
Scaling and Placing Bidirectional Services with
Stateful Virtual and Physical Network Functions

Sevil Dräxler, Stefan Schneider, Holger Karl
Paderborn University, Paderborn, Germany

{sevil.draexler, stefan.schneider, holger.karl}@uni-paderborn.de

Abstract—Network function virtualization requires scaling and
placement, deciding the number and the location of function
instances. Current approaches are limited in flexibility and
practical applicability. Specifically, we study dynamic, single-step,
joint scaling and placement of network services with bidirectional
flows traversing Physical or Virtual Network Functions (VNFs)
and returning to their sources. We develop models to support
stateful components and legacy network functions with fixed
locations in these network services as well as the possibility of
reusing VNFs across network services. We formalize the problem
of jointly scaling and placing such network services as a mixed-
integer linear program (MILP). We show that this problem is
NP-complete and also present a heuristic algorithm to find good
solutions in short time. In an extensive evaluation with realistic
scenarios, we investigate the capabilities of the two approaches.

I. INTRODUCTION

Complex network services running on top of softwarized
networks, consist of multiple Virtual Network Functions
(VNFs), legacy Physical Network Functions (PNFs), and ap-
plication components. These services can be bidirectional, e.g.,
processing requests and sending back responses to the users.
The orchestration of such network services is an ongoing
challenge in network function virtualization (NFV).

Fig. 1a shows an example orchestration scenario where
two Content Delivery Networks (CDN), realized by network
services A and B, have been deployed. Each network service
has its own user group, represented by sources SA

1 and SB
1 . In

network service A, user requests go through a stateful firewall
towards a content delivery server, deployed as a PNF in node 1;
content returns to the users through the same firewall. Network
service B is a virtualized version of this CDN and, additionally,
requires the network flows to go through a parental control
function before returning to the users through the firewall. In
this example, all servers expect similar functionality from the
firewall. Therefore, the requests can be mapped to the same
instance of the stateful firewall to reduce deployment costs,
requiring sufficient resources at the firewall.

If service A decides to expand its coverage to additional
users in a different geographical location (Fig. 1b), a new
instance of the firewall might need to be instantiated in a
suitable location. The placement and scaling for both services
need to be recalculated (taking the existing deployments into
account) to find the optimal number of instances required for
the functions and their optimal location (where “optimal” can
be defined per-scenario).

0 1

3 2

SA1

Fwl1

Srv

ParCtrl

vSrv

SB1

(a) Placement of two services

0 1

3 2

SA1

Fwl1

Srv

ParCtrl

vSrv

SB1

SA2
Fwl2

(b) Adjustment to new source

SA Fwl Srv

(c) CDN A

SB Fwl vSrv

ParCtrl

(d) CDN B

Fig. 1. (a) Embedding of two CDN network services sharing a stateful
firewall. (b) As a new source appears, the embedding is adjusted. (c) and
(d) show the structure of the network services.

In such cases, deciding placement without considering scal-
ing possibilities or scaling the service without considering
placement constraints can leave the network and the services in
suboptimal states. To prevent this, we focus on jointly optimiz-
ing placement and scaling. As in a related problem formulation
from our previous work [1], we use the term service template
for flexible descriptors that specify the structure of a network
service. E.g., Fig. 1c and 1d show the service structures of
the previous example. Service templates include type of the
involved components (VNF or PNF), their inter-connections,
and the resource requirements of each component relative to
the load it needs to handle. Service templates are scaled to the
required number of instances for each VNF and the resources
required for each instance, jointly with placing instances into
the network. The main driving factor of this process is the
location of sources and the load originating from them for
each service. Sources represent, e.g., the users of a service or
sensors collecting data.

This problem has been investigated from different points
of view (Section II). However, the following three important
aspects have not been considered so far, which constitute the
three main contributions of our paper.

First, as shown in Fig. 1, network services typically consist
of upstream flows (from source to, e.g., servers of service
functions) and downstream flows (vice versa) [2], resulting in
bidirectional service templates. Bidirectional services, despite
their relevance, have so far been overlooked in placement and
scaling models. To address this, we present approaches for

Sevil Dräxler�
This work has been accepted for publication in 2018 IEEE Conference on Network Softwarization (Netsoft 2018).
Copyright © 2018 by IEEE. ISBN: 978-1-5386-4633-5�

joint scaling and placement of bidirectional network services.
In bidirectional network services, stateful VNFs may require

upstream and corresponding downstream flows to pass through
the identical instance [3]. In this case, the corresponding
paths need to be created with extra care. E.g., in Fig. 1b,
the content delivery server must forward the flows originating
from sources SA

1 and SA
2 to the instance of the stateful firewall

that has already seen the corresponding upstream flow and
can pass it onwards to the right users. Our model ensures the
correctness of path creation for flows traversing stateful VNFs.

Using existing solutions that cannot handle bidirectional
network services with stateful components, upstream and
downstream parts of such services have to be mapped to the
network separately. Moreover, to ensure that a certain stateful
component is traversed by the same flows in both directions,
the services might need to be divided into even smaller parts
with fixed endpoints. For example, the service in Fig. 1d
should be broken into: SB→Fwl→vSrv, vSrv→ParCtrl→Fwl,
and Fwl→SB. Dividing templates into sub-templates and em-
bedding them sequentially in separate steps requires extra
effort compared to our solution of embedding bidirectional
templates in a single step. More importantly, in each step
of such a sequential process, the requirements of the next
steps cannot be considered, possibly resulting in more resource
consumption, higher delay, and even capacity violations.

Second, service owners may want to reuse some VNFs
across multiple services they submit to a service platform (like
in Fig. 1). To support these use cases, our joint placement
and scaling model allows reusing instances of VNFs across
multiple services, if service owners so choose.

Third, for the foreseeable future, both physical and virtual
network functions have to be supported. PNFs are placed
in inalterable locations in the network with fixed sets of
resources, like the content delivery server pinned to node 1
in Fig. 1. Our model can handle services that are composed
of VNFs as well as PNFs, which is another less-investigated
topic in the placement and scaling area.

This paper is structured as follows. We first position our
work among related approaches (Section II). Then, we de-
scribe our model for a multi-objective optimization problem
for joint scaling and placement of bidirectional network
services composed of virtual or physical network functions,
which may include stateful components, as well as compo-
nents with a fixed location (Section III) and prove it to be NP-
complete (Section III-E). We formalize the problem as a multi-
objective optimization problem (Section IV). We introduce a
heuristic (Section V) that can find good solutions quickly and
evaluate the quality and runtime of our solutions (Section VI).

II. RELATED WORK

We build our model upon the joint scaling and placement
(JointSP) model from of our previous work [1]. We extend the
unidirectional service model of JointSP to support network
services with several bidirectional flows starting from each
source. We refer to the model in this paper as the Bidirec-
tional JointSP (B-JointSP). Unlike JointSP, our model sup-

ports (1) network services with stateful instances, (2) services
composed of VNFs and (legacy) PNFs at fixed locations, and
(3) reusing service components across network services.

From a theoretical point of view, another related problem
is Virtual Network Embedding (VNE): nodes and edges of a
virtual network are mapped to nodes and paths in the substrate
network, respectively. Similar to our problem, VNE is also
an NP-hard problem [4]. The most important difference of
VNE to B-JointSP concerns scaling. In VNE, virtual networks
have a fixed size and structure. Therefore, the number of
required virtual nodes and their interconnections have to
be determined in a separate step. We perform scaling and
placement in a single step. This way, we take characteristics of
the substrate network and the sources into account leading to
better solutions. Moreover, our approach considers changing
data rates of a flow, resource requirements depending on the
load, and latencies between instances. These considerations
are usually not taken into account by VNE approaches.

In several related models regarding placement of network
functions [5], [6], multiple requests for an instance of the same
VNF can be mapped to the same node, which is similar to the
possible reuse of VNFs in our model. Most of the related
models allow fixing the location of start and end points of
services. In addition to that, in B-JointSP, instances of any
intermediate VNF can be fixed as well, e.g., to model legacy
network functions. The placement model from Moens and
De Turck [7] supports hybrid networks, which partly consist
of dedicated physical hardware, similar to our model that
supports combinations of VNFs and PNFs in services.

Most of the existing models consider scaling [8], [9] and
placement [10], [11], [12] separately. Ghaznavi et al. [13]
focus on optimizing existing embeddings while minimizing the
overhead of modifications, which is also considered in JointSP
and B-JointSP. Similar to our model, Mijumbi et al. [14]
also consider online modifications of existing embeddings.
However, they assume that VNF instances are already placed
in the network and requests for these VNFs are then mapped
to the instances.

While our work shares similarities with many of these
papers, it is unique in considering bidirectional flows and
combining them with other aspects, so far only considered
in isolation in other work.

III. MODEL AND PROBLEM

Our goal is to embed a set of network services in a
substrate network. Once embedded, these network services
will be serving flows that possibly consist of upstream and
downstream traffic. We describe each network service by a
flexible service template. Based on the data rate resulting
from different flows in multiple source locations, each service
template is scaled to create an overlay. Overlays include all
required instances per service component as well as their
location in the substrate network, their required resources and
their ingoing and outgoing data rates. In this section, we
describe how we model each of these entities. Parts of these
definitions, e.g., basic definition of templates and components,

𝑟"
up

𝑟"dn

func)
up = 0.5	 / 𝑟"

up

func)dn = 𝑟"dn
func)

cpu = 3 / 𝑟"
up + 𝑟"dn

func)mem = 𝑟"dn + 5

Fig. 2. Resource demands and data rates of an example component

are similar to the JointSP model [1], which we include here
for completeness.

A. Substrate Network

The substrate network Gsub=(V,L) is a connected directed
graph. Each node v ∈ V is annotated with CPU and memory
capacities, capcpu(v) and capmem(v). Each link l ∈ L is
associated with a maximum data rate capdr(l) and a delay d(l).
Other types of resources can easily be modeled in a similar
fashion. We assume any connections inside a network node
can be realized with unlimited link capacity and zero delay
(e.g., if a network node represents a cluster of machines).

B. Service Templates

A service template T = (CT , AT) describes a network
service. Components c ∈ CT represent the VNFs or PNFs
of the network service and the directed arcs AT between the
components specify the structure of the service. T is the set
of all active service templates in a network. Fig. 1c and 1d
show example templates for bidirectional services.

Each component c ∈ CT has separate (possibly empty) vec-
tors of ingoing connection points (briefly, inputs) for upstream
and downstream traffic, as well as (possibly empty) vectors of
outgoing connection points (briefly, outputs) for upstream and
downstream traffic.

The resource consumption for each component c depends
on the data rates at the upstream and downstream inputs
and is defined by functions funccpu

c , funcmem
c , representing the

required amount of CPU and memory, respectively. Similarly,
the outgoing data rates are relative to the incoming data rates
and are specified by vectors of functions funcup

c , funcdn
c for

the upstream and downstream outputs, respectively. If there
are multiple outputs in one direction, the traversing flows can
be split across these outputs as defined by these functions.
Fig. 2 shows example functions for a component that receives
an expected data rate of rup

1 and rdn
1 on its upstream and

downstream inputs. The functions define the resource demands
and outgoing data rates of the component using the ingoing
data rates.

To correctly define bidirectional services and distinguish
upstream and downstream traffic of the flows, we need to
associate roles to components in a service. First, each service
has a mandatory single source component (SRC, for short),
e.g., SA and SB in Fig. 1c,1d. Each instance of a source
component (e.g., representing different populations of users in
different geographic locations) has a fixed location and a given
outgoing data rate for each flow starting at this source. Source
components do not consume resources. Second, some compo-
nents in a service can have the role of an END component (e.g.,
Srv and vSrv in Fig. 1c,1d). ENDs change the direction of

traffic from upstream to downstream in a bidirectional service
template. They have only upstream inputs and downstream
outputs. Each bidirectional service template has at least one
END component. Third, components that are neither SRC nor
END are called intermediate components (INT, for short).
These components send out flows received at an upstream
(downstream) input through an upstream (downstream) output.
These roles are assigned to each component by the owner of
the service, who can define when the upstream traffic turns
into downstream traffic.

A service template T is scaled and placed in the substrate
network according to the location and the data rate of flows
produced by the sources at their respective locations. For every
source instance location v ∈ V , we assume we are given the
set of flows together with their data rates (f, rf) ∈ FT,v .
ST = {FT,v|v a source location of T} collects this informa-
tion (which typically changes over time).

Additionally, components can be specified as stateful, in-
dicating that their instances maintain some internal state for
each traversing flow. If both upstream and downstream traffic
of a flow traverse an instance of a stateful component, they
have to traverse exactly the same instance in both directions.
This is not required for upstream and downstream traffic of a
flow traversing the same stateless component; in that case, the
traffic may be routed over different instances. When traversing
a component, each flow is handled by exactly one instance
of that component. In this way, no state inconsistency can
occur for flows that traverse a stateful component only in one
direction. For load balancing, different flows may be assigned
to different instances of a component.

A directed arc a ∈ AT connects exactly one output of a
component to exactly one input of another component in the
service template. To distinguish and correctly transmit flows
over the right inputs and outputs, we assign each arc either
upstream or downstream direction. Upstream (downstream)
arcs can only connect upstream (downstream) outputs to
upstream (downstream) inputs. Each arc a is annotated with a
delay bound dmax(a), specifying the maximum delay that can
be tolerated between the corresponding components.1

C. Overlays

Based on sources ST and the substrate network Gsub, an
overlay GOL(T) = (IOL, EOL) for each service template T
is created. An overlay contains at least one instance i ∈ IOL
for each component Comp(i) ∈ CT and at least one directed
edge e ∈ IOL per arc Arc(e) ∈ AT . Fig. 1 shows example
overlays of the templates shown in Fig. 1c and 1d embedded
in the substrate network. After the services have been scaled
in Fig. 1b, there are two instances of the source component
SA and one instance of SB. Accordingly, component Fwl is
instantiated twice.

1The delay bound can alternatively be defined for the round-trip delay.
Bounding it per-arc, however, allows a more fine-grained control.

D. Problem Formulation

B-JointSP is the problem of finding the optimal embedding
for a set of service templates in the substrate network. Various
optimization goals are conceivable, for example minimizing
the following metrics individually or in combination:

• Over-subscription of resources
• Number of instances that should be added or removed
• Total resource consumption of network services
• Total delay for embedded network services

For service template embedding, the following inputs are
required:

• Substrate network
• A set of (bidirectional) service templates, possibly with

stateful components, possibly sharing some components
• For each template, a set of flows and sources
• A set of instances pinned to fixed locations (optional)
• A previous embedding of the service templates to reflect

scenario changes (optional)

B-JointSP can be applied either for the initial embedding
of network services into an empty network or for adjusting an
existing embedding. Adjustment is needed if there is a change
in any of the inputs, e.g., if templates or source locations are
added/removed, flow data rates change, or network capacities
change. When embedding a service template, each instance in
its overlay is mapped to a node and each edge to a path in the
substrate network, respecting capacity constraints. We assume
that at most one instance per component can be mapped to
each network node. If necessary, rather than placing another
instance of an existing component at one node, our model
scales up the existing instance in that location or scales it out
and places the new instance in another location.

Our model is flexible with respect to priorities for the opti-
mization metrics. For example, over-subscription of resources
could be forbidden or allowed; over-subscription avoids reject-
ing requests and improves utilization but jeopardizes service
metrics. During the embedding process, one of our objectives
is to minimize the maximum over-subscription over all node
and link resources. Alternatively, strict limits for the amount
of over-subscription can be set.

If multiple service templates include the same component c
(e.g., specified using the same identifier), instances of c
can be reused in the overlays of these service templates
(if this is undesirable, one can easily create a copy of c
with another identifier). In this case, the traffic belonging to
each network service has to be separated to ensure correct
forwarding of their flows. Therefore, we adapt each reused
component c, by replicating its in- and outputs and adjusting
functions funccpu

c , funcmem
c , funcup

c , funcdn
c . Each overlay can

use its own in- and outputs. Fig. 3 shows how the CPU,
memory, and data rate functions of the example component
from Fig. 1a are adapted to allow two service templates to
share this component. The constant values of the combined
functions remain unchanged after adaptation. In this way,
reusing the component results in a lower idle resource con-

𝑟"
up

𝑟%dn

0.5 + 𝑟"
up

𝑟"dn
3 + 𝑟"

up + 𝑟%
up	 + (𝑟"dn + 𝑟%dn)

(𝑟"dn + 𝑟%dn) + 5

𝑟%
up

𝑟%dn
𝑟"dn

0.5 + 𝑟%
up

Fig. 3. Resource demands and data rates of the example component Fig. 1,
adapted to be shared between two templates

sumption than the case where separate components are used
for each template.

E. Problem Complexity

Using polynomial-time reduction, we show that for an
instance of the B-JointSP problem as defined in Section III-D,
it is an NP-complete problem to decide if a solution exists
where the over-subscription of (node and link) resources is
zero. Based on the given load and resource capacities, it is
possible to check in polynomial time in the size of the problem
input whether an embedding of a set of templates results in any
over-subscription. The size of the solution is also polynomial
in the size of the input, so the problem is in NP.

Our problem is an extension of the JointSP problem, which
has been proven to be NP-complete [1], [15]. We show a
reduction of JointSP to B-JointSP, proving it NP-hard. Given
an instance of JointSP, we construct an instance of B-JointSP
as follows. As JointSP only considers unidirectional service
templates, for every template component in JointSP, we con-
sider the inputs/outputs as upstream inputs/outputs. Similarly,
we consider every template arc as an upstream arc. JointSP
does not include any delay bound for arcs, so for every arc we
set the maximum delay to infinity. In JointSP, every instance of
a source component c at node v with data rate r is specified as
(v, c, r). There are no stateful instances in JointSP, so the flows
from sources can be distributed freely over different instances
of each component.

To create a corresponding scaling and load balancing be-
havior in the B-JointSP, we transform every such source
instance of every template T into a source instance with M
flows, FT,v = {(f1, r/M), (f2, r/M), · · · , (fM , r/M)}. M
is a sufficiently large number to create data rate values with
the desired precision. E.g., if an implementation of JointSP
supports values with 2 digits after the decimal point for data
rates of overlay edges, we translate each source instance with
data rate r into r/0.01 flows starting from this source, each
flow having a data rate of 0.01. We assume all input parameters
are rational numbers; hence, there is a limited number of digits
after the decimal point.

Using the remaining input parameters directly as provided
for JointSP, we now have a complete instance of the B-JointSP
problem. If we have a solution for a JointSP problem instance
with no violation of capacity constraints, then B-JointSP
also has a corresponding solution without over-subscription.
Similarly, combining the data rates of different flows from
each source instance into a joint data rate, a solution with no
over-subscription found for B-JointSP is also a solution with
no violations for JointSP.

TABLE I
PARAMETERS

Symbol Definition

v∈V , l∈L Substrate network nodes and links
capcpu(v), capmem(v) CPU and memory capacity of node v
capdr(l), d(l) Capacity and delay of link l
c∈CT , a∈AT Components and arcs of template T
n

up
in (c), n

dn
in (c) Number of upstream and downstream inputs

of component c
n

up
out(c), n

dn
out(c) Number of upstream and downstream out-

puts of component c
funccpu

c , funcmem
c Functions for CPU and memory demands of

component c
funcup

c , funcdn
c Functions for upstream and downstream out-

going data rates from component c
src(a), dst(a) Component where arc a begins and ends
dmax(a) Maximum delay for arc a
FT,v∈ST Source flows of template T at node v
(f, rf)∈FT,v Flow f with data rate r
(c, v)∈X An instance of component c that is fixed to

node v
x∗c,v Equals 1 iff an existing instance of compo-

nent c is available at node v
i∈IOL, e∈EOL Instances and edges of overlay
T All templates to be embedded
C=

⋃
T∈T CT All components from templates in T

CSRC, CINT, CEND ⊂
C

All SRC, INT and END components

Cfixed, Cstate⊂C All fixed and stateful components
A=

⋃
T∈T AT All arcs of templates in T

Aup, Adn ⊂ A All upstream and downstream arcs
S=

⋃
T∈T ST All sources of templates in T

F All flows from all sources of all templates

The reduction can be performed in polynomial time in
the size of the input, so B-JointSP is an NP-hard problem.
Together with the fact that it is in NP, it follows that our
problem is an NP-complete problem.

IV. MIXED-INTEGER PROGRAM FORMULATION

In this section, we present a mixed-integer program-
ming (MIP) formulation for B-JointSP, which is partly inspired
by the MIP formulation of JointSP [1]. All constraints are
linear or can be linearized. The problem is a mixed-integer
linear programming (MILP) if functions pc,mc, r

up
c , rdn

c are
linear for each component c. The formulation, however, also
works with non-linear functions. Given the inputs described
in Section III-D, the following MIP can be used to find
optimal solutions to B-JointSP. Table I summarizes the input
parameters. Decision variables are presented in Table II. M
represents a constant that is sufficiently large, used in the so-
called Big-M formulations.

A. Constraints

Fixed components and sources with their corresponding
flow data rates are assigned to their pre-defined locations:

TABLE II
VARIABLES

Variable Definition

xc,v 1 iff an instance of component c is mapped to
node v

δc,v 1 iff xc,v 6= x∗c,v , i.e., an instance of component c
is added or removed at node v

cpuc,v , memc,v CPU/memory demand of the instance of component
c at node v, or 0 (if no such instance exists)

t
up
c,v,f , tdn

c,v,f 1 iff upstream/downstream traffic of a flow f tra-
verses an instance of component c at node v

inup
c,v,f , indn

c,v,f Vector of data rates at inputs of the instance of
component c at node v, corresponding to flow f ,
or an all-zero vector

outup
c,v,f , outdn

c,v,f Vector of data rates at outputs of the instance of
component c at node v, corresponding to flow f , or
an all-zero vector

ea,v,v′,f 1 iff for an arc a, an overlay edge between nodes
v and v′ corresponding to flow f is created

za,v,v′,l Data rate on link l corresponding to an arc a that
connects an instance of component c at node v to
an instance of component c′ at node v′, or 0

ζa,v,v′,l 1 iff za,v,v′,l > 0
ψcpu, ψmem, ψdr Maximum CPU/memory/data rate over-subscription

∀v∈V, ∀c∈CSRC : xc,v=

{
1 if ∃FT,v∈S, c∈CT

0 else
(1)

∀v∈V, ∀c∈Cfixed : xc,v=

{
1 if ∃(c, v)∈X
0 else

(2)

∀v∈V,∀f∈F , ∀c∈CSRC,∀T∈T :

outup
c,v,f=

{
rf if ∃(f, rf)∈FT,v

0 else
(3)

When going from one solution to another, we track the
added/removed instances on each node (Const. 4). If an in-
stance of a component is created on a node, the right number
of upstream (Const. 5,7) and downstream (Const. 6,8) inputs
and outputs should be created on each instance (we represent
the k-th element of a vector w by (w)k).

∀c∈C, ∀v∈V : δc,v=

{
xc,v if x∗c,v = 0

1−xc,v if x∗c,v = 1
(4)

∀c∈C, ∀v∈V, ∀k∈[1, nup
in (c)] : (in

up
c,v,f)k≤M · xc,v (5)

∀c∈C, ∀v∈V, ∀k∈[1, ndn
in (c)] : (in

dn
c,v,f)k≤M · xc,v (6)

∀c∈C, ∀v∈V, ∀k∈[1, nup
out(c)] : (outup

c,v,f)k≤M · xc,v (7)

∀c∈C, ∀v∈V, ∀k∈[1, ndn
out(c)] : (outdn

c,v,f)k≤M · xc,v (8)

The data rate of upstream/downstream traffic of flows
traversing an instance of a component determines the data rate
of the upstream/downstream traffic that leaves that instance
(Const. 9/10). 0 denotes an all-zero vector of appropriate
length. As instances of END components (Section III-B) can
only have upstream inputs and downstream outputs, they are
reflected by a special rule (Const. 11). We keep track of the
instances of components that upstream or downstream traffic
of each flow traverses (Const. 12–15). This is required to make

sure that each flow traverses exactly the same instance of a
stateful component in both directions (Const. 16).

∀c∈C,∀v∈V, ∀f∈F :

if c∈CINT : outup
c,v,f=funcup

c (inup
c,v,f)−(1−xc,v) · funcup

c (0) (9)

if c∈CINT : outdn
c,v,f=funcdn

c (indn
c,v,f)−(1−xc,v) · funcdn

c (0) (10)

if c∈CEND : outdn
c,v,f=funcdn

c (inup
c,v,f)−(1−xc,v) · funcdn

c (0) (11)

M · tup
c,v,f≥

∑
k∈[1,n

up
in (c)]

(inup
c,v,f)k+

∑
k∈[1,n

up
out(c)]

(outup
c,v,f)k (12)

t
up
c,v,f≤M ·

∑
k∈[1,n

up
in (c)]

(inup
c,v,f)k+

∑
k∈[1,n

up
out(c)]

(outup
c,v,f)k (13)

M · tdn
c,v,f≥

∑
k∈[1,ndn

in (c)]

(indn
c,v,f)k+

∑
k∈[1,ndn

out(c)]

(outdn
c,v,f)k (14)

tdn
c,v,f≤M ·

∑
k∈[1,ndn

in (c)]

(indn
c,v,f)k+

∑
k∈[1,ndn

out(c)]

(outdn
c,v,f)k (15)

if c∈Cstate : t
up
c,v,f=t

dn
c,v,f (16)

We ensure that a single flow is not divided over multiple
instances of a component (Section III-B). For this, if a flow
traverses an instance at node v, we allow the flow to enter and
exit this instance using exactly one edge for its respective arc
(Const. 18,20). Instances of END components again need spe-
cial treatment (Const. 17). For each edge created this way, the
data rate is also calculated on the corresponding input/output
of its source/destination instances (Const. 19,21).

∀a∈A, ∀v∈V, ∀f∈F :

if src(a)∈CEND :
∑
v′∈V

ea,v,v′,f=t
up
c,v,f (17)

if a∈Aup from output k of src(a) to input k′ of dst(a) :∑
v′∈V

ea,v,v′,f=t
up
c,v,f (18)

∑
v′∈V

(outup
src(a),v′,f)k · ea,v′,v,f=(inup

dst(a),v,f
)k′ (19)

if a∈Adn from output k of src(a) to input k′ of dst(a) :∑
v′∈V

ea,v,v′,f=t
dn
c,v,f (20)

∑
v′∈V

(outdn
src(a),v′,f)k · ea,v′,v,f=(indn

dst(a),v,f)k′ (21)

Data rates of individual flows over created edges are then
mapped to links in the substrate network; we ensure flow
conservation over the path(s) they take (Const. 22–25). During
path creation, the total delay of the links corresponding to
an edge cannot exceed the maximum delay specified for the
corresponding arc (Const. 26). We prevent an overlay edge
being mapped to a path with a loop (Const. 27).

∀a∈A, a starts at output k of src(a), ∀v, v1, v2∈V :∑
vv′∈L

za,v1,v2,vv′−
∑

v′v∈L
za,v1,v2,v′v =


0 if v 6=v1, v 6=v2

0 if v=v1=v2∑
f∈F ea,v1,v2,f · (outup

src(a),v1,f
)k if v=v1, v1 6=v2, a∈Aup∑

f∈F ea,v1,v2,f · (outdn
src(a),v1,f

)k if v=v1, v1 6=v2, a∈Adn

(22)

∀l∈L : za,v1,v2,l≤M · ζa,v1,v2,l (23)
∀l∈L : ζa,v1,v2,l≤M · za,v1,v2,l (24)

∀l∈L : ζa,v1,v2,l≤
∑
f∈F

ea,v1,v2,f (25)

∑
l∈L

ζa,v1,v2,l · d(l)≤dmax(a) (26)

∀v′v′′∈L, if v′′v′∈L : ζa,v1,v2,v′v′′+ζa,v1,v2,v′′v′≤1 (27)

The combined data rate of the flows on upstream and
downstream inputs of each created instance determines the
resource demands of that instance (Const. 28, 29).

∀c∈C, ∀v∈V :

cpuc,v=funccpu
c (

∑
f∈F

inup+dn
c,v,f)−(1−xc,v) · funccpu

c (0) (28)

memc,v=funcmem
c (

∑
f∈F

inup+dn
c,v,f)−(1−xc,v) · funcmem

c (0) (29)

We also keep track of the maximum over-subscription of
node and link resources to minimize or bound it if necessary
(Const. 30–32).

∀c∈C, ∀v∈V :
∑
c∈C

cpuc,v−capcpu(v)≤ψcpu (30)

∀c∈C, ∀v∈V :
∑
c∈C

memc,v−capmem(v)≤ψmem (31)

∀l∈L :
∑

a∈A,v,v′∈V

za,v,v′,l−capdr(l)≤ψdr (32)

B. Objectives

Based on the problem formulation in Section III-D, we
define the following objective functions for the MIP:

• obj1: Minimize maximum resource over-subscription

min. ψcpu+ψmem+ψdr

• obj2: Minimize the number of added/removed instances

min.
∑

j∈C,v∈V
δj,v

• obj3: Minimize total resource consumption

min.
∑

j∈C,v∈V
(cpuj,v+memj,v)+

∑
a∈A,v,v′∈V,l∈L

za,v,v′,l

• obj4: Minimize total delay

min.
∑

a∈A,v,v′∈V,l∈L

d(l) · ζa,v,v′,l

In practice, jointly optimizing all four objectives is necessary
to serve the requirements of service and platform owners.
Therefore, we define the following lexicographical combina-
tion of the four objectives:

minimize w1 · obj1+w2 · obj2+w3 · obj3+w4 · obj4

Weights w1, . . . , w4 should be selected such that objectives’
ranges do not overlap and each objective has a clear priority.
The actual weights depend on the use case (Section VI).

Algorithm 1 Embedding procedure
1: remove overlays of previous templates /∈ T
2: add empty overlays for new templates ∈ T
3: for all template T ∈ T do
4: add/remove/update source instances and flows
5: update fixed instances
6: set current direction to upstream
7: for all instance i in topological order do
8: if i is not used and not fixed/source then
9: remove i and continue with the next instance

10: if i is an instance of an end component then
11: set current direction to downstream
12: for all output k of i in current direction do
13: get arc a and flows leaving k
14: if a /∈ AT then
15: continue with next output
16: update mapping of flows to edges

V. HEURISTIC APPROACH

Resource demands of network services and capacity of the
substrate network change frequently, requiring quick reactions.
We present a heuristic that finds good solutions for B-JointSP
quickly, either from scratch or adapting an existing solution. It
consists of initialization, sequential embedding, and iterative
improvement.

A. Initialization

During initialization, the heuristic computes the shortest
paths between all pairs of nodes in the substrate network
based on the Floyd-Warshall algorithm. We assign each link
l a weight w(l) = 1/(capdr(l) + 1/d(l)).2 In this way, paths
with low delay, consisting of links with high capacity are fa-
vored. As flows are mapped to these precomputed paths when
embedding a service template, the load on the links increases,
possibly resulting in over-subscription. Iterative improvements
then aim at reducing or avoiding over-subscription.

If multiple templates are provided as input, they are sorted to
start with embedding the heaviest template. The weight of each
template is a rough estimation of its expected total resource
demand, calculated assuming all of its flows are mapped to
a single instance per component and to a single link between
the components.

B. Embedding Procedure

After initialization, the heuristic creates an initial solution
using the embedding procedure shown in Algorithm 1. The
general workflow of this procedure is similar to the embedding
procedure of JointSP [1], but we have substantially modified
the details to support bidirectional flows, stateful and legacy
components, and instances shared among different overlays.

At the start, empty overlays are added for new templates
and overlays of old templates (with T /∈ T) are removed
(Lines 1–2). The templates in set T are embedded sequentially

2If d(l) = 0, we assume w(l) = 0.

in the order determined during initialization (Line 3). When
embedding a template, first, its source instances are updated
to be consistent with the sources ST by adding or removing
source instances or updating the flows leaving these sources
(Line 4). Fixed instances are updated similarly (Line 5).

All other instances can be placed and scaled dynamically
to react to the current demand (Lines 6–16). The embedding
procedure processes the instances sequentially in topological
order such that each instance is processed at most once in
upstream and once in downstream direction. The topological
order depends on the structure of the template and can be
derived by following its arcs. In bidirectional templates, first,
the upstream direction is considered. Once an instance of
an end component is reached, the direction is switched to
downstream as flows return towards their sources.

When processing an instance, the heuristic computes the
outgoing flows and their data rates at each output based on
the ingoing flows in the current direction. As each output k
belongs to a separate arc a, the heuristic considers the outputs
sequentially, mapping the flows leaving k to edges along a.
If a belongs to another template (reusing the same instance,
Fig. 3), the output is skipped. Otherwise, the mapping of
the outgoing flows to edges along a is updated as follows:
First, the mapping of flows that no longer leave output k (but
previously did) is removed. The data rate of other flows that
are already mapped to edges is updated.

Next, new flows that were not previously mapped are
assigned to edges. The heuristic assigns flows in random order,
each to exactly one edge. To determine the best edge, all nodes
with enough remaining resources to handle the flow and within
maximum delay dmax(a) from the location of the current
instance are considered as candidates. Among the candidates,
the heuristic chooses the one reachable with the shortest path.
The flow is mapped to the edge going to the chosen node. If
not yet existing, the heuristic creates the corresponding edge
and destination instance. If no candidate nodes with enough
free resources exist within dmax(a) from the current location,
the node with lowest over-subscription is chosen.

A special case is when a is a downstream arc back to a
stateful component. In this case, each flow has to return to the
exact same instance of the component that it already traversed
in upstream direction. Hence, each flow is mapped to the edge
returning to the corresponding stateful instance. After all flows
are mapped to edges, the heuristic removes any unused edges
leaving k, i.e., edges without any flows mapped to them.

C. Iterative Improvement

While the embedding procedure ensures correct embeddings
and tries to optimize the embedding for the objectives de-
fined in Section III-D, its sequential processing can lead to
suboptimal results. Especially when embedding bidirectional
templates with stateful components, it can unnecessarily over-
subscribe nodes. As flows return to the same stateful instances
they traversed in upstream direction, the resource consumption
of these stateful instances increases. However, as this increase
in resource consumption cannot easily be anticipated, it can

S Cache Serv

VidOpt

Fig. 4. Video streaming template used for evaluation

lead to over-subscription – even if there are still available
resources at neighboring nodes.

Therefore, the overlay of each template is modified itera-
tively based on tabu search [16] by picking a random instance
that is neither source nor fixed and declaring it as tabu.
The overlay is then reset and recreated using the embedding
procedure again but disallowing to place the tabu instance
at the same location as before. This leads to a different
distribution of instances and the load, possibly decreasing or
avoiding over-subscription.

The heuristic modifies each of the overlays in multiple
iterations while maintaining three different solutions. In this
way, we omit unsuccessful modifications but also enable
exploring slightly worse solutions without losing the best
found solution. Hence, the tabu-based improvement scheme
allows to overcome local optima while reusing the efficient
embedding procedure to ensure correctness.

VI. EVALUATION

In this section, we evaluate the performance of the MIP and
the heuristic with respect to multiple metrics. As the heuristic
achieves close-to-optimal results in a significantly shorter time
than the MIP, we use the heuristic for further analyzing the
features of our solutions in larger scenarios.

A. Evaluation Setup

We implemented the MIP and the heuristic in Python 3.5
and used the Gurobi Optimizer, v 7.0.2. All simulations were
performed on machines with Intel Xeon E5-2695 v3 CPUs
running at 2.30 GHz and using GNU Parallel [17] to automat-
ically assign jobs to available cores. For reproducibility, our
evaluation code is publicly available [18].

Our evaluation is based on the Abilene data set [19],
representing a real backbone network. Due to the long runtime
of the MIP, for comparing the performance of the MIP and the
heuristic, we only considered the western half of the network,
consisting of 6 nodes and 14 directed links with uniform
capacities. Additionally, we evaluated the heuristic using much
larger networks with hundreds of nodes. We calculated the link
delay d(l) for each link l based on the distances between the
geographical locations of the nodes.

Based on common NFV use cases [20], we chose a video
streaming network service as the bidirectional template to be
embedded (Fig. 4), in which users (represented by source
component S) request videos from a cache or server. Before
streaming videos from the cache, they are transcoded by a
video optimizer, which reduces their data rate by 50% [21].

Using the Abilene network and the video streaming tem-
plate, we created different problem instances with 1 to 6 flows
leaving sources at randomly varying locations in the network.
All MIP results for 1 to 4 flows have 0% optimality gap; results

1 2 3 4 5 6

0
1

2
3

4

Number of flows

M
ax

 m
em

. o
ve

r-
su

bs
cr

ip
tio

n

MIP
Heuristic

(a) Max. mem. over-subscription

1 2 3 4 5 6

0
5

10
15

20

Number of flows

ad

de
d

in
st

an
ce

s

MIP
Heuristic

(b) Number of added instances

1 2 3 4 5 6

0
10

20
30

40

Number of flows

T
ot

al
 d

r.
 c

on
su

m
pt

io
n MIP

Heuristic

(c) Total allocated data rate

1 2 3 4 5 6

0
50

10
0

15
0

20
0

Number of flows

T
ot

al
 d

el
ay

MIP
Heuristic

(d) Total delay

Fig. 5. Comparison of the MIP’s and heuristic’s results for increasing load.

for 5 and 6 flows have an average gap of 6.9% with some
outliers with at most 22% gap. We used the MIP and heuristic
to create initial embeddings on an empty network, minimizing
the lexicographical combination of the four objectives obj1–
obj4 (high to low priority), as defined in Section IV-B.

B. Performance and Runtime of MIP and Heuristic

Considering obj1, both approaches can completely avoid
memory over-subscription for 1 to 3 flows by distributing the
load over different instances and nodes. For problem instances
with more flows, the available memory no longer suffices and
is over-subscribed relative to the number of flows (Fig. 5a).
While being in the same order of magnitude, the heuristic cre-
ates embeddings with significantly higher maximum memory
over-subscription compared to the optimal results of the MIP
(up to 67% higher average). The results are similar for CPU
resources whereas link capacities are never over-subscribed.

These observations are similar for the other three objectives:
The heuristic can closely approximate the optimal results of
the MIP with just small deviations in all objectives (Fig. 5).
An exception occurs for 6 flows: The heuristic cannot find
solutions with as few instances as the MIP (worsening obj2),
but these instances are useful to create shorter paths between
the instances with lower allocated data rate and shorter delay
than the MIP (improving obj3 and obj4).

Where the MIP needs minutes to hours, the heuristic
finds solutions in milliseconds to seconds. For example, the
worst case runtimes for problem instances with 4 flows were
137.1 hours (MIP) compared to 6.7 s (heuristic). Using this ad-
vantage of the heuristic, we further evaluated the performance
of our solutions solving additional problem instances using the
heuristic. We used the largest substrate network in the SNDlib
library [19], consisting of 161 nodes and 664 directed links,
and with 10 sources and 30 flows. We ran simulations starting
with an empty network, embedding the template of Fig. 4,
and adapting the embeddings based on the increasing and

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Event

T
ot

al
 lo

ad

0
50

0
10

00
15

00

T
ot

al
 a

llo
ca

te
d

C
P

U

CPU
Load

(a) Changes to the allocated CPU
based on the changes in load

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Event

T
ot

al
 lo

ad

10
20

30
40

50

T
ot

al
 d

el
ay

Delay
Load

(b) Changes to the delay based on the
changes in load

Fig. 6. Analysis of the solutions for a large problem instance with a series
of events that change the overall load of the network.

decreasing load in the form of 60 events. For these problems,
the heuristic found embeddings in 42.31 s in average.

Fig. 6a shows the total allocated CPU over these events,
based on the total load from all flows at all source loca-
tions. Resource allocation clearly adapts to the load; with
increasing load, more CPU is allocated to the service com-
ponents and when the load decreases, the allocated resources
are decreased. We observed a similar trend for the amount
of allocated memory and link capacity. Fig. 6b shows an
important consequence of the choice of priorities for the four
objectives in our simulations. For us, the highest priority after
minimizing the over-subscription of resource was minimizing
the number of added and removed instances to limit of the
costs and overheads associated with starting and stopping
VNFs. Minimizing the delay had the lowest priority among
the objectives, as our approaches ensure that the delay remains
within the maximum delay boundary defined in each template.
Looking at the total delay for the embedded template, it can
be observed that after the peak load around event 40, although
the load decreases, the delay does not decrease. Adhering
to the priority of minimizing the number of added/removed
instances, the existing instances (possibly placed farther from
the sources) are still used with reduced traffic amounts rather
than removing or migrating them.

VII. CONCLUSION

B-JointSP is a comprehensive, flexible, and realistic model
for NFV, for jointly scaling and placing complex network
services taking the downstream direction of flows returning
to their sources into account as well as stateful VNFs, reusing
network functions across network services, and legacy network
functions. The formulated MIP can be used for optimal scaling
and placement of templates in small substrate networks. For
larger networks, our heuristic can find close-to-optimal solu-
tions within seconds. In practice, this short runtime allows
quick adaptation of embeddings to ongoing load fluctuations
in the network. Our evaluations showed that the heuristic
approximates the MIP’s solution quality and can even out-
perform it with respect to some metrics when optimizing
multiple objectives. Depending on the priorities of the service
or platform providers, our solutions can be adjusted to deliver
the required results. We have tested a configuration where

over-subscription of resources is minimized, the amount of
allocated resources adapts exactly to the laod, and the number
of added or removed instances are kept as low as possible to
avoid unnecessary costs in a frequently changing load setup.

ACKNOWLEDGMENTS

This work has been partially supported by the SONATA
project, funded by the European Commission under grant num-
ber 671517 through the Horizon 2020 and 5G-PPP programs,
the 5GTANGO project, funded by the European Commission
under grant number 761493 through the Horizon 2020 and 5G-
PPP programs, and the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Com-
puting” (SFB 901).

REFERENCES

[1] S. Dräxler, H. Karl, and Z. A. Mann, “Joint optimization of scaling and
placement of virtual network services,” in IEEE/ACM CCGrid, 2017.

[2] T. Nadeau and Q. Quinn, “Problem statement for service function
chaining,” IETF, Internet Request for Comments RFC 7498, 2015.

[3] W. Haeffner, J. Napper, M. Stiemerling, D. Lopez, and J. Uttaro,
“Service function chaining use cases in mobile networks,” IETF Draft
draft-ietf-sfc-use-case-mobility-07, 2016.

[4] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
& Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[5] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE TNSM,
vol. 13, no. 4, pp. 725–739, 2016.

[6] M. Savi, M. Tornatore, and G. Verticale, “Impact of processing costs on
service chain placement in network functions virtualization,” in IEEE
NFV-SDN, 2015.

[7] H. Moens and F. De Turck, “VNF-P: A model for efficient placement
of virtualized network functions,” in IEEE CNSM, 2014, pp. 418–423.

[8] P. Chuprikov, S. Nikolenko, and K. Kogan, “On demand elastic capacity
planning for service auto-scaling,” in IEEE INFOCOM, 2016.

[9] C. Fuerst, S. Schmid, L. Suresh, and P. Costa, “Kraken: Online and
elastic resource reservations for multi-tenant datacenters,” in IEEE
INFOCOM, 2016.

[10] T. W. Kuo, B. H. Liou, K. C. J. Lin, and M. J. Tsai, “Deploying chains
of virtual network functions: On the relation between link and server
usage,” in IEEE INFOCOM, 2016.

[11] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan,
“Optimal virtual network function placement in multi-cloud service
function chaining architecture,” Computer Communications, vol. 102,
pp. 1–16, 2017.

[12] M. T. Beck and J. F. Botero, “Scalable and coordinated allocation of
service function chains,” Computer Communications, vol. 102, pp. 78–
88, 2017.

[13] M. Ghaznavi, A. Khan, N. Shahriar, K. Alsubhi, R. Ahmed, and
R. Boutaba, “Elastic virtual network function placement,” in IEEE
CloudNet, 2015, pp. 255–260.

[14] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and S. Davy,
“Design and evaluation of algorithms for mapping and scheduling of
virtual network functions,” in IEEE NetSoft, 2015.

[15] S. Dräxler, H. Karl, and Z. A. Mann, “JASPER: Joint Optimization of
Scaling, Placement, and Routing of Virtual Network Services,” 2017.
[Online]. Available: https://arxiv.org/abs/1711.10839

[16] F. Glover, “Tabu search – part I,” ORSA Journal on computing, vol. 1,
no. 3, pp. 190–206, 1989.

[17] O. Tange, “GNU Parallel - the command-line power tool,” The USENIX
Magazine, vol. 36, no. 1, pp. 42–47, 2011.

[18] “Implementation of the MIP and the heuristic.” [Online]. Available:
https://github.com/CN-UPB/B-JointSP

[19] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0
– Survivable Network Design Library,” in ENOG INOC, 2007.

[20] ETSI NFV ISG, “Network functions virtualisation (NFV): Use cases,”
Group Specification ETSI GS NFV 001 V1.1.1, 2013.

[21] Tellabs, “Mobile video optimization concept and benefits,” White Paper,
2011, https://goo.gl/RLkWFX (Accessed Dec. 2017).

