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Abstract—Recently, there has been a rising interest in sound
recognition via acoustic sensor networks (ASNs) to support
applications such as ambient assisted living or environmental
habitat monitoring. With state-of-the-art sound recognition being
dominated by deep-learning-based approaches, there is a high
demand for labeled training data. Despite the availability of large-
scale data sets such as Google’s AudioSet, acquiring training
data matching a certain application environment is still often
a problem. In this paper we are concerned with human activity
monitoring in a domestic environment using an ASN consisting of
multiple nodes each providing multichannel signals. We propose
a self-training based domain adaptation approach, which only
requires unlabeled data from the target environment. Here,
a sound recognition system trained on AudioSet, the teacher,
generates pseudo labels for data from the target environment on
which a student network is trained. The student can furthermore
glean information about the spatial arrangement of sensors and
sound sources to further improve classification performance.
It is shown that the student significantly improves recognition
performance over the pre-trained teacher without relying on
labeled data from the environment the system is deployed in.

Index Terms—acoustic sensor network, sound recognition,
scene classification, domain adaptation, self-training

I. INTRODUCTION

Home automation coupled with intelligent personal assis-
tants such as Amazon Alexa and Google Home becomes more
and more popular. Even distributing several smart speakers in
a home to enable convenient voice interaction with personal
assistants from anywhere is not uncommon anymore. However,
such acoustic sensor networks (ASNs), i.e., distributed and
networked devices equipped with microphones, may not only
be useful for voice interaction. Audio data can also provide
valuable context information to analyze the current situation
within an environment which numerous applications can ben-
efit from such as ambient assisted living and surveillance
systems to name a few.

Driven by the annual detection and classification of acoustic
scenes and events (DCASE) challenges, the state-of-the-art
in environmental sound recognition has progressed rapidly in
recent years and is attracting interest not only from academia.
Under the umbrella of sound recognition the tasks of sound
event detection (SED), audio tagging and acoustic scene
classification (ASC) can be further distinguished [1]. SED
recognizes individual sounds together with their location in
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time, whereas audio tagging only indicates the presence or
absence of individual sounds within a longer audio clip. ASC
does not indicate individual sounds at all but evaluates the
composition of sounds to classify the current situation, e.g.,
whether the recording originates from a train station or a park.

Despite the availability of large-scale data sets such as
Google’s AudioSet [2], the acquisition of labeled training data
for a novel application often remains a problem, as available
data sets rarely match both the event class inventory and
the environmental and recording conditions. Transfer learn-
ing [3, 4] is a popular approach to still benefit from existing
large-scale data sets by first training a model on such data set
and then transferring it (or a part of it) to a novel application by
fine tuning on small amounts of matched training data from the
target domain. Note, however, that such labeled target domain
data may also not originate from the very same environment
where a system is ultimately deployed, given that it is not
feasible to label data, e.g., for each new home where an ASN
is to be installed. It is much more realistic to assume that only
unlabeled data is available from the target domain, which asks
for unsupervised domain adaptation techniques to improve
classification performance. A simple but effective approach for
such semi-supervised learning is self-training [5, 6], where a
teacher model, which is trained using some available labeled
data, generates pseudo labels for the unlabeled data, which a
student model can be trained with.

In this paper we are concerned with monitoring a single-
person’s activities in an apartment, which can be understood as
a kind of ASC, by using an ASN [7, 8]. We hypothesize that
particularly ASN-based sound recognition may greatly benefit
from adaptation to the environment it is deployed in, as it
can benefit from the spatial arrangement of sensors and sound
sources to further improve recognition performance. Starting
from a teacher model trained on AudioSet, whose predicted
event scores are mapped to activity classes using a random
forest (RF) classifier, we present a self-training based domain
adaptation scheme allowing to train a student model in the
target environment without the need of labeled training data
from there. The proposed approach is shown to significantly
improve classification performance over the teacher and is
even coming close to the performance of a model trained with
ground truth labels.

The rest of the paper is structured as follows. Sec. II
describes the used neural network model. The proposed self-
training approach is presented in Sec. III. After discussing



experiments in Sec. IV, conclusions are drawn in Sec. V.

II. FORWARD-BACKWARD CONVOLUTIONAL RECURRENT
NEURAL NETWORK

Our previously proposed forward-backward convolutional
recurrent neural network (FBCRNN) [9] is the basis for both
the teacher and the student model. It was primarily developed
for weakly labeled SED, i.e., learning to temporally locate
and classify sounds in a clip of, say, 10 s length, although at
training time only clip-level labels (also referred to as weak
labels or tags) are available. However, the FBCRNN was also
shown to improve tagging performance (prediction of weak
labels) compared to a normal convolutional recurrent neural
network (CRNN) [9].

The FBCRNN is illustrated in Fig. 1. It employs a shared
convolutional neural network (CNN) front-end followed by
two separate (recurrent neural network (RNN) + fully con-
nected network (FCN)) classifiers with the FCNs using a Sig-
moid output activation. The classifiers provide tag predictions
at each frame of a clip with one of the RNNs processing
an input clip in forward direction and the other processing it
in backward direction. Note, that in contrast to bidirectional
RNNs, the two RNNs do not exchange hidden representations
here. Therefore, the forward classifier makes predictions yfwd

n

only based on the current frame n and prior frames whereas
the backward classifier makes predictions ybwd

n only based on
the current and subsequent frames.

During training tag predictions are obtained at each frame n
as the point-wise maximum of the forward and backward
predictions yn = max(yfwd

n ,ybwd
n ). A frame-wise binary cross

entropy (BCE) loss

Ln = −
∑
k

zk log(yn,k) + (1− zk) log(1− yn,k)

is employed with

zk =

{
1, if k-th event is active in clip,
0, else.

The idea is, that at each frame within a clip at least one of the
two classifiers should tag an event that is labeled active. If the
event is located prior to the current frame, it can be tagged by
the forward classifier and if the event is located subsequent to
the current frame it can be tagged by the backward classifier.
This training scheme encourages the classifiers to output tag
predictions as soon as possible, eventually also making the
models work on segments much shorter than the clips seen
during training.

At test-time clip predictions are obtained as
y = mean(yfwd

N ,ybwd
1 ), i.e. the mean of the predictions

after the classifiers have processed the whole clip.

III. SELF-TRAINING

In the considered scenario, we aim to provide a system
which monitors a single person’s activities in an apartment,
e.g., to support ambient assisted living, by equipping the
apartment with an ASN.
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Fig. 1: FBCRNN

The best situation would be if we had perfectly matched
labeled training data, i.e. labeled data from the very same
apartment in which the system is to be deployed with the same
person living there. This would allow the system to perfectly fit
to the acoustic environment as well as to the activity patterns
specific to the monitored person. Further, in addition to the
spectrotemporal patterns of sounds, a model could be trained
to also exploit spatial patterns, which are apartment-specific,
to provide more accurate classifications.

However, for obvious reasons it is not feasible to collect
and label data for each new environment in which the system
is to be deployed. Therefore, a model is trained on some
labeled development data set which comprises a variety of
environments such that it eventually also generalizes to a new
environment.

But if we assume that we have at least some unlabeled
data from the target environment, we can still benefit from
the advantages of training a model in the target environment
as follows: We here propose to perform domain adaptation
via self-training. Rather than simply deploying the pre-trained
model in the target environment, it generates pseudo labels for
recordings from the target environment which are then used
to train a student model.

A. Teacher
Given that there is no publicly available large-scale audio

data set for human activity classification capturing various
environments, we here use Google’s AudioSet to train a
FBCRNN as teacher model that tags sound events in 10 s
single-channel audio clips. AudioSet is the largest publicly
available audio data set consisting of ∼2Mio audio clips and
comprises 527 different sound event classes. The event scores
are then mapped to the activity classes of the target task
using a RF classifier [10]. Note that mapping the event classes
of AudioSet to the considered acoustic scene classes of the
target application also requires some training data, but far less
than learning the scene classifier from scratch. In particular,



it does not require the same diversity of environments in the
training data to generalize, given that the event tagging already
generalizes to new environments.

Although we ultimately aim to employ an activity classifier
capable to also classify short segments, the teacher is not
required to provide pseudo labels with a short latency. Instead,
it is more important to make them as accurate as possible.
This is supported by the following measures. Firstly, the
teacher provides clip-level labels, i.e., activity class labels for
10 s clips, which are easier to classify than shorter segments.
Secondly, the event scores from the teacher tagging system are
averaged over all channels of the ASN before being classified
by the RF activity classifier. Thirdly, median filtering with a
filter size of three clips is applied, i.e., if the previous and
the clip following in time have the same pseudo label, but
the current clip contradicts, the current clip’s pseudo label is
adjusted.
B. Student

Given the clip-level pseudo labels provided by the teacher,
we are now able to train a student in the target environment.
In addition to clip-level classification, we like the student to
also classify shorter segments ≤ 1 s at test-time, to enable
faster system responses at an activity change. A naive approach
to achieve this would be to simply include shorter segments
in the student training, where all segments in a clip adopt
the clip-level label. However, for SED it is well known that
such approach, referred to as strong label assumption training
(SLAT) [3], impairs performance given that the sounds to be
detected are not active in all the segments of a clip. Similarly,
it likely degrades performance in our case when not all the
segments contain sounds revealing the human activity to be
classified. For example, if the activity is “Working”, it may
well be that the person does not produce a sound for a short
period of time. Hence, we here adopt weak label learning by
using the FBCRNN also as the student model. To match the
weak label learning framework, the single-label classification
task is reformulated as a detection task. Note that the class
“Absence” cannot be detected in a clip but results from no
presence being detected. Therefore, the model is trained to
detect presence instead. At test-time, however, an absence
score is given as (1−presence score) and classification is
performed by deciding upon the activity class with the highest
score.

By adding spatial information to the input features of the
FBCRNN, the student may benefit from exploiting spatial
patterns of sounds in addition to its spectrotemporal patterns.
Therefore, the following input feature sets are investigated.

Single-channel: Single microphone’s log-mel band energy
(LMBE) [11] feature maps are classified individually. At test-
time, output scores are averaged over all D·M microphones
in the ASN with M denoting the number of microphones per
node and D the number of nodes.

Single-node: Signals from a single node are processed
jointly. However, instead of processing all the M microphones
of a node jointly, we here process pairs of adjacent micro-
phones (binaural processing) with (M − 1) pairs per node.

For a given pair the two LMBE feature maps and the sine
and cosine of their inter-channel phase differences (IPDs) [12]
are extracted. We only compute the IPDs at those bins of
the short-time Fourier transform (STFT) where the mel-filters
have their maxima to make the IPD feature maps match the
dimensionality of the LMBE feature maps. Note that the
spatial patterns in the IPD features depend on the location
and orientation of a node1. Therefore, to allow the model to
recognize from which node the features originate, a one-hot
encoding of the node index is concatenated along the channel
dimension of the feature maps resulting in 4+D input channels
(2 LMBE, 2 IPD and the D one-hot channels). At test-time,
output scores are averaged over all D · (M − 1) microphone
pairs from all nodes in the ASN.

Multi-node: binaural LMBE+IPD features from the m-th
microphone pair from all nodes are processed jointly resulting
in D·4 input channels. At test-time, output scores are averaged
over the (M − 1) microphone pairs.

IV. EXPERIMENTS

In all experiments we use 16 kHz input signals, an STFT
frame length and hop-size of 50ms and 12.5ms, respectively,
and 64 mel-filters.

The teacher event tagging model is trained on the balanced
+ unbalanced subsets of AudioSet. Event classes are balanced
by repeating clips with rare sound events such that in one
epoch there are at least 10 k samples of each event class. The
model is trained for 500 k update steps using a batch size of
32 clips and Adam optimization [13] with a learning rate of
5 · 10−4. During training we use various data augmentation
techniques namely random scaling, rolling, Mixup, time- and
frequency warping and time- and frequency masking [9]. The
final model achieves 40.7% mean average precision (mAP).

The proposed self-training for human activity classification
is evaluated using the SINS database [8], which contains real-
life ASN recordings taken over a period of one week. In the
recorded period, a single person lived in the apartment and
annotated his daily activities. Here, we only consider the nodes
and activities in the combined living room and kitchen area,
i.e., if the person is in some other room the activity to be
classified is ”Absence”. We further merge the activities ”Phone
calling” and ”Visit”, as each has only few occurrences, into
a single class ”Social activity” [14] resulting in a total of 9
activity classes.

For evaluation we follow a 6-fold cross validation proce-
dure, where each fold is once used for evaluation when a
model is trained on the other 5 folds. Here, we perform a
day-wise split of the data where the day boundaries are placed
in the middle of the sleeping sessions. The day of arrival
and day of departure, however, are not considered as separate
folds but are combined with the day after and the day before,
respectively, yielding 6 folds in total.

As discussed previously, we require some training data for a
RF to map from event scores to activity classes. This could be,

1We here expect a linear microphone array, such that spatial patterns do
not differ a lot between different pairs of the same node.



TABLE I: Micro-averaged 6-fold cross validation F1-score
in % (higher is better) when classifying 10 s clips.

Student Oracle
Activity Teacher single single multi single single multi

channel node node channel node node

Absence 95.3 96.5 96.5 96.7 96.3 96.3 97.0
Cooking 84.0 92.8 92.4 95.7 97.8 97.7 96.5

Dishwashing 67.9 80.6 80.8 87.7 92.7 92.7 90.8
Eating 82.9 90.4 91.1 92.7 93.4 93.9 92.1
Other 41.9 46.8 46.5 47.1 58.6 59.0 61.5

Social activity 90.1 94.8 95.0 94.5 97.0 97.1 94.2
Vacuum cleaning 98.0 99.5 99.5 99.5 99.3 99.3 99.0

Watching TV 99.1 99.7 99.8 99.8 99.9 99.9 99.9
Working 83.6 89.0 88.9 89.9 89.0 89.0 91.3

Mean 82.6 87.8 87.8 89.3 91.6 91.6 91.4

e.g., labeled data from some other apartment. Unfortunately,
we are not aware of another data set featuring the same activity
classes as SINS that could be used for that purpose. Hence, we
need to split off some data for RF training which is supposed
to represent data from some other environment as good as
possible. Therefore, we split the training data both sensor
node-wise and time-wise. While nodes {1,7} are exclusively
used for RF training, nodes {2,3,4,6,8} represent the target
environment used for student training and evaluation. To not
being left with too little student training data when splitting
the 5 train folds into RF train folds and student train folds, we
follow a nested 5-fold cross validation procedure for pseudo
labeling. Here, each of the 5 train folds is pseudo labeled using
a RF trained on the 4 other folds. For RF training we use
scikit-learn 0.22.12 with balanced class weights, a minimum
number of 10 samples in a leaf of a decision tree and default
values for other parameters.

Student training is performed for 100 k and 20 k update
steps with single-node and multi-node features, respectively,
using a batch size of 32 clips and Adam optimization with
a learning rate of 3 · 10−4. Note that the different number of
update steps correspond to the same number of epochs as with
single-node features the data set is effectively D = 5 times
larger than with multi-node features. Activity classes are
balanced in a train set by repeating clips from rare classes such
that for each class there are at least 1/10 as many examples
as for the most prominent class “Absence”. The same data
augmentation techniques as in the teacher training are used
except for frequency warping as with IPDs warping along fre-
quency does not seem reasonable. During training checkpoints
are written every 5 k and 1 k update steps, respectively. To not
require a separate validation set for choosing the best check-
point, we employ stochastic weight averaging (SWA) [15] over
the last 10 checkpoints. SWA has been shown to improve
generalization and has already been successfully used with
CRNNs for audio tagging with error-prone labels [16].

For evaluation we report F1-scores [17] using micro-
averaging over the folds, i.e., true/false positives and true/false
negatives are summed over the folds before computing F1-

2https://scikit-learn.org/0.22/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

TABLE II: Micro-averaged 6-fold cross validation F1-score
in % (higher is better) when classifying 1 s segments.

Student Oracle
Activity Teacher single single multi single single multi

channel node node channel node node

Absence 91.9 86.8 86.7 90.0 88.1 88.3 92.1
Cooking 80.4 89.4 89.7 94.2 95.4 95.8 95.9

Dishwashing 50.5 58.5 58.4 75.2 69.0 68.9 82.9
Eating 57.8 57.4 58.1 75.6 61.3 62.3 81.1
Other 27.9 25.2 25.3 33.9 28.7 29.4 40.4

Social activity 80.2 82.3 81.1 85.1 85.3 84.9 84.9
Vacuum cleaning 97.2 98.4 98.6 98.8 98.7 98.9 98.6

Watching TV 96.6 97.6 97.4 98.8 98.7 98.8 99.4
Working 68.4 53.6 53.6 66.1 60.6 61.2 76.0

Mean 72.3 72.1 72.1 79.8 76.2 76.5 83.5

scores. Table I shows results for 10 s clip classification (with-
out median filtering as used for pseudo labeling). ”Teacher”
presents the baseline, where no student training is performed
at all and the teacher model is directly applied to the test data.
Here, all of the 5 train folds are used to learn the RF mapping
from event scores to activity classes. ”Student” presents the
performance achieved by our proposed self-training approach
with the different feature sets. ”Oracle” uses ground truth
labels instead of the pseudo labels provided by the teacher
and, hence, presents the topline. It can be seen that training
a student model using single-channel inputs already signif-
icantly improves classification performance over the teacher
model by 5.2%. While single-node spatial features do not
further improve performance over single-channel features, a
joint processing of signals from multiple nodes does improve
performance by another 1.5% yielding an overall gain of 6.7%
compared to the teacher performance. Surprisingly, for oracle
training the multi-node processing does not bring a gain over
the single-channel processing here. It is also worth noting
that the multi-node student falls only 2.3% behind the oracle
models. We hypothesize that performance could be further
improved by using the multi-node student to again pseudo
label training data for another student. This, however, is not
further investigated here.

Next, Table II presents the models’ performances when
being applied to segments with a length of only 1 s, which
is much shorter than the 10 s clips seen during training. Note
that RFs for mapping teacher event scores to activity classes
are retrained on 1 s segments here. While single-channel and
single-node students are not able to outperform the teacher,
the multi-node student allows to outperform the teacher signifi-
cantly by 7.5%. Also oracle performance greatly benefits from
multi-node processing now which outperforms single-channel
and single-node processing by ≥ 7%. When comparing the
1 s segment classification with the 10 s clip classification, it
can be stated that there is a disproportionate performance
drop for activities that may contain a lot of silence such as
“Dishwashing”, “Eating” and “Working”. That silent segments
may be the cause for many of the misclassifications is further
indicated by the confusion matrix of the multi-node student,
which is shown in Table III, revealing that these activities are
frequently confused with absence.

https://scikit-learn.org/0.22/modules/generated/sklearn.ensemble. RandomForestClassifier.html
https://scikit-learn.org/0.22/modules/generated/sklearn.ensemble. RandomForestClassifier.html


TABLE III: Normalized confusion matrix for 1 s segment
classification stating the distribution over predicted classes
in % (columns) for given ground truth classes (rows). Values
> 10% are shown bold.

Absence

Cooking

Dishwashing
Eating

Other

Social activity

Vacuum
cleaning

W
atching TV

W
orking

Absence 99.3 0.2 0.1 0.4
Cooking 0.8 92.0 5.0 1.0 1.1 0.1

Dishwashing 12.6 2.7 77.9 2.8 3.5 0.1 0.1 0.3
Eating 26.7 0.2 3.2 68.2 1.6 0.1
Other 55.1 2.1 3.1 0.7 32.1 1.7 0.1 5.1

Social activity 12.6 0.3 0.7 3.2 5.0 76.3 0.7 1.2
Vacuum cleaning 0.3 0.2 0.1 0.2 0.8 98.4

Watching TV 1.8 0.1 0.1 97.8 0.2
Working 46.5 0.2 0.1 0.1 2.8 50.3

V. CONCLUSIONS

In this paper we presented a self-training based domain
adaptation approach for human activity monitoring with an
ASN. The proposed approach trains a student model on
unlabeled data from the target environment, i.e., the apartment
where the ASN is installed, and allows to significantly improve
classification performance over the pre-trained teacher. The
achieved performance comes even close to the performance
achievable with ground truth labels from the target environ-
ment. Credit for the success of the approach can be attributed
to the use of an ASN instead of a single sensor node. First, the
teacher predictions can be accumulated over time and sensors
to get refined pseudo labels. Second, the student can process
signals from multiple sensor nodes jointly allowing it to glean
information about the spatial arrangement of sensors and
sound sources to further improve classification performance.
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