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ABSTRACT

Time-domain training criteria have proven to be very effective for
the separation of single-channel non-reverberant speech mixtures.
Likewise, mask-based beamforming has shown impressive perfor-
mance in multi-channel reverberant speech enhancement and source
separation. Here, we propose to combine neural network sup-
ported multi-channel source separation with a time-domain training
objective function. For the objective we propose to use a convolu-
tive transfer function invariant Signal-to-Distortion Ratio (CI-SDR)
based loss. While this is a well-known evaluation metric (BSS Eval),
it has not been used as a training objective before. To show the ef-
fectiveness, we demonstrate the performance on LibriSpeech based
reverberant mixtures. On this task, the proposed system approaches
the error rate obtained on single-source non-reverberant input, i.e.,
LibriSpeech test clean, with a difference of only 1.2 percentage
points, thus outperforming a conventional permutation invariant
training based system and alternative objectives like Scale Invariant
Signal-to-Distortion Ratio by a large margin.

Index Terms — Multi-channel source separation, acoustic
beamforming, complex backpropagation, Signal-to-Distortion Ratio

1. INTRODUCTION

Blind speech separation aims at extracting the individual speech sig-
nals present in a mixture. It is considered an important signal en-
hancement step both in human-to-human communication and for a
downstream Automatic Speech Recognition (ASR) system. Having
been a topic of extensive research for many years, many solutions
have been proposed, such as the Independent Component Analysis
(ICA) [1], Independent Vector Analysis (IVA) [2], non-negative ma-
trix factorization [3], spatial mixture model based techniques [4],
and deep neural network based separation methods, which are the
focus of this contribution.

In a popular variant, the purpose of the neural network (NN) is to
estimate time-frequency masks, or, stated differently, a speaker pres-
ence probability for each speaker and each time-frequency bin, thus
taking advantage of the sparsity and W-disjoint orthogonality [5] of
speech signals in this domain. The actual source extraction can be
carried out either by applying the mask to a channel of the input sig-
nal or by acoustic beamforming. The latter requires multi-channel
input, but is known to lead to perceptually more pleasing results ex-
hibiting less artifacts [6]. Furthermore, it takes advantage of spatial
information, which can be gleaned from a microphone array, and,

thus, usually leads to better word error rates of a downstream ASR
task [7].

While earlier publications, such as permutation invariant train-
ing (PIT) [8], deep clustering [9] and variants thereof [10], employed
neural network training criteria that were defined in the Short Time
Fourier Transform (STFT) domain, more recent publications suggest
that loss functions defined in the time-domain, such as the (scale
invariant) Signal-to-Distortion Ratio (SDR), generally achieve su-
perior separation performance [11, 12]. In fact, the investigation
in [13] showed that the advantage of time-domain loss functions is
maintained even if the mask estimation is actually carried out in the
frequency domain. However, the combination of time-domain NN
training criteria and source extraction by beamforming at training
time is widely unexplored, and will be the focus of this work.

In this contribution, we consider source separation as a front-
end of a downstream ASR task. One might therefore argue that
the front-end should best be trained using an ASR-related criterion,
as the latter is closer to the ultimate goal of minimal Word Error
Rate (WER). This has been attempted in [14] where a sequence-
to-sequence neural ASR system was extended to deal with multi-
channel multi-source input. While the results on anechoic speech
were promising, their performance on reverberant speech was not yet
competitive. For single-source acoustic beamforming the Beamnet
architecture [15] has been proposed, which utilizes an ASR-related
training objective, and the gradient was backpropagated through the
beamformer to the neural mask estimator. It was, however, observed
in [16] that joint training of the ASR back-end and the enhancement
front-end may have some logistic advantages (no need for parallel
clean and distorted training data for the training of the enhancement
stage), but that they may not lead to the overall best WER perfor-
mance. We therefore opted to stick to a signal related training objec-
tive for the source separation training in this work, which is actually
much simpler to realize, and leave a tighter coupling with the back-
end to future work.

In this contribution, we focus on reverberant scenarios. A time-
domain loss can be extremely sensitive to changes in the input wave-
form, e.g., caused by the different reflection pattern when selecting
another channel of the microphone array as input to the mask esti-
mation network [17]. Although inaudible, those changes can have
a drastic impact on the loss, and unfavorably influence the perfor-
mance. To overcome this problem, we propose a training objective
that is invariant to such errors, i.e., Convolutive transfer function
Invariant Signal-to-Distortion Ratio (CI-SDR) loss, inspired by the
BSS Eval SDR [18] measure. We give experimental evidence that
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it is superior to the well-known Scale Invariant Signal-to-Distortion
Ratio (SI-SDR) if combined with an Minimum Variance Distortion-
less Response (MVDR)-based beamformer. On a reverberant source
separation task compiled from LibriSpeech data [19], which was de-
veloped during the JHU JSALT 2020 workshop, the proposed system
achieves a word error rate which is only 1.2 percentage points higher
than on the non-reverberant oracle source signals. The CI-SDR Py-
Torch code is publicly available on GitHub1.

The paper is organized as follows. In the next section we intro-
duce the signal model underlying our investigations. In Section 3 the
system architecture is introduced. To learn the neural mask estimator
with a time-domain training criterion, the loss has to be backprop-
agated through the beamformer coefficient computation. We use a
beamformer implementation that requires computing the dominant
eigenvector to estimate the steering vectors. We propose using the
power estimation to simplify such a computation during training.
Section 4 discusses the training objectives, which are experimen-
tally evaluated in Section 5. The paper closes with some conclusions
drawn in Section 6.

2. SIGNAL MODEL

Assuming I concurrent speakers and an array of M microphones,
the vector of signals at the microphones, y` = [y`,1, . . . , y`,M ]>, at
sampling time ` can be written as follows

y` =

I∑
i=1

x`,i + n`, (1)

where

x`,i = d`,i + r`,i =

Learly
τ −1∑
τ=0

aτ,is`−τ,i +

Lτ−1∑
τ=Learly

τ

aτ,is`−τ,i. (2)

Here, x`,i is the image of the ith source at the microphones and n`
the noise vector. Further, aτ,i is the room impulse response (RIR)
vector from the ith source to the microphone array at time lag τ . It
can be decomposed in an early and a late part, resulting in an “early”
part of the image at the microphones, d`,i, and a late contribution
r`,i, where the former contains the direct signal and early reflections
(typically up to 50 ms of the RIR) and the latter the late reverbera-
tion.

In the STFT domain this model can be approximated as follows

yt,f =

I∑
i=1

dt,f,i +

I∑
i=1

rt,f,i + nt,f , (3)

where t and f denote the time frame index and the frequency bin
index, respectively. The early and late arriving speech are given by

dt,f,i =

∆−1∑
λ=0

aλ,f,ist−λ,f,i ≈ vf,ist,f,i = ṽf,i,rdt,f,i,r, (4)

rt,f,i =

Lλ−1∑
λ=∆

aλ,f,ist−λ,f,i, (5)

where ∆ is set to correspond to approximately 50 ms.
Our goal is to extract the early part of the source image dt,f,i,r

at a reference microphone r for each source i. By doing so, we

1https://github.com/fgnt/ci_sdr
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Fig. 1: System overview. The gradient is backpropagated from the
time-domain loss through the inverse STFT and beamforming to the
NN parameters.

not only aim at removing the competing speakers i′ 6= i and noise,
but also wish to remove the late reverberation, which is known to
significantly degrade recognition performance. For acoustic beam-
forming the multiplicative transfer function approximation is applied
in eq. (4), which also introduces the relative transfer function (RTF)
vector ṽf,i,r = vf,i/vf,i,r , where vf,i,r is the rth component of the
steering vector vf,i.

3. ENHANCEMENT SYSTEM ARCHITECTURE

The block diagram of the enhancement system is depicted in Fig. 1.
The multi-channel input y` is transformed to the STFT domain,
where I beamformers (BF) are used to extract the source signals
from the mixture. The masks for the beamformer coefficient compu-
tation are estimated by a NN, whose input is one of the microphone
channels. The loss function for the network training is computed
in the time-domain on the beamformed signals and then backprop-
agated to the NN. Note that a source permutation problem occurs
in the loss computation because the network output order may not
match the order of the target signals. To address this, we use the PIT
loss [8]: We compute the loss for each permutation of the network
output and search for its minimum. Then, we take this minimal loss
to compute the gradients for backpropagation.

3.1. Mask estimation

The input to the NN is the log magnitude of the STFT (with size
1024 and shift 256 at 16 kHz) of the microphone signal at a refer-
ence channel r: log(1 + |yf,t,r|). The constant is added to avoid
log(0).

The NN consists of 3 Bidirectional Long Short-Term Memory
(BLSTM) layers with 600 hidden units in each direction, followed
by two feed forward layers. The first feed forward layer keeps the
feature size and the second expands it to 512 · 3 · I . That is, the
network outputs three masks per speaker: md,t,f,i, mn,t,f,i, and
mñ,t,f,i. They are used for the estimation of

• The spatial covariance matrix of the target speaker Rd,f,i,
• The spatial covariance matrix of the distortions (competing speak-

ers plus noise) Rn,f,i of target speaker i, to be used in the MVDR
beamformer computation (see Section 3.2), and

• The spatial covariance matrix of the distortions Rñ,f,i to be used
in the dominant eigenvector estimation (see Section 3.3).

The covariance matrices are computed as follows:

Rν,f,i =
1

T

∑
t

(ε+mν,t,f,i)yt,fy
H
t,f , (6)

where ν ∈ {d,n, ñ}, and where ε = 0.01 is a small value to im-
prove the training convergence.

Clearly, one could use Rn,f,i = Rñ,f,i, but we decided to make
this distinction because it showed slightly better performance.
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3.2. MVDR beamformer

For source extraction we employ the well-known MVDR beam-
former [20]:

wf,i,r =
R−1

n,f,iṽf,i,r

ṽH
f,i,rR

−1
n,f,iṽf,i,r

, (7)

d̂t,f,i,r = wH
f,i,ryt,f , (8)

where wf,i,r is a vector containing the beamformer coefficients and
d̂t,f,i,r is the estimate of the desired signal at the reference channel
r.

3.3. Relative transfer function estimation

For the RTF estimation we follow [21]:

vf,i = Rñ,f,i MaxEig
{
R−1

ñ,f,iRd,f,i

}
, (9)

ṽf,i,r = vf,i/vf,i,r, (10)

where MaxEig{·} extracts the eigenvector corresponding to the
largest eigenvalue. However, this approach has a theoretical and
practical drawback: First, the gradient is complicated [22]. For this
work we used PyTorch and at the time of writing, the support for
complex numbers was not yet finished. Therefore, each complex
operation was mapped to real operations2. However, for the eigen-
value decomposition we couldn’t find such a mapping that worked.
See [22] for a discussion of some of the issues.

As an alternative we employed the power iteration algorithm
to obtain the eigenvector corresponding to the dominant eigenvalue
[23]. The algorithm to estimate the RTF is then:

1: Φf,i = R−1
ñ,f,iRd,f,i

2: vf,i ← ur # ur . . . one hot vector, i.e., rth component is 1
3: for η ∈ (1, . . . , ηmax) do
4: vf,i ← Φf,ivf,i

5: vf,i ← Rñ,f,ivf,i
6: ṽf,i,r = vf,i/vf,i,r

where line 2 to line 4 is the power iteration algorithm.
As can be seen, passing the gradient through the power iteration

involves rather elementary operations, such as the derivative of a
matrix inverse. For those complex-valued gradients, the mapping to
real operations works just fine.

4. TRAINING OBJECTIVES

In the following description of loss functions we ignore the source
permutation problem in the notation for better readability.

4.1. Frequency-Dependent SDR

As a reference, we first consider a loss function that is defined in the
STFT domain, the mean squared error between the complex-valued
target signal, dt,f,i,r , and its estimate obtained at the beamformer
output d̂t,f,i,r:

LF−SDR =
10

I

∑
i

log10

(∑
t,f |dt,f,i,r − d̂t,f,i,r|

2∑
t,f |dt,f,i,r|2

)
, (11)

where the denominator, which is a constant w.r.t. network pa-
rameters, is introduced for better interpretability of the loss as a

2https://github.com/kamo-naoyuki/pytorch_complex

frequency-dependent signal-to-distortion ratio3. Note that this loss
is equivalent to the phase sensitive loss [8], except for the log opera-
tion and a scale.

4.2. SDR
Casting the loss of eq. (11) to the time-domain, we obtain the time-
domain SDR loss,

LSDR =
10

I

∑
i

log10

(∑
` |d`,i,r − d̂`,i,r|

2∑
` |d`,i,r|2

)
, (12)

which is the loss proposed in [13].

4.3. Scale Invariant SDR
In [13] it is also shown that this loss is closely related to the SI-SDR
loss used in [11]:

LSI−SDR =
10

I

∑
i

log10

(∑
` |d`,i,râi − d̂`,i,r|

2∑
` |d`,i,râi|2

)
, (13)

where the scaling term âi is introduced to compensate for a potential
scaling error between target and estimate. It is computed as

âi = argmin
ai

{∑
`

∣∣∣d`,i,rai − d̂`,i,r∣∣∣2} . (14)

4.4. Convolutive transfer function Invariant SDR
Separation networks trained with the SI-SDR loss have been re-
ported to deliver very good separation results [11, 12]. However,
those observations have been mostly made in single-channel sce-
narios. When considering a multi-channel reverberant setup, it was
shown in [17] that SI-SDR produces strange artifacts. For example,
if the SI-SDR is calculated between one channel as estimate and an-
other channel as target, i.e., they have a different RIR, there is no
audible difference, but the SI-SDR indicates a huge difference [17].

This observation led to the opinion that the invariance to a short
impulse response that is given in the original SDR measure of the
BSS Eval toolbox [18], and that was criticized in [24], is actually
beneficial in reverberant scenarios. We therefore propose the follow-
ing training objective, which we call Convolutive transfer function
Invariant Signal-to-Distortion Ratio (CI-SDR):

LCI−SDR =
10

I

∑
i

log10

(∑
` |
∑
τ s`−τ,iâτ,i − d̂`,i|

2∑
` |
∑
τ s`−τ,iâτ,i|2

)
,

(15)

âτ,i = argmin
aτ,i

{∑
`

∣∣∣∣∣∑
τ

s`−τ,iaτ,i − d̂`,i

∣∣∣∣∣
2}

. (16)

where the estimation of âτ,i uses a solution of the Wiener-Hopf
equation. Note that, unlike in SI-SDR, âτ,i is a finite impulse re-
sponse filter with 512 coefficients4. As far as we know, this is the
first time, that CI-SDR is used as a training objective. Both [17, 24]
tried to interpret them as metric, here we want to compare them as
NN training objectives.

In [24], the authors argued that the CI-SDR measure of the BSS
Eval toolbox does not punish all kinds of distortions, e.g., the sup-
pression of some frequencies. Instead, they proposed to use SI-SDR

3Since NNs want to minimize the loss function, the loss function is the
negative SDR.

4To be precise, we reimplemented ”BSS Eval v3” with gradient support.
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Table 1: Scores for no enhancement, beamforming with oracle
masks (Wiener Like Mask (WLM) [28]) and Eq. (9), and directly
using oracle signals as ASR input.

Signal Mask Enh. PESQ BSS Eval STOI WER
SDR

Obs. y`,r — — 1.22 −0.48 0.715 96.4

Obs. yt,f WLM MVDR(eig) 2.26 16.37 0.911 3.8

Early d`,i — — 2.76 19.26 0.920 3.2
Source s`,i — — 4.64 289.48 1.000 3.0

in scenarios of anechoic single channel mixture recordings. Never-
theless, the comparison of SI-SDR with CI-SDR in more realistic
scenarios without reverberation did not show a clear advantage of
one metric over the other [24].

Note that we here consider a different scenario, multi-channel
reverberant recordings. We argue that the above issue of completely
suppressing some frequencies cannot occur because of the regular-
izing effect of the MVDR beamformer. Its distortionless constraint
ensures that unwanted solutions that may still drive the SDR to large
values are not allowed.

Another difference between eq. (15) and (13): SI-SDR needs a
target signal that is aligned with the input. So, a reverberated signal
is used as target. Here, we follow [25], who used just the early part
(i.e., 50 ms) of the RIR to generate the target. In eq. (15) we use the
source signal s`,i convolved with the best (in the Mean Square Error
(MSE) sense) RIR, of the length 32 ms, as target. We conjecture that
this drives the beamformer to have also a dereverberating effect.

5. EXPERIMENTS

5.1. Dataset

For the experiments we used a simulated dataset that was developed
during the JSALT 2020 workshop at JHU. This dataset uses the clean
utterances from LibriSpeech [19] at a sample rate of 16 kHz and
generates 600 h, 3.6 h and 3.6 h of training, development and test-
ing data, respectively. Each mixture contains 2 utterances which
either have full or partial overlap. The reverberation time T60 and
Signal-to-Noise Ratio (SNR) (spherical noise) is uniformly sampled
from 0.15 s to 0.6 s and 10 dB to 20 dB, respectively. The RIRs
are generated by image method [26, 27] for a circular array with 7
microphones and minimum angle between the speakers is 5◦.

5.2. Results

For judging the trained systems, we compare 4 metrics: Perceptual
Evaluation of Speech Quality (PESQ) [29], BSS Eval SDR [18],
Short Time Objective Intelligibility (STOI) [30] and Word Error
Rate (WER). For the speech enhancement metrics, PESQ, BSS Eval
SDR and STOI, the source signal s`,i is used as reference. The BSS
Eval SDR has to be taken with care, because the CI-SDR objective
tries to optimize this score. For the WER calculation we used a pre-
trained system from ESPnet [31], a transformer-based ASR system
[32]. Note that the ASR system was only trained on clean utterances
and was not adapted to any enhancement artifacts. Table 1 shows
results of some reference systems. Without any enhancement the
WER is close to 100 %. Using oracle masks and beamforming,
the WER can be drastically reduced. The final two rows show the
performance for the source signal s`,i and the early signal d`,i,r as
input to the ASR system, respectively.

Table 2: Separation performance of enhancement (Enh.) systems
that use masking or MVDR beamforming. In MVDR the RTF es-
timation is done with 3 power iterations, while MVDR(eig) uses
the eigenvalue decomposition. The training loss is varied from fre-
quency SDR over time-domain SDR to Convolutive transfer function
Invariant SDR.

Train Test PESQ BSS Eval STOI WER

Enh. Loss Enh. SDR

Masking F-SDR Masking 1.49 8.37 0.787 45.6
Masking F-SDR MVDR(eig) 1.94 13.63 0.884 8.2

MVDR F-SDR MVDR 1.99 15.38 0.893 7.9
MVDR SDR MVDR 1.98 15.08 0.893 6.7
MVDR SI-SDR MVDR 2.01 15.58 0.895 6.9
MVDR CI-SDR MVDR 2.46 20.40 0.930 4.4

MVDR CI-SDR MVDR(eig) 2.50 20.61 0.930 4.2

In table 2 we compare the performance of different loss func-
tions. As a reference, the first row displays the performance of a
classical PIT system. The mask estimator is trained with a frequency
loss, eq. (11), and source extraction is done by masking. In the sec-
ond row the enhancement at test time is changed to a beamformer.

The other systems in this table use a beamformer for source ex-
traction, both at training and test time. It can be observed that the
system trained with the CI-SDR criterion clearly outperforms the
other systems.

If the three power iterations for dominant eigenvector estima-
tion on the test data are replaced by an eigenvector decomposition
the WER can be further slightly reduced to 4.2 %. This is only
1.2 percentage points worse than the WER on single-source non-
reverberant input, shown in table 1. Comparing this system with an
oracle mask (second row of Table 1), our system outperforms it in
terms of the speech enhancement metrics and comes close in terms
of WER performance: the WER of the oracle mask-based system is
only 0.4 percentage points better.

6. CONCLUSIONS

This paper proposes to use a Convolutive transfer function Invari-
ant Signal-to-Distortion Ratio (CI-SDR), i.e., BSS Eval SDR, as
the training criterion of a NN supported multi-channel beamforming
based source separation system. The effectiveness is shown on an
artificially mixed reverberant speech database. It outperforms a clas-
sical PIT system, irrespective of whether source extraction is done
by masking or by beamforming at test time in that system, but also
outperforms systems trained on alternative time-domain objectives.
Furthermore, the system is compared with an oracle mask defini-
tion, where it outperforms the oracle mask in the speech enhance-
ment metrics and approaches it in terms of WER performance. The
final WER is 4.2 %, while the WER of 3.0 % on the non-reverberant
single speaker source signals is only 1.2 % better. To achieve this no
fine tuning of the ASR system was necessary.
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