length / ms MAE / m Acc. / %
train test normal extended

CDR 256 256 0.23 68.1 77.3
CDR 256 512 0.13 79.0 87.9
CDR 256 1024 0.09 83.2 91.9
CDR 1024 256 0.48 57.8 66.5
CDR 1024 512 0.15 77.9 86.8
CDR 1024 1024 0.07 86.4 94.6

STFT 256 256 0.15 76.6 85.3
STFT 256 512 0.07 86.4 94.2
STFT 256 1024 0.05 89.8 97.0
STFT 1024 256 0.36 65.7 73.8
STFT 1024 512 0.10 84.1 91.6
STFT 1024 1024 0.04 91.1 97.5

Table 2: Influence of the signal segment length on the perfor-
mance of the distance estimator.

Tab. 2 shows the effect of the signal segment length on dis-
tance estimation for the selected metrics. As expected a reduction
of the segment length leads to worse distance estimates. Further-
more, the effect intensifies if the distance estimator is trained on
longer segments. The first observation can be explained by the
fact that the proportion of time-frequency bins without speech
activity is larger for shorter segments, while the latter observation
is dedicated to a mismatch of this proportion between training and

test data. We can conclude that longer segments are beneficial for
estimation accuracy, but that it does not make sense to employ
longer segments in training than are used in test.

A direct comparison between CDR and STFT features shows
that under the same training and test conditions, the STFT features
result in an improved performance in all considered cases. For
example, an STFT-based estimator (trained on 256 ms long seg-
ments) can achieve an equally good performance on 512 ms long
segments as a CDR-based estimator (trained on 1024 ms long seg-
ments) on 1024 ms long segments. To get a more detailed insight
into the reasons for the differences, experiments with additional
features, i.e., ILD features, IPD features, magnitude and phase,
are considered in the following.

Feature MAE / m Acc. / %
normal extended

CDR 0.23 68.1 77.3
ILD 0.32 61.5 69.9

STFT 0.15 76.6 85.3

ILD + Mag. 0.25 65.3 75.5
ILD + Mag. + Phase 0.16 75.0 84.0
ILD + Mag. + IPD 0.17 73.9 82.7

CDR + Mag. 0.18 72.4 82.3
CDR + Mag. + Phase 0.15 77.5 86.3
CDR + Mag. + IPD 0.15 76.5 85.4

CDR + STFT 0.13 78.8 87.2

Table 3: Comparison of the investigated input features for a signal
segment length of 256 ms. ‘Mag.‘ denotes that the magnitude of
the STFT of one channel is added. ‘Phase‘ denotes that the phases
of the STFTs of both microphone signals are added.

From Tab. 3 it can be seen that the STFT features carrying
additional information beside distance information outperform the
CDR and ILD features. By successively adding additional informa-
tion, e.g., source activity information reflected by the magnitude
of the STFT, the MAE of the CDR- and ILD-based estimators can
be decreased. Thereby, the phase information of the microphone
signal’s STFTs, which is among other things an indicator of the
reverberation time T60, gains the largest improvement of the dis-
tance estimation performance. The best performance results from
the combination of the CDR feature and the STFT features, which
provides complementary distance information as well as useful
side information.

5 Conclusions
In this paper, we presented an experimental study of CRNN-based
source-microphone distance estimation using a neural network
for feature extraction in addition to precomputed high-level fea-
tures. From the STFT representation of the recorded audio signals,
the CRNN manages to extract both distance-related information
and additional side information, e.g., source activity and acous-
tic environment information, useful for the task. The presented
STFT-based distance estimator is able to reduce the average dis-
tance error, compared to a recently proposed CDR-based distance
estimator as well as ILD-based methods, by almost and by more
than a factor of two, respectively. Moreover, the newly proposed
distance estimator can work with shorter speech segment lengths,
which improves its overall usefulness in dynamic scenarios.
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