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Abstract—To build successful software products, developers
continuously have to discover what features the users really need.
This discovery can be achieved with continuous experimentation,
testing different software variants with distinct user groups, and
deploying the superior variant for all users. However, existing
approaches do not focus on explicit modeling of variants and
experiments, which offers advantages such as traceability of
decisions and combinability of experiments. Therefore, our vision
is the provision of model-driven continuous experimentation,
which provides the developer with a framework for structuring
the experimentation process. For that, we introduce the overall
concept, apply it to the experimentation on component-based
software architectures and point out future research questions. In
particular, we show the applicability by combining feature models
for modeling the software variants, users, and experiments (i.e.,
model-driven) with MAPE-K for the adaptation (i.e., continuous
experimentation) and implementing the concept based on the
component-based Angular framework.

Index Terms—continuous experimentation, model-driven,
component-based software architectures, self-adaptation

I. INTRODUCTION

The development of new and improvement of existing
software products is a cost- and resource-intensive task for
a company [1]. In order to support that task and build product
features that fulfill the user’s needs, the developer has to con-
tinuously validate those needs and align the software product
to it (see [2], [3]). This validation, in turn, can be performed
by conducting controlled experiments where different software
variants are displayed to distinct user groups, and the one
with better quality metrics (e.g., registration rate) is deployed
to all users after the experiment. This experimentation is a
continuous process that constantly improves the product for
the customer [4]. The performance of different variants can be
measured in different ways. Here, split-testing (or A/B testing
with only two variants) allows the analysis and comparison of
a single variable over time, while multivariate testing allows
the comparison of multiple variables simultaneously.

However, there is a lack of modeling languages ”where
engineers and scientists can formulate their problem with
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flexibility that goes beyond A/B testing” [5]. This lack of
formal methods is also the result of a recent systematic
literature review [6]. Using formal methods and especially
modeling languages provides the advantage of a unification of
the whole experimentation process [7]. Based on this unifica-
tion, many new opportunities like the combination of multiple
split-test to multivariate tests, the generation of code stubs
for different software variants, or the tracing and reasoning
of decision-making are possible. Moreover, these models can
be linked to software architectures to support an efficient
and effective continuous experimentation process. Here, major
challenges to support the efficiency are the combination of
different experiments and the generation of the components,
while major challenges of the effectiveness are modeling the
right granularity of experiments and evaluating against the
appropriate criteria.

To support the formalization process, this paper presents
our vision of model-driven continuous experimentation. For
this, Sect. 2 shows related approaches that intersect with our
vision. Sect. 3 presents an overview of our vision and applies
it to the model-driven continuous experimentation of software
architectures. Sect. 4 discusses the opportunities and risks of
our vision together with providing future research questions.
Finally, Sect. 5 summarizes our vision and the future work.

II. RELATED WORK

The related work can be divided into Conceptual Models for
Experimentation, Adaptive Systems for Variant Management,
and Modeling Languages for Experimentation.

The Conceptual Models for Experimentation provide high-
level abstractions of how the experimentation process can be
integrated into the product development. Hypothesis Exper-
iment Data-Driven Development (HYPEX) [2] develops an
iterative approach to evaluate new features by analyzing the
gap between the expected and actual behavior. Those features
are chosen from a continuously updated product backlog.
Rapid Iterative value creation Gained through High-frequency
Testing (RIGHT) [3] is similar to HYPEX but has a stronger
focus on the involved stakeholders during the process and the
deployment of the software product. Qualitative/quantitative
Customer-driven Development (QCD) [8], in contrast to HY-
PEX and RIGHT, combines qualitative customer feedback



with quantitative customer observations to gain information
that is not quantifiable. However, none of those approaches
makes use of models to support the experimentation process.

The Adaptive Systems for Variant Management provide an
adaptation logic for a software product based on a measured
context. Data Acquisition and Control Service (DCAS) [9]
applies the concept of architecture-based self-adaptation to the
case of managing highly populated device networks. In [10],
we combine the existing Interactive Flow Modeling Language
with new languages for the context modeling and adaptation
logic to provide an adaption of user interfaces. Automated
Online Experiment-driven Adaptation (AOEDA) [11] predicts
the outcome of a software product based on the conduction of
online experiments using an adaptation logic. However, none
of those approaches focuses on the continuous experimentation
process in combination with variants of the software product.

The Languages for Experimentation provide different mod-
eling languages to support the general experimentation pro-
cess. Camara and Kobsa [12] present an approach for creating
different variants of the software product based on aspect-
oriented software development and software product lines. In
[13], we provide a language to model a linkage of hypotheses
and experiments together with a process to validate those hy-
potheses using the experiments efficiently. Auer and Felderer
[14] present a taxonomy of experiment characteristics together
with a concept of a platform-independent online controlled
experimentation. However, none of those approaches provides
a modeling language that is fully aligned with the variants of
the software product.

III. VISION ON MODEL-DRIVEN EXPERIMENTATION

This section shows our overall vision of model-driven
continuous experimentation and its application to the solution
concept of feature models and the Angular framework.

A. Overall Vision Idea based on Adaptive Systems

Our overall vision is to increase the efficiency and effective-
ness of continuous experimentation based on a model-driven
approach. For that, we need to focus on the development of
the models (i.e., Model Development), the linkage to the actual
code (i.e., Code Linkage), and the continuous experimentation
process (i.e., Experimentation Process).

The Model Development is needed to provide an adequate
formalization of the involved environment based on modeling
languages (ML). For that, we focus on the modeling of
the different variants of the software product (i.e., Variant
Model), the experiments to conduct (i.e., Experiment Model),
and the involved users (i.e., User Model). Here, the Variant
Model (based on VariantML) needs the ability to model the
software product itself together with explicit variants and their
relationships to each other. Moreover, there need to be defined
measurements in the form of metrics to plan adjustments
according to the Experiment Model. The Experiment Model
needs the ability to model different experiments with a time
range, a priority, and a link to the measurements for testing.
For this testing, different variants need to be selected from the

Variant Model and user groups from the User Model. The User
Model needs the ability to model the unique identification of
a user together with his characteristics.

The Code Linkage is needed to provide a bridge between
the model and the actual source code of the software product.
Here, the linkage can be divided into the usage of models as
secondary (i.e., model-based) or primary (i.e., model-driven)
artifacts. Based on that, the term model-based continuous
experimentation describes approaches that use models, for
example, as documentation for the software developers and
their evolution as traceability mechanisms. In contrast, model-
driven continuous experimentation describes approaches that
provide a direct relationship between models and source code,
for example, through code generation. In this paper, we focus
on the model-driven connection through code generation. An
overview of the code generation, based on model-driven UI
adaptation [10], can be seen in Fig. 1. It consists of the three
stages of Modeling, Transformation, and Execution based on
the Product Variant, the Experiment, and the User. In the
Modeling, the developed modeling languages (i.e., VariantML,
ExperimentML, UserML) are used to model the current vari-
ants of the product (i.e., Variant Model), the experiments to
conduct (i.e., Experiment Model), and the potential users (i.e.,
User Model). Here, the Experiment Model needs references to
the different variants in the Variant Model and characteristics
of users in the User Model. Based on that, the Transformation
uses generators (i.e., Variant Stub Generator, Experiment Ser-
vice Generator, User Characteristics Stub Generator) to create
platform-specific code for the software architecture where it
should be used. While the Experimentation Model is translated
into a complete service, the other models are transformed
through code stubs. Before the Execution of the code, the
stubs are consisting of frames of the underlying architecture
that need to be filled with specific source code. Here, each of
the Variant Stubs needs to be filled with source code about the
specific variant (e.g., list, view) that display the user interface
and the User Characteristics Stub needs to be filled with code
about the user characteristics (e.g., location, gender) that can
be gathered for example from the user profile.
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Fig. 1. Code Linkage of Model-driven Continuous Experimentation



The Experimentation Process is needed to test the different
variants within the software product continuously. For that, an
overview of our vision based on MAPE-K [15] is depicted in
Fig. 2. Here, we have the Software Product (i.e., Managed
Element) together with the Experimentation Manager (i.e.,
Autonomic Manager). The Software Product displays the
product variant and can be changed with the Experimentation
Manager by conducting different experiments over time. The
Software Product provides sensors to measure the performance
of the product variant and effectors to change the current
product variant. Here, the Experiment Data Service provides
access to the Variant Measurement Data, which stores the
key measured metrics (e.g., number of registrations, number
of clicks) of a specific variant, and the User Characteristics
Data, which stores the important information about the user
(e.g., unique identifier, location). Those models are filled up by
the actual Variant Stubs and the existing User Characteristics
Stub which are generated and coded within the last step.
The Experimentation Manager provides the adaptation logic
to change the product variant based on the measured data
and the defined experiments. For that, the Knowledge base
consists of all information about the user (i.e., User Model),
the possible variants (i.e., Variant Model), and the experiments
to be performed (i.e., Experiment Model) that are defined in
the last step. The Monitor measures the information of the user
characteristics and his usage of the variant (i.e., Experiment
Monitoring). After that, the Evaluate Experiment analyzes
that measured data and, based on the results (i.e., Experiment
Analysis), recommends a change of the experiments conducted
by the user (i.e., Experiment Evaluation). Those experiments
are translated to a concrete product variant (i.e., Experiment
Adaptation) and used to adapt the product during Execute. For
that, the previously generated Experiment Service is triggered.
During the whole adaptation, it is important to continuously
show the different variants of an experiment to the same
distinct user group and avoid the simultaneous execution of
experiments that modify identical variants in different ways.
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Fig. 2. Experimentation Process of Model-driven Continuous Experimenta-
tion

B. Applied Vision to Software Architectures

In order to show the applicability of our vision, we provide
a preliminary solution on the model-driven continuous experi-
mentation of component-based software architectures. For that,
we combine the conceptual modeling of feature models [16]
with the architectural modeling of the Angular framework1.
Moreover, we use the Loopback API handling framework2 and
the MongoDB database3 for the prototypical implementation.
As shown in Fig. 3, we consider our three steps of Model
Development, Code Linkage, and the Experimentation Process.
We have applied the whole solution to the development of a
streaming app.

Inside the Model Development, we need to define the Vari-
ant Model, the Experiment Model, and the User Model. The
Variant Model is the heart of our solution, which represents all
different variants the software architecture can be changed to.
For that, we extend the concept of feature models, which is a
compact representation of all features within a Software Prod-
uct Line [16], to the representation of different software vari-
ants. Moreover, we provide a visual notation of those extended
feature models applied on a streaming app in Fig. 4. Inside
our model, we have stand-alone Features (e.g., List) together
with their different Variants (e.g., ListView, GridView). Like
in feature models, those Features are structured within a tree,
can be Mandatory (e.g., View) or Optional (e.g., Register), and
OR and XOR relationships can exist within the tree. Moreover,
there can be Requiring (e.g., Comments requires Register) and
Excluding relationships. In order to support software architec-
tures, we add the Stereotype with values for containers (just
for structuring and not used in the architecture), components
(represents a single component within the architecture), and
elements (represent a single feature within a component of
the architecture). Moreover, each Feature can have different
parameters (e.g., SubscriptionFee) and measurements (e.g.,
ClickRate). Those parameters and measurements are also used
within the experiments. The Experiment Model represents all
adjustments of the software architecture that are displayed to
the users. For this, each experiment consists of a start and
an end date together with a priority of the corresponding
experiment. Moreover, each experiment has an evaluation type
to aggregate a single user’s measurements connected to the
measurements as overall evaluation criteria. This could be the
minimum or maximum value, a median or average building,
or the summing up. For the evaluation, two or more test
variants are defined. Here, each test variant contains a number
of influencing features and possible parameter changes of
those features. Last, there can be different user characteristics
defined for each experiment. The User Model shows the char-
acteristics of the user that is accessing the architecture. Here,
we provide a unique identification of the users together with
the different characteristics each user can have for assigning
the experiments.

1Angular Website: https://angular.io/
2Loopback Website: https://loopback.io/
3MongoDB Website: https://www.mongodb.com/
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Inside the Code Linkage, we need to generate the source
code that will be used during the execution. For that, we
use a web-based online editor based on Loopback to store
the information of the Variant Model, the Experiment Model,
and the User Model. This information, in turn, is transformed
into code using custom schematics of Angular4. Here, we
implemented a small code generator that crawls all information
over the Loopback API and translates it into source code.
The Experiment Service and the Experiment Data Service are
standardized services that are connected through the Exper-
imentation Server using the APIs of Loopback. Moreover,
the User Characteristics Stub is a model with a predefined
identifier for the user and an array of user characteristics
that can be changed during the execution of the Software
Product. The Software Product is generated in the following
way: If a component-feature has no variants, it is directly
translated into a stub where custom code can be inserted. If
it has different variants, it is fully generated into a routing
component that chooses the current variant with support of
the Experimentation Service and the Experimentation Data
Service, and passes parameters and measures of the variant

4Angular Schematics: https://angular.io/guide/schematics

to the Experimentation Service. Moreover, as shown in Fig.
3, we created a variable of the variantName together with
using the standardized @Input and @Output concepts in
Angular of communicating the parameters, measurements, and
default variant to the parent component. Here, we defined
also @Inputs for each element-feature that can be activated or
deactivated within the experimentation. Before the execution,
all stubs have to be filled up with customized code.

Inside the Experimentation Process, we need to provide test-
ing the variants with the actual users. Here, the user initially
accesses the Software Product and sends his user identification
to the Experimentation Server. The experimentation looks up
in the knowledge if there is already existing information about
a variant for the user. If yes, the server controls that variant
for finished experiments and adjustments of new experiments
and sends the information to the product. If no, the server
calculates a new variant based on the prioritization of the
experiments, the combinability of experiments, and the current
distributions among existing users and sends the information
to the products. The product receives that information and
arranges the variant of the software architecture according to
that. While the user is accessing the variant, the product tracks
the measurements and sends them to the server.



IV. DISCUSSION & FUTURE RESEARCH QUESTIONS

In this paper, we have presented our vision of model-driven
continuous experimentation for component-based software ar-
chitectures. Here, our vision provides opportunities and risks
we further want to discuss. One opportunity of the vision is
the stronger consideration of the experimentation by explicitly
formalizing it through models. This is connected to the point
that by using code generation, the software developer can
reduce the overhead of such experimentation. Last, the process
efficiency can be increased by combining different experiments
so that multiple split testings can be accumulated to multivari-
ate testings. One risk of the vision is the overengineering of
the experimentation based on fine-granular models, leading to
longer development cycles. These fine-granular models can
also lead to a high amount of code during the generation that
needs to be initially developed, maintained, and removed. Last,
the process effectiveness can be decreased through the wrong
combination of different experiments with similar influencing
variables.

Out of our vision, we derive future research questions
around the three steps of Model Development, Code Linkage,
and the Experimentation Process.

Research on Model Development needs to be done to find
adequate formalizations for the variants, experiments, and
users. Therefore, the following RQs needs to be considered:

• What information granularity is needed to model all
variants of a software product?

• What characteristics of users are important to distinguish
different user groups?

• What information space, including metrics, is necessary
to describe the experimental setting?

Research on Code Linkage needs to be done to provide an
effective connection between the models and the source code.
Therefore, the following RQs needs to be considered:

• How to manage the relationships between the models and
the source code?

• How to generate code stubs so that new variants of
software products can be fastly created?

• How to automatically remove the code of old variants to
improve the maintainability of the code?

Research on Experimentation Process needs to be done to
provide an efficient combination of the modeled and executed
experiments. Therefore, the following RQs needs to be con-
sidered:

• How to optimize the combination of different experiments
to allow multi-variate testing?

• How to define reasonable stop criteria to evaluate differ-
ent, partly combined, measurements?

• How to combine qualitative feedback with our quantita-
tive approach?

V. CONCLUSION & FUTURE WORK

The development of successful software products is a chal-
lenging task that can be supported by continuous experimenta-
tion. However, existing approaches do not focus on the usage

of unified modeling languages. For that, we present our vision
on model-driven continuous experimentation together with its
application on component-based software architectures. We
discussed the opportunities and risks of such an approach
and pointed out future research questions around the steps
of model development, code linkage, and the experimentation
process. In the future, we want to work on our vision by
providing an enhanced concept for model-driven continuous
experimentation together with a fully-fletched toolchain for
component-based software architectures. Moreover, we want
to explore the usage of our approach on other software
architectures like microservices.
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RIGHT model for Continuous Experimentation,” J. Syst. Softw., vol.
123, pp. 292–305, 2017.

[4] A. Fabijan, P. Dmitriev, H. H. Olsson, and J. Bosch, “The Evolution of
Continuous Experimentation in Software Product Development: From
Data to a Data-Driven Organization at Scale,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). IEEE, 2017,
pp. 770–780.

[5] I. Gerostathopoulos, H. H. Olsson, T. Brand, R. Chatley, N. Diaman-
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[16] S. Apel, D. Batory, C. Kästner, and G. Saake, Feature-Oriented Software
Product Lines. Heidelberg: Springer, 2013.


