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Abstract—Understanding the behavior of the components of
service function chains (SFCs) in different load situations is
important for efficient and automatic management and orches-
tration of services. For this purpose and for practical research in
network function virtualization in general, there is a great need
for benchmarks and experimental data. In this paper, we describe
our experiments for characterizing the relationship between
resource demands of virtual network functions (VNFs) and the
expected performance of the SFC, considering the individual
performance of the VNFs as well as the interdependencies
among VNFs within the SFC. We have designed our experiments
focusing on video streaming, an important application in this
context. We present examples of models for predicting the
interdependence between resource demands and performance
characteristics of SFCs using support vector regression and
polynomial regression models. We also show practical evidence
from our experiments that VNFs need to be benchmarked in
their final chain setup, rather than individually, to capture
important interdependencies that affect their performance. The
data gathered from our experiments is publicly available.

I. INTRODUCTION

Service function chains (SFCs) for services like Internet
video streaming consist of several virtual network functions
(VNFs) like encoders, caches, and content servers. The SFCs
are deployed on top of an infrastructure, typically managed
by an orchestration system that places, deploys, and scales
the SFC and its VNFs. For example, to ensure that the users
are served with an acceptable latency, the orchestration system
must instantiate the right number of instances for each VNFs
in the right location in the underlying network. The right
amount of resources needs to be calculated and allocated to
each VNF instance so that the fluctuating amount of load can
be handled without violating any service-level agreements or
exceeding the capacity constraints of the underlying network.
To do so, the orchestration system needs knowledge about the
SFC, typically provided by the descriptors of the VNFs and
the SFC.

Existing descriptors for VNFs rely on the knowledge of the
component developer to provide an estimation of the amount
of resources required to handle a given load with a target
performance level. The VNFs can then be deployed with the
requested amount of resources and scaled out/in, e.g., upon
reaching pre-defined thresholds. We argue that this approach
has two serious shortcomings, that we highlight using our
experiments: (1) Resource demands of a VNF depends on the
load and the targeted performance (more details in Section IV).
Therefore, defining a fixed and constant set of resources to

be allocated to each VNF can result in over-/under-estimating
the required resources and lead to sub-optimal states for both
the service and the underlying network. (2) Resource demands
and performance of a VNF in an SFC depends on the allocated
resources and the performance of other VNFs in an SFC (more
details in Section V). Therefore, any attempt to model the
resource demands of a VNF that is chained together with other
VNFs needs to consider the dependencies to other VNFs, as
well as the dependencies to the amount of load at each point
in time.

Having correct models to predict the resource demands of
the VNFs in an SFC, it is possible to optimize the service life-
cycle management operations, e.g., for optimal and dynamic
placement and scaling of the VNFs. In previous work [1], we
have proposed a flexible service template embedding approach
for optimizing the scaling and placement of SFCs in a single
decision step. In this approach, a service template describes
the required components of a network service and the desired
connection patterns among them. Additionally, the template
specifies the resource demands of each VNF as a function of
the load it needs to handle. The load can be characterized, for
example, in terms of the data rate on each incoming connection
point of the service component. Using such a service template
and based on the current load, the components are scaled out
and embedded into the network.

Predicting the relationships between the resource demands
of VNFs (e.g., CPU, memory) and the targeted values of
performance metrics of interest for each SFC (e.g., frame rate,
video resolution) is cumbersome to do for a developer. Taking
the interdependencies among VNFs into account makes it even
more complicated to model and predict these relationships
manually. Therefore, an automatic profiling step needs to be
integrated into management and operation systems to iden-
tify and characterize these relationships. We have proposed
such profiling approaches in previous work [2], [3]. Such
an automatic profiling system could be validated by testing
it against well-known services with different performance
characteristics. However, there is a pervasive lack of such
benchmarks in network function virtualization (NFV) — es-
sentially no experimental data for virtual network functions
(VNFs) is publicly available. To overcome this lack, we
have set up a testbed to characterize such relationships in
a video streaming scenario, which is a common application
deployed on distributed networks. We present some results
from analyzing the data from these experiments. The data
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is publicly available [4]. We hope that this might be a first
step towards creating NFV benchmarks, to ensure that further
research can take place on a solid empirical foundation.

After an overview of existing work for profiling service
components (Section II), we describe our experimental setup
(Section III) and introduce our prediction models based on
polynomial regression and support vector regression (Sec-
tion IV). Finally, we describe examples of interrelationships
we have observed among resource demands and performance
of different VNFs in an SFC (Section V) before concluding
the paper.

II. RELATED WORK

In this section, we give an overview of related approaches
to the work we present in this paper.

Gmach et al. [5] determine the minimum resource needs
to run a certain workload, based on the distribution of his-
toric traces in a data center setup. Rasoolzadeh et al. [6]
focus on optimizing energy consumption by estimating and
adjusting the CPU cycles required for video encoding. Fan
and Wang [7] compare responsiveness of web servers under a
heavy request load, in a bare-metal environment. In contrast
to these attempts, our work focuses on characterizing resource
requirements to fulfill a certain target performance.

Xu et al. [8] model the relationship between throughput and
response time of a web server, for request rates below the peak
load. In their experiments, they vary the memory allocation
and the number of CPU time slices before potentially being
preempted. Do et al. [9] focus on predicting the performance of
applications on VMs. Given a target performance, their models
determine whether it can be achieved on a certain system.
Giannakopoulos et al. [10] approximate service performance,
given a certain hardware configuration. They use neural net-
works and linear regression and approximate the performance
using a Gaussian distribution. We also approximate and verify
functions that take available resources as input and yield
possible values for certain performance metrics. Moreover, we
use support vector regression (SVR) as a machine learning
technique and polynomial regression (PR).

In previous work [2], we have analyzed the practical require-
ments of a profiling system to generate performance behavior
information, which can be used to support resource allocation
decisions for VNFs in an SFC. Similar approaches have been
presented for profiling individual components in the cloud
computing context [11] and in the NFV context [12]. In a
follow-up work [3], we have proposed an automated system for
profiling complete SFCs. Our observations in our experiments
in the current paper confirm and complement our previous
findings regarding the necessity of benchmarking VNFs in
their chained setup rather individual profiling of the VNFs
without considering the interdependencies within an SFC.

III. MEASUREMENT METHODOLOGY

We performed a large set of performance measurements
using a real-world SFC to collect the initial data needed to
build and train realistic performance models. We have done

TABLE I
PARAMETERS AND VALUES USED FOR DATA COLLECTION

Parameter Values

#vCPUs encoder 1 to 4

#vCPUs cache 1

Codecs H.264, H.265

Videos bunny [14], docul [15], docu2 [16], game [17],
noise [18]

Resolutions 426x240,  640x360, 854x480,  1280x720,
1920x1080

Frame rates
Target bit rates

24, 30, 40, 50, 60
1000 Kb/s to 22000 Kb/s

the measurements with individually deployed VNFs as well as
with a fully deployed SFC. This gave us interesting insights
about the deviating performance behavior of some VNFs when
they are executed as part of a chain compared to individual
deployment. Sec. V presents more details about the observed
effects. The data from all our experiments is available for
public use [4]; in this paper, we only show a subset of results
collected from a video encoding and buffering SFC.

Fig. 1 shows our measurement setup that is based on an
OpenStack Octa testbed running running on four physical
machines with Intel(R) Core(TM) i5-4690 CPU @ 3.50GHz
and 16GB memory. We have configured three of these ma-
chines as compute nodes so that each VNF and the simulated
user VM can be executed on its own physical machine, to
eliminate noisy neighbor effects [13] from our measurements.
All machines are interconnected with two 1 GigE links, one
for control and one for the data plane.

Video Streaming SFC

User Cache Encoder
(wget) (Squid) (FFmpeg)

L 1 1 I 1 1
n "Phys. Node 1!  'Phys. Node 2!  'Phys. Node 3"
OpenStack Testbed

Fig. 1. Measurement testbed with the wused video streaming
SFC (Cache <+ Encoder) and the simulated users running in three
VMs deployed on three physical compute nodes.

The results shown in this paper are based on a video
streaming SFC consisting of a video encoder VNF (FFserver!
and FFmpeg®) and a cache VNF (Squid 3.5.12%) configured
and built with default settings and installed in Ubuntu 16.04
VMs. To simulate users that access the video streams, we used
the HTTP client wget* deployed in an additional VM as shown
in Fig. 1.

During our experiments, the users access a video stream
delivered by the cache VNF and encoded by the encoder VNF
on-the-fly. For each new experiment, the cache was restarted

Uhttps://ffmpeg.org/ffserver.html
Zhttps://ffmpeg.org/ commit 148c8e8
3http://www.squid-cache.org
“https://www.gnu.org/software/wget/



so that all streaming content had to be fetched from the
encoder instead of using cached streaming data. We collected
the CPU and memory utilization of each of the used VNFs,
transmission statistics (like data rates) between encoder and
cache, as well as between cache and users. We also recorded
application-level metrics, like encoded frames per second. For
each run, we configured the encoder VNF to compress a 60-
second video, given in a resolution of 1920x1080, to a target
resolution between 426x240 and 1920x1080, using target bit
rates between 1000 Kb/s and 22000 Kb/s, frame rates between
24 and 60, and using either the H.264 or H.265 encoding
standard. The used encoder requires a preset value for the
trade-off between video quality and encoding time, which we
set to medium for videos with low bit rates and good visual
quality. Table I summarizes the full list of used parameters
for the executed measurements. We have conducted a total of
18500 experiments with these configurations.

IV. ANALYSIS

In this section, we present examples of the prediction
models we have developed. An extended description of some
of these models and more detailed descriptions of the analysis
are also available in [19].

We used models based on SVR and PR for predicting the
minimum required vCPUs for the encoder. The training data
we have used for creating the SVR-based model consists of
the test runs where the frame rate was never below the targeted
frame rate, using the minimum number of vCPUs among
all such observations. We have set C=10° and e=10"12
after testing a wide range of values for these parameters and
evaluating them based on mean squared error (MSE) and their
visual representations. Figure 2(a) shows a plot for predicting
the number of vCPUs based on bit rate, resolution, and frame
rate. To be able to visualize this 4-dimensional relationship,
we have fixed the bit rate to 5500 Kb/s in this plot. All plots
shown in the rest of the paper are generated based on the data
from experiments with the H.264 encoding standard.

For the PR-based approach, we have tested degrees 0 to
10 for the polynomial. While degree 7 gave the lowest mean
squared error, the plots suggest a highly over-fitted model
using this degree. Figure 2(b) shows the PR model (for bit
rate 5500 Kb/s) using the following 1st-degree polynomial,
which resulted in the best trade-off between MSE value and
observable over-fitting. ¢(b,, f) represents the number of
vCPUs, given bit rate b, resolution 7, and frame rate f 5. Black
dots represent the measured data points.

e(byr, f) =329-r+1.77- f +1.10- b — 0.96

5 All coefficients in this and all following functions have been rounded to 2
decimal points. b is given as Kb/s, r as height of the video in pixels assuming
a 16:9 aspect ratio, and f as frames/s. Moreover, we have divided the values
of these parameters by powers of 10 in our experiments, such that all values
are between 0 and 1, to avoid computational errors we were observing in our
SVR models using the actual values.
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Fig. 2. Prediction of required vCPUs for encoder based on bit rate, resolution,
and frame rate, shown for bit rate of 5500 Kb/s.

Comparing the mean squared errors and different plots of
the SVR and PR models, the SVR-based approach gives better
predictions for the minimum number of required vCPUs.

We have also developed additional SVR and PR models to
predict the minimum number of required vCPUs ¢ based on
the target bit rate b, resolution r, or frame rate f individually.
We omit the corresponding plots due to space constraints and
present only the corresponding functions as follows.

c(b) = 15.12- b° — 50.31 - b* +62.12 - b> — 35.20 - b*
+9.58-b+0.10

e(f) = —0.017- f2 +0.93- f +1.70

e(r) = —111.57 - 7> + 35.55 - 7 + 0.73

Predicting and allocating the right amount of memory to the
encoder ensures that no data is swapped into the hard drive
and eliminates this performance-limiting factor for the video
streaming application. Similar to the prediction models for
the number of required vCPUs, we have developed SVR and
PR models for predicting the maximum amount of required
memory.

As training data for the SVR-based prediction model, we
have taken the used memory in test runs where the minimum
number of vCPUs are used and no violation of the target
values for bit rate, resolution, and frame rate has occurred
for all video files. Figure 3(a) shows the SVR-based model
with C=10 and =10, for bit rate of 5500 Kb/s. With these
values we could observe the lowest MSE. Figure 3(b) shows
the PR-based model using a 1st-degree polynomial, which
resulted in the best trade-off between the MSE and the over-
fitting detectable in different plots. In this function, m(b, r, f)
represents the maximum required memory (in MB) to achieve
a given bit rate b, resolution 7, and frame rate f.

m(b,r, f) = A72.54 - v + 196.77 - f + 18.38 - b — 130.51

The SVR-based model predicts the maximum required
memory with a lower mean squared error than the PR-
based model. However, examining different plots for both
models shows that the predictions from both models cover
the measured data points similarly well in most cases.
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Fig. 3. Prediction of required memory based on bit rate, resolution, and frame
rate, shown for bit rate of 5500 Kb/s.
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Fig. 4. Prediction of achievable frame rate based on bit rate, resolution, and
number of vCPUs assigned to the encoder, shown for bit rate of 5500 Kb/s.

Using similar approaches, we have developed prediction
models for the achievable frame rate based on bit rate, res-
olution, and the number of available vCPUs for the encoder.
In our test runs, we have observed seconds where no frames
were encoded, e.g., because of encoding delays. To prevent
having these values distorting the prediction model, we have
calculated the frame rate per configuration with a confidence
interval at 95% confidence. For this, we have taken all values
for frame rate f(r,b,c) over all encoding processes using all
values for resolution (r), bit rate (b), number of vCPUs (c),
and all video files. Instead of the actual minimum value for
observed frame rate, we have used the lower bound of the
confidence interval as the minimum observed frame rate for
training our model.

Figure 4(a) shows a plot for the SVR-based prediction, using
C = 10% and € = 107, for bit rate 5500 Kb/s. Figure 4(b)
shows the PR-based prediction using a 4th-degree polynomial
function. The function has 36 coefficients, so we omit it in
the paper. As shown in the plots, both approaches give only
partially reasonable predictions and cannot adapt to all values.
The reason for this could be the large diversity in the observed
values for different metrics. The model might be improved by
analyzing different subsets of the gathered data individually,
for example, by separating the data gathered with different
number of vCPUs.

To capture the interdependencies among both VNFs in our
SFC, we have also developed models to predict the CPU
utilization of the cache VM based on the resolution and the
number of vCPU cores that are allocated to the encoder VM.
Figure 5(a) shows the SVR model, using C = 102 and
e = 1072, Figure 5(a) shows the PR-based prediction using a
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Fig. 5. Prediction of CPU utilization of the cache based on resolution and
the number of vCPU cores assigned to the encoder.
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Fig. 6. Avg. CPU utilization of cache VNF (Squid) over target encoding data
rate and transmission data rate between encoder and cache VNF.

3rd-degree polynomial function, that resulted in the best MSE.
It can be observed that the CPU utilization of the cache is
clearly influenced by the allocated CPU to the encoder. In
Section V we describe this interrelationship in more detail.

V. UNEXPECTED PERFORMANCE INTERRELATIONSHIPS

We noticed some interesting effects during our measure-
ments which indicate that performance data of VNFs should
always be collected from setups where the VNFs are also
executed as part of the full SFC they belong to. The reason for
this is that VNFs might show different performance behavior
for the same resource configuration when they are deployed as
part of an SFC. Fig. 6 highlights such effects by showing the
average CPU utilization of the cache VNF for different data
rates and different configurations of the encoder VNF. More
specifically, Fig. 6(a) shows the cache VNF’s CPU utilization
for different target bit rate settings at the encoder VNF and
Fig. 6(b) shows values of the same metric as a function of the
achieved transmission data rate on the link between encoder
VNF and cache VNF.

Note that the CPU usage of the cache VNF changes when
the number of vCPU cores assigned to the encoder VNF is
changed. This can obviously not be a noisy neighbor effect
since both VNFs are executed on independent physical ma-
chines. This means, the configuration of the encoder VNF has
an effect on the performance of the cache VNF even though
they are deployed in isolation. This result is a clear indicator
for the need for SFC-based measurements as discussed in our
previous work on SFC benchmarking [3], where we discovered
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performance interference in SFCs with simple forwarding
elements.

We believe that the effect is caused by the implementa-
tion of the cache VNF (Squid) in the presented scenario.
The observations show that Squid requires more CPU time
when the number of vCPU cores assigned to the encoder
VNF is increased. With more cores assigned, the encoding
performance of FFmpeg increases and the video stream is
encoded faster, i.e., output data is produced with a higher
rate by the encoder VNF and sent to cache VNF. As a result,
Squid has to cache more bits per second which increases its
CPU utilization. In addition to this, we observed that the CPU
usage of Squid also increases with the amount of data it has
already processed. Fig. 7 highlights this effect by showing the
used CPU time of Squid as a function of experiment time
in which data was cached with a constant rate. The figure
clearly indicates that the CPU usage of Squid required for
caching increases faster than data arrives. This is an effect we
call “VNF over-heating”, which can only be observed, and
thus reflected in the derived models, if the measurements are
based on full SFC deployments. We plan further investigation
of such chain-based interference effects as future work.

VI. CONCLUSION AND FUTURE WORK

This work is an attempt to provide some insights into the
performance and resource demands of components of a video
streaming service. We have done experiments using a video
encoding and streaming function, as well as a cache function
under different resource constraints and different performance
targets. Our models show the feasibility of characterizing the
resource demands and performance metric values of VNFs.
Moreover, our results clearly show that VNFs have to be
profiled in the SFC setup, as they are planned to be executed.
Only in this way, the resource utilization and performance de-
pendencies among them can be captured and used for accurate
prediction models. Our analysis shows that these relationships
are non-trivial even for simple functions, reinforcing the need
for experimental data for benchmarking and further analysis.

As our models are based on data from specific hardware
settings, a more generic model can be obtained by normalizing
the results based on experiments in different environments.
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