
SpeedingUpPermutation Invariant Training for Source Separation
Thilo von Neumann, Christoph Boeddeker, Keisuke Kinoshita, Marc Delcroix and Reinhold Haeb-Umbach

Paderborn University, Germany NTT Corporation, Japan

1 Introduction
• Permutation Invariant Training is widely used for source separation
• Problem: Naive PIT has factorial runtime
• Goal: Speed up PIT for utterance- and meeting-level separation
• Proposed

I uPIT: Improve score matrix computation for Hungarian algorithm
I Graph-PIT: Propose new algorithms to find the optimal assignment
• Separation System

I Estimate C separated output signals Ŝ ∈ RT×C from mixture with neural network
I Targets: U utterance signals S ∈ RT×U (T : #time frames)
I Utterance-level separation: number of outputs = number of utterances (C = U)
I Meeting-level separation: number of outputs < number of utterances (C < U)

3 Utterance-level PIT (uPIT)

NN
ŝ1

ŝ2

s1

s2

Min loss for
C ! PermsŜ = S =

T × CT × C

Problem: Find the best matching permutation (permutation matrix P ∈
{0, 1}C×C) between target utterances (speakers) S and outputs Ŝ
Naive: O(C !)

J (uPIT)(Ŝ,S) = min
P∈PC
L(Ŝ,SP)

• The full loss has to be computed for each permutation (C ! times)

Decompose + Hungarian algorithm: O(C 3)

The permutation problem can be solved with the Hungarian algorithm
if it can be formulated with

J (uPIT)(Ŝ,S) = f (min
P∈PC

Tr(MP)︸ ︷︷ ︸
Solve with Hungarian Algorithm

, Ŝ,S)

where f is strictly increasing in its first argument and M ∈ RC×C

• All relevant objectives can be decomposed like this

Example for L(sa-SDR) (proposed: Hungarian dot)

J (uPIT) = min
P∈PC
−10 log10

Tr
(
PTSTSP

)
Tr
(

(Ŝ− SP)T(Ŝ− SP)
)

= −10 log10

Tr
(
STS

)
Tr
(
STS

)
+ Tr

(
Ŝ

T
Ŝ
)

+ 2 min
P∈PC

Tr

(
−Ŝ

T
S︸ ︷︷ ︸

M

P

)
︸ ︷︷ ︸

solve with Hungarian alg.

2 Signal-to-Distortion-Ratio (SDR) loss
• SDR-based objectives are commonly used for source separation

Here written without PIT
Averaged SDR: average the SDRs of each output (conventional)

L(a-SDR)(Ŝ,S) = −10

C

C∑
c=1

log10

‖sc‖2

‖sc − ŝc‖2

Source-aggregated SDR: treat all outputs as one

L(sa-SDR)(Ŝ,S) = −10 log10

∑C
c=1 ‖sc‖

2∑C
c=1 ‖sc − ŝc‖2

• Required for Graph-PIT
• Neglectible improvement over L(a-SDR) in separation performance

4 Meeting-level separation: Graph-PIT

NN
ŝ1

ŝ2

...

s1
s2
s3
s4

S =
Min loss for

assignments SP

Ŝ =

T × U T × C

Problem: Find the best valid assignment of utterances to output chan-
nels (assignment matrix P ∈ {0, 1}U×C)
⇒ Color the overlap graph (vertices = utterances, edges = overlaps)

Naive: O(C (C − 1)U−1) (exponential)

J (Graph-PIT) = min
P∈BG,C

L(Ŝ,SP)

This formulation looks similar to uPIT, but
• BG,C is the set of all valid colorings of the overlap graph
• SP no longer only represents a permutation, but can sum

non-overlapping utterances

Decompose + Assignment algorithm: O(UCC−1) (linear)

• uPIT’s decomposition of L(sa-SDR) can be used (and is required!)
• Different shapes: M ∈ RC×U, P ∈ {0, 1}U×C
• Proposed assignment algorithms

I Brute-force: Try all assignments (O(C (C − 1)U−1))
I Greedy DFS: Use Depth-first search in the solution space to find one (not

necessarily the best) solution (best case O(CU), but often much slower)
I Branch-and-bround: Branch-and-bound finds the best solution
I Dynamic Programming: Use Dynamic Programming to elegantly traverse

the solution space to find the optimal solution (O(UCC−1))

5 Runtime uPIT

2 3 4 5 6 7 8 10 25 50 100

10−3

10−2

10−1

100

DPRNN runtime
Naive

Brute-force
Decompose
Brute-force

Decompose
Hungarian MSE

Decompose
Hungarian dot

Number of speakers

R
un

ti
m

e
in

s

• Brute-force: Impractical already for small numbers of speakers
• Hungarian: Negligible runtime compared to DPRNN separator

6 Runtime Graph-PIT Assignment

2 4 6 8 10 12 14 16 18 20 22 24 26 28

10−4

10−3

10−2

10−1

100
DPRNN runtime

Decompose
Brute-force

Naive
Brute-force

Branch &
Bound

DFS

Dynamic
Programming

Computation
of M

Number of utterances

R
un

ti
m

e
in

s

• Naive: Impractical already for small numbers of utterances
• Dynamic Programming: Optimal and as fast as a greedy approach

7 Conclusions
• General framework to speed up PIT without approximations
• Proposed new algorithms to find the best assignment for Graph-PIT
• Runtimes of optimized algorithms are negligible compared to separator

NT ITG 2021, Kiel
Computational resources were provided by the

Paderborn Center for Parallel Computing.
GitHub: https://github.com/fgnt/graph_pit

https://ei.uni-paderborn.de/nt/forschung/publikationen
https://github.com/fgnt/graph_pit

