
Use What You Know: Network and Service
Coordination Beyond Certainty

Stefan Werner
Paderborn University, Germany

stwerner@mail.upb.de

Stefan Schneider
Paderborn University, Germany

stefan.schneider@upb.de

Holger Karl
Hasso Plattner Institute,

University of Potsdam, Germany
holger.karl@hpi.de

Abstract—Modern services often comprise several components,
such as chained virtual network functions, microservices, or
machine learning functions. Providing such services requires to
decide how often to instantiate each component, where to place
these instances in the network, how to chain them and route traf-
fic through them. To overcome limitations of conventional, hard-
wired heuristics, deep reinforcement learning (DRL) approaches
for self-learning network and service management have emerged
recently. These model-free DRL approaches are more flexible
but typically learn tabula rasa, i.e., disregard existing under-
standing of networks, services, and their coordination. Instead,
we propose FutureCoord, a novel model-based AI approach that
leverages existing understanding of networks and services for
more efficient and effective coordination without time-intensive
training. FutureCoord combines Monte Carlo Tree Search with a
stochastic traffic model. This allows FutureCoord to estimate the
impact of future incoming traffic and effectively optimize long-
term effects, taking fluctuating demand and Quality of Service
(QoS) requirements into account. Our extensive evaluation based
on real-world network topologies, services, and traffic traces
indicates that FutureCoord clearly outperforms state-of-the-art
model-free and model-based approaches with up to 51% higher
flow success ratios.

Index Terms—network management, service management, AI,
Monte Carlo Tree Search, model-based, QoS

I. INTRODUCTION

Services consisting of multiple chained components trend
towards softwarization and virtualization, e.g., chained virtual
network functions (VNFs) [1], microservices in a service mesh
[2], or machine learning functions [3]. The gained flexibility
comes with novel challenges regarding network and service
coordination: The service components need to be scaled and
instantiated across different network nodes. Incoming traffic
needs to be assigned to and balanced between the placed
instances. In doing so, coordination needs to take limited
node/link capacities and Quality of Service (QoS) require-
ments into account and adapt to constant changes in demand.

Existing work conventionally addresses network and service
coordination using hand-crafted heuristics designed by experts.
Such heuristics are typically tailored to specific scenarios
and explicitly define how to coordinate network and services
through rigid algorithms and rules. This is problematic when
operational reality diverges from the assumed scenario, again
requiring time-consuming manual adjustments by experts.

To overcome hard-wired heuristics, recent work proposes
self-learning network and service coordination, mostly using

model-free deep reinforcement learning (DRL). These ap-
proaches require training on a given network environment, typ-
ically starting from scratch, i.e., with completely random be-
havior. Training can be extremely time- and resource-intensive.
For example, OpenAI Five, a DRL approach mastering the
Dota 2 video game, was trained on more than 100,000 CPU
cores for 10 months [4]. Moveover, DRL training is not
guaranteed to converge [5], [6] and outcomes can drastically
differ depending on the random training seed [7]. A core
problem of model-free DRL is that these approaches start with
no knowledge or understanding of the problem or environment
at hand. Consequently, they are very flexible but also must
learn everything by themselves through trial and error.

In particular, DRL approaches for network and service
coordination are ignorant of the existing understanding of
networks, services, traffic and their interplay. E.g., service
components are typically known and their resource require-
ments can be profiled [8], [9]. Similarly, the topology and
available capacities in a given network are typically rather
static and well known. Analysis of recorded traffic traces can
help to understand typical traffic patterns; recent advances
in traffic forecasting even allow predicting upcoming traffic
[10]–[13] and QoS requirements [14] with reasonable cer-
tainty. Neglecting all this information, current model-free DRL
approaches must learn everything implicitly by themselves,
which is not only time-consuming and resource-expensive but
also known to be notoriously hard for real-world problems
(e.g., due to non-stationary traffic changes) [15].

We propose instead a novel model-based AI approach,
called FutureCoord, that leverages a model of the net-
work to effectively coordinate network and services. Similar
to AlphaZero [16], our approach uses Monte Carlo Tree
Search (MCTS) [17], where a model defines the rules of
the game but not how to win. MCTS uses the model to
find a winning strategy itself. Similarly, our model defines
relevant, well-understood characteristics in networks but does
not dictate how to coordinate the network and services. It is
also simple to extend the model, e.g., including new research
findings, without redesigning the coordination approach itself.

A key novelty of our FutureCoord approach, going beyond
related model-based approaches [18]–[20], is the combination
of MCTS with a stochastic traffic model. The traffic model
forecasts upcoming traffic flows, e.g., based on learning mod-
els from traffic traces recorded over the recent past. Rather

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

than coordinating each incoming flow in isolation, this allows
us to consider likely future flows explicitly and anticipate their
long-term effects. For example, FutureCoord places service
instances at strategic locations in the network where they can
be reused by other flows, avoiding starting new instances and
thus minimizing resource requirements. Similarly, it avoids
blocking resources that are critical for upcoming QoS-sensitive
or resource-heavy flows, ultimately leading to higher flow
success rates. Our trace-driven evaluation based on real-world
data indicates that FutureCoord outperforms a related model-
based approach, a state-of-the-art model-free DRL agent and
a heuristic by up to 51% more successful flows. In doing so,
FutureCoord is robust to changes in load, network topology,
traffic pattern and still obtains good results with inaccurate
forecasts. Overall, our contributions are:
• We propose FutureCoord, a novel model-based AI ap-

proach, combining MCTS with a stochastic traffic model
to optimize network and service coordination for upcom-
ing demands and QoS requirements.

• Our approach adapts to varying demands, QoS require-
ments and heterogeneous services, outperforming existing
model-free and model-based approaches by up to 51%.

• We open-source our code [21] to encourage reproducibil-
ity and reuse of our work.

II. RELATED WORK

Most existing work on service coordination uses conven-
tional approaches and formulates mixed-integer linear pro-
grams (MILP) or hand-crafts heuristics [22]. The design of
heuristics becomes more challenging if all aspects including
scaling, placing, assigning and routing are considered. Related
work thus mostly focuses on aspects in isolation. For example,
authors optimize the energy consumption [23] or setup costs
[24] of placements but do not consider their assignment to
flows. Still, other authors [25], [26] tackle the full service
coordination problem. For example, GRC-VNE [26] balances
server loads using node rankings and places instances predom-
inantly where plenty resource capacity remains. Like ours,
recent work on online heuristics [27]–[30] uses predictions
of future demands. Besides drawbacks of predefined rule sets,
the main differences are that a) they use forecasts to provision
services proactively; we plan long-term effects of decisions.
Both aspects could complement each other in future work.
b) They predict requested flow data rates or components for
upcoming time intervals. Our traffic model also accounts for
QoS requirements including the max. delay bound of flows
and allows quantifying the uncertainty of their estimates.

Recently, DRL has emerged as a promising paradigm to
address the time-varying nature of traffic [31]. One major
advantage is that coordination policies are self-learned from
experience and do not rely on model abstractions of the
network [32]–[34]. Still, many authors settle for a compro-
mise and integrate simulation models to assist their learned
coordination policy. The model is then used to simulate and
test whether decisions constitute feasible placements before
carrying them out in practice [35]–[37]. Others use heuristics

to identify what placements are viable in the model with
priority to decisions favored by the DRL policy [38] or guide
their exploration during training towards suitable solutions
to accelerate learning [39], [40]. We believe that such work
suffers from requiring models without taking full advantage
of them like the ability to plan ahead (which we pursue).

It is often claimed that DRL naturally adjusts to time-
varying traffic [35]. Meanwhile, the data passed to the policy
often lacks information (e.g. time of day) that would allow
characteristics of the traffic to be learned implicitly [33]–[35].
So far, related work mostly avoids this problem and, e.g.,
trains separate DRL policies for each considered time interval
[36]. A promising direction of research is thus to use traffic
forecasts to assist DRL policies. For example, Qu et al. [13]
include predictions of demands and points in time when traffic
changes into their agent’s state. We view our algorithm as a
step towards this direction and believe that an integration of its
forecast- and model-based search with DRL à la AlphaZero
seems promising for future work. Despite their DRL focus,
the work by Pei et al. [36] is closely related to ours. Like us,
they use a model and forecasts. Still, major differences are
that a) their model is used to test the feasibility of decisions,
ours to strategically plan service coordination b) they assume
exact forecasts over the upcoming time interval, we do not.

Existing work already uses MCTS for service coordination
[18], [19], [41]. Most related to ours is MaVEn-S [19] that
grows search trees of decisions: a) Like us, it simulates
the placement of service components and their connection
with routes of lowest delay at each step. b) Unlike us, it
minimizes operator costs; we maximize flow completion rates.
In online decision making, this poses a significantly tougher
challenge in the long-run. In fact, any successful candidate
deployment seems equally viable. The search must therefore
decide between seemingly equivalent options and, e.g., resort
to carefully designed evaluation heuristics to evaluate what
and where resources are used. Still, even short-term optimal re-
source usage per flow not necessarily coincides with long-term
maximal flow completion rates. c) Their admission control
policy accepts any flow more profitable than an empirical
threshold. Ours adjusts dynamically to varying circumstances;
it does not need any pre-defined threshold. d) they plan de-
ployments until flows are either completed or dismissed. What
operator costs arise for candidate deployments is calculated
per flow. Potential loss of revenue for future demands due to
long-term effects of decisions is not accounted for. Our work
evaluates deployments by what completion rates are achievable
long-term using forecasts; it does not greedily maximize the
current flow’s benefit at the expense of future demands.

III. PROBLEM STATEMENT

We coordinate services, including the deployment of in-
stances, the admission control of flows, their assignment
to instances and routing through the network. This section
formulates the problem, decision variables and the objective
function.

A. Problem Parameters

Formally, the substrate network G = (V, E) is an undirected
graph of nodes v ∈ V and bidirectional links {u, v} ∈ E . Each
node v ∈ V provides compute capacity cpuv and memory
capacity memv . Bidirectional links {u, v} ∈ E govern the
amount of traffic that may transit among u and v in either
direction by (shared) data rate λ{u,v}. Routing traffic across
link {u, v} imposes delay `{u,v}. For simplicity, we define
`{u,v} as the propagation delay (ignoring queuing delay).

Flows f = (of , v
ingr
f , vegr

f , tf , δf , λf , πf) ∈ F enter the
network starting at time tf at their ingress vingr

f . They arrive
according to sequence Z = (f1, . . . , fN). When flow f is
admitted, traffic of data rate λf enters at ingress vingr

f , is steered
through the network and finally departs at egress vegr

f . Any
node can be an ingress, egress or serve as both endpoints. The
delay imposed on flows f must not violate their flow-specific
maximum end-to-end delay bound πf . For duration δf , flows
f request services as linear chains of =

(
c1, . . . , cmof

)
∈ O

composed of components c ∈ C such as firewalls or web
proxies; duration δf is unknown to the coordinator. Here, C de-
notes the set of components offered by the operator. Along the
route established from its ingress to egress, any flow f must
traverse instances of all components processing it in the order
of of to successfully complete the service. Instances consume
compute and memory capacities dependent on the amount of
traffic they process [8], [9]. For example, instances typically
require large amounts of memory once upon their deployment
(overhead of VM) and grow slower when instances are scaled
up [42]. Our work considers inter-node service coordination
including the scaling and placement of instances along with
the assignment and admission of flows. Within single nodes,
we assume that systems such as Kubernetes [43] automatically
scale instances up and down to accommodate varying loads
(intra-node scaling). To serve a total data rate λ of possibly
many flows, instances of component c consume compute
capacity hcpu

c (λ) and memory capacity hmem
c (λ). Both define

the resource consumption of instances possibly non-linear in
load; they are assumed known to the operator. The amount of
compute and memory capacities instances consume to process
a given data rate can, in practice, be learned component-
wise via supervised learning and benchmarking [44]. Finally,
successful flows f depart once their duration passes at time
tf + δf . Any instance serving f is then automatically scaled
down or terminated in case it processes no more active flows.

B. Decision Variables & Network State

1) Decision Variables: We consider embedding services
o ∈ O to a network (placement & assignment), routing flows
f ∈ Z among instances thereof (routing) after deciding their
admission (admission control). For each flow arriving over
time T according to sequence Z, let binary decision variable
xf ∈ {0, 1} denote whether f is admitted upon entering the
network or rejected and immediately dropped otherwise. Any
successful flow f must traverse instances of all components
specified by its service of in-order. The i-th component of,i

of flow f is then served by the node with decision variable
yf,i ∈ V . For each successful flow f , routes that steer
traffic from its ingress vingr

f across assigned instances and
finally to egress node vegr

f must be established. We introduce
decision variable pf,i to denote the path forwarding traffic
from placements at yf,i to yf,i+1 for succeeding components
of,i and of,i+1. Note that pf,0 and pf,mof

establish routes
from the ingress and towards the egress node, respectively.
This work considers routes along paths of shortest delay.

2) Placement, Assignment & Routing Constraints: For re-
source consumption of instances non-linear in data rate, the
decrease of capacity at node yf,i after being assigned flow
f depends not just on the flow’s data rate λf but also on
the instance’s prior load. In fact, an instance of component
c at node v processes the aggregated data rate λv,c(t) =∑

f∈A(t)

∑
of,i=c λf · 1{v=yf,i} where A(t) denotes the set

of flows active at time t and 1{v=yf,i} indicates whether
node v serves the i-th component of,i of flow f . We require
that the utilized compute capacity

∑
c∈C h

cpu
c (λv,c(t)) and

allocated memory capacity
∑

c∈C h
mem
c (λv,c(t)) do not exceed

compute cpuv and memory memv capacities of node v. To
avoid oversubscribing links, routes must steer traffic across
links {u, v} with capacity λ{u,v} at least the total data rate∑

f∈A(t)

∑
i λf ·1{{u,v}∈pf,i} of flows traversing it. The end-

to-end delay
∑

i

∑
{u,v}∈pf,i

`{u,v} of flow f routed along
paths pf,i must comply with its maximum delay bound πf .

C. Objective Function
We assign equal priority to flows and maximize the rate of

successfully completed flows Fsucc. over time period T :

lim
T→∞

1

T
Fsucc. (1)

Effective admission control must dynamically decide
whether flow demands can and should be fulfilled, or if their
deployment degrades completion rates in the long-run. For
example, it should drop flows that cannot be assigned to
already existing instances (avoids memory overhead of further
deployments) in favor of possible future flow arrivals once
capacities become scarce. To encourage an efficient usage of
resources by virtue of sharing, instances should be placed at
strategic locations. Flows with tight max. delay bounds make
it necessary to preserve capacities along shortest path routes.

IV. FUTURECOORD: MODEL-BASED AI
Our work overcomes limitations of other approaches that

maximize the utility of deployments per flow at the expense
of future demands. To do so, we integrate traffic models into
the planning stage and evaluate decisions by their long-term
effects which enables more extensive and careful planning
when appropriate. We thus trade-off the computational budget
available for planning and the time over which future demands
are considered. In practice, the investment of further effort may
be particularly worthwhile for flows of high resource demands
or long duration times (if known). Otherwise, it can simplify
along the lines of MaVEn-S [19] and coordinate services
without explicitly considering future demands.

Fig. 1: Components are iteratively assigned to instances. Any
of the service’s last candidate placements (choices for af,3) are
invalid; no route towards the flow’s egress can be established.

A. Input-Driven Markov Decision Process

We formalize the online coordination of services as an
input-driven Markov Decision Process (ID-MDP) [45] that
extends the standard MDP formulation by stochastic process
PZ . Process PZ governs when which flows enter the network,
i.e., defines the distribution of flow interarrival and duration
times, flow data rates, max. delay bounds as well as what
services they request. The sequence Z of flows entering over
time T follows process PZ . We assume that flow arrivals are
independent of whether prior flows were completed. To this
end, the ID-MDP is given by (S,A,Z,PS ,PZ ,R) where set
S denotes possible network model states (cmp. Sec. III), action
set A defines coordination decisions, set Z outlines possible
flow arrivals Z over time T and R is the reward function.
Model-based approaches, like ours, use the environment dy-
namics PS (defined in Sec. III) for planning ahead and assume
them to be known. Sophisticated simulations of the, typically
unknown, real-world dynamics can be used to further close the
gap between model assumptions and coordination in practice
(e.g. [46]). Below, we define A and R in detail.

1) Action Space A: We decide whether to admit flows f
and, if so, how their services of are deployed. Proceeding
iteratively through the chain of components c1, . . . , cmof

, each
action af,i ∈ V decides which node processes flow f by what
instance. For the first component, there is an additional control
action (af,1 = 0) that dismisses the entire flow. Otherwise,
actions either scale up an existing instance on node af,i
to serve the increased load or start up a new instance of
component of,i. For example, Fig. 1 shows an assignment of
the first and second component (purple and red) by actions
af,1 and af,2 to the same node. At each assignment, we
interconnect placement location af,i with the prior instance at
af,i−1 or the flow’s ingress at vingr

f , using a shortest-delay path
of links with enough capacity. Route pf,mof

towards flow f ’s
egress is then set up after assigning its final component with
action af,mof

. Based on our model, we adjust the action set
A to what coordination decisions are valid (cmp. Sec. III) at
each step. For example, Fig. 1 shows that regardless of where
the third component (green) is placed by action af,3, no route

(blue) towards the flow’s egress can be set up, since its data
rate (width of route) exceeds residual link capacities (width of
links). If no valid candidate remains for the next component’s
assignment, the flow cannot be completed and is dropped. All
instances serving it (purple and red) are either scaled down or
terminated. Then, we await the next flow’s arrival.

2) Reward R: To maximize the ratio of successful flows,
we attribute rewards of +1 upon their completion and zero
for any other assignment or control action. This maximizes
our objective (Eq. 1) directly. Typically, sparse binary feedback
signals, like ours, are not well suited for online planning tasks.
In fact, any candidate deployment that completes the current
flow is attributed equal return. We thus lack the insight what
decisions allow high completion rates of future flows. Existing
work usually introduces auxiliary functions such as resource
usage [18], [19] to evaluate candidate decisions. However,
these auxiliaries are often ill-equipped, since maximum utility
in terms of the auxiliary not necessarily coincides with the
objective (flow completions). Instead, we optimize service
coordination directly by the sparse binary feedback and do not
resort to any proxy thereof, as later discussed in Sec. IV-B2.

B. Future Flow Sampling-Based MCTS

We coordinate services using the well-known MCTS algo-
rithm and refer readers unfamiliar with its procedure to Appx.
A. In short, MCTS iteratively grows search trees towards re-
gions where high accumulated rewards (returns) were achieved
beforehand. It estimates what return is expected when coor-
dination decisions a ∈ A are selected in network model state
s ∈ S as action values Q(s, a) = E

[
r + γV (s′) | s, a

]
. This

includes the immediate reward r for action a and undiscounted
(γ = 1) state value V (s′) of successor model state s′.

Existing work [18]–[20] on model-based service coordi-
nation terminates its search once the current flow is either
completed or dismissed. Action values Q(s, a) then estimate
operator costs or energy consumption for the current flow and
its deployment, but do not include those of future flows. In the
long-run, this shallow search optimizes flow utilities often at
the expense of future demands (cmp. Sec. III-C). To overcome
this limitation, we propose to plan beyond the current flow’s
coordination and consider forecasts. Candidate deployments
are then not evaluated by auxiliaries but in terms of long-term
completion rates for forecast flows. This section outlines the
traffic model (Sec. IV-B1), its integration into the search (Sec.
IV-B2) and outlines the algorithm in-depth (Sec. IV-B3).

1) Flow Forecasts: To consider long-term effects of deci-
sions, we use traffic models that estimate the possibly non-
stationary distributions of future flow arrival and duration
times, their data rates, max. delay bounds and services. In
practice, such models can be learned from previously recorded
traces, e.g., using Gaussian Process Regression [10], [13], [14].
Sec. V-C shows that estimated distributions need not be exact
for this scheme to succeed. In fact, our approach is robust to
over- and underestimations of flow properties as well as faulty
flow arrival patterns.

Fig. 2: FutureCoord plans service coordination beyond the
current flow (left) with forecasts of future demands (right).

2) Sampling-Based Planning: Each iteration of the search
first samples a forecast Ẑ and then performs the selection,
expansion, rollout and backup phases based on what flows it
predicts. Any decision that makes inefficient use of capacities
or congests critical routes likely causes many forecast flows to
be dropped afterwards. Rollouts then assign low return (num-
ber succ. flows) when decisions complete flows at the expense
of forecast flows; the binary feedback becomes informative
and favors decisions with high long-term completion rates.

Fig. 2 shows how we unify planning with various forecasts.
Iterations follow the same search path if forecast flows a) enter
and depart at identical ingresses and egresses b) specify
the same service c) are assigned to the same nodes. Then,
tree nodes average returns only for related iterations, i.e.,
simulations of flows at similar positions (ingress & egress)
with the same service, but possibly different data rates, max.
delay bounds, arrival and duration times. Upon flows entering
the network, we insert delimiter nodes into the search tree to
distinguish unrelated iterations. For example, the simulation
for Ẑ(2) and Ẑ(3) (green & blue search path) assign the current
flow’s single component (blue stripes; above dotted line) to
node v1. Both predict that flows for the three-component
service (red stripes) follow, enter at ingress v1 and depart
at v7. We thus insert a delimiter node (orange) unique to
their ingress, egress and service. Both iterations then continue
to simulate the assignment to nodes v2, v3, v3, receiving
rewards for completed flows along the way. In this case, the
flow forecast by Ẑ(3) has higher data rate (width of links
between components) and, for this reason, cannot establish
any egress route, receiving zero reward. Assuming that the
simulation for Ẑ(2) completes its forecast flow, the last visited
tree node averages returns +1, +0 and is assigned an action
value Q(s, a) of 1/2. If both iterations complete the current
flow, the root’s left child averages returns +2, +1 along with
results from prior iterations.

3) Algorithm: Alg. 1 outlines our proposed search proce-
dure. First, the selection phase (ln. 6-8) traverses the search
tree until a leaf node is encountered. In each step, it selects
among successors, simulates the chosen action and stores its
reward. Second, we randomly select and simulate an unvisited

Algorithm 1: FutureCoord

1 T ← initialize search tree
2 while Computational Budget do
3 Ẑ ← sample αflows forecast flows
4 (s, a)← (sroot, •)
5 R[]← ∅ . stores rewards
6 while children (s′, a′) of (s, a) all visited do
7 (s, a)← argmax

(s′,a′)

Q(s′, a′) + 2C
√

2 lnN(s,a)
N(s′,a′)

8 R[s, a]← simulate action a; receive reward r

9 (s, a)← select random unvisited child
10 if (s, a) is initial action of forecast flow f then
11 insert delimiter node; assign zero reward to it

12 R[s, a]← simulate action a; receive reward r
13 expand T by child tree node (s, a)
14 R← MC return R from simulation with future

flow arrivals Ẑ
15 for visited tree node (s, a) until root do
16 Q(s, a)← Q(s, a) + r−Q(s,a)

N(s,a)+1

17 N(s, a)← N(s, a) + 1
18 r ← r +R[s, a]

19 return child (s, a) of root with max. N(s, a)

candidate a, attach it to the tree and record its reward (ln.
9-13) in the expansion phase. In case action a decides the
initial assignment of any flow, we insert a delimiter node
with zero reward beforehand to disambiguate where and what
flows arrive (ln. 10-11). Third, we simulate coordinating the
forecast’s remaining flows with randomly selected (valid)
decisions in the rollout phase (ln. 14). Its accumulated rewards
then give a MC return estimate for the attached node’s action
value Q(s, a). Due to the random selection of actions and the
stochastic prediction of flows, the estimate’s variance increases
the farther rollouts simulate into the future. This implies a
trade-off between the number of iterations, the stability of
results and hence the time span over which future demands
may be considered. If the additional planning effort cannot be
invested under tight budgets, fewer forecast flows (αflows) may
be simulated. For αflows = 0, FutureCoord simplifies along
the lines of MaVEn-S [19]. Finally, the return estimate and
stored rewards are backpropagated upwards the traversed path
(ln. 15-18). In each step, we update action values Q(s, a) by
the moving average of earlier estimates and this iteration’s
results. Ideally, if future flow arrivals Z were known, we could
evaluate actions by their long-term performance. Averaging
action values over simulations of forecasts, instead, gives an
expectation over their distribution of interarrival and duration
times as well as QoS requirements. If forecasts indeed follow
the ground truth distributions of Z, we estimate action values
as EPZ

[
Q(s, a)

]
, i.e., under the distribution of future flows

rather than by the (unknown) Z itself.

V. TRACE-DRIVEN EVALUATION

In this section, we evaluate FutureCoord using real-world
network topologies, traffic patterns and service configurations.

A. Evaluation Setup

1) Simulation Scenarios: Our evaluation considers real-
world topologies from SNDlib [47] of up to 50 nodes, in-
cluding the Abilene network of 12 nodes scattered across the
United States. A node’s compute capacities cpuv is chosen
uniformly at random between 0.5 and 1.0 units and memory
memv uniformly from {256, 384, 512, 640} units. Link capac-
ities are set to λ{u,v} = 9920 units; link delays `{u,v} are
the propagation delay for nodes’ distances. All six offered
components c ∈ C (e.g. web proxies or web servers) are con-
figured based on real-world performance profiling data from
SNDZoo [9]. In detail, we derive fourth-order polynomials
to define what compute capacity instances consume. Starting
up new instances requires one-time allocations of memory
between 64 and 256 units. Flows specify one out of four
services o ∈ O that differ in length (2-4 components), by
their components and by what kind of flows they are typically
requested. We consider heterogeneous service configurations
and flow demands. First, delay-sensitive flows that must be
routed along the shortest route from their ingress to egress,
but have low data rates and request few components (service
o(1)). Second, flows that request services of components that
are compute intensive (service o(2)) or require large amounts
of memory upon instantiation (service o(3)). On the other
hand, they constrain the max. delay bound of flows less
tightly and need not be routed along shortest paths. Finally,
we consider high data rate flows of moderate max. delay
bounds. They request service o(4) of components with modest
resource demands. For each kind of flow, we parameterize
normal distributions of flow data rates based on the max.
throughput measured during benchmarking for their service
[9]. We clip values to be below services’ max. throughput
and above 1/10-th of it. To ensure feasible QoS requirements,
we consider normally distributed max. delay bounds with
mean values proportional to shortest path delays among flows’
ingress and egress nodes. Their mean values range from 1×
to 4× the flows’ shortest path delays. Max. delay bounds
are set at least to the shortest path delay. Flows enter the
network at times tf that follow service specific inhomogeneous
Poisson processes. The arrival rates of these processes are
obtained from averaging real-world traffic traces [47] over
sliding windows lengths of 5 minutes. Episode simulate 42
discrete changes of arrival rates with each time period lasting
5 minutes. Thus, we set the time horizon of our evaluation
to T = 43 · 5min = 12900s. Durations δf are exponentially
distributed with service-specific means. We scale arrival rates
and mean durations so that, for example, flows with service
o(1) (cmp. mice flows) are more frequent but also depart much
sooner than flows of service o(3) (cmp. elephant flows). Where
flows enter the network (ingresses) and their traffic exits it
(egresses) is also stochastic, service-specific and changes every

5 minutes based on real-world dynamic traffic matrices [47]
for the Abilene network.

2) Compared Algorithms & Hyperparameters: We compare
our algorithm against one approach from each of the categories
heuristics, model-free DRL and planning methods:
• GRC-VNE [26]: a heuristic that ranks nodes by what

residual resources they and nearby nodes provide.
• NFVdeep [35]: a model-free DRL approach that learns

service coordination end-to-end from scratch using DRL.
• MaVEn-S [19]: a model-based method that coordinates

services using MCTS (cmp. Sec. II).
We set the training of NFVdeep to 2, 000, 000 updates

per repetition. Both FutureCoord and MaVEn-S perform 500
iterations per decision, although rollouts usually take longer
for our work. We truncate rollout simulations to αflows = 30
forecast flows. In our unoptimized, single-core Python sim-
ulation, FutureCoord coordinates flows in on the order of
tens of seconds (measured on Abilene). Significant runtime
improvements could be achieved in future work by a) code
optimizations b) parallel execution c) an integration with DRL
à la AlphaZero to replace rollout simulations (costlies piece
of our algorithm) by learned state value estimations.

3) Execution: Experiments are repeated with 10 different
random seeds. Figures show the mean and 95% confidence
intervals. For readability, we report flow completion ratios
rather than completion rates.

B. Varying Network Resources & Flow Properties

We study the effectiveness of FutureCoord on the Abilene
topology. First, we vary the network load, i.e., scale the
rate at which each kind of flow arrives proportionally. All
other parameters remain unchanged. At higher load, capacities
become more and more contested. Effective coordination then
involves prioritizing flows that require less capacity. Fig.
3a shows that our work consistently outperforms competing
algorithms, in particular at higher loads where an efficient
capacity management is essential. Then, it completes up to
51% more flows than its most competitive approach, MaVEn-
S. What kind of flows FutureCoord completes is shown Fig.
3b as the fraction of completed services relative to those of
MaVEn-S. Indeed, FutureCoord prioritizes flows of modest
demands (service o(1)) once capacity is scarce. MaVEn-S
instead favors resource intensive flows (services o(2) & o(3)).

50 100 150 200
Network Load [%]

10

20

30

40

50

60

Co
m

pl
et

io
n

Ra
tio

 [%
] FutureCoord

MaVEn-S
NFVdeep
GRC-VNE

(a) Varying Network Load

50 100 150 200
Network Load [%]

10

0

10

20

Fr
ac

tio
n

Su
cc

. F
lo

ws
[

 M
aV

En
-S

 %
]

o(1)

o(2)
o(3)

o(4)

(b) Flow Priorities

Fig. 3: FutureCoord favors delay sensitive flows at high loads.

Second, we vary provisioned compute and link capacities in
Fig. 4a and 4b. Flows enter the network at default rates. In both
cases, FutureCoord makes better use of further capacity than
competing schemes. Its performance improves considerably
for larger link capacities which suggests that load balancing
routes is key to complete many flows.

50 100 150 200
Compute Capacity [%]

10

20

30

40

50

60

Co
m

pl
et

io
n

Ra
tio

 [%
] FutureCoord

MaVEn-S
NFVdeep
GRC-VNE

(a) Varying Compute Capacity

50 100 150 200
Link Capacity [%]

10

20

30

40

50

60

Co
m

pl
et

io
n

Ra
tio

 [%
] FutureCoord

MaVEn-S
NFVdeep
GRC-VNE

(b) Varying Link Capacity

Fig. 4: FutureCoord adjusts to varying resource capacities.

Third, we study how performance varies for different (mean)
flow data rates. In case flows request lower data rates, capacity
is less contested and max. delay bounds become the driving
constraint. Fig. 5 shows that our work adjust its coordination
policy from preserving capacities along shortest paths to
effective resource management under high contention.

50 100 150 200
(Mean) Data Rate [%]

10

20

30

40

50

60

Co
m

pl
et

io
n

Ra
tio

 [%
] FutureCoord

MaVEn-S
NFVdeep
GRC-VNE

Fig. 5: FutureCoord adjust to varying flow properties.

Finally, we vary the (mean) max. delay bound proportionally
for all kinds of flows. Scarce capacities along shortest paths
become ever more contested once delay bounds tighten; their
efficient usage is critical to complete flows. Vice versa, coor-
dinators may exploit their newly gained flexibility to prioritize
flows of otherwise tight max. delay bounds (service o(1)) under
relaxed conditions. Indeed, FutureCoord adjusts its admission
control policy in favor of service o(1) and often dismisses other
flows by choice (Fig. 6b) which benefits completion ratios
considerably (Fig. 6a).

C. Robustness to Perturbations

In practice, flow property distributions are typically un-
known and can only be approximately learned. They then
deviate from the ground truth which renders planning with
forecasts less precise. To study the extent to which estimation
errors are tolerable, we systematically introduce perturbations
to the traffic model. First, we perturb the data rate of forecast

50 100 150 200
(Mean) Max. Delay Bound [%]

10

20

30

40

50

60

Co
m

pl
et

io
n

Ra
tio

 [%
] FutureCoord

MaVEn-S
NFVdeep
GRC-VNE

(a) Varying Max. Delay Bounds

50 100 150 200
(Mean) Max. Delay Bound [%]

0

20

40

60

80

Fr
ac

tio
n

Re
je

ct
io

ns
 [%

]

o(1)

o(2)
o(3)

o(4)

(b) Admission Control Policy

Fig. 6: FutureCoord exploits relaxed max. delay bounds.

flows and vary their expected values in between 25% and
200% of what data rate is expected for future flows (100%).
What completion ratios FutureCoord obtains when forecasts
under- or overestimate expected flow data rates (Data Rate)
or if forecast flows also enter by another episode’s pattern
(Pattern) is shown in Fig 7. The performance is compared
to knowing the ground truth distributions’ parameters when
planning, as assumed before. Surprisingly, results may even
improve slightly (> 0%) in case of prediction errors, but di-
minish (< 0%) once forecasts overestimate flow data rates. For
reference, we also plot competing algorithms unaffected by
the perturbations in comparison to FutureCoord’s performance
given an accurate traffic model (0 %).

50 100 150 200
(Mean) Data Rate Perturbation [%]

40

20

0

20

40

60
Co

m
pl

et
io

n
Ra

tio
[

 A
ct

ua
l D

ist
r.

%
] Data Rate

Pattern
MaVEn-S

NFVdeep
GRC-VNE

Fig. 7: Flow Data Rate Perturbation

Likewise, we vary the expected max. delay bound and
arrival rates of forecast flows in Fig. 8a and Fig. 8b, respec-
tively. Again, FutureCoord consistently outperforms MaVEn-S
even in case of severely flawed traffic models and is mostly
unaffected by perturbations of its forecasts. This suggests
that some general properties may be inferred from forecasts
irrespective of possible errors: a) what components are offered
b) what resources they consume c) what services are requested
and d) what components they comprise. Also, it is reasonable
to assume that typical tendencies of some flows, for example,
specifying tighter max. delay bounds (service o(1)) than others
(service o(3)) can be predicted and are useful when planning
service coordination.

D. Scalability

Finally, we evaluate whether FutureCoord performs well on
larger real-world topologies from SNDlib [47]. Flows arrive
at the same rates as before. We select 12 nodes randomly to
serve as possible ingress and egress nodes. Where flows enter

50 75 100 125 150 175 200
(Mean) Max. Delay Bound Perturbation [%]

40

20

0

20

40
Co

m
pl

et
io

n
Ra

tio
[

 A
ct

ua
l D

ist
r.

%
]

Delay
Pattern
MaVEn-S

NFVdeep
GRC-VNE

(a) Delay Bound Perturbation

50 75 100 125 150 175 200
Network Load Perturbation [%]

40

20

0

20

40

Co
m

pl
et

io
n

Ra
tio

[
 A

ct
ua

l D
ist

r.
%

]

Load
Pattern
MaVEn-S

NFVdeep
GRC-VNE

(b) Network Load Perturbation

Fig. 8: Performance for estimation errors of forecasts.

and depart is again chosen based on dynamic traffic traces for
the Abilene network (12 nodes). Fig. 9 shows FutureCoord’s
margin of improvement over our most competitive baseline,
MaVEn-S, for a varying number of search iterations. On
smaller topologies (up to 22 nodes), FutureCoord quickly
breaks even with MaVEn-S. To match its performance on
larger networks, more search iterations are required. This
is likely due to the considered sparse binary feedback and
the variance we introduce by sampling forecasts. Estimates
become stable when averaged over many iterations (cmp. Sec.
IV-B3), but are visited less frequently if more candidates
exist. Pruning forecasts to fewer flows αflows helped on larger
topologies in our experiments. Still, FutureCoord improves
upon our most competitive baseline by a margin of at least
10% for three real-world topologies using few iterations.

0 250 500 750 1000 1250 1500 1750 2000
#Search Iterations

40

20

0

20

40

60

Co
m

pl
et

io
n

Ra
tio

 [
 M

aV
En

-S
 %

]

Abilene (12)
Nobel-Germany (17)
Geant (22)

Nobel-EU (28)
Cost-266 (37)
DFN (50)

Fig. 9: Margin of improvement over MaVEn-S on various
network topologies (#nodes in brackets).

VI. CONCLUSION

Our proposed model-based AI approach, FutureCoord, uses
forecast to maximize long-term flow completion rates. Taking
future demands into account, e.g., avoids admitting flows that
will occupy resource capacity better used for other flows. Ulti-
mately, our work significantly outperforms existing model-free
and model-based approaches in a trace-driven evaluation on
real-world network topologies. We believe that FutureCoord
is an important step towards using the full potential of model
abstractions in AI-based service coordination. In future work,
FutureCoord could be integrated with DRL à la AlphaZero to
get the best of learning and planning at the same time.

APPENDIX
MONTE CARLO TREE SEARCH

This section briefly outlines the selection, expansion, rollout
and backup phases of the MCTS algorithm that we use to
coordinate services. Broadly speaking, it explores different
candidate coordination decisions using the network model.
In doing so, it grows decision trees towards regions of the
search space that obtained high accumulated rewards (returns)
before or decision areas left unexplored. Each tree node
defines a network model state s ∈ S and the coordination
decision a ∈ A that led to it. Search iterations begin at
the root tree node (network model state when beginning to
plan) and traverse the tree (selection phase). The selection
among succeeding tree nodes favors candidates of high returns
according to the Upper Confidence Bounds for Trees [48]
formula:

argmax
(s′,a′)

Q(s′, a′) + 2C

√
2 lnN(s, a)

N(s′, a′)
(2)

where (s, a) and (s′, a′) denote the model states and actions
of the parent and successor tree node. Successor tree nodes
(s′, a′) are considered only if decision a′ meets all formulated
constraints (e.g. max. end-to-end delay bound, cmp. Sec. III).
Action values Q(s, a) = E

[
r + γV (s′) | s, a

]
formalize

what return is expected when action a is taken in state
s. This includes the immediate reward r for action a and
undiscounted (γ = 1) state value V (s′) of successor model
state s′. The number of visits to the parent and child node are
stored as N(s, a) and N(s′, a′). Hyperparameter C quantifies
whether the selection among child tree nodes either leans
towards exploration or exploitation and is set to 1.41. When
C is set to zero, the selection follows branches of highest
action values. The traversal terminates once it reaches a tree
node with, so far, unvisited children that define valid actions
(leaf node). Then, we select among the unvisited (and valid)
actions uniformly at random, attach a new child node (s, a)
to its predecessor and initialize visit counter N(s, a) to zero
(expansion phase). To obtain an initial estimate of the newly
added tree node’s action value Q(s, a), the model simula-
tion is executed until termination with randomly selected
actions (rollout phase). Finally, the simulated return estimate
is backpropagated bottom-up along the traversed search path
until the root node. Each tree node then increments its visit
count N(s, a) and updates Q(s, a) according to the moving
average of its former estimate and the upwards propagated
simulation return (backup phase). Once the computational
budged dedicated towards planning is exhausted, we select the
root node’s child and its action that was visited most often.

ACKNOWLEDGMENTS

We thank Nils Rudminat for his valuable contributions to
our first prototype. This work has received funding from the
German Research Foundation (DFG) within the Collaborative
Research Center “On-The-Fly Computing” (SFB 901).

REFERENCES

[1] J. Halpern and C. Pignataro. Service function chaining (sfc)
architecture. Accessed on 05.09.2021. [Online]. Available: https:
//www.rfc-editor.org/info/rfc7665

[2] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service mesh:
Challenges, state of the art, and future research opportunities,” in 2019
IEEE International Conference on Service-Oriented System Engineering
(SOSE). IEEE, 2019, pp. 122–1225.

[3] ITU. Architectural framework for machine learning in future networks
including imt-2020 (y.3172). Accessed on 14.09.2021. [Online].
Available: https://www.itu.int/rec/T-REC-Y.3172/en

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse et al., “Dota 2 with large
scale deep reinforcement learning,” arXiv:1912.06680, 2019.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” arXiv preprint arXiv:1312.5602, 2013.

[7] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep reinforcement learning that matters,” in AAAI Conference on
Artificial Intelligence, vol. 32, no. 1, 2018.

[8] S. Van Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“Profile-based resource allocation for virtualized network functions,”
IEEE Transactions on Network and Service Management, vol. 16, no. 4,
pp. 1374–1388, 2019.

[9] M. Peuster, S. Schneider, and H. Karl, “The softwarised network data
zoo,” in 2019 15th International Conference on Network and Service
Management (CNSM). IEEE, 2019, pp. 1–5.

[10] A. Bayati, V. Asghari, K. Nguyen, and M. Cheriet, “Gaussian process re-
gression based traffic modeling and prediction in high-speed networks,”
in 2016 IEEE Global Communications Conference (GLOBECOM).
IEEE, 2016, pp. 1–7.

[11] T. Subramanya and R. Riggio, “Machine learning-driven scaling and
placement of virtual network functions at the network edges,” in 2019
IEEE Conference on Network Softwarization (NetSoft). IEEE, 2019,
pp. 414–422.

[12] C. Hardegen, B. Pfülb, S. Rieger, A. Gepperth, and S. Reißmann, “Flow-
based throughput prediction using deep learning and real-world network
traffic,” in 2019 15th International Conference on Network and Service
Management (CNSM). IEEE, 2019, pp. 1–9.

[13] K. Qu, W. Zhuang, X. Shen, X. Li, and J. Rao, “Dynamic resource
scaling for vnf over nonstationary traffic: A learning approach,” IEEE
Transactions on Cognitive Communications and Networking, vol. 7,
no. 2, pp. 648–662, 2020.

[14] J. Kim and G. Hwang, “Adaptive bandwidth allocation based on sample
path prediction with gaussian process regression,” IEEE Transactions on
Wireless Communications, vol. 18, no. 10, pp. 4983–4996, 2019.

[15] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru,
S. Gowal, and T. Hester, “Challenges of real-world reinforcement
learning: definitions, benchmarks and analysis,” Machine Learning, pp.
1–50, 2021.

[16] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[17] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-Carlo Tree
Search: A new framework for game ai.” AIIDE, vol. 8, pp. 216–217,
2008.

[18] O. Soualah, M. Mechtri, C. Ghribi, and D. Zeghlache, “An efficient
algorithm for virtual network function placement and chaining,” in
2017 14th IEEE Annual Consumer Communications & Networking
Conference (CCNC). IEEE, 2017, pp. 647–652.

[19] S. Haeri and L. Trajković, “Virtual network embedding via monte carlo
tree search,” IEEE Trans. on Cybernetics, vol. 48, no. 2, pp. 510–521,
2017.

[20] G. Zheng, C. Wang, W. Shao, Y. Yuan, Z. Tian, S. Peng, A. K.
Bashir, and S. Mumtaz, “A single-player monte carlo tree search method
combined with node importance for virtual network embedding,” Annals
of Telecommunications, pp. 1–16, 2020.

[21] S. Werner, “Futurecoord GitHub repository,” https://github.com/
CN-UPB/FutureCoord (August 22, 2021), 2021.

[22] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Communications Surveys
& Tutorials, vol. 21, no. 2, pp. 1409–1434, 2018.

[23] R. Bruschi, A. Carrega, and F. Davoli, “A game for energy-aware
allocation of virtualized network functions,” Journal of Electrical and
Computer Engineering, vol. 2016, 2016.

[24] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “Near optimal
placement of virtual network functions,” in 2015 IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2015, pp. 1346–1354.

[25] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–
29, 2008.

[26] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in IEEE IN-
FOCOM 2014-IEEE Conference on Computer Communications. IEEE,
2014, pp. 1–9.

[27] Q. Sun, P. Lu, W. Lu, and Z. Zhu, “Forecast-assisted nfv service chain
deployment based on affiliation-aware vnf placement,” in 2016 IEEE
Global Communications Conf. (GLOBECOM). IEEE, 2016, pp. 1–6.

[28] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive vnf scaling and flow
routing with proactive demand prediction,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications. IEEE, 2018, pp. 486–
494.

[29] X. Zhang, C. Wu, Z. Li, and F. C. Lau, “Proactive vnf provisioning
with multi-timescale cloud resources: Fusing online learning and online
optimization,” in IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 2017, pp. 1–9.

[30] H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance
scaling based on traffic forecasting and vnf placement in operator
data centers,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 3, pp. 530–543, 2018.

[31] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[32] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph convo-
lutional networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1040–1057, 2020.

[33] W. Mao, L. Wang, J. Zhao, and Y. Xu, “Online fault-tolerant vnf chain
placement: A deep reinforcement learning approach,” in 2020 IFIP
Networking Conference (Networking). IEEE, 2020, pp. 163–171.

[34] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, H. Karl,
R. Khalili, and A. Hecker, “Self-driving network and service coordi-
nation using deep reinforcement learning,” in 2020 16th International
Conference on Network and Service Management (CNSM). IEEE, 2020,
pp. 1–9.

[35] Y. Xiao, Q. Zhang, F. Liu, J. Wang, M. Zhao, Z. Zhang, and J. Zhang,
“Nfvdeep: Adaptive online service function chain deployment with deep
reinforcement learning,” in Proceedings of the International Symposium
on Quality of Service, 2019, pp. 1–10.

[36] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 2, pp. 263–278, 2019.

[37] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, 2019.

[38] P. T. A. Quang, Y. Hadjadj-Aoul, and A. Outtagarts, “A deep reinforce-
ment learning approach for vnf forwarding graph embedding,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1318–1331, 2019.

[39] Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu, and D. Yang,
“Experience-driven networking: A deep reinforcement learning based
approach,” in IEEE INFOCOM 2018-IEEE Conference on Computer
Communications. IEEE, 2018, pp. 1871–1879.

[40] L. Gu, D. Zeng, W. Li, S. Guo, A. Y. Zomaya, and H. Jin, “Intelligent vnf
orchestration and flow scheduling via model-assisted deep reinforcement
learning,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 2, pp. 279–291, 2019.

[41] O. Soualah, I. Fajjari, N. Aitsaadi, and A. Mellouk, “A batch approach
for a survivable virtual network embedding based on monte-carlo tree

https://www.rfc-editor.org/info/rfc7665
https://www.rfc-editor.org/info/rfc7665
https://www.itu.int/rec/T-REC-Y.3172/en
https://github.com/CN-UPB/FutureCoord
https://github.com/CN-UPB/FutureCoord

search,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2015, pp. 36–43.

[42] S. Dräxler, M. Peuster, M. Illian, and H. Karl, “Generating resource and
performance models for service function chains: the video streaming
case,” in 2018 4th IEEE Conference on Network Softwarization and
Workshops (NetSoft). IEEE, 2018, pp. 318–322.

[43] C. N. C. Foundation. Production-grade container orchestration. Accessed
on 05.09.2021. [Online]. Available: https://kubernetes.io/

[44] S. Schneider, N. P. Satheeschandran, M. Peuster, and H. Karl, “Machine
learning for dynamic resource allocation in network function virtualiza-
tion,” in 2020 6th IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2020, pp. 122–130.

[45] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh,
“Variance reduction for reinforcement learning in input-driven environ-
ments,” arXiv preprint arXiv:1807.02264, 2018.

[46] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya,
“Cloudsimsdn: Modeling and simulation of software-defined cloud data
centers,” in 2015 15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. IEEE, 2015, pp. 475–484.

[47] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib
1.0–Survivable Network Design Library,” in Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa,
Belgium, April 2007, http://sndlib.zib.de, extended version accepted in
Networks, 2009. [Online]. Available: http://www.zib.de/orlowski/Paper/
OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz

[48] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in
European Conf. on machine learning. Springer, 2006, pp. 282–293.

https://kubernetes.io/
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz
http://www.zib.de/orlowski/Paper/OrlowskiPioroTomaszewskiWessaely2007-SNDlib-INOC.pdf.gz

	Introduction
	Related Work
	Problem Statement
	Problem Parameters
	Decision Variables & Network State
	Decision Variables
	Placement, Assignment & Routing Constraints

	Objective Function

	FutureCoord: Model-Based AI
	Input-Driven Markov Decision Process
	Action Space A
	Reward R

	Future Flow Sampling-Based MCTS
	Flow Forecasts
	Sampling-Based Planning
	Algorithm

	Trace-Driven Evaluation
	Evaluation Setup
	Simulation Scenarios
	Compared Algorithms & Hyperparameters
	Execution

	Varying Network Resources & Flow Properties
	Robustness to Perturbations
	Scalability

	Conclusion
	Appendix: Monte Carlo Tree Search
	References

