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1 Introduction
• Permutation Invariant Training is widely used for source separation
• Problem: Naive PIT has factorial runtime
• Goal: Speed up PIT for utterance- and meeting-level separation
• Proposed

I uPIT: Improve score matrix computation for Hungarian algorithm
I Graph-PIT: Propose new algorithms to find the optimal assignment
• Separation System

I Estimate C separated output signals Ŝ ∈ RT×C from mixture with neural network
I Targets: U utterance signals S ∈ RT×U (T : #time frames)
I Utterance-level separation: number of outputs = number of utterances (C = U)
I Meeting-level separation: number of outputs < number of utterances (C < U)

3 Utterance-level PIT (uPIT)
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Problem: Find the best matching permutation (permutation matrix P ∈
{0, 1}C×C) between target utterances (speakers) S and outputs Ŝ
Naive: O(C !)

J (uPIT)(Ŝ,S) = min
P∈PC
L(Ŝ,SP)

• The full loss has to be computed for each permutation (C ! times)

Decompose + Hungarian algorithm: O(C 3)

The permutation problem can be solved with the Hungarian algorithm
if it can be formulated with

J (uPIT)(Ŝ,S) = f ( min
P∈PC

Tr(MP)︸ ︷︷ ︸
Solve with Hungarian Algorithm

, Ŝ,S)

where f is strictly increasing in its first argument and M ∈ RC×C

• All relevant objectives can be decomposed like this

Example for L(sa-SDR) (proposed: Hungarian dot)
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Ŝ
)

+ 2 min
P∈PC

Tr

(
−Ŝ
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2 Signal-to-Distortion-Ratio (SDR) loss
• SDR-based objectives are commonly used for source separation

Here written without PIT
Averaged SDR: average the SDRs of each output (conventional)

L(a-SDR)(Ŝ,S) = −10

C
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Source-aggregated SDR: treat all outputs as one

L(sa-SDR)(Ŝ,S) = −10 log10

∑C
c=1 ‖sc‖

2∑C
c=1 ‖sc − ŝc‖2

• Required for Graph-PIT
• Neglectible improvement over L(a-SDR) in separation performance

4 Meeting-level separation: Graph-PIT
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ŝ2

...

s1
s2
s3
s4

S =
Min loss for

assignments SP
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Problem: Find the best valid assignment of utterances to output chan-
nels (assignment matrix P ∈ {0, 1}U×C)
⇒ Color the overlap graph (vertices = utterances, edges = overlaps)

Naive: O(C (C − 1)U−1) (exponential)

J (Graph-PIT) = min
P∈BG,C

L(Ŝ,SP)

This formulation looks similar to uPIT, but
• BG,C is the set of all valid colorings of the overlap graph
• SP no longer only represents a permutation, but can sum

non-overlapping utterances

Decompose + Assignment algorithm: O(UCC−1) (linear)

• uPIT’s decomposition of L(sa-SDR) can be used (and is required!)
• Different shapes: M ∈ RC×U, P ∈ {0, 1}U×C
• Proposed assignment algorithms

I Brute-force: Try all assignments (O(C (C − 1)U−1))
I Greedy DFS: Use Depth-first search in the solution space to find one (not

necessarily the best) solution (best case O(CU), but often much slower)
I Branch-and-bround: Branch-and-bound finds the best solution
I Dynamic Programming: Use Dynamic Programming to elegantly traverse

the solution space to find the optimal solution (O(UCC−1))

5 Runtime uPIT
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• Brute-force: Impractical already for small numbers of speakers
• Hungarian: Negligible runtime compared to DPRNN separator

6 Runtime Graph-PIT Assignment
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• Naive: Impractical already for small numbers of utterances
• Dynamic Programming: Optimal and as fast as a greedy approach

7 Conclusions
• General framework to speed up PIT without approximations
• Proposed new algorithms to find the best assignment for Graph-PIT
• Runtimes of optimized algorithms are negligible compared to separator
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