
Efficient Verifier-Local
Revocation for Anonymous

Credentials

Master’s Thesis

by
Jan Bobolz

jbobolz@mail.uni-paderborn.de

Thesis Supervisor:
Prof. Dr. rer. nat. Johannes Blömer

and
Dr. rer. nat. Volker Krummel

November 02, 2015

Declaration
(Translation from German)

I hereby declare that I prepared this thesis entirely on my own and have not used outside
sources without declaration in the text. Any concepts or quotations applicable to these
sources are clearly attributed to them. This thesis has not been submitted in the same
or substantially similar version, not even in part, to any other authority for grading and
has not been published elsewhere.

Original Declaration Text in German:

Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen worden ist. Alle Ausführungen, die wörtlich oder sin-
ngemäß übernommen worden sind, sind als solche gekennzeichnet.

City, Date Signature

Contents

1 Introduction 1

2 Foundation and Notation 5
2.1 Notation . 5

2.2 Basics of (pairing-based) cryptography . 6

2.3 Proofs of knowledge . 7

2.4 Forking lemma . 9

2.5 Ring signatures . 10

2.6 Group signatures . 12

2.7 Assumptions . 15

2.8 Constructions . 16

3 Accumulators 19
3.1 Definition . 19

3.2 The necessity of witness updates . 22

3.3 The Camenisch et al. accumulator . 23

3.4 Anonymously proving inclusion in the accumulator 26

4 A ring signature scheme from the Camenisch et al. accumulator 29
4.1 A protocol to prove revocation status . 29

4.1.1 Signing accumulator identities . 29

4.1.2 Combining the signature and accumulator protocol 32

4.2 Constructing the ring signature scheme 36

4.2.1 Construction . 36

4.2.2 Correctness . 39

4.2.3 Anonymity . 41

4.2.4 Unforgeability . 43

5 Revocation for group signatures 57
5.1 Defining group signatures with accumulator revocation 57

5.1.1 Syntax definition . 58

5.1.2 Security definitions . 61

5.2 A generic construction of group signature schemes with accumulator re-
vocation . 66

5.2.1 Construction . 67

5.2.2 Correctness . 68

5.2.3 Anonymity . 69

V

Contents

5.2.4 Traceability . 72
5.2.5 Unforgeability . 72
5.2.6 Unforgeability of epoch information 75
5.2.7 Performance . 77

6 Anonymous credential systems 79
6.1 Definition of anonymous credential systems 80

6.1.1 Syntax . 80
6.1.2 Anonymity . 82
6.1.3 Soundness . 85

6.2 Anonymous credential systems with revocation 87
6.2.1 Syntax . 88
6.2.2 Anonymity . 90
6.2.3 Soundness . 91

7 Conclusion 95

Bibliography 97

1 Introduction

Today, authentication over the Internet typically involves submitting some identifying
information. This can be a user name and a password, or a public key certificate. After
the user’s identity is established, the authenticator admits or denies access to some
resource. However, it is often not necessary for the authenticator to know the user’s
actual identity. For example, the operator of an anonymous paid discussion platform
only needs to know that the authenticating user has a valid subscription to the service.
The actual identity should be hidden from the operator and only known to some billing
agency. Additionally, as a user, using the same (certified) identity for multiple services
enables these services to share collected data associated with the user’s identity to create
extensive profiles without user consent.

For these reasons, systems that allow users to authenticate anonymously become in-
creasingly interesting. One simple example of such schemes are the well-known group
signatures, where a user signs a message (proving authenticity) as part of a group of
users. The receiver (verifier) can check that the message originated from some user of
the group, but cannot determine which user signed the message. Only a special entity,
the group manager is able to trace signatures to a signer. In our discussion forum exam-
ple above, paying users may receive a group signature key with which they can sign their
messages. The forum software can simply check signature validity to decide whether or
not to post a message, removing the need for users to authenticate with their identity.
Still, in case of legal dispute, the group manager (e.g., law enforcement) can uncover
who wrote a message.

Another example of anonymous authentication can be found in anonymous credential
systems [Lys02], where users are issued credentials with certain attributes that they
can use to authenticate themselves with services. A service knows its users only under
pseudonyms and when a user shows a credential to a service, he has fine-grained control
over what exactly he wants to disclose about his attributes and identity. Overall, users
stay anonymous unless, for example, they choose to reveal an attribute that is unique to
them. In particular, users cannot be tracked between multiple services (as the services
know the user under different, unlinkable pseudonyms).

However, anonymity complicates certain desired functionalities. In this thesis, we are
interested in revocation. In case of misuse or, for example, if a subscription expires, a
user’s credentials or signatures should be declared invalid. In contexts where users are
not anonymous, this can be easily accomplished by announcing “signatures this user
or this credential should not be considered valid anymore”. But this by itself does not
solve the problem in an anonymous context since by design, verifiers cannot distinguish
signers or credentials.

There exist revocation approaches using such lists as described above, notably [BS04]

1

1 Introduction

for group signatures, or proving in zero-knowledge that a credential is not on a revocation
list (using a generic proof protocol construction [GMW87]). However, these approaches
are not practical for large revocation lists since the cost to check revocation status is at
least linear in the number of revocation entries. For this reason, the use of cryptographic
accumulators for revocation is interesting (e.g., [CKS09]). Basically, an accumulator
maps a set of revocable identities to a constant-size digest. If an identity is included in
the accumulator, then there exists a witness that convinces anyone knowing the digest
that the identity is indeed included. Here, the verification time is independent of the
number of values in the accumulator. If an identity is not included, then it should be
computationally infeasible to compute a witness.

In this thesis, we are concerned with the accumulator introduced by Camenisch et al.
that is based on bilinear maps [CKS09]. Its algebraic structure allows for efficient proto-
cols to prove inclusion in the accumulator, which makes it usable in anonymity-preserving
contexts. However, the question arises under which circumstances an accumulator re-
vocation mechanism can be added to existing constructions and what exact revocation
semantics can be achieved by this.

In this thesis, we examine and formally define the revocation semantics that we can
expect from accumulator revocation mechanisms in group signatures and anonymous
credential systems. Furthermore, at the example of group signature schemes, we an-
swer the question of requirements for existing constructions to allow for accumulator
revocation with the Camenisch et al. construction mentioned above.

Our main contributions are as follows:

• We formally define new revocation semantics for group signatures that can be
realized with accumulators. As it turns out, the notion of revoking signing rights,
as opposed to retroactively revoking all the user’s signatures, is more adequate in
an accumulator context (Chapter 5).

• We answer the question about which group signature schemes can be extended to
allow for accumulator revocation by giving a generic construction that works for
any secure group signature scheme (Chapter 5).

• We introduce a ring signature scheme where the ring of signers is managed through
the Camenisch et al. accumulator [CKS09]. The methods used to design the ring
signature scheme serve as an abstract guideline of how to employ that accumulator
for anonymous revocation, and the ring signature scheme will serve as a concrete
building block for our generic group signature construction with accumulator re-
vocation (Chapter 4).

• We define revocation semantics for anonymous credential systems. To do this, we
give a formal definition of credential systems based on experiments (as opposed to
ideal worlds as in [Lys02]) and extend that definition with revocation semantics
(Chapter 6).

As a noteworthy minor result, we give an impossibility result for accumulators that do
not require witness updates (Observation 3.4).

2

The thesis is structures as follows. In Chapter 2, we define the notation used in
this thesis and give basic definitions for the used schemes. In Chapter 3, we define
accumulator schemes and discuss one particular construction introduced by Camenisch
et al. [CKS09], which we will use throughout the thesis. Afterwards, in Chapter 4, we
construct a ring signature scheme using the accumulator. This ring signature scheme
will be used as a building block in Chapter 5, where we define group signature schemes
with accumulator revocation and give a generic construction for such a scheme. Finally,
in Chapter 6, we examine revocation for anonymous credential systems.

3

2 Foundation and Notation

This chapter introduces the basic notation and definitions used throughout the thesis.

2.1 Notation

• For a map φ : X → Y , the image of φ is im(φ) := φ(X) := {y ∈ Y | ∃x ∈ X :
φ(x) = y}.

• N is the set of natural numbers (0 /∈ N) and N0 = N ∪ {0}.

• [n] is the set of natural numbers less than n+ 1, i.e. [n] = {1, . . . , n}.

• For n ∈ N we set Zn = Z/nZ, that is the ring of integers modulo n.

• 1k, when used as input for algorithms, denotes the string of k ones (i.e. 1k ∈ {1}k).

• For sets S, S′, the expression S ⊂ S′ denotes strict inclusion, i.e. S ⊆ S′ ∧ S 6= S′.

• For a set S, 2S := {X | X ⊆ S} denotes the powerset of S.

• For a finite set S we write s
R←− S if s is picked uniformly at random from S.

• For a probabilistic algorithm A, we write Z ← A(·) if Z is a random variable
taking on the return value of A. And if Z ← A(x), we write [A(x)] := [Z] := {y |
Pr[Z = y] > 0}.

• For two probabilistic, interacting algorithms (in terms of interactive Turing ma-
chines) A,B, the expression A(x) ↔ B(y) denotes a random variable that takes
on the transcript of exchanged messages when A is run with input x and B is run
with input y.

• Similarly, A(x)
o↔ B(y) denotes a random variable that takes on the value of

(τ, oA, oB), where τ is the protocol’s transcript as above and oA, oB denote the
output of A and B, respectively.

• Pr[x1 ← X1, . . . , xn ← Xn : φ(x1, . . . , xn)] denotes the probability that φ(x) is
true in the probability space where xi is chosen according to the random variable
Xi for i ∈ [n].

• x 7→ f(x) denotes a mapping (the domain and codomain are apparent from the
context) that maps any value x from the domain to f(x).

5

2 Foundation and Notation

• If f : A × B → C is a mapping, then for any a ∈ A, f(a, ·) denotes the mapping
b 7→ f(a, b) (B → C).

• As usual, we assume that arguments of algorithms are encoded in a reasonable
manner. For example, for a finite group G and an algorithm A, the expression
A(G) does not mean that G is passed as a list of all its elements. Rather, a
description of G is passed (in particular, A is not a polynomial-time algorithm if
it iterates over all group elements).

2.2 Basics of (pairing-based) cryptography

This section introduces basic definitions widely used in modern cryptography and espe-
cially in the context of pairing-based cryptography.

For our security definitions, we require the notion of negligible functions.

Definition 2.1 (Negligible functions). A function µ : N → R≥0 is called negligible if
∀c ∈ N ∃n0 ∈ N ∀n > n0,

µ(n) ≤ n−c

A typical requirement is that any probabilistic polynomial-time attacker should suc-
ceed in breaking a scheme only with negligible probability, i.e. with increasing security
parameter, the probability of a successful attack should approach zero faster than the
inverse of any polynomial.

In pairing-based cryptography, bilinear maps between finite groups play a central role.
We define bilinear groups as follows:

Definition 2.2 (Bilinear group). A bilinear group is a tuple (G,GT, e, p) where G and
GT are groups of prime order p, and e : G×G→ GT is a map which is

• Bilinear: e(ga, gb) = e(g, g)ab for any g ∈ G, a, b ∈ Zp.

• Non-degenerate: im(e) 6= {1}.

• Efficiently computable: there is an efficient algorithm that evaluates e.

e is often also called a pairing.

Examples for bilinear groups are elliptic curve groups with the Weil pairing.

6

2.3 Proofs of knowledge

2.3 Proofs of knowledge

A useful tool for (anonymous) authentication is the notion of interactive protocols that
are zero-knowledge and a proof of knowledge. They allow provers to convince verifiers
that they possess a witness corresponding to some shared input between the verifier and
the prover. In particular, the protocol does not leak any information about the witness
used by the prover, which will later correspond to the verifier staying anonymous.

In this context, Σ protocols [Sch15] play a large role.

Definition 2.3 (Σ protocol [Sch15]). Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation, i.e.
LR := {x | ∃w : (x,w) ∈ R} ∈ NP.

A Σ protocol for R is a protocol between a prover P and a verifier V. Both parties
receive common input x ∈ {0, 1}∗ and P gets additional (private) input w. The prover
computes and sends the first message t, the verifier responds with a challenge message
c chosen uniformly at random from some set C, and the prover answers with a message
s. V either accepts or rejects the transcript (t, c, s).

A Σ protocol also fulfills the following properties:

• Completeness: If P and V follow the protocol for (x,w) ∈ R, the resulting
transcript is accepting.

• Special soundness: There exists a probabilistic polynomial-time extractor al-
gorithm that, given x ∈ LR and a pair of transcripts (t, c, s), (t, c′, s′) that are
accepting for x and where c 6= c′, computes a witness w with (x,w) ∈ R.

• Special honest-verifier zero-knowledge: There exists a probabilistic polynomial-
time simulator algorithm that, given x ∈ LR and a challenge c ∈ C, produces a
transcript (t, c, s) distributed like V(x)↔ P(x,w) for all w with (x,w) ∈ R.

In this thesis, we employ a popular notation for proofs of knowledge introduced by
Camenisch and Stadler [CS97].

Definition 2.4 (Proof of knowledge notation). PK{w | φ(x,w)}, where φ is a predicate,
denotes a Σ-protocol for the relation {(x,w) | φ(x,w)}. The domains of x and w will be
apparent from the context.

The question arises how to realize such Σ protocols defined through this notation. For
this, there is a generic Σ protocol construction based on the Schnorr protocol that works
for all occurrences (in this thesis) of the notation defined in Definition 2.4. The special
case m = 1 was described in [Bra97].

7

2 Foundation and Notation

Construction 2.5. Let G1, . . . ,Gm be groups of the same prime order p. Consider m
equations Aj =

∏n
i=1 g

xi
j,i for j ∈ [m], where Aj , gj,i ∈ Gj for all i ∈ [n], j ∈ [m].

On common input (G1, . . . ,Gm, A1, . . . , Am, ((gj,i)
n
i=1)mj=1) and additional prover input

(x1, . . . , xn) ∈ Znp , the following protocol between the prover P and the verifier V can be
executed:

Prover P Verifier V

choose (t1, . . . , tn)
R←− Znp

for each j ∈ {1, . . . ,m},
calculate Tj =

∏n
i=1 g

ti
j,i

T1,...,Tm−−−−−−−−−→
c

R←− Zp
c←−−−−−−−−−

for each i ∈ {1, . . . , n},
calculate si = xi · c+ ti

s1,...,sn−−−−−−−−−→
accept if

∀j :
∏
i g
si
j,i

!
= AcjTj

Lemma 2.6. Construction 2.5 is a Σ protocol for the relation

R = {((G1, . . . ,Gm, A1, . . . , Am, ((gj,i)
n
i=1)mj=1), (x1, . . . , xn)) |

∀i ∈ [n] ∀j ∈ [m] : Aj , gj,i ∈ Gj ∧Aj =
n∏
i=1

gxij,i}

where Gi, Ai, gj,i are as defined in the construction.

Proof. We need to prove completeness, special soundness, and special honest-verifier
zero-knowledge.
Completeness

If both parties follow the protocol, then the verifier always accepts. This is the case
because ∏

i

gsij,i =
∏
i

gxi·c+tij,i =
∏
i

(gxij,i)
c ·
∏
i

gtij,i = Acj · Tj

for each j ∈ [m] and hence, the verifier accepts.

Special soundness

8

2.4 Forking lemma

We define an extractor that can extract a witness w = (x1, . . . , xn) given (G1, . . . ,Gm,
A1, . . . , Am, ((gj,i)

n
i=1)mj=1) and two accepting transcripts ((T1, . . . , Tm), c, (s1, . . . , sn))

and ((T1, . . . , Tm), c′, (s′1, . . . , s
′
n)) with c 6= c′. This extractor computes xi = (si −

s′i)/(c− c′) for each i ∈ [n] and returns (x1, . . . , xn).

Because the two transcripts are accepting, it holds that
∏
i g
si
j,i = AcjTj and

∏
i g
s′i
j,i =

Ac
′
j Tj for all j ∈ [m]. Dividing both equalities yields∏

i

g
si−s′i
j,i = Ac−c

′

j

and hence ∏
i

g
si−s

′
i

c−c′
j,i = Aj

using that c − c′ 6= 0. Consequently, setting xi = (si − s′i)/(c − c′) results in a valid
witness (x1, . . . , xn).

Special honest-verifier zero-knowledge

Interactions between honest V and P can be simulated as follows: Given (G1, . . . ,Gm,

A1, . . . , Am, ((gj,i)
n
i=1)mj=1) and c ∈ Zp, choose (s1, . . . , sn)

R←− Znp and set Tj =
∏
i g
si
j,i/A

c
j

for j ∈ [m]. The simulator outputs the transcript ((T1, . . . , Tm), c, (s1, . . . , sn)).

The set of transcripts generated this way is equal to the set of accepting transcripts
between two honest parties, namely {((T1, . . . , Tm), c, (s1, . . . , sn)) | ∀j :

∏
i g
si
j,i = AcjTj}.

Furthermore, the simulated transcripts for a fixed c are distributed uniformly in this set
because the si are uniformly distributed and the other elements are determined through
that. In honest transcripts for a fixed c, the si are also distributed uniformly and

independently because of the relationship si = xi · c + ti where ti
R←− Zp. Hence, our

simulator outputs transcripts with the same distribution as the original protocol.

Construction 2.5 can only demonstrate knowledge of some vector of exponents (as
opposed to elements of a group G). In order to solve this, often a proof of knowledge
of some group element g is constructed in the following form: First, choose random

r
R←− Zp and send a blinded g formed as G = gh̃r (for some generator h̃), then run some

Σ-protocol proving knowledge of the value r that can be used to de-randomize G to a
value g with the desired properties.

2.4 Forking lemma

Typically, the proof technique for proof of knowledge protocols involves the following
argument. If a prover P is able to pass the protocol (in this example, a Σ protocol)
without being given a witness, P can be rewound to the point where it receives the

9

2 Foundation and Notation

challenge, and be run from that point with a new random challenge. If P has non-
negligible success probability, it will likely also pass the second challenge, giving us two
transcripts (T, c, s) and (T, c′, s′). In the likely case that c 6= c′, the (special) soundness
property gives us a way to compute a witness for the protocol from just the common
input (which should be hard).

The argument that rewinding the algorithm likely supplies two such transcripts is
encapsulated in the (generalized) forking lemma as described in [BN06]. Prior to that,
a different version of this lemma, for the special case of signatures derived from the
Fiat-Shamir heuristic, was introduced by Pointcheval and Jacques [PS00].

Lemma 2.7 (Forking lemma [BN06]). Let q ∈ N and let H be a set, |H| ≥ 2. Let A
be a randomized algorithm that takes input (x, h) ∈ {0, 1}∗ × Hq and outputs (J, σ) ∈
({0, . . . , q})×{0, 1}∗. Let G be an instance generator for x. Let µ be the probability that A
outputs some (J, σ) with J 6= 0, i.e. µ = Pr[x← G, h

R←− Hq, (J, σ)← A(x, h) : J 6= 0].
Consider the algorithm FA(x).

• FA generates random bits ωA for A and chooses h = (h1, . . . , hq)
R←− Hq.

• It then runs A(x, h) with random bits ωA to obtain (I, σ). If I = 0, FA outputs
fail and aborts.

• It chooses new h′I , . . . , h
′
q

R←− H and sets h′ := (h1, . . . , hI−1, h
′
I , . . . , h

′
q).

• It then runs A(x, h′) with the same random bits ωA to obtain (I ′, σ′). If I = 0, FA
outputs fail and aborts.

• If I = I ′ and hI 6= h′I , FA outputs σ, σ′. Otherwise, it outputs fail and aborts.

Then Pr[x← G : FA(x) 6= fail] ≥ µ(µq −
1
|H|)

We omit the proof and refer to [BN06] for details.
To apply this lemma for the scenario described above, assume A is a prover with

success probability µ for a fixed security parameter. In this case, x is the randomly
chosen common input of the protocol, H is the verifier’s challenge space and q = 1
(corresponding to the one challenge h1 ∈ H). Let B be an algorithm that simulates the
protocol, choosing the verifier’s challenge uniformly at random, with A in the prover
role, which results in a transcript σ. B outputs (Iσ), where I = 1 if σ is an accepting
transcript, I = 0 otherwise. Then the rewinder algorithm FB outputs two transcripts
σ, σ′ with different challenges h1 6= h′1 with probability at least µ(µ− 1/|H|).

2.5 Ring signatures

In (identity-based) ring signature schemes, messages are signed by a set V (ring) of
signers. When signing a message, the signer i can choose the signer ring V freely, as
long as i ∈ V . The informal security guarantees are that user i should not be able to

10

2.5 Ring signatures

create a signature for a ring V with i /∈ V , and verifiers should not be able to distinguish
potential signers i, i′ ∈ V .

Our definition of ring signature schemes and their security is based on [BKM06]. We
changed the definition to fit so-called identity-based ring signatures, where a ring, for
which signatures are created, is not a set of public keys but a set of identities.

Definition 2.8 ((Identity-based) ring signature scheme). A ring signature scheme con-
sists of three polynomial-time algorithms:

• KeyGen(1λ, 1n) is a probabilistic algorithm that generates a public key pk, a set
of member identities U with |U | = n, and member keys (sk[i])i∈U . It outputs
(pk, U, (sk[i])i∈U).

• Signsk[i](m,V) is a probabilistic algorithm that outputs a signature σ for a group
V ⊆ U

• Verifypk(m,V, σ) is a deterministic algorithm that returns 0 or 1.

We say that such a scheme is correct if for all λ, n ∈ N and for all (pk, U, (sk[i])i∈U) ∈
[KeyGen(1λ, 1n)], V ⊆ U and i ∈ V ,

Pr[Verifypk(m,V, Signsk[i](m,V)) = 1] = 1

In the following, we define security for ring signature schemes. We start with anonymity,
which is the property that signers stay anonymous inside the ring of signers. We consider
anonymity against full key exposure, which is the strongest definition in [BKM06] where
an adversary is given the randomness used to create the keys and has to distinguish two
signers. Here, we introduce an even stronger notion, which we call anonymity against
early full key exposure.

Definition 2.9 (Anonymity against early full key exposure). A ring signature scheme Π
admits anonymity (against early full key exposure) if for all n ∈ N and all probabilistic
polynomial-time adversaries A, there exists a negligible function µ such that

Advanon
Π,A (λ, n) := |Pr[Expanon−1

Π,A (λ, n) = 1]− Pr[Expanon−0
Π,A (λ, n) = 1]| ≤ µ(λ)

for all λ ∈ N, where the experiments Expanon−b
Π,A (λ, n) for b ∈ {0, 1} work as follow:

(pk, U, (sk[i])i∈U)← KeyGen(1λ, 1n) using randomness ω
R←− {0, 1}poly(λ).

A is given pk, U , and ω.

Eventually A outputs two identities (i0, i1) ∈ U2, a set V ∗ with {i0, i1} ⊆ V ∗ ⊆ U
and a message m∗.

11

2 Foundation and Notation

A is given the randomness ω used to create the keys. It is also given a signature
σ∗ ← Signsk[ib]

(m∗, V ∗) created using sk[ib].

In the end, A outputs a bit b′. The output of the experiment is b′.

In this experiment, A is handed a signature created by one of two possible signers. A,
knowing all keys (and even the randomness ω used to created them), needs to distinguish
the signers. In contrast to [BKM06], we hand the adversary the randomness ω before it
has to choose the ring V ∗ and the two identities i0, i1 to distinguish. This also eliminates
the need for access to a signing oracle.

We now consider unforgeability, which is the property that guarantees that a valid
signature was created by some user in the ring. The following definition of unforgeability
is based on Unforgeability w.r.t. insider corruption from [BKM06].

Definition 2.10 (Unforgeability w.r.t. insider corruption). A ring signature scheme Π
has unforgeable signatures (w.r.t. insider corruption) if for all n ∈ N and all probabilistic
polynomial-time adversaries A, there exists a negligible function µ such that

Advsigforge
Π,A (λ, n) := Pr[Expsigforge

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expsigforge
Π,A (λ, n) is defined as follows:

(pk, U, (sk[i])i∈U)← KeyGen(1λ, 1n).

A is given pk, U , oracle access to Signsk[·](·, ·), and oracle access to i 7→ sk[i].

Eventually, A outputs a message m∗, a set V ∗ ⊆ U and a signature σ∗.

If Verifypk(m
∗, V ∗, σ∗) = 1 and A has neither queried Signsk[·](m

∗, V ∗) nor sk[i]
for any i ∈ V ∗, the experiment outputs 1. Otherwise it outputs 0.

In this definition, A may adaptively corrupt some set of users by accessing the sk[i]
oracle. A should not be able to sign a message for a ring where none of his corrupted
users are in. Oracle access to Sign models that an attacker may indeed see arbitrary
valid signatures, which should not help in creating signatures on any other message or
ring.

2.6 Group signatures

In group signatures, a user signs messages on behalf of the group. In contrast to ring
signatures, this group is not chosen ad-hoc when signing a message, but is fixed at setup

12

2.6 Group signatures

(assuming a definition of group signatures without revocation). For the group, there
exists a special entity, the group manager that is given a special secret key gmsk. With
this key, the group manager is able to uncover who created a signature (e.g., in case of
dispute). Verifiers without gmsk can be sure that a valid signature was created by some
user of the group, but cannot determine which user.

Our definition for group signature schemes and their security is based on [BMW03].

Definition 2.11 (Group signature scheme). A group signature scheme consists of four
polynomial-time algorithms:

• KeyGen(1λ, 1n) is a probabilistic algorithm that generates a set U of identities
(with |U | = n), a public key gpk, the group manager’s secret key gmsk, and
member secret keys (sk[i])i∈U . It outputs (U, gpk, gmsk, (sk[i])i∈U).

• Signsk[i](m) is a probabilistic algorithm that outputs a signature σ.

• Verifygpk(m,σ) is a deterministic algorithm that returns 0 or 1.

• Opengmsk(m,σ) is a deterministic algorithm that returns an identity i ∈ U or the
failure symbol ⊥.

A group signature scheme is correct if for all λ, n ∈ N, (U, gpk, gmsk, (sk[i])i) ∈
[KeyGen(1λ, 1n)], i ∈ U , and all messages m,

Pr[Verifygpk(m,Signsk[i](m)) = 1] = 1

and
Pr[Opengmsk(m,Signsk[i](m)) = i] = 1

In the following, we define security of group signature schemes [BMW03]. We start
with anonymity, which is the requirement that verifiers cannot distinguish signers.

Definition 2.12 (Full anonymity). A group signature scheme Π has full anonymity if
for all n ∈ N and all probabilistic polynomial-time adversaries A, there exists a negligible
function µ such that

Advanon
Π,A (λ, n) := |Pr[Expanon−1

Π,A (λ, n) = 1]− Pr[Expanon−0
Π,A (λ, n) = 1]| ≤ µ(λ)

for all λ ∈ N, where the experiments Expanon−b
Π,A (λ, n) for b ∈ {0, 1} work as follow:

(U, gpk, gmsk, (sk[i])i∈U)← KeyGen(1λ, 1n).

A is given U, gpk, (sk[i])i∈U and oracle access to Opengmsk(·, ·).

Eventually A outputs two identities (i0, i1) ∈ U2 and a message m∗.

13

2 Foundation and Notation

A is given a signature σ∗ ← Signsk[ib]
(m∗) created using sk[ib].

A continues to have oracle access to Opengmsk(·, ·).

In the end, A outputs a bit b′. If A has queried Opengmsk(m
∗, σ∗) after receiving

the signature, the experiment outputs 0, otherwise it outputs b′.

Note that in contrast to the corresponding anonymity definition for ring signatures
(Definition 2.9), here A cannot be given the randomness used to run KeyGen, as it
would allow it to compute gmsk, which can always be used to disable anonymity. We
do however give A all user keys and oracle access to Open for any signature but the
challenge signature which it tries to distinguish (if it tries to query Open for σ∗, the
experiment outputs 0).

We now consider full traceability, which states that the group manager should always
be able to trace a valid signature to its correct signer.

Definition 2.13 (Full traceability). A group signature scheme Π has full traceability if
for all n ∈ N and all probabilistic polynomial-time adversaries A, there exists a negligible
function µ such that

Advtrace
Π,A (λ, n) := Pr[Exptrace

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Exptrace
Π,A (λ, n) is defined as follows:

(U, gpk, gmsk, (sk[i])i=1)← KeyGen(1λ, 1n).

A is given U, gmsk, gpk, oracle access to Signsk·, and oracle access to i 7→ sk[i].

Eventually, A outputs a message m∗ and a signature σ∗.

If Verifygpk(m
∗, σ∗) = 1 and Opengmsk(m

∗, σ∗) =⊥, the experiment outputs 1.

If Verifygpk(m
∗, σ∗) = 1 and Opengmsk(m

∗, σ∗) = i ∈ U , and A has neither queried
Signsk[i](m

∗) nor sk[i], the experiment outputs 1.

Otherwise it outputs 0.

Here, A is given oracle access to sk[·] (which models corruption) and wins the experi-
ment if it is able to output a valid signature that cannot be traced by Open to any user,
or that is traced to an uncorrupted user i (without querying the Sign for that signature).

Finally, we define unforgeability, which states that it should be hard to create valid
signatures without being given any secret key.

14

2.7 Assumptions

Definition 2.14 (Unforgeability). A group signature scheme Π has unforgeable signa-
tures if for all n ∈ N and all probabilistic polynomial-time adversaries A, there exists a
negligible function µ such that

Advforge
Π,A (λ, n) := Pr[Expforge

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expforge
Π,A (λ, n) is defined as follows:

(U, gpk, gmsk, (sk[i])ni=1)← KeyGen(1λ, 1n).

A is given U, gpk and oracle access to Signsk·.

Then, A outputs a message m∗ and a signature σ∗.

If Verifygpk(m
∗, σ∗) = 1 and A has not queried Signsk[·](m

∗), the experiment out-
puts 1, otherwise it outputs 0.

Note that unforgeability immediately follows from full traceability.

2.7 Assumptions

In this section, we introduce several assumptions that have not been proven yet (and
because these assumptions typically imply P 6= NP , it seems nontrivial to prove any of
them in the standard model).

Definition 2.15 (n-DHE assumption [CKS09]). Let G(λ) be an instance generator that
outputs a description of a prime-order group G. The n-DHE assumption for G states
that for all probabilistic polynomial-time algorithms A, there exists a negligible function
µ such that

Pr[G← G(λ), g
R←− G \ {1}, γ ← Z|G| : A((gγ

i
)2n
i=0;i 6=n+1) = gγ

n+1
] ≤ µ(λ)

for all λ ∈ N

Definition 2.16 (n-SDH assumption [BB04]). Let G(λ) be an instance generator that
outputs a description of a prime-order group G. The n-SDH assumption (strong Diffie-
Hellman assumption) for G states that for all probabilistic polynomial-time algorithms
A, there exists a negligible function µ such that

Pr[G← G(λ), g
R←− G \ {1}, δ ← Z|G| :

∃c ∈ Z∗p : A(g, (gδ
i
)ni=1) = (g1/(δ+c), c)] ≤ µ(λ)

15

2 Foundation and Notation

for all λ ∈ N.

Definition 2.17 (n-HSDHE assumption [CKS09]). Let G(λ) be an instance generator
that outputs a description of a prime-order group G. The n-HSDHE assumption (hid-
den strong Diffie-Hellman exponent assumption) for G states that for all probabilistic
polynomial-time algorithms A, there exists a negligible function µ such that

Pr[G← G(λ), g, u
R←− G \ {1}, γ, δ ← Z|G| : ∃c ∈ Zp \ {γi | i ∈ [n]} :

A(g, gδ, u, (g1/(δ+γi), gγ
i
, uγ

i
)ni=1, (g

γi)2n
i=n+2) = (g1/(δ+c), gc, uc)] ≤ µ(λ)

for all λ ∈ N. For the unlikely event that δ + γi = 0, we set 0−1 := 0 ∈ Zp in the
expressions above.

Note that n-HSDHE implies n-SDH for any instance generator.

2.8 Constructions

In this section, we introduce some basic constructions used throughout the thesis.

First, a signature scheme based on Boneh-Boyen signatures and proven secure in
[Oka06].

Construction 2.18 (Boneh-Boyen signature variant [Oka06]).

• KeyGen(1λ) generates a bilinear group (G,GT, e, p) of prime order p and generators

h, h0, h1, h2
R←− G\{1}. It then sets sk

R←− Zp, pk = ((G,GT, e, p), h, h0, h1, h2, h
sk)

and outputs (pk, sk).

• Signsk(m) for a message m ∈ Zp, the algorithm picks c, s
R←− Zp. It then computes

σ = (h0h
m
1 h

s
2)1/(sk+c) and outputs (σ, c, s) as a signature.

• Verifypk(m, (σ, c, s)) checks that e(h0h
m
1 h

s
2, h)

!
= e(σ, pk · hc) and returns 1 if the

equation holds, 0 otherwise.

The following scheme is a weakly secure signature scheme introduced in [BB04].

Construction 2.19 (A weakly secure short signature scheme [BB04]).

16

2.8 Constructions

• KeyGen(1λ) generates a bilinear group (G,GT, e, p)← G(λ) of prime order p and a

generator g
R←− G. It chooses a random δ

R←− Zp and sets pk = ((G,GT, e, p), g, g
δ)

and sk = (δ, pk), and outputs (pk, sk).

• Signsk(m) for a message m ∈ Zp, the algorithm outputs σ = g1/(δ+m) as a signature
(or σ = 1 if δ +m = 0).

• Verifypk(m,σ) checks that e(σ, gδ ·gm)
!

= e(g, g) and returns 1 if the equation holds

(or if σ = gδ · gm = 1), 0 otherwise.

This signature scheme is secure against weak chosen message attacks [BB04] (i.e.
attackers fix their messages for signature queries before they are given the public key
g, gδ) under the (n+ 1)-SDH assumption (where n is the maximum number of message
queries an attacker may do). Formally,

Definition 2.20. Let n ∈ N. Construction 2.19 has weak unforgeability if for all prob-
abilistic polynomial-time adversaries A, there exists a negligible function µ such that

Advweakforge
Π,A (λ) := Pr[Expweakforge

Π,A (λ) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expweakforge
Π,A (λ) is defined as follows:

(G,GT, e, p)← G(λ). A is given (G,GT, e, p).

A outputs messages m1, . . . ,mn ∈ Zp.

The experiment chooses g
R←− G, δ R←− Zp, sets pk = ((G,GT, e, p), g, g

δ) and sk =
(δ, pk).

The experiment computes σi ← Signsk(mi) for i ∈ [n] and hands pk, σ1, . . . , σn to
A.

Then, A outputs a message m∗ and a signature σ∗.

If Verifypk(m
∗, σ∗) = 1 and m∗ /∈ {m1, . . . ,mn}, the experiment outputs 1, other-

wise it outputs 0.

In the formulation of weak unforgeability given in [BB04], A is not even given the
group (G,GT, e, p) before having to output messages. However, their proof does not
depend on this. We choose the version above as we require it for Lemma 4.14 later.
This change is also the reason that we do not define weak unforgeability for arbitrary
signature schemes.

17

3 Accumulators

Accumulator schemes allow condensing a set V into an (short) accumulator value accV .
For any value i ∈ V , one can efficiently compute a witness witV,i that attests the fact
that i ∈ V to some verifier algorithm Verify on input accV , i,witV,i. For any value
i /∈ V , it should be computationally infeasible to produce a witness wit such that
Verify(accV , i,wit) = 1.

The main advantage is that the accumulator value accV is typically significantly
shorter than an explicit representation of the set V . As a subset of n elements, V
requires the representation of V requires n bit, whereas accV should be sublinear (e.g.,
logarithmic) in n. This typically also translates to good verification time: most of the
computational work can be done while creating the witness, then Verify should be fast.

We will employ accumulators for revocation. The overall idea is that some entity
maintains a set V of all valid identities i, and periodically publishes the current accV to
verifiers. Valid users can efficiently compute a witness to prove to a verifier that they
were not revoked. They only need to do this once whenever the set V changes. For
revoked users i /∈ V , creating a valid witness should be computationally infeasible.

In this chapter, we will first define accumulator schemes (Section 3.1), then give a
general result about the necessity of computing new witnesses whenever the accumulator
changes (Section 3.2), and finally explain the accumulator construction used in this thesis
(Section 3.3, [CKS09]).

3.1 Definition

Our definition of accumulator schemes is based on [DHS15] (however, in their termi-
nology, we restrict our definition to non-universal, bounded accumulators). Note that
there are different varieties of accumulator schemes in which the keys required for certain
operations differ. in the following definitions, we use K as a placeholder for either pk or
sk, depending on the scheme.

Definition 3.1 (Accumulator scheme). An accumulator scheme consists of the following
polynomial-time algorithms. For each of these algorithms, K is a placeholder for either
pk or sk, depending on the scheme.

• Gen(1λ, 1n) is a probabilistic algorithm that generates a public key pk, a secret
key sk, and a public set of identities U with |U | = n, and returns (pk, sk, U).

• AccCreateK(V) is a (probabilistic) algorithm that, for a set V ⊆ U , outputs an
accumulator acc.

19

3 Accumulators

• WitCreateK(V, i) is a deterministic algorithm that outputs a witness witV,i

• Verifypk(acc, i,wit) is a deterministic algorithm that outputs 0 or 1.

An accumulator scheme is correct if for all λ, n ∈ N, all (pk, sk, U) ∈ [Gen(1λ, 1n)],
V ⊆ U , i ∈ V ,

Pr[Verifypk(AccCreateK(V), i,WitCreateK(V, i)) = 1] = 1

If AccCreateK is deterministic, we say that the accumulator scheme is deterministic.
We say it is probabilistic otherwise. We also write witV,i := WitCreateK(V, i) for the
witness of i with respect to V and if AccCreate is deterministic, we write accV :=
AccCreateK(V).

In this thesis, we mainly deal with an accumulator where witnesses and accumulator
values can be computed from public information (i.e. K = pk for both WitCreate and
AccCreate). However, we offer one general statement about the nature of accumulators
with respect to witness updates (Observation 3.4) that holds in the more general case.

We now define security of an accumulator scheme. Namely, it should be infeasible to
compute a witness for some non-accumulated value.

Definition 3.2 (Accumulator scheme security). An accumulator scheme Π is secure
(collision free) if for all probabilistic polynomial-time algorithms A, and all n ∈ N, there
exists a negligible function µ such that

Pr[Expwitforge
A,Π (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where Expwitforge
A,Π (λ, n) is defined as follows:

(pk, sk, U)← Gen(1λ, 1n).

A is given pk, U , and oracle access to AccCreateK(·) and WitCreateK(·, ·).

Eventually, A outputs a tuple (V, acc, i,wit).

The experiment returns 1 if acc ∈ [AccCreateK(V)], Verifypk(acc, i,wit) = 1, and
i /∈ V ⊆ U . Otherwise it returns 0.

Note that oracle access to AccCreateK(·) and WitCreateK(·, ·) is only required if
K = sk, i.e. the scheme requires the secret key to either create an accumulator or a
witness. Otherwise, A can compute accumulators or witnesses itself. In particular, if
both accumulator values and witnesses can be created from public keys, A is simply
given public parameters and challenged to output a forgery without any oracle access.

20

3.1 Definition

A wins the game if it can find an accumulator forgery (V, acc, i,wit) such that i /∈ V
but acc is an accumulator for V (i.e. acc ∈ [AccCreateK(V)]) and wit is accepted by
Verify as a witness for i.

One shortcoming of accumulators is that witnesses depend on the accumulated set and
hence need to be recomputed whenever the accumulator changes, which typically takes
time linear in the size of the accumulated set. Also, the time for creating an accumulator
is at least linear in the size of the accumulated set. As it turns out, accumulator schemes
can often be defined such that adding or removing a value from the accumulator, as well
as updating a witness can be done more efficiently (often in constant time/with only
as many group operations as changes to the set). Accumulator schemes that support
this are called dynamic accumulator schemes. In the following, we offer a definition for
deterministic dynamic accumulators. It is also possible to define probabilistic dynamic
accumulator schemes. However, we are only dealing with deterministic accumulators in
this thesis, so we omit the details.

Definition 3.3 (Deterministic dynamic accumulator scheme). A deterministic dynamic
accumulator scheme is an deterministic accumulator scheme with the following addi-
tional algorithms. For each of these algorithms, K denotes either pk or sk, depending
on the scheme.

• AccAddK(acc, i) is a deterministic algorithm that outputs an updated accumulator
acc′.

• AccDeleteK(acc, i) is a deterministic algorithm that outputs an updated accumu-
lator acc′.

• WitUpdateK(V, V ′, i,wit) is a deterministic algorithm that outputs an updated
witness witV ′,i

We require that

WitUpdateK(V, V ′, i,WitCreateK(V, i)) = WitCreateK(V ′, i)

for all i ∈ V ∩ V ′. Furthermore, we require that for all i /∈ V ,

AccAddK(accV , i) = AccCreateK(V ∪ {i})

and for all i ∈ V ,

AccDeleteK(accV , i) = AccCreateK(V \ {i})

Note that according to this definition, AccAdd, AccDelete, and WitUpdate can be func-
tionally expressed by original accumulator operations and hence do not need to factor
into the definitions of security and correctness.

21

3 Accumulators

3.2 The necessity of witness updates

The major drawback of accumulators is the need to update and distribute new witnesses
whenever the accumulator changes. Hence, the question may arise whether it is possible
to create an accumulator that does not suffer from this drawback. Unfortunately, the
following observation establishes that witness updates are necessary for efficient accu-
mulator constructions.

Observation 3.4 (Accumulators without witness updates). Any secure accumulator
scheme for n values, where witV,i = witV ′,i for all V, V ′ ⊆ U (i.e. witnesses do not need
to be updated), requires at least n bits to encode accumulators.

Essentially, accumulators rely on computational hardness for their security – witnesses
for values i /∈ V may exist but are hard to compute. Without witness updates, if a
witness for i /∈ V exists, it is easy to compute as witU,i. Hence, such witnesses must not
exist at all, which results in the lower bound of n for the accumulator length.

Proof of Observation 3.4. For convenience of notation, we assume AccCreate to be de-
terministic. However, the proof directly translates to the probabilistic case.

Consider an accumulator scheme without witness updates. We proceed to show that
if this accumulator scheme uses at most n−1 bits to encode accumulators, it is insecure:

Let (pk, sk, U) ∈ [Gen(1λ, 1n)] and let Acc := im(AccCreateK) be the set of possible
accumulators (note that |Acc| ≤ 2n−1 because by assumption, each accumulator can be
represented by n− 1 bits). We define

φ : Acc→ 2U , acc 7→ {i ∈ U | Verify(acc, i,witU,i) = 1}

to map accumulators to their implicitly accumulated sets 1. Since |im(φ)| ≤ |Acc| ≤
2n−1, at most half of all 2n subsets of U have a preimage. Any V /∈ im(φ) has no proper
accumulator representation. In particular, φ(accV) 6= V , and because the accumulator
scheme is correct, φ(accV) ⊃ V .

We construct an attacker A against the accumulator. A is given (pk, sk, U). It first
queries witU,i for all i ∈ U . Then, it chooses a set V ⊆ U uniformly at random. A
queries for accV and computes φ(accV). If A finds an index i ∈ φ(accV) \ V , it returns
(V, accV , i,witU,i), which is a valid witness forgery because witU,i = witV,i. Otherwise,
A fails.

According to our analysis above,

Pr[V /∈ im(φ)] ≥ 1/2

1Note that this definition is only meaningful in our setting without witness updates as witU,i is not
usually required to work for any accumulator acc.

22

3.3 The Camenisch et al. accumulator

and if this event occurs, then φ(accV) ⊃ V and in that case, A is able to find a valid
witness forgery.

It follows that our probabilistic polynomial-time algorithm A succeeds in forging a
witness with probability at least 1/2 and hence, accumulators without witness updates
and with accumulator length at most n− 1 are not secure.

Note that an accumulator scheme with accumulator length n can be trivially con-
structed by setting accV := V (written as an n-bit vector) for any V ⊆ {1, . . . , n}.
Consequently, without witness updates, accumulator schemes are trivial.

Even though witness updates are necessary, schemes can attempt to minimize the
effort needed for updating witnesses. In the next section, we describe the accumulator
scheme introduced by Camenisch et al. [CKS09], which features efficient witness updates
that do not rely on any secret information and hence could be carried out by untrusted
third parties if necessary.

3.3 The Camenisch et al. accumulator

The following construction of a deterministic dynamic accumulator was introduced in
[CKS09].

Construction 3.5 (Camenisch et al. dynamic accumulator).

• Gen(1λ, 1n) generates a bilinear group (G,GT, e, p) of prime order p > 2λ and
computes

– g
R←− G \ {1}, γ R←− Z∗p

– z = e(g, g)γ
n+1

– pk = ((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1, z)

– sk = γ

– U = {1, . . . , n}
It returns (pk, sk, U). We write gi := gγ

i
.

• AccCreatepk(V) outputs accV =
∏
j∈V gn+1−j

• WitCreatepk(V, i) outputs witV,i =
∏
j∈V \{i} gn+1−j+i

• Verifypk(acc, i,wit) outputs 1 if e(gi, acc)/e(g,wit) = z

• AccAddpk(acc, i) outputs acc′ = acc · gn+1−i

• AccDeletepk(acc, i) outputs acc′ = acc/gn+1−i

• WitUpdatepk(V, V
′, i,witV,i) if i ∈ V ′, outputs witV ′,i = witV,i ·

∏
j∈V ′\V gn+1−j+i∏
j∈V \V ′ gn+1−j+i

23

3 Accumulators

In the remainder of the thesis, we may refer to i, γi, or gi as an identity in the
accumulator. We use the term interchangeably, since there is a strong relation between
the three objects.

To attain a better understanding of this definition, consider the following example.

Example 3.6. Let n = 5 and V = {1, 2, 5}. Then the accumulator accV =
∏
j∈V gn+1−j

= g1 · g4 · g5 (cf. the green and blue fields in the first row of Figure 3.3. The number in a
field represents the identity that contributes the value (e.g., the green field g4 is included
in accV because 2 ∈ V)). We will focus on identity i = 2 (so that the green fields represent

the entries contributed by this identity). For i, the witness witV,i is
∏j 6=i
j∈V gn+1−j+i =

g3 · g7 (cf. the blue fields in the second row of Figure 3.3). One can view witV,i as the
accumulator shifted by i indices, excluding the secret gn+1. The key to understanding
the Verify algorithm is that applying the bilinear map e(gi, accV) allows shifting the
accumulator in a similar manner as for the witnesses (but yielding a result in GT and
now including index n + 1). More specifically, e(gi, accV) = e(gγ

i
,
∏
j∈V g

γn+1−j
) =∏

j∈V e(g, g)γ
n+1−j+i

= e(g, g)γ
3 · e(g, g)γ

n+1 · e(g, g)γ
7

(cf. the fourth row blue and green
fields in Figure 3.3).

Now, we divide the shifted accumulator e(gi, accV) (cf. fourth row) by the projected
witness e(g,witV,i) (cf. third row) in GT. Because by construction, the two overlap at

all positions but n+ 1, the quotient yields z = e(g, g)γ
n+1

, which is exactly what Verify
checks.

Intuitively, if i /∈ V , the green fields in Figure 3.3 would disappear from the accumu-
lator and shifted accumulator. Hence, in the quotient that is checked to be e(g, g)γ

n+1
,

the index n + 1 is not contributed by the shifted accumulator and so it must somehow
be present in the witness. However, the n-DHE assumption (Definition 2.15) states that
it is hard to compute gn+1 in G, so no probabilistic polynomial-time algorithm A should
be able to create an accepting witness for i /∈ V (except with negligible probability).

We now formally prove correctness and security of this scheme [CKS09].

Theorem 3.7. Construction 3.5 is a correct deterministic (dynamic) accumulator scheme
(Definitions 3.1 and 3.3) that is secure (Definition 3.2) under the n-DHE assumption
(Definition 2.15).

Proof. Correctness

Let (pk, sk, U) ∈ [Gen(1λ, 1n)], V ∈ U . Let i ∈ V . We prove Verifypk(accV ,witV,i) = 1.

24

3.3 The Camenisch et al. accumulator

1 2 3 4 5 n+1 7 8 9 2n

accV 5 2 1

witV,i 5 / 1

e(g,witV,i) 5 / 1

e(gi, accV) 5 2 1

Figure 3.1: An example illustrating Construction 3.5. Here, n = 5, V = {1, 2, 5}, and
i = 2. The first row represents the accumulator accV = g1 · g4 · g5. Each
field is annotated with the identity that contributed the value (e.g., the
green field in the first row is g4 and it belongs to i = 2). The second
illustrates the witness witV,i = g3 · g7. The third row contains the witness
projected into GT and the fourth row is the shifted accumulator e(gi, accV) =
e(g, g)γ

3 ·e(g, g)γ
n+1 ·e(g, g)γ

7
. Note that rows 3 and 4 overlap on all positions

except n+ 1.

That is

e(gi, accV)/e(g,witV,i)

=
e(gγ

i
,
∏
j∈V g

γn+1−j
)

e(g,
∏
j∈V \{i} g

γn+1−j+i)

=
e(g, g)

∑
j∈V g

γn+1−j+i

e(g, g)
∑
j∈V \{i} g

γn+1−j+i

=e(g, g)γ
n+1

= z

Security

From a probabilistic polynomial-time attacker A against the accumulator, we construct
A′ against the n-DHE assumption.

A′ receives as input a description of the bilinear group (G,GT, e, p) ← G(λ), an

element g
R←− G \ {1}, γ R←− Zp, and gi := gγ

i
for i ∈ [2n] \ {n + 1}. A′ computes

z = e(g1, gn) = e(g, g)γ
n+1

and hands pk = ((G,GT, e, p), (gi)
2n
i=1,i 6=n+1, z) and U = [n]

to A.

A′ can answer the oracle queries of A using pk 2.

Eventually, A outputs (V, acc, i,wit). If i /∈ V, acc = accV , and Verifypk(acc, i,wit) =

2Indeed, we may assume that A does not query the oracles as it could easily compute the results itself.

25

3 Accumulators

1 (i.e. e(gi, accV)/e(g,wit) = e(g, g)γ
n+1

), then A′ computes and outputs

gγ
n+1

= gn+1
!

=

∏
j∈V gn+1−j+i

wit
(3.1)

the last equality holds because

e(gi, accV)/e(g,wit) = e(g, g)γ
n+1

⇔e(gγi , accV) · e(g,wit−1) = e(g, gγ
n+1

)

⇔e(g, accγ
i

V) · e(g,wit−1) = e(g, gγ
n+1

)

⇔e(g, (
∏
j∈V

gn+1−j)
γi) · e(g,wit−1) = e(g, gγ

n+1
)

⇔e(g,
∏
j∈V

gn+1−j+i) · e(g,wit−1) = e(g, gγ
n+1

)

⇔e(g,
∏
j∈V

gn+1−j+i/wit) = e(g, gγ
n+1

)

⇔
∏
j∈V

gn+1−j+i/wit = gγ
n+1

using that all groups involved are prime order groups and e is non-degenerate. A can
compute the right hand side value of (3.1) because i /∈ V and so the unknown value gn+1

is not part of the numerator’s product (all other gn+1−j+i are given by n-DHE).

A′ outputs gγ
n+1

if and only if A succeeds in computing an accumulator forgery. From
the n-DHE assumption, it follows that the probability for A to compute an accumulator
forgery must be negligible in the security parameter.

3.4 Anonymously proving inclusion in the accumulator

The goal of this thesis is to explore applications of accumulators for revocation in schemes
that feature anonymity, such as group signatures or credential systems. For this, it is
imperative that inclusion in the accumulator can be demonstrated without revealing the
accumulated identity or the witness (since in these schemes, either would identify the
user).

This can be solved through an interactive protocol to prove knowledge of an accumu-
lator witness witV,i that certifies that i is accumulated in accV without revealing witV,i
or i. Indeed, such a protocol exists:

Construction 3.8. The prover has an identity gi and a witness wit for Construction 3.5.
We also assume some publicly known random generator h̃ ∈ G\{1}. The prover chooses

random r1, r2
R←− Zp and computes

26

3.4 Anonymously proving inclusion in the accumulator

• a blinded identity G = gih̃
r1

• a blinded witness W = wit · h̃r2

and sends these values to the verifier. Then, the prover engages the verifier in the
following proof:

PK{(r1, r2) : e(G, accV)/e(g,W) = z · e(h̃, accV)r1/e(g, h̃)r2}

Through rearranging of terms, on can see that a witness (r1, r2) of the PK{. . . }
protocol allows derandomizing G and W to values g∗ := Gh̃−r1 ,wit∗ := Wh̃−r2 that
fulfill the accumulator verification equation e(g∗, accV)/e(g,wit∗) = z.

However, this protocol is not very useful on its own. Because gi is completely hidden
to the verifier, a revoked user i may simply choose some gi′ where i′ ∈ V and run the
protocol with witV,i′ . Hence, schemes that use this protocol will need to tie gi to some
other value (that only user i would know). For example, this tie can be a signature on
gi that is only given to user i. This is further discussed at the example of building a ring
signature scheme from the accumulator in Section 4.1.1.

27

4 A ring signature scheme from the
Camenisch et al. accumulator

In this chapter, we will construct a ring signature scheme (Definition 2.8). The ring
of signers V for a signature will be internally represented by an accumulator value
accV (Construction 3.5). This construction serves as a demonstration of how to build
anonymity-preserving protocols using the accumulator. Furthermore, the ring signature
scheme will serve as a basis for group signatures with accumulator revocation.

The overall idea of our proposed scheme is the following, using terminology from the
accumulator (Chapter 3). User i receives a signature on “his” accumulator value gi as
a secret key. We design a protocol for a user to prove knowledge of such a signature on
some gi and an accumulator witness that certifies accumulation of that particular i. A
signature for a set V and user i ∈ V is then created by computing the corresponding
accumulator accV and a witness witV,i from public information, then creating a signature
of knowledge using the Fiat-Shamir heuristic on the protocol.

Hence, we require

• a proof protocol for an accumulator witness (already covered in Section 3.4)

• a signature scheme for signing gi that has an efficient protocol for proving knowl-
edge of a signature without revealing gi (Section 4.1.1)

• the composition of both protocols (Section 4.1.2)

• construction and security proof of the ring signature scheme derived from the
combined protocol and the Fiat-Shamir heuristic (Section 4.2)

4.1 A protocol to prove revocation status

In this section, we describe the protocol that can be used to demonstrate (1) knowledge
of an identity i included in the accumulator, and (2) knowledge of a signature on i.
First, we will explain the signature scheme used for signing accumulator identities and a
protocol for proving knowledge of such signatures (Section 4.1.1). Then, we will compose
the two protocols and prove the properties of that protocol that will be used for security
of the ring signature scheme that we construct (Section 4.1.2).

4.1.1 Signing accumulator identities

As described in Section 3.4, the proof protocol for knowledge of an accumulated value
is not particularly useful in itself: No information is leaked about what value i is proven

29

4 A ring signature scheme from the Camenisch et al. accumulator

to be accumulated. This is a desirable property for our ring signature scheme since we
want to prove inclusion of the signer’s identity in the accumulator without revealing said
identity. However, since no information is leaked about the signer, user i may simply
prove inclusion of some i′ ∈ V , regardless of its own inclusion in the accumulator. For this
reason, we need to bind the value i used in the accumulator proof to the actual signer’s
identity. We do this by giving each user i a signature σi on the accumulator identity as
part of their secret key during setup. In this setting, the user proves knowledge of some
value i that is (1) included in the accumulator, and (2) signed with σi. This section
deals with choosing a suitable signature scheme.

For the sake of clarity, we already define the public and secret keys for the ring signa-
ture scheme and reference these variables throughout this section. The keys involved in
our ring signature scheme are of the following form:

• pk = ((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1, z, u, g
δ, h, h̃), where (G,GT, e, p), (g

γi)2n
i=0;i 6=n+1,

z are public parameters for the accumulator (Construction 3.5), u, h
R←− G \ {1}

and δ
R←− Zp for the signatures on accumulator identities (Section 4.1.1), and

h̃
R←− G \ {1} for commitments.

• sk[i] = (i, gi, ui, σi, pk), where gi = gγ
i

as in the accumulator construction, ui = uγ
i

(for n-HSDHE, as discussed later), and σi = h1/(δ+γi) (a signature on γi, cf.
Section 4.1.1).

We identified the following informal requirements for a suitable signature scheme sign-
ing accumulator identities, which will be briefly explained:

• The message space should beM = G (for signing gi = gγ
i
) orM = Zp (for signing

γi)1.

• Since only a fixed number of messages gi or γi are securely signed in the setup
phase, a weakly secure signature scheme suffices (cf. Definition 2.20).

• There must exist an efficient proof protocol demonstrating knowledge of a hidden
signature on a hidden message.

• That protocol (previous point) must not require user’s knowledge of γi but only
gγ

i 2.

• Without a signature, the protocol should be hard to pass for a prover. ForM = G,
this is easily achieved by requiring that the protocol is a proof of knowledge of gi
and a signature on gi. In the case that M = Zp, however, this is potentially
problematic. Since the prover must not learn the signed message m = γi, we

1As an alternative to signing γi, one may consider signing i ∈ Zp. However, the complex relationship

between gi used in the accumulator proof and the signed i (gi = gγ
i

for secret γ) would make linking
i to gi prohibitively difficult.

2Knowing i and γi would allow a user to compute γ = (γi)1/i, which allows creating accumulator
witnesses for arbitrary values

30

4.1 A protocol to prove revocation status

cannot expect to be able to extract m from a successful prover, which we need to
claim a proper signature forgery. As a consequence, the security of the protocol
cannot be directly reduced to the security of the signature scheme.

• The proof protocol should be “and”-composable with the accumulator proof proto-
col (Construction 3.8) such that the identity used there and the signature’s message
are properly connected.

This list of requirements indicates that it would be preferable to use a signature
scheme with message spaceM = G as this sidesteps the problems associated with users
not having access to γi. However, we were unable to find such a signature scheme. For
this reason, we follow the constructions in [CKS09] and use a variant of weakly-secure
Boneh-Boyen signatures (Construction 2.19). The message space of the weakly-secure
Boneh-Boyen signature scheme is Zp and it signs γi as σi := h1/(δ+γi) with the secret
key δ.

In the following, we will state the required protocol for demonstrating knowledge of
the ring signature scheme’s secret key sk[i]. Afterwards, we will explain the rationale
of the proof and how the problems associated with signing γi instead of gi are solved
through it.

Consider the following proof protocol used to demonstrate knowledge of a secret key
(slightly modified from [CKS09]):

Construction 4.1. Given sk[i] = (i, gi, ui, σi, pk), the prover chooses random r1, r3, r4,

open
R←− Zp and computes

• the blinded identities G = gih̃
r1 and U = uih̃

r4

• the blinded signature S = σih̃
r3

• the commitment B = gr1 h̃open

and sends these values to the verifier. Then, the prover sets mult = r1r3, tmp = open ·r3

and engages the verifier in the following proof:

PK{(r1, r3, r4, open,mult, tmp) :

e(G, u)/e(g,U) = e(h̃, u)r1e(g, h̃)−r4 (4.1)

∧ e(gδ · G, S) = e(g, h) · e(gδ · G, h̃)r3 · e(h̃, h̃)−mult · e(h̃, S)r1 (4.2)

∧B = gr1 h̃open ∧Br3 = gmulth̃tmp (4.3)

}

Roughly speaking3, in this protocol, (4.1) ensures that G and U derandomize to values

3For details, consult Lemma 4.4 which deals with the composition of this protocol with the accumulator
value proof.

31

4 A ring signature scheme from the Camenisch et al. accumulator

g∗ = Gh̃−r1 , u∗ = U h̃−r4 such that ∃x ∈ Zp : g∗ = gx ∧ u∗ = ux (i.e. they have the same
discrete logarithm). (4.3) ensures that mult = r1r3 (assuming the discrete logarithm of
h̃ is hard to compute). Finally, (4.2) ensures that σ∗ := Sh̃−r3 is a valid signature on
the discrete logarithm of g∗ (i.e. e(gδ · g∗, σ∗) = e(g, h)).

Note that a witness in this protocol does not contain the signed message γi of σi (as
discussed above, this is impossible to expect since γi must be kept secret). It does,
however, allow computing values g∗, u∗ and a signature σ∗ = h1/(m∗+δ) on the common
discrete logarithm m∗ of g∗ and u∗. This does not allow extracting a signature forgery
on m∗ (as m∗ cannot be efficiently computed from g∗ or u∗ by assumption). However,
assume we know the discrete logarithm ` of g = h`. Then we can compute an n-HSDHE
tuple (Definition 2.17) from the result, namely (g1/(δ+m∗), gm

∗
, um

∗
), where g1/(δ+m∗)

can be computed as (σ∗)`.

Loosely interpreted, the protocol shows knowledge of a signature σ on some message
m where a prover forging a new signature does not necessarily know m, but was able to
compute gm and um for two unrelated bases g, u.

Overall, we have found a way to sign the secret γi such that there exists a proof
protocol that does not depend on γi but only gγ

i
.

4.1.2 Combining the signature and accumulator protocol

We now state the protocol that combines Construction 3.8 (which guarantees knowledge
of an accumulator witness for some potential identity g∗) and Construction 4.1 (which
guarantees that g∗ is the user’s gi by proving knowledge of a signature on g∗). The
composition itself is straight-forward: the blinded values in the beginning are the union
of the ones in the respective protocols and the constraints in the subsequent Σ protocol
are composed by conjunction. The link between the two protocols is the shared G
(blinded accumulator identity) and its derandomization value r1.

Construction 4.2 (Proof of knowledge of a signature on an accumulated identity). Let
pk, (sk[i])ni=1 be as defined in the beginning of this chapter. To prove knowledge of a
secret key sk[i] and a witness wit for inclusion of gi in an accumulator acc, the prover

chooses random r1, r2, r3, r4, open
R←− Zp and computes

• a blinded identity G = gih̃
r1 and U = uih̃

r4

• a blinded witness W = wit · h̃r2

• a blinded signature S = σih̃
r3

• a commitment B = gr1 h̃open

and sends these values to the verifier. Then, the prover sets mult = r1r3, tmp = open ·r3

and engages the verifier in the following proof protocol, which we will call Σ in the

32

4.1 A protocol to prove revocation status

remainder of this chapter.

Σ = PK{(r1, r2, r3, r4, open,mult, tmp) :

e(G, u)/e(g,U) = e(h̃, u)r1e(g, h̃)−r4

∧ e(gδ · G, S) = e(g, h) · e(gδ · G, h̃)r3 · e(h̃, h̃)−mult · e(h̃, S)r1

∧B = gr1 h̃open ∧Br3 = gmulth̃tmp

∧ e(G, acc)/e(g,W) = z · e(h̃, acc)r1/e(g, h̃)r2

}

For the sake of clarity when applying the Fiat-Shamir heuristic, we now explicitly apply
Construction 2.5 to Σ and state the overall protocol with all details: Let

Φ
(1)
pk (acc,G,U ,W, S,B, t1, . . . , t7) := (T1, . . . , T5)

with

• T1 = e(h̃, u)t1 · e(g, h̃)−t4

• T2 = e(gδ · G, h̃)t3 · e(h̃, h̃)−t6 · e(h̃, S)t1

• T3 = gt1 · h̃t5

• T4 = gt6 · h̃t7 ·B−t3

• T5 = e(h̃, acc)t1/e(g, h̃)t2

and
Φ

(2)
pk (acc,G,U ,W, S,B, s1, . . . , s7, C) := (T1, . . . , T5)

with

• T1 = e(h̃, u)s1 · e(g, h̃)−s4 · (e(G, u)/e(g,U))−C

• T2 = e(gδ · G, h̃)s3 · e(h̃, h̃)−s6 · e(h̃, S)s1 · (e(gδ · G, S)/e(g, h))−C

• T3 = gs1 · h̃s5 ·B−C

• T4 = gs6 · h̃s7 ·B−s3

• T5 = e(h̃, acc)s1/e(g, h̃)s2 · (e(G, accV)/e(g,W)/z)−C

Then the protocol works as follows:

33

4 A ring signature scheme from the Camenisch et al. accumulator

Prover P on input Verifier V on input
sk[i] = (i, gi, ui, σi, pk), acc,wit pk, acc

choose r1 . . . , r4, open
R←− Zp

set G = gih̃
r1 ,

U = uih̃
r4 ,

W = wit · h̃r2 ,

S = σih̃
r3 ,

B = gr1 h̃open

mult = r1 · r3, tmp = open · r3

choose (t1, . . . , t7)
R←− Z7

p

(T1, . . . , T5) := Φ
(1)
pk (acc,G,U ,

W, S,B, t1, . . . , t7)
(G,U ,W,S,B,T1,...,T5)−−−−−−−−−→

C R←− Zp
C←−−−−−−−−−

calculate
s1 = r1 · C + t1
s2 = r2 · C + t2
s3 = r3 · C + t3
s4 = r4 · C + t4
s5 = open · C + t5
s6 = mult · C + t6
s7 = tmp · C + t7

s1,...,s7−−−−−−−−−→
accept if

Φ
(2)
pk (acc,G,U ,W, S,B, s1, . . . , s7, C)

!
= (T1, . . . , T5)

The correctness of this protocol follows from the fact that Σ derived from Construc-
tion 2.5 is correct. For more details, consult the proof of Lemma 4.10 (which shows
correctness of the signature version of this protocol), as it also directly applies to this
protocol.

Note that this construction is not formally a Σ-protocol because the prover takes
private input sk[i],wit but proves knowledge of (r1, r2, r3, r4, open,mult, tmp) – and the
two sets of witnesses turn out not to be of equal size, which rules out a one-to-one
correspondence of witnesses that could be used to convert the protocol to a Σ-protocol.
The reason behind this is that the construction to guarantee mult = r1 · r3 through

34

4.1 A protocol to prove revocation status

B = gr1 h̃open∧Br3 = gmulth̃tmp can be circumvented by breaking the discrete logarithm
problem4. This gives rise to witnesses in the inner Σ protocol that do not correspond to
valid sk[i],wit .

However, the protocol still has the necessary properties to apply the Fiat-Shamir

heuristic: it can be simulated (by choosing random G,U ,W, S,B
R←− G and then running

the simulator for Σ) and without knowing sk[i],wit , it is hard to pass the protocol. The
following lemma motivates the latter property (corresponding to special soundness).

Lemma 4.3. Given two accepting transcripts ((G,U ,W, S,B, T1, . . . , T5), C, (s1, . . . , s7))
and ((G,U ,W, S,B, T1, . . . , T5), C′, (s′1, . . . , s′7)) where C 6= C′, one can efficiently compute
an element

((pk, acc,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R

where R is the NP-relation of Σ in Construction 4.2, i.e.

R = {((pk, acc,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ ({pk} ×G6)× Z7
p :

∧ e(G, u)/e(g,U) = e(h̃, u)r1e(g, h̃)−r4

∧ e(gδ · G, S) = e(g, h) · e(gδ · G, h̃)r3 · e(h̃, h̃)−mult · e(h̃, S)r1

∧B = gr1 h̃open ∧Br3 = gmulth̃tmp

∧ e(G, acc)/e(g,W) = z · e(h̃, acc)r1/e(g, h̃)r2

}

Proof. Follows immediately from the special soundness property of Σ: given the two tran-
scripts as above, run the extractor of Σ (cf. Lemma 2.5) on input (pk, acc,G,U ,W, S,B)
and the two transcripts ((T1, . . . , T5), C, (s1, . . . , s7)) and ((T1, . . . , T5), C′, (s′1, . . . , s′7))
(which are accepting by construction).

The following lemma explains the protocol closer by demonstrating that extracted
witnesses allow computing interesting values, which we will later use to argue that provers
can break one of the schemes involved.

Lemma 4.4. Given

((pk, acc,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R

with R like in Lemma 4.3, one can efficiently compute either

• the discrete logarithm l∗ of h̃ = gl
∗

or the following

1. a signature σ∗ with e(gδ · g∗, σ∗) = e(g, h) for some g∗ ∈ G
4Details can be found in the upcoming Lemma 4.4.

35

4 A ring signature scheme from the Camenisch et al. accumulator

2. u∗ with ∃x ∈ Zp : g∗ = gx = ux = u∗

3. a witness wit∗ with e(g∗, acc)/e(g,wit∗) = z

Proof. Given ((pk, acc,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R, we distin-
guish two cases:

• If mult 6= r1 · r3, then we can compute the discrete logarithm l∗ = (r1 · r3 −
mult)/(tmp−open·r3) of h̃ to base g. From a valid witness we get that gr1·r3 h̃open·r3

= gmulth̃tmp and hence h̃ = g(r1·r3−mult)/(tmp−open·r3) (note that tmp−open ·r3 6= 0
because r1 · r3 −mult 6= 0 and g, h̃ are generators).

• If mult = r1 · r3, then we can compute derandomized values g∗ := G · h̃−r1 , u∗ =
U h̃−r4 , wit∗ :=W· h̃−r2 , σ∗ := Sh̃−r3 such that the required equations are fulfilled:

1. In a valid witness for Σ, it holds that e(gδ · G, S) = e(g, h) · e(gδ · G, h̃)r3 ·
e(h̃, h̃)−mult · e(h̃, S)r1 , hence e(gδ · g∗, σ∗) = e(g, h) (using mult = r1 · r3).

2. In a valid witness for Σ, it holds that e(G, u)/e(g,U) = e(h̃, u)r1e(g, h̃)−r4 , so
for x ∈ Zp with g∗ = gx we have e(g, u∗) = e(g∗, u) = e(gx, u) = e(g, ux) and
hence u∗ = ux.

3. In a valid witness for Σ, e(G, acc)/e(g,W) = z · e(h̃, acc)r1/e(g, h̃)r2 , which
implies e(g∗, acc)/e(g,wit∗) = z.

Finally, we note that our (composed) protocol (Construction 4.2) can be simulated

for any given C ∈ Zp: One simply chooses G,U ,W, S,B
R←− G randomly and then runs

the simulator for the inner protocol Σ, i.e. choose random s1, . . . , s7
R←− Zp and compute

the missing T1, . . . , T5 of the first message as Φ
(2)
pk (acc,G,U ,W, S,B, s1, . . . , s7, C).

4.2 Constructing the ring signature scheme

4.2.1 Construction

We now introduce our ring signature scheme that is based on the accumulator. The
scheme is built using the Fiat-Shamir heuristic on the protocol above (Construction 4.2),
which proves knowledge of a secret key where the identity is accumulated.

Note that in order to guarantee unforgeability, we require that to set up the ring

signature scheme for n′ users, the underlying accumulator is set up for n := n′(n′+1)
2

users. Because the accumulator scheme is secure for any number of users, this does
affect asymptotic guarantees. We refer to the discussion at the end of this chapter for
the reason behind this change and to Observation 4.6 for how this affects the size of the
public parameters.

36

4.2 Constructing the ring signature scheme

Construction 4.5 (Accumulator-based ring signature scheme).

• KeyGen(1λ, 1n
′
) sets n := n′(n′+1)

2 and does the following:

– Run Gen(1λ, 1n) from the Camenisch et al. accumulator (Construction 3.5)
to obtain pkacc = ((G,GT, e, p), (g

γi)2n
i=0;i 6=n+1, z) and skacc = γ.

– Pick δ
R←− Zp as the secret key for signatures on identities (Construction 2.19),

h
R←− G\{1} as the base for the signatures, and u

R←− G\{1} for the reduction
to n-HSDHE as discussed in Section 4.1.1.

– For every i ∈ {1, . . . , n′}, compute a signature σi := h1/(δ+γi) on γi and
compute gi := gγ

i
and ui := uγ

i
.

– Choose a hash function H : {0, 1}∗ → Zp, which we model as a random oracle,

and an additional h̃
R←− G \ {1} for commitments in the underlying protocol.

– pk = ((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1, z, u, g
δ, h, h̃).

– U = [n′].

– sk[i] = (i, gi, ui, σi, pk) for each i ∈ U .

– Output (pk, U, (sk[i])i∈U).

• Signsk[i](m,V) signs m according to the Fiat-Shamir heuristic on Construction 4.2:

– Compute the accumulator accV =
∏
j∈V gn+1−j and the witness witV,i =∏

j∈V \{i} gn+1−j+i (using public information).

– Compute the first part of the first message of the protocol: Choose random

r1 . . . , r4, open
R←− Zp and set G = gih̃

r1 , U = uih̃
r4 , W = witV,i · h̃r2 , S =

σih̃
r3 , B = gr1 h̃open. Then set mult = r1 · r3 and tmp = open · r3.

– Compute the second part of the first protocol message: Choose (t1, . . . , t7)
R←−

Z7
p and calculate Φ

(1)
pk (accV ,G,U ,W, S,B, t1, . . . , t7) := (T1, . . . , T5).

– Compute the challenge C = H(m, accV ,G,U ,W, S,B, T1, . . . , T5).

– Compute the response of the protocol: s1 := r1 · C + t1, s2 := r2 · C + t2,
s3 := r3 · C + t3, s4 := r4 · C + t4, s5 := open · C + t5, s6 := mult · C + t6,
s7 := tmp · C + t7.

– The signature is (G,U ,W, S,B, s1, . . . , s7, C).

• Verifypk(m,V, (G,U ,W, S,B, s1, . . . , s7, C)) checks the signature of knowledge as
follows:

– Compute accV =
∏
j∈V gn+1−j (from public information).

– Recreate the commitment (T1, . . . , T5) := Φ
(2)
pk (acc,G,U ,W, S,B, s1, . . . , s7, C).

– Output 1 if C = H(m, accV ,G,U ,W, S,B, T1, . . . , T5), otherwise output 0.

37

4 A ring signature scheme from the Camenisch et al. accumulator

In this construction, it may seem like the size of the public parameters suffers from
our need to set up the accumulator scheme for n = n′(n′ + 1)/2 users instead of only
n′ = |U | users.

Observation 4.6. The public key can be shortened to

pk = ((G,GT, e, p), (g
γi)n+n′

i=n+1−n′;i 6=n+1, z, u, g
δ, h, h̃)

The observation follows immediately because only the gi where i ∈ [n+1−n′, n+n′]\
{n+1} are used to carry out the Sign and Verify operations. With this change, we bring
down the size of pk by reducing the number of gi elements from 2n− 1 to merely 2n′− 1
group elements. The construction remains obviously secure (since any attacker against
the reduced-key scheme can be trivially used to attack the full-key scheme). We state the
ring signature scheme with full (gi)i∈[2n]\{n+1} because it makes the relationship of the
accumulator and the ring signature scheme slightly more explicit in the security proofs.

We also make the following observation.

Observation 4.7. Signatures of Construction 4.5 can be created and verified without
knowledge of V as long as accV and (for signing) witV,i are known.

As a consequence, one may also define the signing and verifying operations with ac-
cumulator parameters, i.e. Signsk[i](m, accV ,witV,i) and Verifypk(m, accV , σ).

The observation follows directly from the fact that V is only used in Sign and Verify to
compute accV (and witV,i). Later, we will use this fact to embed the scheme in a context
where the set V is not necessarily known to signers and verifiers. There, we also prove
that the ring signature scheme is still unforgeable in a slightly modified sense if Sign
operates directly on the accumulator instead of V (Definition 5.12 and Lemma 5.13).

Now that we established the special properties of this construction, we will proceed
to prove correctness, anonymity against early full key exposure, and unforgeability.

Theorem 4.8. Construction 4.5 is a correct ring signature scheme (Definition 2.8)
that fulfills anonymity (Definition 2.9) in the random oracle model, and has unforgeable
signatures (Definition 2.10) under the n-HSDHE assumption and n-DHE assumption in
the random oracle model.

Proof. The proof is divided into several parts and results from Lemma 4.10 (correctness),
Lemma 4.11 (anonymity), and Lemma 4.14 (unforgeability).

For the remainder of the chapter, for σ = (G,U ,W, S,B, s1, . . . , s7, C), we define func-
tions Ψ1,Ψ2,Ψ3 corresponding to the first, second, and third message in the underlying

38

4.2 Constructing the ring signature scheme

protocol (Construction 4.2), respectively.

• Ψ1(σ, acc, pk) := (G,U ,W, S,B, T1, . . . , T5), where (T1, . . . , T5) = Φ
(2)
pk (acc,G,U ,

W, S,B, s1, . . . , s7, C)

• Ψ2(σ) := C

• Ψ3(σ) := (s1, . . . , s7)

If pk is unambiguous in the current context, we may simply write Ψ1(σ, acc) instead of
Ψ1(σ, acc, pk).

The following observation establishes a link between signatures and the underlying
protocol.

Observation 4.9. For any σ ∈ G5×Z7
p×G and V ⊆ U , (Ψ1(σ, accV),Ψ2(σ),Ψ3(σ)) is

an accepting transcript in the underlying protocol (Construction 4.2).

This observation follows immediately from the fact that the protocol’s acceptance

check Φ
(2)
pk (accV ,G,U ,W, S,B, s1, . . . , s7, C)

!
= (T1, . . . , T5) is fulfilled simply by defini-

tion of Ψ1 (which computes (T1, . . . , T5) using Φ
(2)
pk).

4.2.2 Correctness

We now begin proving the lemmas required for Theorem 4.8, starting with correctness,
which essentially follows from correctness of the underlying protocol (Construction 4.2),
which in turn follows from correctness of our Σ protocols (Construction 2.5).

Lemma 4.10. Construction 4.5 is correct.

Proof. Consider the signature σ = (G,U ,W, S,B, s1, . . . , s7, C) created by the Sign algo-
rithm for m and V , with secret key sk[i] and random values r1, . . . , r4, open, t1, . . . , t7 ∈
Zp. We will show that Verify recreates the same T1, . . . , T5 that Sign used. Formally,

(T ′1, . . . , T
′
5) := Φ

(2)
pk (acc,G,U ,W, S,B, s1, . . . , s7, C)

!
= Φ

(1)
pk (accV ,G,U ,W, S,B, t1, . . . , t7)

=: (T1, . . . , T5). Then correctness follows immediately (since then both Sign and Verify
compute the same hash value, which is exactly what Verify checks).

Note that there is a close relation between the following equations and correctness of
the used Schnorr protocol variant (Construction 2.5). However, we still need to argue
that, for example, the accumulator check equation in the proof protocol is indeed satisfied
by the accumulator witness that Sign computes.

39

4 A ring signature scheme from the Camenisch et al. accumulator

T ′1 =e(h̃, u)s1 · e(g, h̃)−s4 · (e(G, u)/e(g,U))−C

=e(h̃, u)r1·C+t1 · e(g, h̃)−(r4·C+t4) · (e(G, u)/e(g,U))−C

=e(h̃, u)r1·C+t1 · e(g, h̃)−(r4·C+t4) · (e(gih̃r1 , u)/e(g, uih̃
r4))−C

=e(h̃, u)r1·C+t1 · e(g, h̃)−(r4·C+t4) · e(gi, u)−Ce(h̃, u)−r1·Ce(g, ui)
Ce(g, h̃)r4·C

=e(h̃, u)t1 · e(g, h̃)−t4 · e(gi, u)−Ce(g, ui)
C

∗
=e(h̃, u)t1 · e(g, h̃)−t4 · e(g, u)−γ

iCe(g, u)γ
iC

=e(h̃, u)t1 · e(g, h̃)−t4

=T1

using that ui = uγ
i

and gi = gγ
i

for ∗

T ′2 =e(gδ · G, h̃)s3 · e(h̃, h̃)−s6 · e(h̃, S)s1 · (e(gδ · G, S)/e(g, h))−C

=e(gδ · G, h̃)r3·C+t3 · e(h̃, h̃)−(r1·r3·C+t6) · e(h̃, S)r1·C+t1 · (e(gδ · G, S)/e(g, h))−C

=e(gδ · gih̃r1 , h̃)r3·C+t3 · e(h̃, h̃)−(r1·r3·C+t6) · e(h̃, σih̃r3)r1·C+t1

· (e(gδ · gih̃r1 , σih̃r3)/e(g, h))−C

=e(gδ · gih̃r1 , h̃)r3·C+t3 · e(h̃, h̃)−(r1·r3·C+t6) · e(h̃, σi)r1·C+t1e(h̃, h̃)r1r3·C+t1r3

· e(gδ · gih̃r1 , h̃)−r3Ce(gδ · gi, σi)−Ce(h̃, σi)−r1Ce(g, h)C

=e(gδ · gih̃r1 , h̃)t3 · e(h̃, h̃)−t6 · e(h̃, σi)t1 · e(h̃, h̃r3)t1 · e(gδ · gi, σi)−C · e(g, h)C

=e(gδ · gih̃r1 , h̃)t3 · e(h̃, h̃)−t6 · e(h̃, σih̃r3)t1 · e(gδ · gi, σi)−C · e(g, h)C

∗
=e(gδ · gih̃r1 , h̃)t3 · e(h̃, h̃)−t6 · e(h̃, σih̃r3)t1 · 1
=e(gδ · G, h̃)t3 · e(h̃, h̃)−t6 · e(h̃, S)t1

=T2

using that σi is a valid signature on γi, i.e. e(gδ · gi, σi) = e(gδ · gγi , h1/(δ+γi)) = e(g, h)
for ∗.

T ′3 =gs1 · h̃s5 ·B−C

=gr1·C+t1 · h̃open·C+t5 ·B−C

=gr1·C+t1 · h̃open·C+t5 · (gr1 h̃open)−C

=gt1 · h̃t5

=T3

40

4.2 Constructing the ring signature scheme

T ′4 =gs6 · h̃s7 ·B−s3
∗
=gr1·r3·C+t6 · h̃open·r3·C+t7 ·B−(r3·C+t3)

=gr1·r3·C+t6 · h̃open·r3·C+t7 · (gr1 h̃open)−(r3·C) ·B−t3

=gt6 · h̃t7 ·B−t3

=T4

using mult = r1r3 for ∗.

T ′5 =e(h̃, accV)s1/e(g, h̃)s2 · (e(G, accV)/e(g,W)/z)−C

=e(h̃, accV)r1·C+t1/e(g, h̃)r2·C+t2 · (e(G, accV)/e(g,W)/z)−C

=e(h̃, accV)r1·C+t1/e(g, h̃)r2·C+t2 · (e(gih̃r1 , accV)/e(g,witV,i · h̃r2)/z)−C

=e(h̃, accV)r1·C+t1/e(g, h̃)r2·C+t2 · e(gi, accV)−C · e(h̃, accV)−r1C · e(g,witV,i)
C · e(g, h̃)r2C · zC

=e(h̃, accV)t1/e(g, h̃)t2 · e(gi, accV)−C · e(g,witV,i)
C · zC

∗
=e(h̃, accV)t1/e(g, h̃)t2 · 1
=e(h̃, accV)t1/e(g, h̃)t2

=T5

Using for ∗ that accV and witV,i fulfill the accumulator verification equation e(gi, accV)/
e(g,witV,i) = z, which implies that e(gi, accV)−1 · e(g,witV,i) · z = 1.

Hence, we proved that (T1, . . . , T5) = (T ′1, . . . , T
′
5), i.e. that Verify recreates the same

Ti values that Sign used. This implies correctness of the scheme as noted in the beginning
of the proof.

4.2.3 Anonymity

We now prove anonymity of our scheme in the random oracle model. Essentially,
anonymity follows from the fact that the underlying protocol (Construction 4.2) can
be simulated. We can create signatures by computing a simulated protocol transcript,
then fixing the corresponding hash value to the transcript’s challenge. The resulting
signature will then be correct and distributed as expected. Anonymity follows from
the fact that this process does not depend on any user secrets and hence the challenge
signature created by this process is independent of the identity chosen for signing.

Lemma 4.11. Construction 4.5 fulfills anonymity against early full key exposure (Def-
inition 2.9) in the random oracle model.

Proof. Let A be a probabilistic polynomial-time attacker against the anonymity exper-
iment (Expanon−b

Π,A (·, ·) for b ∈ {0, 1}) that makes at most q(λ) queries to the random
oracle and the Sign oracle combined. We construct an algorithm B that simulates the
anonymity experiment independently of b for A. Later we will argue that B’s simulation

41

4 A ring signature scheme from the Camenisch et al. accumulator

is indistinguishable from the real experiment(s) for A (except with negligible probabil-
ity) and when the simulation does not fail, A’s output is independent of b, which will
give us the desired bound on A’s advantage.

B on input λ behaves as follows:

1. (pk, U, (sk[i])i∈U)← KeyGen(1λ, 1n
′
) using randomness ω

R←− {0, 1}poly(λ).

2. A has oracle access to H, which B will simulate by maintaining a set Q ⊆ {0, 1}∗×
Zp: whenever A queries H(x) for some x ∈ {0, 1}∗, B checks whether ∃y : (x, y) ∈
Q, in which case it returns y. Otherwise, it chooses y

R←− Zp, adds (x, y) to Q and
returns y.

3. A is given pk and U and randomness ω from Step 1.

4. Eventually A outputs two identities (i0, i1) ∈ U2, a set V ∗ with {i0, i1} ⊆ V ∗ ⊆ U
and a message m∗.

5. B chooses G,U ,W, S,B
R←− G and C R←− Zp. It chooses random s1, . . . , s7

R←−
Zp. It sets σ := (G,U ,W, S,B, s1, . . . , s7, C). If there is no y already such that
((m∗, accV ∗ ,Ψ1(σ, accV ∗)), y) ∈ Q, then B adds ((m∗, accV ∗ ,Ψ1(σ, accV ∗)), C) to
Q. Then it hands the challenge signature σ to A.

6. Eventually, A outputs a bit b′. B also outputs b′.

The point where the simulation may fail to deliver the expected behavior for the view
of A is in Step 5. If ∃y : ((m∗, accV ∗ ,Ψ1(σ, accV ∗)), y) ∈ Q at that point (and y 6= C),
the signature produced by B is invalid.

In both the original experiment and in B, let Q ⊆ {0, 1}∗ × Zp be the set of fixed
hash values; i.e. (x, y) ∈ Q if A queried the random oracle for x, receiving y as an
answer, or it received a signature σ on some m for a set of users V and (x, y) =
((m, accV ,Ψ1(σ, accV)),Ψ2(σ)). Similarly, let Q′ ⊆ Q be the same set at the point
in the execution when A outputs its challenge message. Let σ be the challenge sig-
nature that A receives for its request m∗, V ∗, i0, i1. Let fail be the event that ∃y :
((m∗, accV ∗ ,Ψ1(σ, accV ∗)), y) ∈ Q′ (i.e. the hash value for the challenge signature was
already determined before signing).

In both experiments, Q, σ, and A’s random bits uniquely determine the output of A.
It is easy to see that Q is distributed the same in both B and Expanon−b

Π,A (where Q is
determined by a proper random oracle), as B answers fresh queries to H with values y
chosen uniformly at random (and it answers repeat queries with the same hash value).
Note that if ((m∗, accV ∗ ,Ψ1(σ, accV ∗)), C) is added to Q in Step 5, C is also chosen
uniformly at random as expected.

If the event fail does not occur, the distribution of the challenge signature σ =
(G,U ,W, S,B, s1, . . . , s7, C) is the same as in the original experiment: in both cases,

σ
R←− G5 × Z7

p × Zp by definition of B, and of Sign with a random oracle, using the

42

4.2 Constructing the ring signature scheme

assumption that fail does not occur (i.e. the hash value for the signature was not yet
fixed).

Overall, this implies that Pr[B(λ, n) = 1 | ¬fail] = Pr[Expanon−b
Π,A (λ, n) = 1 | ¬fail] for

b ∈ {0, 1}. And in particular,

Pr[Expanon−0
Π,A (λ, n) = 1 | ¬fail] = Pr[Expanon−1

Π,A (λ, n) = 1 | ¬fail] (4.4)

We now analyze the probability of event fail. Recall that fail is the event that for
the challenge signature σ, ∃y : ((m∗, accV ∗ ,Ψ1(σ, accV ∗)), y) ∈ Q′, where Q′ is the
record of random oracle queries when A outputs its challenge message m. By definition
of B and our signature scheme Π, respectively, it holds that (G,U ,W, S,B) as part of
Ψ1(σ, accV ∗) is uniformly distributed in G5. Because |Q′| ≤ q(λ), the probability that
((m∗,Ψ1(σ, accV ∗)), y) ∈ Q′ is at most q(λ)/p5. Hence,

Pr[fail] ≤ q(λ)/p5 (4.5)

For the sake of readability, for b ∈ {0, 1}, let Expb = 1 denote the event that
Expanon−b

Π,A (λ, n) = 1. Finally, this implies that

|Pr[Exp0 = 1]− Pr[Exp1 = 1]|
=|Pr[Exp0 = 1 | ¬fail] · Pr[¬fail] + Pr[Exp0 = 1 | fail] · Pr[fail]

− Pr[Exp1 = 1 | ¬fail] · Pr[¬fail]− Pr[Exp1 = 1 | fail] · Pr[fail]|
(4.4)
= |Pr[Exp0 = 1 | fail] · Pr[fail]− Pr[Exp1 = 1 | fail] · Pr[fail]|
=|Pr[Exp0 = 1 | fail]− Pr[Exp1 = 1 | fail]| · Pr[fail]

(4.5)

≤ Pr[fail] ≤ q(λ)/p5

Because q is a polynomial and p ≥ 2λ, q(λ)/p5 is negligible in λ. Consequently, A has
negligible advantage in the anonymity experiment against Construction 4.5.

4.2.4 Unforgeability

For unforgeability, we will split the proof into multiple parts. The rough idea is that we
apply the forking lemma on a successful ring signature forger to receive two signatures
with different hash challenges. From these, we can compute a witness of the under-
lying protocol (Construction 4.2), which will allow us to break one of several security
assumptions.

More specifically, from an attacker A against the unforgeability game, we construct a
simulator algorithm B that will later be the algorithm that we use the forking lemma
on. B simulates the game for A, replacing signature queries with simulated signatures
like for anonymity (Lemma 4.11) and simulating the random oracle. From B, we then
construct an extractor algorithm E that uses forking lemma rewinding techniques on B
to retrieve a witness for the underlying protocol. Finally, we set up multiple reductions

43

4 A ring signature scheme from the Camenisch et al. accumulator

that run E to retrieve a witness and compute solutions for their respective games.

These reductions correspond to ways of (potentially) breaking the ring signature
scheme, namely:

• Computing an accumulator witness for an identity i /∈ V allows signing a message
for V using sk[i] (by definition of Sign) even though i is not part of the ring.

• Forging an identity signature σ = g1/(γi+δ) (alongside uγ
i
) for any user i is equiv-

alent to computing their secret key sk[i] and hence would allow forging a ring
signature.

• Computing the discrete logarithm of h̃ to base g would disable the underlying
protocol’s guarantee that the prover knows a valid signature (cf. Section 4.1.1,
mult = r1 . . . r3).

• Forging a signature σ = g1/(m+δ) for some m /∈ {γi | i ∈ [n]} would allow creating
a ring signature by computing a witness for the syntactically invalid accumulator
value m, which is not covered through accumulator security.

For more details and formal definitions, we refer to the proof of Lemma 4.14.

We proceed with the three steps (constructing the simulator B, constructing the ex-
tractor E , then applying the reductions) as noted above.

The simulator B

First, we construct B. Besides replacing queried signatures with simulated signatures,
B will also establish syntax useful for rewinding and later proofs.

Let A be a probabilistic polynomial-time attacker against our ring signature Π’s un-
forgeability game Expsigforge

Π,· (Definition 2.10). Let q be a polynomial such that q(λ)− 1
is an upper bound on the combined number of signature and hash queries that A does
for security parameter λ.

B on input λ, (pk, U, (sk[i])i∈U), and a list of hash oracle values H = (H1, . . . ,Hq(λ)) ∈
Zq(λ)
p behaves as follows:

1. B chooses ((G(k),U (k),W(k), S(k), B(k)), (s
(k)
1 , . . . , s

(k)
7))

q(λ)
k=1

R←− (G5×Z7
p)
q(λ). It sets

k = 1 initially.

2. B simulates A with random bits ωA
R←− {0, 1}poly(λ).

3. A is given pk, U , oracle access to Signsk[·](·, ·), oracle access to H and oracle access
to i 7→ sk[i].

4. B answers hash queries H(x) by keeping an initially empty set Q ⊆ {0, 1}∗ × Zp
and an index j (initially, j = 1). If ∃y : (x, y) ∈ Q, it answers the query with y,
otherwise it answers with Hj , adds (x,Hj) to Q, and increments j.

44

4.2 Constructing the ring signature scheme

5. B answers signature queries for Signsk[·](m,V) in the following way: B sets C := Hj ,

then increments j, and sets ((G,U ,W, S,B), (s1, . . . , s7)) = ((G(k),U (k),W(k), S(k),

B(k)), (s
(k)
1 , . . . , s

(k)
7)), then increments k.

B then sets σ = (G,U ,W, S,B, s1, . . . , s7, C). If ∃y : ((m, accV ,Ψ1(σ, accV)), y) ∈
Q, then B outputs fail and aborts. Otherwise it adds ((m, accV ,Ψ1(σ, accV)), C)
to Q. Then B hands the signature σ to A.

6. B answers secret key queries sk[i] with the corresponding key from its input.

7. Eventually, A outputs a message m∗, a set V ∗ ⊆ U and a signature σ∗. If ¬∃y :
((m∗, accV ∗ ,Ψ1(σ, accV ∗)), y) ∈ Q, then B issues a virtual query for the hash value
H((m∗, accV ∗ ,Ψ1(σ, accV ∗))).

8. If Verifypk(m
∗, V ∗, σ∗) = 1 and A did not query sk[i] for any i ∈ V ∗, nor did it

query Signsk[·](m
∗, V ∗), then B outputs (m∗, V ∗, σ∗). Otherwise, B outputs fail.

Note that B takes all secret keys as input, so a priori, there is no need to create
signatures in this way instead of relying on the Sign algorithm. However, one of the
reductions later will take advantage of this by replacing one of the sk[i] by a dummy
key, and exploit that signature queries can still be correctly answered. Furthermore,
note that B takes random hash oracle values as input (which will simplify rewinding
later), and chooses all random values for signature queries in the beginning to simplify
proofs. Of course, this is completely equivalent to choosing fresh hash values or signature
values, respectively, on demand. Lastly, in Step 7, B issues a virtual hash query if the
hash value for A’s output message is not yet determined (this is necessary anyway to
evaluate Verify in Step 8). Again, this simplifies proofs and covers attackers that do not
query the hash value of their forgery. Our choice of q accounts for that extra query.

The following lemma bounds the probability for B to output a forgery (i.e. to not
output fail).

Lemma 4.12. For all n′ ∈ N, it holds that if Pr[Expsigforge
Π,A (λ, n′) = 1] = ε(λ), then

Pr[B(λ, pk, U, (sk[i])i∈U , H) 6= fail] ≥ ε(λ)− q(λ)2/25λ

where U = [n′] and the probability is over the random bits ωB of B, H
R←− Zq(λ)

p , and
pk, (sk[i])i distributed as induced by KeyGen.

Proof. Let fail be the event that B outputs fail. Let fail5 be the event that B outputs
fail in Step 5, and fail8 the same for Step 8.

Our probability space is based on pk, (sk[i])i∈U , H, and ωB. All other random vari-

ables are derived. In particular, Expsigforge
Π,A (λ, n′) = 1 is the event that the sigforge

experiment outputs 1 for the run where the experiment answers queries using H and

((G(k),U (k),W(k), S(k), B(k)), (s
(k)
1 , . . . , s

(k)
7))

q(λ)
k=1, and A uses random bits ωA (as derived

from ωB). Note that this follows the same distribution as in the experiment’s original
definition.

45

4 A ring signature scheme from the Camenisch et al. accumulator

We first analyze Pr[fail5], which occurs if the hash value for a simulated signature
is already fixed. Consider one signature query and let Q be the set of fixed hash
values at that point. Because G,U ,W, S,B are chosen uniformly at random from G,
Pr[∃y : ((m, accV ,G,U ,W, S,B, T1, . . . , T5), y) ∈ Q] ≤ |Q|/|G|5 ≤ q(λ)/p5 using the
union bound. And hence, the probability that this happens in one of the at most q(λ)
signature queries is

Pr[fail5] ≤ q(λ)2/p5

We now consider the event fail8. If fail5 does not occur, then B’s simulation of the
sigforge game is consistent and in that case, B outputs fail if and only if the experiment
outputs 0, i.e. Expsigforge

Π,A (λ, n′) = 1 ∧ ¬fail5 ⇔ ¬fail8 ∧ ¬fail5.
It follows that

Pr[¬fail] = Pr[¬fail8 ∧ ¬fail5]

= Pr[Expsigforge
Π,A (λ, n′) = 1 ∧ ¬fail5]

≥ Pr[Expsigforge
Π,A (λ, n′) = 1]− Pr[fail5]

= ε(λ)− Pr[fail5]

≥ ε(λ)− q(λ)2/p5

≥ ε(λ)− q(λ)2/25λ

as required.

The extractor E

From the algorithm B we will now construct E , which will run B and after B outputs
a forgery, rewind it to the involved hash query, executing it from that point on with
different random hash values. In our case, rewinding happens in the form of executing
B again with the same input, same random bits, and same hash values up until some
hash index. If E is able to obtain two forgeries from B, it computes a witness of the
underlying protocol or, under special circumstances, two sets with the same accumulator
value.

Let B, q be as described above. For a message m, a set V ⊆ U , and a valid signature
σ, we say that σ was created at hash index i if i is the index of H that B used when
adding ((m, accV ,Ψ1(σ, accV)), Hi) to Q. Note that for the output of B, such an index
always exists (if it does not already when A outputs its forgery, B issues a virtual hash
query).

E on input λ, (pk, U, (sk[i])i∈U) behaves as follows:

1. Choose H = (H1, . . . ,Hq(λ))
R←− Zq(λ)

p and ωB
R←− {0, 1}poly(λ).

2. E runs B on input (λ, pk, U, (sk[i])i∈U , H) with randomness ωB. If B fails, E outputs
fail and aborts. Otherwise B outputs (m,V, σ).

46

4.2 Constructing the ring signature scheme

3. Let i ∈ [q(λ)] be the hash index where σ was created.

4. E chooses new H ′i, . . . ,H
′
q(λ)

R←− Zp and sets H ′ := (H1, . . . ,Hi−1, H
′
i, . . . ,H

′
q(λ)).

5. E runs B again with the same randomness ωB and input (λ, pk, U, (sk[i])i∈U , H
′).

If B fails, E returns fail and aborts. Otherwise B outputs (m′, V ′, σ′).

6. Let i′ ∈ [q(λ)] be the hash index where σ′ was created.

7. If i′ 6= i or Ψ2(σ) = Ψ2(σ′), E outputs fail and aborts.

8. If index i was used to answer a signature query Signsk[·](m, V̂), E outputs (V, V̂).

9. Otherwise, if V 6= V ′, E outputs (V, V ′).

10. Otherwise, E computes ((pk, accV ,G,U ,W, S,B), (r1, . . . , r4, open,mult, tmp)) as
in Lemma 4.3 with transcripts (Ψ1(σ),Ψ2(σ),Ψ3(σ)) and (Ψ1(σ′),Ψ2(σ′),Ψ3(σ′)).
E outputs (V, ((pk, accV ,G,U ,W, S,B), (r1, . . . , r4, open,mult, tmp))).

Lemma 4.13. Let R be the NP-relation of the protocol Σ in Construction 4.2. Let A
be a probabilistic polynomial-time algorithm with Pr[Expsigforge

Π,A (λ, n′) = 1] = ε(λ). Then
E runs in polynomial time. E either succeeds or outputs fail. If E succeeds, it either
outputs

• a set V and an element ((pk, accV ,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈
R

• or sets V ′, V ′′ ⊆ U with accV ′ = accV ′′

The probability for E to succeed is

Pr[E(λ, (pk, U, (sk[i])i∈U)) 6= fail] ≥ µ(λ)

(
µ(λ)

q(λ)
− 1

2λ

)
where µ(λ) = ε(λ)−q(λ)2/p5 and the probability space is defined over (pk, U, (sk[i])i∈U)←
KeyGen(1λ, 1n

′
).

Proof. Let B be the algorithm constructed from A in Lemma 4.12. Let q be a polynomial
such that q(λ) − 1 is an upper bound on the combined number of signature and hash
queries that A does for security parameter λ.

By Lemma 4.12, B has success probability at least µ(λ) := ε(λ)− q(λ)2/p5.
To match the syntax of the forking lemma (Lemma 2.7), assume that B outputs (0, ε)

instead of fail and otherwise (i, (m,V, σ)) such that σ was created at hash index i. Note
that the first part of E (Steps 1-7) behaves exactly like the forking lemma’s FB. E outputs
fail if and only if FB outputs fail (for the same choice of hash values and random bits
ωB in both algorithms). Applying the forking lemma gives us

Pr[E(. . .) 6= fail] = Pr[FB(. . .) 6= fail] ≤ µ(λ)

(
µ(λ)

q(λ)
− 1

p

)
≤ µ(λ)

(
µ(λ)

q(λ)
− 1

2λ

)

47

4 A ring signature scheme from the Camenisch et al. accumulator

as required.

If E does not abort prematurely (i.e. fail), there are three cases to consider for E ’s
output, corresponding to Step 8, Step 9, and Step 10, respectively.

Suppose that index i was used to answer a signature query Signsk[·](m, V̂). Let σ̂
be the resulting signature of that query. Then in the first run, A output the forgery
(m,V, σ) and B checked that A has never queried Signsk[·](m,V). Hence V 6= V̂ . Fur-
thermore, since both σ and σ̂ were created at hash index i, (m, accV ,Ψ1(σ, accV)) =
(m, accV̂ ,Ψ1(σ̂, accV̂)) and in particular, accV = accV̂ . Overall, in this case, E outputs

(V, V̂) with V 6= V̂ and accV = accV̂ , as required.

If index i was not used to answer any signature query, then it was used to answer a
hash query. Since both σ and σ′ were created at hash index i, (m, accV ,Ψ1(σ, accV)) =
(m′, accV ′ ,Ψ1(σ′, accV ′)).

For this, there are two cases. If E outputs (V, V ′) in Step 9 because V 6= V ′, it also
holds that accV = accV ′ as required.

For V = V ′, consider the following argument: (Ψ1(σ),Ψ2(σ),Ψ3(σ)) and (Ψ1(σ′),
Ψ2(σ′),Ψ3(σ′)) are two accepting transcripts of Construction 4.2 because σ, σ′ are valid
signatures (cf. Observation 4.9). It holds that Ψ1(σ) = Ψ1(σ′) (since σ, σ′ were
created at the same hash index i), and that Ψ2(σ) 6= Ψ2(σ′) (otherwise E would
have aborted). Consequently, Lemma 4.3 can be applied and E correctly computes
((pk, accV ,G,U ,W, S,B), (r1, . . . , r4, open,mult, tmp)) ∈ R as required.

E outputting V ′ 6= V ′′ with accV ′ = accV ′′ corresponds to the attacker A inside B
finding an accumulator collision. Such attackers exploit the fact that a signature for V ′

is also valid for V ′′. Indeed, this weakness exists on purpose: we will later use the ring
signature scheme in a context where the signer only knows accV but not the set V when
creating a signature (cf. Observation 4.7). Attackers should not be able to find such
sets V ′, V ′′ efficiently since it would immediately result in an accumulator forgery.

For the other type of output, the interpretation is less simple. There are several ways
the attacker may have violated our security assumptions. We refer to the following proof
for details.

Reductions

Finally, we are ready to use E to prove unforgeability of our ring signature scheme.

Lemma 4.14. Construction 4.5 has unforgeable signatures under the n-DHE assump-
tion5 (Definition 2.15) and the n-HSDHE assumption (Definition 2.17) in the random
oracle model.

Proof. Let A be an arbitrary probabilistic polynomial-time algorithm, n′ ∈ N, and
n = n′(n′ + 1)/2. Let E be the algorithm constructed as above. Lemma 4.13 implies

5Note that n = n′(n′ + 1)/2 where n′ is the number of users of the ring signature scheme.

48

4.2 Constructing the ring signature scheme

that if A has non-negligible probability to win the sigforge experiment, then E has non-
negligible chance to output (V, x) with x ∈ R as in Lemma 4.4 or two different sets
V ′, V ′′ with the same accumulator. We will show that our assumptions imply that E
must have negligible probability to output such values. This contradicts that A has
non-negligible probability against unforgeability of our scheme.

For this, we will employ five reductions, each corresponding to a type of forgery output
by E .

• Type 1: E outputs (V ′, V ′′) with V ′ 6= V ′′ and accV ′ = accV ′′ . Such a forger can
break the accumulator scheme.

For the other types, let ((pk, accV ,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R
be a valid element of the relation, output by E together with a set V ⊆ U . For the
derandomized value of the blinded identity G, we write g∗ := G · h̃−r1 . We define the
remaining forgery types as follows (with informal description).

• Type 2: mult 6= r1 · r3 (and not Type 1). Such a forger can compute the discrete
logarithm of h̃ to base g.

• Type 3: g∗ /∈ {gi | i ∈ [n]} (and not Type 1 or 2), i.e. the identity that was used for
signing is not one of the set up accumulator identities. Such a forger can compute
an n-HSDHE tuple.

• Type 4: g∗ = gi for some i ∈ [n] but i /∈ V (and not Type 1 or 2), i.e. the identity
is not accumulated in accV . Such a forger can break the accumulator scheme,
computing a witness for i /∈ V .

• Type 5: g∗ = gi for some i ∈ [n] and i ∈ V (and not Type 1 or 2), i.e. the identity
is present in V , so A inside E did not query for sk[i] and was still able to produce
a signature. Such a forger can break weak unforgeability of Construction 2.19.

For i ∈ {1, . . . , 5}, let Ei be the algorithm that behaves like E but only outputs Type-
i forgeries (it discards all others, outputting “fail” instead). Since every valid wit-
ness is exactly one of these types, it suffices to show that each Ei has negligible suc-
cess probability. This holds because Pr[E(. . .) 6= fail] =

∑5
i=1 Pr[E(. . .) 6= fail ∧

E outputs a Type i forgery] =
∑5

i=1 Pr[Ei(. . .) 6= fail] and hence if E has non-negligible
success probability, then at least one of the Ei must have non-negligible success proba-
bility.

In the remainder of the proof, we will examine each Ei and upper-bound their success
probability.

Type 1 forger

Consider the Type 1 forger E1. In case of success it outputs (V ′, V ′′) with V ′ 6= V ′′ and
accV ′ = accV ′′ . We construct an algorithm A′ against the accumulator forging game
(Definition 3.2). A′ receives input U = [n] and (gγ

i
)2n
i=0,i 6=n+1, z (as well as a description of

49

4 A ring signature scheme from the Camenisch et al. accumulator

(G,GT, e, p)) and is expected to output (V, accV , i,wit) such that e(gi, accV)/e(g,wit) =
z and i /∈ V .

Setup

A′ is given the public key of the accumulator ((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1, z) and needs
to complete the ring signature scheme setup. The main challenge here is generating valid
signatures σi = h1/(δ+γi) for i ∈ [n′] since A′ cannot efficiently compute any γi.6 It also
needs to generate uγ

i
such that u is chosen uniformly from G \ {1}.

A′ sets up the ring signature scheme as follows: It chooses a random signature scheme

secret key δ
R←− Zp. For determining the signature base h, consider the polynomial f(x) =∏n′

i=1(xi + δ) (a similar trick was used in [BB04] but here, the signature scheme’s secret
δ is known but we are not given the n′ messages γi). Because deg(f) = n′(n′+ 1)/2 = n
and we are given gγ

i
for i ∈ [n], we can compute gf(γ) by writing f in its canonical

form f(x) =
∑n

i=0 αix
i and computing

∏n
i=0(gγ

i
)αi = gf(γ). A′ then sets h := (gf(γ))R

′

for some R′ R←− Z∗p. With this setup, A′ can compute signatures σi = h1/(δ+γi) for

i ∈ [n′] through polynomials fi(x) := f(x)/(xi + δ): σi = (gfi(γ))R
′
. Here, gfi(γ) can be

computed with the same technique as gf(γ) above. If h = 1, A outputs fail and aborts.
Otherwise f(γ) 6= 0 and so σi = (gfi(γ))R

′
= (gf(γ)/(γi+δ))R

′
= h1/(γi+δ) as required. To

complete the secret key values, A′ chooses R R←− Z∗p and computes u = gR and ui := gRi
(so gRi = (gR)γ

i
= uγ

i
as required) for i ∈ [n′].

Finally, it chooses h̃
R←− G\{1} and sets pk = ((G,GT, e, p), (g

γi)2n
i=0;i 6=n+1, z, u, g

δ, h, h̃)
and sk[i] = (i, gi, ui, σi, pk) for i ∈ [n′].

Computing a solution

A′ runs E1(λ, (pk, U, (sk[i])i∈U)). If E1 is successful, it outputs (V ′, V ′′) with V ′ 6= V ′′

and accV ′ = accV ′′ . Without loss of generality, we assume that V ′ \ V ′′ 6= ∅ (if
not the case, this can be achieved by renaming V, V ′′). A′ finds i ∈ V ′ \ V ′′ and
outputs (V ′′, accV ′ , i,witV ′,i), which is a valid accumulator forgery since i /∈ V ′′ but
Verify(accV ′′ , i,witV ′,i) = Verify(accV ′ , i,witV ′,i) = 1 using correctness of Construc-
tion 3.5.

If E1 is unsuccessful, A′ outputs fail and aborts.

Probability analysis

If h = 1, i.e. f(γ) = 0 (in the setup), A′ aborts (as h = 1 does not happen in the actual
scheme). Let bad be the event that f(γ) = 0. f(γ) = 0 ⇔ δ ∈ {−γi | i ∈ [n′]} and
because δ is chosen independently of γ, Pr[bad] ≤ n′/p ≤ n′/2λ.

If bad does not occur, then pk, (sk[i])i are distributed as expected. Whenever E1 is
successful, A′ outputs an accumulator forgery.

6Note that this complication is not surprising. It arises through the need to have a clear relation between
the signatures σi and their messages (γi) in order to enable a proof protocol (cf. Section 4.1.2). We
will discuss this issue in more detail later.

50

4.2 Constructing the ring signature scheme

It follows that

Pr[E1(. . .) 6= fail]

≤ Pr[E1(. . .) 6= fail ∧ ¬bad] + Pr[bad]

= Pr[A′(. . .) 6= fail] + Pr[bad]

≤ Pr[A′(. . .) 6= fail] + n′/2λ

≤ µ(λ)

for some negligible function µ, using that n′/2λ is negligible and the n-DHE assumption
for Pr[A′(. . .) 6= fail] being negligible (accumulator security, Theorem 3.7).

Type 2 forger

Consider the Type 2 forger E2. In case of success it outputs only protocol witnesses
where mult 6= r1 ·r3. We construct an algorithm A′ against the discrete logarithm game.

A′ receives input g
R←− G and h̃

R←− G (as well as a description of (G,GT, e, p)) and is
expected to output l ∈ Zp such that gl = h̃.

Setup

A′ sets up the ring signature scheme by choosing secrets γ, δ
R←− Zp and setting

pk = ((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1, z, u, g
δ, h, h̃) for z = e(g, g)γ

n+1
and u, h

R←− Zp. Fur-
thermore, sk[i] = (i, gi, ui, σi, pk) can be computed in a straight-forward manner (know-
ing γ and δ).

Computing a solution

A′ runs E2(λ, (pk, U, (sk[i])i∈U)). If E is successful, it outputs a witness
((pk, accV ,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R with mult 6= r1 · r3. In
this case, Lemma 4.4 states that from such a witness, we can efficiently compute the
discrete logarithm l ∈ Zp of h̃ = gl. A′ outputs l. If B is unsuccessful, A′ outputs fail
and aborts.

Probability analysis

pk, (sk[i])i are distributed as expected. Whenever E2 is successful, A′ outputs the discrete
logarithm. It follows that

Pr[E2(. . .) 6= fail] = Pr[A′(. . .) 6= fail] ≤ µ(λ)

for some negligible function µ, using the discrete logarithm assumption for G (implied
by n-DHE).

Type 3 forger

Consider the Type 3 forger E3. In case of success it outputs only protocol witnesses
where g∗ /∈ {gi | i ∈ [n]} (and mult = r1r3).

51

4 A ring signature scheme from the Camenisch et al. accumulator

We construct an algorithm A′ against the n-HSDHE game (Definition 2.17). A′ re-
ceives input (g, gδ, u, (g1/(δ+γi), gi = gγ

i
, ui = uγ

i
)ni=1, (gi = gγ

i
)2n
i=n+2) (as well as a

description of (G,GT, e, p)) and is expected to output a (new) tuple (g1/(δ+c), gc, uc)
(where c ∈ Zp \ {γi | i ∈ [n]}).

Setup

A′ sets up the ring signature scheme as follows: It sets z := e(g1, gn) = e(g, g)γ
n+1

,

chooses a random R R←− Z∗p and sets h = gR. It also chooses h̃
R←− G. A′ then sets pk =

((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1, z, u, g
δ, h, h̃). Furthermore, σi := (g1/(δ+γi))R = h1/(δ+γi)

(using the g1/(δ+γi) values from its input) and with that sk[i] = (i, gi, ui, σi, pk) for
i ∈ [n′].

Computing a solution

A′ runs E3(λ, (pk, U, (sk[i])i∈U)). If E3 is successful, it outputs a witness
((pk, accV ,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R such that the derandom-
ized g∗ /∈ {gi | i ∈ [n]} (and mult = r1 · r3). In this case, Lemma 4.4 states that from
such a witness, we can efficiently compute a signature σ∗ with e(σ∗, gδ · g∗) = e(h, g)
and u∗ with ∃x ∈ Zp : g∗ = gx = ux = u∗. Hence σ∗ = h1/(δ+x) and consequently
((σ∗)1/R = g1/(δ+x), gx, ux) is a valid new n-HSDHE tuple with x /∈ {γi | i ∈ [n]}. If E3

is unsuccessful, A′ outputs fail and aborts.

Probability analysis

pk, (sk[i])i are distributed as expected. Whenever E3 is successful, A′ outputs an n-
HSDHE tuple. It follows that

Pr[E3(. . .) 6= fail] = Pr[A′(. . .) 6= fail] ≤ µ(λ)

for some negligible µ, using the n-HSDHE assumption.

Type 4 forger

Consider the Type 4 forger E4. In case of success it outputs only a set V ⊆ U and a
witness where g∗ = gi for some i ∈ [n] but i /∈ V (and mult = r1r3).

We construct an algorithm A′ against the accumulator forging game (Definition 3.2).
A′ receives input U = [n] and (gγ

i
)2n
i=0,i 6=n+1, z (as well as a description of (G,GT, e, p))

and is expected to output (V, accV , i,wit) such that e(gi, accV)/e(g,wit) = z.

Setup

As for the Type 1 forger.

Computing a solution

A′ runs E4(λ, (pk, U, (sk[i])i∈U)). If E4 is successful, it outputs a witness
((pk, accV ,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈ R and a set V ⊆ U such
that the derandomized g∗ = gi for some i ∈ [n] but i /∈ V (and mult = r1r3). In

52

4.2 Constructing the ring signature scheme

this case, Lemma 4.4 states that from such a witness, we can efficiently compute an
accumulator witness wit with e(g∗, accV)/e(g,wit) = z, i.e. e(gi, accV)/e(g,wit) = z. If
E4 is successful, A′ can output (V, accV , i,wit) as a valid accumulator forgery. If E4 is
unsuccessful, A′ outputs fail and aborts.

Probability analysis

Same as for the Type 1 forger: if bad (cf. Type 1 forger) does not occur, then pk, (sk[i])i
are distributed as expected. Whenever E4 is successful, A′ outputs an accumulator
forgery.

It follows that

Pr[E4(. . .) 6= fail]

≤ Pr[E4(. . .) 6= fail ∧ ¬bad] + Pr[bad]

≤ Pr[A′(. . .) 6= fail] + n′/2λ

≤ µ(λ)

for some negligible function µ, using that n′/2λ is negligible and the n-DHE assumption
for accumulator security (Theorem 3.7).

Type 5 forger

Consider the Type 5 forger E5. In case of success it outputs only a set V and a protocol
witness where g∗ = gi for some i ∈ [n] and i ∈ V (and mult = r1r3).

We construct an algorithm A′ against the weakly secure signature scheme (Con-
struction 2.19, Definition 2.20). A′ receives a description of (G,GT, e, p) as input
and is expected to specify a list of signature queries m1, . . . ,mn′ before receiving the
public key (h, hδ) and signatures σi = h1/(δ+mi). Then A′ must output a message
m∗ /∈ {m1, . . . ,mn′} and a signature σ = h1/(δ+m∗).

Setup

A′ first chooses γ
R←− Z∗p and a random index i∗

R←− U = [n′], and hands (γi)i∈U\{i∗} to
the experiment to receive signatures (σi)i∈U\{i∗} and the signature scheme’s public key

(h, hδ).

It then sets up the ring signature scheme as follows: A′ sets g := hR for R R←− Z∗p (hence

for the public key, gδ can be computed as (hδ)R). It then chooses u, h̃
R←− G, computes

gi, ui using γ and sets z = e(g, g)γ
n+1

. Finally, A′ sets pk = ((G,GT, e, p), (g
γi)2n

i=0;i 6=n+1,

z, u, gδ, h, h̃) and sk[i] = (i, gi, ui, σi, pk) for i ∈ [n′] \ {i∗}.

Computing a solution

A′ runs E5(λ, (pk, U, (sk[i]′)i∈U)) with sk[i]′ = sk[i] for i 6= i∗ and sk[i∗]′ := ε in lieu of a
valid secret key (which contains the signature that A′ does not have and wants to forge).

If E5 is successful, it outputs ((pk, accV ,G,U ,W, S,B), (r1, r2, r3, r4, open,mult, tmp)) ∈
R and a set V ⊆ U such that the derandomized g∗ = gi for some i ∈ [n] and i ∈ V

53

4 A ring signature scheme from the Camenisch et al. accumulator

(and mult = r1r3). In this case, Lemma 4.4 states that from such a witness, we can
efficiently compute an a signature σ∗ with e(σ∗, gδ · gi) = e(h, g). If i = i∗, A′ outputs
the signature forgery σ∗ on m∗ = γi, which it has not queried and which is valid because
e(σ∗, gδ · gγi) = e(h, g) ⇒ e(σ∗, hδ · hγi)R = e(h, h)R and hence e(σ∗, hδ · hγi) = e(h, h)
as required. If i 6= i∗, A′ outputs fail.

Probability analysis

Consider the probability space defined over (pk, U, (sk[i])i∈U)← KeyGen(1λ, 1n
′
), i∗

R←−
[n′], and the random bits ω for E5. All variables are chosen with their respective dis-
tributions by A′ or the weak unforgeability game with the special case of sk[i∗] =
(i∗, gi∗ , ui∗ , σi∗ , pk), which A′ does not compute explicitly but that is uniquely deter-
mined through the choice of i∗, g, g1, u, g

δ in pk. So as a random variable, sk[i∗] is
well-defined, following the distribution induced by KeyGen.

For fixed (pk, U, (sk[i])i∈U), and random bits ω, the output of E5(pk, U, (sk[i])i∈U) is
uniquely determined. Assume that E5 does not output fail. Then it outputs a witness
with g∗ = gk for some k ∈ [n] and k ∈ V . By definition of E (Lemma 4.13) and B
(Lemma 4.12), the algorithm A does not query for sk[k] in either run that E issues: if it
had queried for sk[k], it would not have won its (simulated) ring signature forging game
since k ∈ V – then B would have exited with output fail. Since the sk[·] array is only
ever used by B (and E) to answer A’s key queries, if we run E5(pk, U, (sk[i]′)i∈U) with
sk[i]′ = sk[i] for i 6= k and sk[k]′ = ε and the same random bits ω, the result will be
exactly the same (the value of sk[k] is never used so it can be left out). Let good be the
event that i∗ = k (where we set k = 1 if E5 outputs fail). As i∗ is chosen independently
of all other variables, Pr[good] = 1/n′.

Whenever E5 with full keys is successful and good occurs, E5 without sk[k] behaves
exactly the same and thenA′ is able to output a signature forgery. Formally, it holds that
E5(pk, U, (sk[i])i∈U) 6= fail∧ good⇔ E5(pk, U, (sk[i]′)i∈U) 6= fail∧ good⇔ A′(. . .) 6= fail.
This implies

Pr[A′(. . .) 6= fail]

= Pr[E5(pk, U, (sk[i])i∈U) 6= fail ∧ good]

= Pr[E5(pk, U, (sk[i])i∈U) 6= fail] · Pr[good]

= Pr[E5(pk, U, (sk[i])i∈U) 6= fail]/n′

By the (n′+ 1)-SDH assumption, which is implied by n-HSDHE, the attacked signature
scheme (Construction 2.19) is weakly secure. It follows that Pr[A′(. . .) 6= fail] ≤ µ(λ)
for some negligible µ and so Pr[E5(. . .) 6= fail] ≤ µ(λ).

Conclusion

Overall, we have shown that E1, . . . , E5 only have negligible probability for success. Using
our arguments from the beginning of the proof, this implies that A must have negligible
probability of success against the unforgeability experiment.

54

4.2 Constructing the ring signature scheme

Recall that we set up the accumulator for n = n′(n′ + 1)/2 for just n′ users of the
ring signature scheme. The need to do this arises exactly from type 1 and type 4
forgers, where in the reduction, one needs to generate signatures h1/(γi+δ) to complete
the setup of the ring signature scheme. For this, the n′-DHE assumption (underlying
the accumulator) does not supply sufficiently many gγ

i
values but n-DHE does.

This is a consequence of our choice for the signature scheme signing the accumulator
identities (cf. Section 4.1.1). Since we sign exactly the γi values from the accumulator,
which we do not know in the reduction to accumulator security, we need to resort to a
special technique requiring n′ · (n′ + 1)/2 values of gγ

i
to create our n′ signatures (cf.

type 1 forgers above). Furthermore, the n-HSDHE assumption (cf. type 3 forgers) was
created in [CKS09] specifically to make the chosen signature scheme work: the attacker
against n-HSDHE is given the accumulator values and exactly the signatures on γi as
required. Note that while syntactically similar, the relationship between n-DHE and
n-HSDHE is unknown [CKS09]. In particular, we could not have simply reduced type
1 forgers or type 4 forgers to n-HSDHE, where the signatures are conveniently supplied
to the reduction algorithm (since the value of gγ

n+1
from breaking n-DHE does not help

create a tuple (g1/(δ+c), gc, uc) for n-HSDHE).

Overall, both the specially-tailored n-HSDHE assumption and setting up the accu-
mulator for n = n′ · (n′ + 1)/2 values could have potentially been avoided by choosing
a different signature scheme for accumulator identities. Both of these are basically
workarounds for the fact that the users proving knowledge of a valid signature do not
have access to the signed message γi. The easiest solution here would be a signature
scheme whose message space is G (as discussed in Section 4.1.1). Then the type 1 and
4 reductions could have set up the signature scheme independently of the accumulator
scheme and just sign the gi values (which are part of the accumulator’s public key) using
the standard signing mechanism of that signature scheme. Type 3 forgeries could have
been reduced to unforgeability of the signature scheme, since with message space G, it
is reasonable to expect a protocol witness to contain the signed message gi (and the
signature σi). However, we were unable to find such a signature scheme. While multiple
schemes with message space Zp allow verifying a signature on a message m using only
gm, they usually rely on a forger supplying m to break their underlying assumption. For
example, this seems to be the case for Construction 2.18 (for type 3 forgers [Oka06], m
seems to be needed) and Construction 2.19 (simply because m is part of SDH tuples).

This concludes the security proofs for our ring signature construction. Our ring sig-
nature scheme can be used as a building block for other contexts. For example, we will
extend an arbitrary group signature scheme with this ring signature scheme to make it
support revocation with the accumulator. Note that there is no overhead in this scheme
associated with it being a secure ring signature scheme: it is a straight application of
the Fiat-Shamir heuristic on with no additional ring-signature-specific constructs. It
also has the nice property that it is possible to sign and verify messages using only an
accumulator value accV (cf. Observation 4.7).

Performance-wise, signatures are comparatively large in size, containing 5 elements of
G and 8 numbers in Zp. Of these, G,W, S ∈ G and s1, s2, s3 ∈ Zp are unavoidable as

55

4 A ring signature scheme from the Camenisch et al. accumulator

they represent an accumulator identity, an accumulator witness, and the signature on
the accumulator identity. U , B ∈ G and s4, s5, s6, s7 ∈ Zp are specific to the signature
scheme for signing γi and its protocol to demonstrate possession of a signature: U , s4

are used for the n-HSDHE workaround of users not knowing γi, and B, s5, s6, s7 are used
to handle the product r1 · r3 in the exponent needed when verifying the signature using
blinded values G, S.

In the remainder of this thesis, we will use the constructed ring signature scheme as a
building block, noting that there might be a more efficient version of this scheme. Such
an improvement can likely be achieved by replacing the signature scheme for accumulator
identities with a new construction, as discussed above.

56

5 Revocation for group signatures

In this chapter, we examine the application of accumulators for revocation in group
signature schemes. First, we define the revocation semantics we can achieve with accu-
mulators (Section 5.1). Afterwards, we present a generic construction of group signature
schemes with accumulator revocation that augments an arbitrary group signature scheme
with accumulator revocation (Section 5.2).

5.1 Defining group signatures with accumulator revocation

It is not possible to augment group signatures with accumulator revocation without
changing our security expectations (Definitions 2.12, 2.13, 2.14). The following argument
illustrates this:

Suppose we have an accumulator scheme where accumulators can be created or up-
dated with public information (such as Construction 3.5). In this case, an attacker is
able to compute accV and accV ′ for any two sets V, V ′ ⊆ U . Assume that a signature
can be checked for revocation against any (current) accumulated set. Any signature that
is valid w.r.t. accV but not w.r.t. accV ′ was signed by someone in V \ V ′. That way,
attackers would get a powerful oracle for disabling anonymity.

Hence, we cannot realize the usual revocation semantics with the Camenisch et al.
accumulator: signatures’ validity cannot change for different accumulators. A valid
signature always stays valid. This can also be positively formulated: revoked users’
anonymity is not overturned retroactively (i.e. their old signatures cannot be traced to
them). In literature, this is often called backward-unlinkability [NF06]. The usual group
signature revocation mechanism is not backward-unlinkable: for each revoked user, a
special revocation token is published that links messages (old and new) to that user.

Consequently, signatures cannot be revoked retroactively. However, what we can
revoke using accumulators are signing rights. In this setting, an epoch defines an interval
of time where the set of valid users does not change. A signature is created with respect
to the current epoch’s accumulator and creating such a signature without being included
in the accumulator should be infeasible. So once a user’s signing rights are revoked, he
cannot sign messages that claim to be from a recent epoch.

The revocation of signing rights as opposed to signature revocation has certain ad-
vantages in some applications. For example, if a contract is signed in a company (by
a member of the group of executives) and the signer leaves the company, the contract
should still be considered valid (but the departed employee should not be able to sign
any more contracts after leaving). Using classical group signature revocation techniques
in this context would mean that after leaving, all signatures become invalid and the

57

5 Revocation for group signatures

signer’s anonymity on all signed messages is revoked (retroactively) as well. While this
is acceptable for contexts where revocation only occurs in case of misuse, this is an un-
desirable property in many other cases. In these cases, the revocation of signing rights
semantics as introduced here are more appropriate.

We start by defining the syntax of group signatures with accumulator revocation.
Afterwards, we define security properties.

5.1.1 Syntax definition

Because the notion of revoking signing rights requires a new model, we introduce a formal
definition of group signatures with accumulator revocation. This definition is based on
the standard definition of group signatures given in Section 2.6, but is modified and
extended for the reasons detailed above. First, we give the formal definition, then we
discuss how we would expect such a scheme to be used in practice.

Definition 5.1 (Group signature scheme with accumulator revocation). A group sig-
nature scheme with accumulator revocation consists of the following polynomial-time
algorithms:

• KeyGen(1λ, 1n) is a probabilistic algorithm that generates a set U of identities
(with |U | = n), a public key gpk, the group manager’s secret key gmsk, and
member secret keys (sk[i])i∈U . It outputs (U, gpk, gmsk, (sk[i])i∈U).

• EpochCreategmsk(V, τ) is a probabilistic algorithm that, given a set V ⊆ U and a
timestamp τ ∈ {0, 1}∗, outputs epoch information E.

• ExtractTimestamp(E) is a deterministic algorithm that returns a timestamp τ .

• EpochVerifygpk(V,E) is a deterministic algorithm that returns 0 or 1.

• WitCreategpk(V, i) is a deterministic algorithm that creates a witness witV,i.

• Signsk[i](m,E,witV,i) is a probabilistic algorithm that outputs a signature σ.

• Verifygpk(m,E, σ) is a deterministic algorithm that returns 0 or 1.

• Opengmsk(m,E, σ) is a deterministic algorithm that returns an identity i ∈ U or
the failure symbol ⊥.

A group signature scheme with accumulator revocation is correct if for all λ, n ∈
N, (U, gpk, gmsk, (sk[i])i) ∈ [KeyGen(1λ, 1n)], V ⊆ U,E ∈ [EpochCreategmsk(V, τ)], i ∈
V, τ ∈ {0, 1}∗; and all messages m,

Pr[Verifygpk(m,E, Signsk[i](m,E,WitCreategpk(V, i))) = 1] = 1

Pr[Opengmsk(m,E,Signsk[i](m,E,WitCreategpk(V, i))) = i] = 1

EpochVerifygpk(V,E) = 1

58

5.1 Defining group signatures with accumulator revocation

ExtractTimestamp(EpochCreategmsk(V, τ)) = τ

According to this definition, the group manager implements revocation by regularly
publishing epoch information E, which one can imagine to contain an accumulator value
accV and a timestamp τ together with a signature on (accV , τ) to ensure that only the
group manager is able to create new epochs (using gmsk). Additionally, the current set
V of valid users is published alongside E by the group manager, which enables creation of
witnesses. Through EpochVerify, it can be publicly verified that V is indeed represented
by E.

Functionally, KeyGen sets up the system for a fixed set U of users. EpochCreate
allows the group manager to create new epoch information. The group manager embeds
the supplied timestamp τ in the epoch information. τ can subsequently be retrieved
through ExtractTimestamp from the epoch information. EpochVerify is used to link
epoch information E to a set V of accumulated values. WitCreate creates a witness for
inclusion in the set V of accumulated values. Lastly, next to the usual parameters, Sign,
Verify, and Open additionally take epoch information E as input. Sign also requires a
witness, as computed by WitCreate, to create the signature.

We now describe how such a scheme could be applied in practice (this already contains
some hints about security expectations but mainly serves to motivate the operations
described above). When a user i wants to sign a message m for the current epoch, he
follows these steps:

• Retrieve the set V of valid users and current epoch information E from some
(untrusted) repository.

• Check that EpochVerify(V,E)
!

= 1, which establishes that V and E are genuine. If
i /∈ V (i.e. the user is revoked), abort.

• Create the witness witV,i through WitCreate.

• Use Signsk[i](m,E,witV,i) to obtain a signature σ. The signer stays anonymous
among the group of potential signers V .

• Send σ and E alongside m to verifiers.

Note that the first three steps only need to be done once per epoch (e.g., once per day).
Furthermore, the WitCreate computation may be offloaded to some (untrusted) third-
party service (and a specific scheme may offer an efficient way to check correctness of a
witness). If the signer trusts the epoch information repository in Step 1 and the witness
computed by a third party, there is no need for him to know the specific group V in
which he is currently signing (the same way a signer does not explicitly need to know
the group in normal group signatures).

When a verifier receives a message m with a signature σ and epoch information E,
the following actions are sensible:

59

5 Revocation for group signatures

• Use Verifygpk(m,E, σ) to check that E is valid epoch information and that σ is a
valid signature for message m in epoch E.

• Retrieve the timestamp τ , that the group manager embedded for E, using the
ExtractTimestamp(E) operation and check whether this timestamp is reasonable
for the message.

• (Optionally) retrieve the set V of possible signers in the epoch E from some public
(untrusted) repository. Check validity of V through EpochVerifygpk(V,E).

Note that while the timestamp τ (second step) included in epoch information will not
contribute anything significant to formal security, it is a crucial component in practice.
If a user was ever included in any epoch E, he can always create valid signatures with
respect to E. Our formal security definitions merely require that he cannot create signa-
tures for epochs E′ where he was revoked. It is the application’s task to decide whether
or not the supplied epoch information is acceptably recent – using the timestamp τ re-
trieved through ExtractTimestamp(E) as an indicator. For example, emails should be
signed with epoch information from the same day they were sent (or received); contracts
should be signed with the epoch according to the document’s date.

Typical verifiers will not need to do the optional third step of retrieving and checking
the set V of potential signers. Indeed, if this step is omitted, a group signature scheme
with accumulator revocation has the convenient property of offline-verifiability, i.e. sig-
natures can be checked with only the (short) epoch information E sent alongside the
message and signature. However, the capability to view V adds transparency because
verifiers get an insight who exactly may have produced some valid signature (rather
than only being guaranteed the vague notion of “someone who was not revoked”). Note
that in contrast to ring signatures, verifiers do not need to know the specific group that
signed a message to check validity. This is also an advantage over revocation lists: there,
verifiers need a list of revocation tokens for revoked users; in group signature schemes
with accumulator revocation the information needed to verify a signature is (typically)
independent of the number of revoked users.

Finally, the group manager in group signature schemes with accumulator revocation
has the following responsibilities:

• Maintain a set V ⊆ U of valid (non-revoked) users.

• Periodically publish epoch information E for the current timestamp τ created
through EpochCreategmsk(V, τ).

• If necessary (e.g., in case of legal dispute), use Opengmsk(m,E, σ) to trace a sig-
nature to its signer.

Note that while epoch-based schemes are often based on fixed time slots (i.e. an epoch is
defined to be valid for some a-priori fixed interval of time, for example daily), applications
could implement instant revocation mechanics using incremental IDs as timestamps and
maintain an additional updateable table that maps a timestamp ID to the time interval

60

5.1 Defining group signatures with accumulator revocation

where it was valid. This is a good approach in cases where a delay in revocation (i.e.
waiting for the current epoch to expire) cannot be accepted but it adds communication
complexity for querying that table.

Of course, revocation for (normal) group signatures can be trivially implemented by
invalidating an old group’s public key and setting up a completely new group. In our
scheme with accumulator revocation, we also need to distribute new information to every
group member: the new epoch E and either V or witnesses witV,i. The key difference is
that the E and V are public information and hence can be stored in public repositories,
so there is no need for elaborate private key transmission mechanisms and the setup
algorithm (which needs to be completely trusted to not leak secret keys) only has to be
run once. In this context it is also possible that some untrusted third party distributes
E and witV,i to any (unauthenticated) requester.

5.1.2 Security definitions

Our security requirements are expressed in three parts:

• Full Anonymity: It should be infeasible to distinguish signatures created by two
non-revoked users.

• Full Traceability: It should be infeasible for any set of corrupted users to create
a valid signature that is traced to some uncorrupted user by Open (or cannot be
traced at all).

• Unforgeability: Given any set of revoked users’ secret keys, it should be infeasible
to create a valid signature.

Note that in contrast to normal group signatures, in this variant fully-traceability does
not imply unforgeability. This is because full traceability does not consider revocation
(which Definition 2.13 also does not account for), but unforgeability does. We chose not
to include any revocation-related requirements in full traceability : Suppose some forged
signature by a revoked user can still be correctly traced to the forger; then it would be
unnatural to assume traceability broken. By this reasoning, revocation does not play an
integral part in full traceability. All revocation-related requirements are instead covered
by unforgeability, which roughly states that no user can create a signature that he should
not be able to create.

We start by defining full anonymity. The most important difference to full anonymity
in regular group signatures (Definition 2.12) is that for any epoch, it is trivial to dis-
tinguish accumulated and non-accumulated users’ signatures (non-accumulated users
should not be able to create a valid signature). Hence, the following definition of full
anonymity requires only that it is hard to distinguish two users that both have signing
rights in an epoch 1.

1One could argue that this is also the case for group signatures with revocation tokens. However, full
anonymity as per Definition 2.12 does not model this

61

5 Revocation for group signatures

Definition 5.2 (Full Anonymity). A group signature scheme with accumulator revoca-
tion Π has full anonymity if for all n ∈ N and all probabilistic polynomial-time adver-
saries A, there exists a negligible function µ such that

Advanon
Π,A (λ, n) := |Pr[Expanon−1

Π,A (λ, n) = 1]− Pr[Expanon−0
Π,A (λ, n) = 1]| ≤ µ(λ)

for all λ ∈ N, where the experiments Expanon−b
Π,A (λ, n) for b ∈ {0, 1} work as follow:

1. (U, gpk, gmsk, (sk[i])i∈U)← KeyGen(1λ, 1n).

2. A is given U, gpk, (sk[i])i∈U , and oracle access to EpochCreategmsk(·, ·) and to
Opengmsk(·, ·, ·).

3. Then A outputs a set V ∗ ⊆ U , epoch information E∗, two identities (i0, i1) ∈ (V ∗)2

and a message m∗ (if (i0, i1) /∈ (V ∗)2, the experiment aborts and outputs 0).

4. A is given a signature σ∗ ← Signsk[ib]
(m∗,E∗,WitCreategpk(V

∗, ib)) created using
sk[ib].

5. A continues to have oracle access to Opengmsk(·, ·, ·) and EpochCreategmsk(·, ·).

6. In the end, A outputs a bit b′.

7. If EpochVerifygpk(V
∗,E∗) = 0 or A has queried Opengmsk(m

∗,E∗, σ∗) after receiv-
ing the signature σ∗, the experiment outputs 0, otherwise it outputs b′.

Similar to normal group signatures, full anonymity states the following: The only
way to reliably get any distinguishing information about two non-revoked signers is to
consult Open for that signature. This even holds when all secret keys except the group
manager’s gmsk (which can always be used to open signatures) are compromised.

In this definition, A may adaptively choose the set V ∗ ⊆ U and the epoch it wants to
attack. It is restricted to choose i0, i1 ∈ V ∗ (because revoked users have the distinguish-
ing feature of not being able to create valid signatures). For the chosen epoch information
E∗, we require that EpochVerifygpk(V

∗,E∗) = 1, i.e. E∗ is valid epoch information for
V ∗.

The following observation establishes that it is not an unreasonable restriction to have
the attacker fix a single epoch for the two signatures to distinguish in Step 3 (as opposed
to distinguishing, say, two signatures from two different epochs).

Observation 5.3. Definition 5.2 implies unlinkability of signatures (from different
epochs).

62

5.1 Defining group signatures with accumulator revocation

Unlinkability intuitively means that no attacker, given a list of signatures (for po-
tentially different messages, different epochs) can reliably point out two signatures on
that list that were created by the same signer; in particular, some form of anonymity
is preserved over different epochs. We omit the (non-trivial) formal definition and refer
to [BMW03] for a discussion on unlinkability. We informally argue that our observation
holds: if there is an attacker B that can reliably link two signatures by the same signer,
an attacker A against full anonymity may use this as an oracle: to check whether σ∗

corresponds to i0 or i1, the attacker may query a signature σ′ for i0 (on another epoch)
and let B try to link σ∗ and σ′. If B is reasonably good at linking and it succeeds at
linking σ∗, σ′, then i0 was probably the signer of σ∗.

The following definition of full traceability is based on Definition 2.13 and is largely
unmodified except for syntactical changes.

Definition 5.4 (Full traceability). A group signature scheme with accumulator re-
vocation Π has full traceability if for all n ∈ N and all probabilistic polynomial-time
adversaries A, there exists a negligible function µ such that

Advtrace
Π,A (λ, n) := Pr[Exptrace

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Exptrace
Π,A (λ, n) is defined as follows:

1. (U, gpk, gmsk, (sk[i])i=1)← KeyGen(1λ, 1n).

2. A is given U, gmsk, gpk, oracle access to Signsk[·](·, ·, ·), and oracle access to i 7→
sk[i].

3. Eventually, A outputs a message m∗, epoch info E∗, and a signature σ∗.

4. If Verifygpk(m
∗,E∗, σ∗) = 1 and Opengmsk(m

∗,E∗, σ∗) =⊥, the experiment outputs
1.

5. If Verifygpk(m
∗,E∗, σ∗) = 1 and Opengmsk(m

∗,E∗, σ∗) = i ∈ U , and A has neither
queried sk[i] nor Signsk[i](m

∗,E∗, ·), then the experiment outputs 1.

6. Otherwise it outputs 0.

Full traceability states that an attacker, even given gmsk and some adaptively chosen
set of corrupted users’ secret keys cannot create a signature that Open traces to an
uncorrupted user or cannot trace to any user.
A has access to an oracle supplying user keys (which models corruption) and to a

signing oracle to create signatures of (uncorrupted) users (which models that attackers
may observe signatures from other users).

Note that supplying A with gmsk in this experiment implies that even the group
manager cannot create signatures on behalf of the users. In particular, it must be

63

5 Revocation for group signatures

infeasible to derive user keys from gmsk. As a consequence, in a scheme with full
traceability the group manager cannot expand the group dynamically (i.e. user keys
need to be computed by some external setup algorithm in the beginning and distributed
without involvement of the group manager). This is also an restriction in normal group
signature with full traceability (Definition 2.13) and we will not consider this problem
further.

Note that this definition does not preclude creating signatures for revoked users. Full
traceability only guarantees that if a revoked user creates a signature, it can be traced
to his identity. However, since verifying users do not generally have access to gmsk
to trace the signature, this is not sufficient to discover revocation. In the following,
Unforgeability will guarantee that revoked users are unable to create signatures:

Definition 5.5 (Unforgeability). A group signature scheme with accumulator revoca-
tion Π has unforgeable signatures if for all n ∈ N and all probabilistic polynomial-time
adversaries A, there exists a negligible function µ such that

Advsigforge
Π,A (λ, n) := Pr[Expsigforge

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expsigforge
Π,A (λ, n) is defined as follows:

1. (U, gpk, gmsk, (sk[i])ni=1)← KeyGen(1λ, 1n).

2. A is given U, gpk, gmsk and oracle access to Signsk[·](·, ·, ·), and i 7→ sk[i].

3. Eventually, A outputs a message m∗, a set V ∗ ⊆ U , epoch info E∗ and a signature
σ∗.

4. If {i ∈ U | A queried sk[i]} ∩ V ∗ 6= ∅ or EpochVerifygpk(V
∗,E∗) = 0, the experi-

ment aborts and outputs 0.

5. If Verifygpk(m
∗,E∗, σ∗) = 1 and A has not queried Signsk[·](m

∗,E∗, ·), the experi-
ment outputs 1.

6. Otherwise, it outputs 0.

For unforgeability, A is given oracle access to Sign and (in contrast to [BMW03])
gmsk. It may adaptively corrupt users by querying the oracle for i 7→ sk[i].
A succeeds if it manages to create a signature on any message m∗ for an epoch where

all corrupted users are revoked (cf. Step 4) without querying the Sign oracle for m∗ on an
uncorrupted user (cf. Step 5). In other words, any set of colluding revoked users should
be unable to create valid signatures, even if given gmsk. This also implies unforgeability
in the traditional sense: without any user keys, it is infeasible to create a valid signature
(cf. Definition 2.14). This is covered through attackers that do not corrupt any users
(i.e. do not query the sk[·] oracle).

64

5.1 Defining group signatures with accumulator revocation

Lastly, we state our security requirement that valid epoch information can only be
created by the group manager:

Definition 5.6 (Unforgeability of epoch information). A group signature scheme with
accumulator revocation Π has unforgeable epochs if for all n ∈ N and all probabilistic
polynomial-time adversaries A, there exists a negligible function µ such that

Advforge
Π,A (λ, n) := Pr[Expforge

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expforge
Π,A (λ, n) is defined as follows:

1. (U, gpk, gmsk, (sk[i])ni=1)← KeyGen(1λ, 1n).

2. A is given U, gpk, (sk[i])ni=1, oracle access to Opengmsk(·, ·, ·), and oracle access to
EpochCreategmsk(·, ·).

3. Eventually, A outputs epoch information E∗, a set V ∗ ⊆ U , a message m∗ and a
signature σ∗.

4. If A has queried EpochCreategmsk(V
∗,ExtractTimestamp(E∗)), the experiment

aborts and outputs 0.

5. If EpochVerifygpk(V
∗,E∗) = 1 or Verifygpk(m

∗,E∗, σ∗) = 1, the experiment outputs
1.

6. Otherwise, it outputs 0.

Unforgeability of epoch information states that without gmsk, it is infeasible to cre-
ate any epoch information E∗ for any timestamp τ that is accepted by EpochVerify or
Verify. This is not covered by any of the other security definitions (where generally,
the attacker is given the means to create epoch information). However, unforgeability
of epoch information is essential in order to achieve actual unforgeability in practice:
if epoch information could be forged, revoked users may be able to create epoch in-
formation E′ where they are not revoked and create a signature with respect to E′,
circumventing their actual revocation status. While unforgeability guarantees that for
any epoch information, it is infeasible to create a signature for revoked users, unforge-
ability of epoch information guarantees that the epoch information supplied alongside a
message is genuine. Together, they imply that when a user receives (m,E, σ) (a mes-
sage, epoch information and a signature), and Verifygpk(m,E, σ) = 1, he can trust that
the message was signed by a user who the group manager did not consider revoked at
timestamp τ = ExtractTimestamp(E).

In summary, the definitions above imply the following informal observations:

65

5 Revocation for group signatures

• The group manager needs to be trusted only for anonymity, as he can reliably un-
cover identities (full traceability), and for his revocation decisions, as he publishes
epoch information. The group manager cannot sign messages on behalf of any user
(unforgeability) and he cannot blame a message on a user who did not sign it (full
traceability)2.

• If a signature is valid according to Verifygpk(m,E, σ), the verifier can be sure that:

– The group manager created E and τ = ExtractTimestamp(E) is the epoch’s
genuine timestamp (unforgeability of epoch information).

– The signer chose E to sign this message (unforgeability).

– The signer’s signing rights were not revoked in E (unforgeability).

– If some (untrusted) party can supply a set V where EpochVerifygpk(V,E) = 1,
then some user i ∈ V signed m (unforgeability).

• When a signer publishes a valid signature in an epoch E where the set of valid
users is V (i.e. EpochVerifygpk(V,E) = 1), his signature is indistinguishable from
signatures produced by other users in V , unless the group manager chooses to
reveal identities. This remains true even if the signer is revoked in another epoch
(full anonymity).

• When a signer publishes a valid signature for an epoch E and another signature
for epoch E′, nobody except the group manager can tell that these signatures were
created by the same signer, unless in both epochs all other users are revoked (full
anonymity).

5.2 A generic construction of group signature schemes with
accumulator revocation

In this Section, we will construct a group signature scheme with accumulator revocation
from any normal group signature scheme (Section 2.6). This serves as a proof of concept
that such systems exist, and allow us to get more insights as to how to construct them.

The idea of our construction is to start with any group signature scheme ΠG and con-
struct a group signature scheme with accumulator revocation (Definition 5.1) by adding
to signatures of ΠG a signature of our ring signature scheme ΠR (Construction 4.5) that
certifies revocation status.

We start with the formal definition of our construction, then we proceed to the security
proofs.

2Of course, if the group manager is treated as a black box, he can claim any user as the signer.
Full traceability guarantees that even the group manager cannot prepare a signature to look like it
originated from some user he does not know the key for. In practice, this requires some oversight
when executing Open.

66

5.2 A generic construction of group signature schemes with accumulator revocation

5.2.1 Construction

Construction 5.7. Let ΠG = (KeyGen(G), Sign(G),Verify(G),Open(G)) be a group sig-
nature scheme and ΠR = (KeyGen(R),Sign(R),Verify(R)) the ring signature scheme in
Construction 4.5. Let ΠS = (KeyGen(S), Sign(S),Verify(S)) be a signature scheme with
message space {0, 1}∗ and secure against chosen-message attacks.

We construct a group signature scheme with accumulator revocation Π as follows:

• KeyGen(1λ, 1n) runs

– KeyGen(G)(1λ, 1n) to obtain a set U with |U | = n, the scheme’s public key
gpkG, its group manager secret gmskG and its secret keys skG[i] for i ∈ U .
Without loss of generality, we assume that U = [n] 3.

– KeyGen(R)(1λ, 1n) to obtain the ring signature’s public key pkR and secret
keys (skR[i])i∈[n].

– KeyGen(S)(1λ) to obtain the signature scheme’s public key pkS and secret
key skS .

It sets gpk = (gpkG, pkR, pkS), gmsk = (gmskG, skS , gpk), and sk[i] = (skG[i],
skR[i], gpk) for i ∈ U = [n]. It outputs (U, gpk, gmsk, (sk[i])i∈U).

• EpochCreategmsk(V, τ) computes the accumulator accV =
∏
j∈V gn+1−j using pkR

and runs Sign
(S)
skS

((accV , τ)) to obtain a signature θ. It outputs epoch information
E = (accV , τ, θ).

• ExtractTimestamp((acc, τ, θ)) outputs τ .

• EpochVerifygpk(V, (acc, τ, θ)) returns 1 if and only if Verify
(S)
pkS

((acc, τ), θ) = 1 and
acc = accV (computed using pkR).

• WitCreategpk(V, i) outputs witV,i =
∏
j∈V \{i} gn+1−j+i computed with values from

pkR.

• Signsk[i](m,E,wit) parses E as (acc, τ, θ), sets m′ = (m,E) and creates σR =

Sign
(R)
skR[i](m

′, acc,wit) (cf. Observation 4.7) and σG = Sign
(G)
skG[i](m

′). The signa-

ture is σ = (σR, σG).

• Verifygpk(m,E, (σR, σG)) parses E as (acc, τ, θ), sets m′ = (m,E) and returns 1 if

Verify
(S)
pkS

((acc, τ), θ) = 1, Verify
(R)
pkR

(m′, acc, σ) = 1, and Verify
(G)
gpkG

(m′) = 1.

• Opengmsk(m,E, (σR, σG)) sets m′ = (m,E). It returns what Open
(G)
gmskG

(m′, σG)
outputs.

3For arbitrary U , one can employ some fixed one-to-one mapping between the users of the group
signature scheme U and the users of the ring signature scheme [n].

67

5 Revocation for group signatures

Note that a signature of this scheme consists of two signatures: σG from ΠG and σR
from ΠR. σG is essentially used to provide Open functionality. σR provides the revocation
mechanism, ensuring that signers had proper signing rights when the signature was
created. Both σG and σR are signatures on the message m′ = (m,E). This corresponds
to the requirement, put forth by our security definitions, that signers should not later
be able to claim a different epoch for their signature (cf. Definition 5.5).

Note that in this particular scheme, one can efficiently update witnesses (directly
through WitUpdate of the accumulator construction (Construction 3.5) using the values
in pkR. Furthermore, one can efficiently check whether or not witnesses are correctly
computed (for example, by a third party) by using the Verify operation of the accumu-
lator construction.

In the remainder of this chapter, we will prove this construction secure.

Theorem 5.8. Construction 5.7 is a correct group signature scheme with accumulator
revocation (Definition 5.1) that fulfills full anonymity (Definition 5.2), full traceability
(Definition 5.4), unforgeability (Definition 5.5) and unforgeability of epoch informa-
tion (Definition 5.6) if ΠG is a secure group signature scheme and ΠS is a CPA-secure
signature scheme.

Proof. We subdivide the proofs into the following Lemmas: Lemma 5.9 (correctness),
Lemma 5.10 (anonymity), Lemma 5.11 (traceability), Lemma 5.14 (unforgeability), and
Lemma 5.15 (unforgeability of epoch information). The theorem results from these
lemmas.

5.2.2 Correctness

Correctness of the scheme is mostly derived from the fact that signatures simply consist
of two signatures of the correct schemes ΠG,ΠR.

Lemma 5.9. Construction 5.7 is correct (Definition 5.1)

Proof. Let λ, n ∈ N, (U, gpk, gmsk, (sk[i])i) ∈ [KeyGen(1λ, 1n)], V ⊆ U, i ∈ V, τ ∈
{0, 1}∗,E = (acc, τ, θ) ∈ [EpochCreategmsk(V, τ)]. Let m be a message, m′ := (m,E),
and σ = (σR, σG) ∈ [Signsk[i](m,E,witV,i)]

Correctness of Verify

By construction,

Verifygpk(m,E, σ) = 1

⇔ Verify
(S)
pkS

((acc, τ), θ) = 1 ∧Verify
(R)
pkR

(m′, acc, σ) = 1 ∧Verify
(G)
gpkG

(m′) = 1

Since by definition of EpochCreate, θ is a signature created with Sign
(S)
skS

((acc, τ)), cor-

rectness of ΠS yields Verify
(S)
pkS

((acc, τ), θ) = 1. By definition of Sign, σR is a signature

68

5.2 A generic construction of group signature schemes with accumulator revocation

created with Sign
(R)
skR[i](m

′, acc,wit), and so acc = accV ,wit = witV,i and correctness

of ΠR (with Observation 4.7) yields Verify
(R)
pkR

(m′, acc, σ) = 1. Finally, by definition

of Sign, σG is a signature created with Sign
(G)
skG[i](m

′), hence correctness of ΠG yields

Verify
(G)
gpkG

(m′) = 1.

Correctness of Open

Opengmsk(m,E, σ) = Open
(G)
gmskG

(m′, σG) = i using that σG ∈ [Sign
(G)
skG[i](m

′)] and cor-
rectness of ΠG.

Correctness of EpochVerify

EpochVerifygpk(V,E) = 1 ⇔ Verify
(S)
pkS

((acc, τ), θ) = 1 ∧ acc = accV . It holds that

Verify
(S)
pkS

((acc, τ), θ) = 1 because ΠS is correct and θ ∈ Sign
(S)
skS

((accV , τ)). acc = accV
holds by definition of EpochCreate.

Correctness of ExtractTimestamp

Follows immediately from the definition of ExtractTimestamp.

Conclusion

Thus we have shown the four necessary relations as required by Definition 5.1.

5.2.3 Anonymity

We will now prove anonymity of the scheme. Every signature of our scheme consists
of two signatures σG, σR and either of them (or their combination) could potentially
leak information about the signer. However, using a hybrid argument, we will be able to
show that anonymity follows from anonymity of ΠG and ΠR (according to their respective
anonymity definitions).

Lemma 5.10. Construction 5.7 fulfills full anonymity (Definition 5.2)

Proof. Let A be a probabilistic polynomial-time algorithm against full anonymity of Π.
Let λ, n ∈ N.

Hybrid argument

We define a probability space over (1) the random choice of gpk, gmsk and (sk[i])i∈U
distributed as in KeyGen(1λ, 1n), (2) the random bits of A, (3) the random bits used
for EpochCreate queries, and (4) the random bits used to create the challenge signature
parts σ∗R and σ∗G.

In this probability space, for bR, bG ∈ {0, 1}, let HbR,bG be a random variable that
takes on the value of A’s outputs when it is run against a full anonymity experiment
of Π with the following modification: the challenge signature parts are computed as

69

5 Revocation for group signatures

σ∗G ← Sign
(G)
skG[ibG]((m

∗,E∗)) and σ∗R ← Sign
(R)
skR[ibR]((m

∗,E∗), acc∗,witV ∗,ibR), i.e. σG is

created for ibG and σR for ibR . Note that in the original experiment Expanon−b, we have
bG = bR = b.

Consequently,

Advanon
Π,A (λ, n)

=|Pr[Expanon−0
Π,A (λ, n) = 1]− Pr[Expanon−1

Π,A (λ, n) = 1]|
=|Pr[H0,0 = 1]− Pr[H1,1 = 1]|
=|Pr[H0,0 = 1]− Pr[H1,0 = 1] + Pr[H1,0 = 1]− Pr[H1,1 = 1]|
≤|Pr[H0,0 = 1]− Pr[H1,0 = 1]|+ |Pr[H1,0 = 1]− Pr[H1,1 = 1]|

In the following, we will use A to construct an algorithm AR against anonymity
against early full key exposure of ΠR (Definition 2.9), and another algorithm AG against
full anonymity of ΠG (Definition 2.12). By construction, it will hold that |Pr[H0,0] −
Pr[H1,0]| = Advanon

ΠR,AR(λ, n) and |Pr[H1,0] − Pr[H1,1]| = Advanon
ΠG,AG(λ, n). Both of these

are negligible in λ because ΠR and ΠG are secure. This will conclude the proof.

Constructing AR

AR against anonymity against early full key exposure of ΠR (Definition 2.9) works as
follows: it receives pkR, randomness ω, and U from its experiment anon-b. It runs
(pkR, (skR[i])i∈[n]) ← KeyGen(R)(1λ, 1n) with randomness ω. AR then completes the

setup of Π by running (pkS , skS)← KeyGen(S)(1λ) and (gpkG, U, gmskG, (skG[i])i∈U)←
KeyGen(G)(1λ, 1n). AR hands U, gpk = (gpkG, pkR, pkS) and sk[i] = (skG[i], skR[i], gpk)
for i ∈ U to A.

When A queries Open or EpochCreate, AR computes the answer using gmsk =
(gmskG, skS , gpk).

Eventually, A outputs V ∗ ⊆ U,E∗ = (acc∗, τ∗, θ∗), (i0, i1) ∈ (V ∗)2,m∗. AR outputs

(i0, i1), V ∗, and m′ = (m∗,E∗) to receive a signature σ∗R ← Sign
(R)
skR[ib]

(m′, V ∗) for ib. It

computes σ∗G ← Sign
(G)
skG[i0](m

′) for identity i0 and hands σ∗ = (σ∗R, σ
∗
G) to A. Eventually,

A outputs a bit b′. If EpochVerifygpk(V
∗,E∗) = 0 orA has queried Opengmsk(m

∗,E∗, σ∗),
AR outputs 0. Otherwise, AR outputs b′.

By construction, when AR is run against ΠR’s anon-0, it perfectly simulates the ex-
periment underlying H0,0. When AR is run against anon-1, it perfectly simulates the
experiment underlying H1,0. Formally, using that the random variables underlying our
probability space are computed by AR or the anon-b experiment with the correct distri-
butions,

H1,0 = Expanon−1
ΠR,AR (λ, n)

and
H0,0 = Expanon−0

ΠR,AR (λ, n)

70

5.2 A generic construction of group signature schemes with accumulator revocation

which implies that |Pr[H0,0 = 1]− Pr[H1,0 = 1]| ≤ µR(λ) for some negligible µR, using
that ΠR is secure.

Constructing AG

AG against full anonymity of ΠG (Definition 2.12) works as follows: it receives U, gpkG,
(skG[i])i∈U from its experiment anon-b. It completes the setup of our scheme Π by
running (pkS , skS)← KeyGen(S)(1λ) and (pkR, (skR[i])i∈[n])← KeyGen(R)(1λ, 1n) itself.
AG hands U, gpk = (gpkG, pkR, pkS), and sk[i] = (skG[i], skR[i], gpk) for i ∈ U to A.

If A queries Opengmsk(m,E, (σR, σG)), AG queries Open
(G)
gmskG

((m,E), σG) and returns
the result to A. If A queries EpochCreategmsk(V, τ), AG answers using skS and pkR.

Eventually, A outputs V ∗ ⊆ U,E∗ = (acc∗, τ∗, θ∗), (i0, i1) ∈ (V ∗)2,m∗. AG outputs

(i0, i1) and m′ = (m∗,E∗) to receive a signature σ∗G ← Sign
(G)
skG[ib]

(m′) for ib. It computes

σ∗R ← Sign
(R)
skR[i1]((m

′, acc∗),witV ∗,i1) for identity i1 and hands σ∗ = (σ∗R, σ
∗
G) to A.

Eventually, A outputs a bit b′. If EpochVerifygpk(V
∗,E∗) = 0, AG outputs 0, otherwise

AG outputs b′. Note that if A did not query Opengmsk(m
∗,E∗, σ∗) after receiving the

challenge signature σ∗, then AG did not query OpengmskG((m∗,E∗), σ∗G) after receiving
its signature σ∗G.

By construction, when AG is run against ΠG’s anon-0, it perfectly simulates the
experiment underlying H1,0. When AR is run against anon-1, it perfectly simulates
the experiment underlying H1,1. Formally, using that the random variables underlying
our probability space are computed by AG or the anon-b experiment with the correct
distributions,

H1,0 = Expanon−1
ΠG,AG (λ, n)

and
H1,1 = Expanon−0

ΠG,AG (λ, n)

which implies that |Pr[H1,0 = 1]− Pr[H1,1 = 1]| ≤ µG(λ) for some negligible µG, using
that ΠG is secure.

Conclusion

Overall,

Advanon
Π,A (λ, n)

≤|Pr[H0,0 = 1]− Pr[H1,0 = 1]|+ |Pr[H1,0 = 1]− Pr[H1,1 = 1]|
≤µR(λ) + µG(λ)

for all n, λ ∈ N, where µR and µG are negligible (and hence, their sum is negligible), as
required.

71

5 Revocation for group signatures

5.2.4 Traceability

We will now prove full traceability of our scheme. Since the traceability definition for
group signatures with accumulator revocation does not consider revocation, it suffices
to reduce full traceability of our scheme to full traceability of ΠG.

Lemma 5.11. Construction 5.7 fulfills full traceability (Definition 5.4)

Proof. Let A a probabilistic polynomial-time algorithm against full traceability of Π.
We construct an algorithm AG against full traceability of the group signature scheme
ΠG (Definition 2.13). AG receives U, gmskG, gpkG from its full traceability game and
completes the setup by running (pkS , skS) ← KeyGen(S)(1λ) and (pkR, (skR[i])i∈[n]) ←
KeyGen(R)(1λ, 1n) itself. AG hands U, gpk = (gpkG, pkR, pkS), and gmsk = (gmskG,
skS , gpk) to A.

AG answers signature queries Signsk[i](m,E,wit) of A with (σR, σG) by querying σG
from its signing oracle and computing σR itself. It answers secret key queries sk[i] with
(skG[i], skR[i], gpk) by querying skG[i] from its game and using skR[i] from the setup
phase.

If A outputs a forgery (m∗,E∗, (σ∗R, , σ
∗
G)) accepted by its experiment, AG outputs

σ∗G as a signature forgery for m′ = (m∗,E∗). Note that if Open
(G)
gmskG

(m′, σ∗G) =

Opengmsk(m
∗,E∗, σ∗)

!
= i ∈ U , AG neither queried SignskG[i](m

′), nor skG[i] (as the
forgery of A would not have been accepting otherwise). AG’s simulation for A is perfect
and AG wins its game if and only if A wins its game.

It follows that

Pr[Exptrace
Π,A (λ, n)] = Pr[Exptrace

ΠG,AG(λ, n) = 1] ≤ µ(λ)

for some negligible function µ and for all λ ∈ N by the assumption that ΠG fulfills full
traceability.

5.2.5 Unforgeability

Now, we will prove unforgeability of our scheme. To forge a signature, one must forge
both the group signature part σG and the ring signature part σR. We reduce unforge-
ability of our scheme to the security of ΠR, since it implements the accumulator-driven
revocation mechanism.

However, there is a small complication: the unforgeability game of ΠR is gives an
attacker oracle access to Sign(R) demanding the set V of signer identities. In contrast,
the Sign operation of our group signature scheme with accumulator revocation takes
E, wit as input instead of V . Since it is infeasible to recreate a set V from E, we cannot
use the Sign(R) oracle in this form in our reduction. Note that syntactically, this is not
a problem since the first step that Sign(R) takes is computing accV and witV,i from V
and it never uses V again (cf. Observation 4.7). However, it is not immediately clear
that using the scheme in this way is still secure.

72

5.2 A generic construction of group signature schemes with accumulator revocation

For this reason, we introduce the following modified version of unforgeability for ΠR

that is closer to the unforgeability experiment of our construction. In particular, it
supports oracle access to Sign(R) with parameters acc,wit instead of V .

Definition 5.12 (Unforgeability w.r.t. insider corruption for accumulator signing). ΠR

has unforgeable signatures for accumulator signing if for all n ∈ N and all probabilistic
polynomial-time adversaries AR, there exists a negligible function µ such that

Advsigforge′

ΠR,AR (λ, n) := Pr[Expsigforge′

ΠR,AR (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expsigforge′

ΠR,AR (λ, n) is defined as follows:

(pk, U, (sk[i])i∈U)← KeyGen(1λ, 1n).

AR is given pk, U , oracle access to Sign
(R)
sk[·](·, ·, ·) (where the arguments are a

message, an accumulator value, and a witness, cf. Observation 4.7), and oracle
access to i 7→ sk[i].

Eventually, AR outputs a message m∗, a set V ∗ ⊆ U and a signature σ∗.

If Verify
(R)
pk (m∗, V ∗, σ∗) = 1 and AR has neither queried Sign

(R)
sk[·](m

∗, accV ∗ , ·) nor

sk[i] for any i ∈ V ∗, the experiment outputs 1. Otherwise it outputs 0.

Unfortunately, this variant of unforgeability neither directly implies nor is directly
implied by the original one. On the one hand, AR gains some power by querying Sign(R)

even for accumulator values where it does not know a corresponding set; on the other
hand, AR is restricted to output signatures where it never queried Sign(R) for the speci-
fied message and accV ∗ as opposed to V ∗ in the original. This rules out attackers from the

original game that find two sets V 6= V ′ with accV = accV ′ , query σ ← Sign
(R)
sk[i](m,V)

and output the valid forgery m,V ′, σ, which they did not query. However, the proof of
the original unforgeability experiment (Section 4.2.4) can be adapted for the modified
unforgeability experiment as well.

Lemma 5.13. ΠR has unforgeable signatures for accumulator signing (Definition 5.12).

Proof. We sketch the proof by pointing out the necessary changes to the proof of
Lemma 4.12 and Lemma 4.13. For this proof, Sign denotes the operation as defined
on ΠR.

For Lemma 4.12, we construct a simulator algorithm B that answers signature queries
by simulating transcripts of the underlying protocol. Obviously, B can handle queries in
the format Signsk[i](m

′, acc,wit) without problem as in the original (Step 5 of B), V is
merely used to compute accV . In Step 8, B should output fail if Signsk[·](m

∗, accV ∗ , ·)

73

5 Revocation for group signatures

was queried as opposed to if Signsk[·](m
∗, V ∗) was queried. The proof works completely

analogously. With the latter change, we can still argue that Expsigforge′

ΠR,AR (λ, n′) = 1 ∧
¬fail5 ⇔ ¬fail8 ∧ ¬fail5.

In Lemma 4.13, we construct an algorithm E that uses rewinding on B to output
either an element of the NP-relation of the underlying Σ protocol or sets V ′, V ′′ with
the same accumulator accV ′ = accV ′′ . The construction itself can stay the same way.
However, the condition in Step 8 (that the special hash index i was used to answer a
query Signsk[·](m, V̂)) cannot be fulfilled anymore4. The analogous situation would be
that i was used for a signature query Signsk[·](m, accV̂ , ·). But in this case, B would have
output fail with our changes above (as AR is not allowed to query that and still claim
it as a forgery). So in the modified experiment, i is always used to answer an explicit
hash query, so Step 9 or Step 10 apply and output the expected values. The probability
analysis stays exactly the same and results in the same bound relative to the success

probability ε(λ) of AR in Exp
(sigforge′)
ΠR,AR (λ, n′).

Finally, the proof of Lemma 4.14 can be applied on the modified E and B as before,
implying that ΠR has unforgeable signatures for accumulator signing as required.

Note that this result is interesting independently of our group signatures scheme with
accumulator revocation. It implies that our ring signature scheme is still secure if one
redefines the Sign(R) and Verify(R) operations to omit V and take accV and witV,i as
input to the algorithms as noted in Observation 4.7. For example, this enables third
parties to compute accV for some ring V , and distribute witnesses witV,i to signers. Still,
signatures are difficult to forge.

Finally, we remark that the problem of using the Sign(R) operation without knowing
the set V (as defined in our construction above) does not come up in any other security
proof of this section. For correctness, this is not a problem as syntactically, signing and
verifying with accV (and witV,i) instead of V is simple as noted in Observation 4.7. In
the anonymity experiment (Definition 5.2), the attacker is given all users’ secret keys,
hence there is no need for access to the signing oracle. For the challenge signature, the
attacker against our construction is required to output the challenge set V ∗, which can
be handed to the ring signature’s anonymity game to use for the Sign(R) algorithm. For
the traceability proof, the ring signature scheme’s security was not involved.

Using the adapted security experiment, a reduction can now consult the Sign(R) oracle
of ΠR to create the σR portion of our scheme’s signatures. This allows us to prove
unforgeability of Π through a straight reduction to the modified notion of unforgeability
(Lemma 5.13) for ΠR.

Lemma 5.14. Construction 5.7 fulfills unforgeability (Definition 5.5)

Proof. Let A be a probabilistic polynomial-time algorithm against unforgeability of Π.

4This step corresponded to attackers that exploit accumulator collisions as explained right before this
lemma.

74

5.2 A generic construction of group signature schemes with accumulator revocation

We construct an algorithm AR against unforgeability with accumulator signing (Defini-
tion 5.12) of ΠR.

AR receives pkR, U from its unforgeability experiment. It completes the setup with
(pkS , skS) ← KeyGen(S)(1λ) and (gpkG, U, gmskG, (skG[i])i∈U) ← KeyGen(G)(1λ, 1n).
AR hands U, gpk = (gpkG, pkR, pkS) and sk[i] = (skG[i], skR[i], gpk) for i ∈ U to A.

If A queries Signsk[i](m,E,wit), AR parses E as (acc, τ, θ) and queries its oracle for the

signature σR ← Sign
(R)
skR[i]((m,E), acc,wit). It computes σG ← Sign

(G)
skG[i]((m,E)) itself

and hands the signature (σR, σG) to A. If A queries sk[i], AR queries skR[i] and hands
sk[i] = (skG[i], skR[i], gpk) to A.

Eventually, A outputs m∗, V ∗,E∗ = (acc∗, τ∗, θ∗) and σ∗ = (σ∗R, σ
∗
G). If A’s forgery is

accepting, AR outputs σ∗R as a forgery for message (m∗,E∗) on set V ∗. Note that AR has

not queried Sign
(R)
skR[·]((m

∗,E∗), accV ∗ , ·) (because A has not queried Signsk[·](m
∗,E∗, ·))

nor skR[i] for any i ∈ V ∗ (because A did not query sk[i] for any i ∈ V ∗).
AR’s simulation for A is perfect and AR wins its game if and only if A wins its game.

It follows that

Pr[Expsigforge
Π,A (λ, n)] = Pr[Expsigforge′

ΠR,AR (λ, n) = 1] ≤ µ(λ)

for some negligible function µ and for all λ ∈ N using Lemma 5.13.

5.2.6 Unforgeability of epoch information

Finally, we prove unforgeability of epoch information, i.e. it should be infeasible for
anyone but the group manager to produce epoch information E that is accepted by
EpochVerify or Verify. Note that this mostly follows from the security of the scheme ΠS

used to create the signature θ as part of E that is checked in both EpochVerify and Verify.
However, note that for V 6= V ′ with accV = accV ′ , the attacker against unforgeability
of epoch information may query EpochCreategmsk(V, τ) and claim the resulting epoch
information E as an epoch forgery for V ′, τ . Of course, as observed before, accumulator
security implies that it is infeasible to find such an accumulator collision.

In the proof, we first construct a forger against ΠS that is successful whenever the
attacker A does not exploit the accumulator collision as described above. Then, we
bound the probability for A to find an accumulator collision by reducing that event to
the security of the underlying accumulator construction (Construction 3.5).

Lemma 5.15. Construction 5.7 fulfills unforgeability of epoch information (Defini-
tion 5.6)

Proof. Let A be a probabilistic polynomial-time algorithm against unforgeability of
epoch information in Π. We first construct an algorithm AS against unforgeability
of ΠS . Let n ∈ N.

Forging a signature

75

5 Revocation for group signatures

AS receives pkS from its unforgeability experiment. It completes the setup by com-
puting the rest of the keys itself: (gpkG, U, gmskG, (skG[i])i∈U) ← KeyGen(G)(1λ, 1n)
and (pkR, (skR[i])i∈[n])← KeyGen(R)(1λ, 1n). AS hands U, gpk = (gpkG, pkR, pkS), and
sk[i] = (skG[i], skR[i], gpk) for i ∈ U to A.

If A queries Opengmsk, AS answers using gmskG. If A queries EpochCreategmsk(V, τ),

AS computes accV =
∏
j∈V gn+1−j using pkR and queries Sign

(S)
skS

((accV , τ)) to obtain a
signature θ. It hands E = (accV , τ, θ) to A.

Eventually, A outputs E∗ = (acc∗, τ∗, θ∗), V ∗, m∗, and σ∗. If A has previously queried
EpochCreategmsk(V

′, τ∗) for any V ′ ⊆ U with accV ′ = accV ∗ , AS outputs ⊥ and aborts.

Otherwise, AS has never queried Sign
(S)
skS

((accV ∗ , τ
∗)) and outputs θ∗ as a forgery for

message (acc∗, τ∗).

Let accforge be the event that A queried EpochCreategmsk(V
′, τ∗) for some V ′ ⊆ U

with V ′ 6= V ∗ but accV ′ = accV ∗ . AS ’s simulation for A is perfect and AS wins its game
if and only if A wins its game and accforge does not occur. It follows that

Pr[Expepochforge
Π,A (λ, n) = 1 ∧ ¬accforge] = Pr[Expsigforge

ΠS ,AS (λ) = 1] ≤ µS(λ)

for some negligible µS using that ΠS is CPA-secure.

Accumulator collision

It remains to show that Pr[accforge] is negligible. We construct an attacker Aacc against
the accumulator scheme’s (Construction 3.5) security (Definition 3.2). Let n∗ := n(n+
1)/2 be the size of the accumulator universe U∗ = [n∗] as set up by KeyGen(R)(1λ, 1n).
Note that |U | = n is the maximum group size of our scheme, whereas n∗ is the size that
the accumulator is set up for (cf. Definition 4.5).

Aacc is given pkacc = ((G,GT, e, p), (g
γi)2n∗

i=0;i 6=n∗+1, z). It completes the setup of ΠR the
same way as the Type 1 forger in Lemma 4.14 (which fails with probability at most n∗/|G|
– we call this event bad), yielding pkR and skR[i] for i ∈ U . Aacc then completes the setup
of Π by computing (pkS , skS) ← KeyGen(S)(1λ) and (gpkG, U, gmskG, (skG[i])i∈U) ←
KeyGen(G)(1λ, 1n). Aacc hands U = [n], gpk = (gpkG, pkR, pkS) and sk[i] = (skG[i], skR[i], gpk)
for i ∈ U to A.

If A queries Opengmsk or EpochCreategmsk, AS answers using gmskG or skS (and
gpk).

Eventually, A outputs V ∗ and some other values. If accforge occurs (i.e. A queried
EpochCreategmsk(V

′, τ∗) for some V ′ ⊆ U with V ′ 6= V ∗ but accV ′ = accV ∗), then Aacc
finds i ∈ V ′\V ∗ (or i ∈ V ∗\V ′) and outputs (V ∗, accV ′ , i,witV ′,i) (or (V ′, accV ′ , i,witV ∗,i))
as an accumulator forgery (again like the Type 1 forger in Lemma 4.14).

76

5.2 A generic construction of group signature schemes with accumulator revocation

This implies that

Pr[accforge]

≤Pr[accforge ∧ ¬bad] + Pr[bad]

≤Pr[Expwitforge
Aacc,Πacc(λ, n

∗) = 1] + Pr[bad]

≤µacc(λ)

for some negligible µacc, using that Pr[bad] is negligible in λ and the accumulator is
secure.

Conclusion

Putting everything together,

Pr[Expepochforge
Π,A (λ, n) = 1]

≤Pr[Expepochforge
Π,A (λ, n) = 1 ∧ ¬accforge] + Pr[accforge]

≤µS(λ) + µacc(λ)

where µS and µacc are negligible. Consequently, Pr[Expepochforge
Π,A (λ, n) = 1] is negligible

in λ as required.

Note that in the reduction to accumulator security, the accumulator was set up for
n∗ = n(n + 1)/2 values as discussed at the end of Section 4.2.4 for the ring signature
scheme. Since the accumulator is secure for any number of possible values, this is not a
problem.

This concludes the security proofs for our group signature scheme with accumulator
revocation.

5.2.7 Performance

We remark that while it may seem wasteful to create a scheme where signatures consist
of two individual signatures, the ring signature portion actually contains only values that
seem to be necessary to prove the user’s revocation status. Indeed, neglecting the easy-
to-fulfill role of ΠS for signing epoch information, one may view a group signature scheme
with accumulator revocation as consisting of these two parts: some part that ensures
that the group manager can open signatures (ΠG in the generic construction) and some
part that manages revocation of signing rights (ΠR in our construction). Considering the
standard methods to achieve these (adding an encrypted identity for Open to signatures,
and using a signature of knowledge for accumulator inclusion, respectively), the two parts
do not seem to have significant overlap.

This already gives one approach to create a potentially more efficient scheme: add an
Open mechanism to our ring signature scheme ΠR. For example, this could be done by
adding a linear encryption of gi to signatures and extending the underlying protocol to
prove that indeed gi was encrypted [BBS04].

77

6 Anonymous credential systems

In this chapter, we explain and define anonymous credential systems. Then, we discuss
revocation of credentials, and extend our definition to include revocation.

In anonymous credential systems [Lys02], there are two types of entities: users and
organizations. Users are known to organizations only under a pseudonym. An organi-
zation may issue credentials, which certify a set of attributes to a user. If user U has
a credential from organization O1, he can choose to show it to another organization
O2, which knows U under a different pseudonym. When showing a credential, the user
can choose exactly what information about his attributes is revealed to O2. O2 does
not learn anything about the identity of U other than what U chooses to reveal about
his attributes. This even holds if O1 and O2 cooperate: they know U under different
pseudonyms which they cannot link.

Such systems implement the idea of data minimization: organizations should only
learn the bare minimum information about the user needed to offer their service. A sim-
ple example application of such systems are government-issued ID cards. Card holders
are routinely asked to show their ID card, for example to certify that they have reached
a certain age. Right now, doing this means that the card holder unconditionally reveals
all information on his card to the verifier, including, for example, name, address, exact
birth date, etc., as they are physically printed onto the card. Using credential systems,
the user can show his ID card credential from O1 (the government) to some other or-
ganization O2, revealing only, for example, the fact that his birth date attribute value
passes a certain threshold. If the user subsequently reveals his address to some third
organization O3, then O2 and O3 cannot tell that they communicated with the same
user. In particular, even if the two organizations collaborate, O2 will not learn the user’s
address.

Another example can be found in the area of paid (flat rate) services. Right now,
users registering for a paid service need to reveal their name, address, and credit card
number to enable billing. In particular, the paid service knows about the user’s identity
and can link the user’s behavior on their service to the user’s data on cooperating
services. With credential systems, paid services can be realized such that the user is
not forced to enable organizations creating extensive profiles about him. Let P be an
organization that handles payments. Our user U establishes a pseudonym with P and
reveals all information necessary to handle billing (e.g., by showing their government ID
card credential as before, which even guarantees P that the received data is correct). U
pays some amount of money to P , specifying that it should be used to pay some service
S. In return, P issues a credential to U . U then registers at the paid service S by
establishing a pseudonym. He shows the credential issued by P to S, which activates
his account (S remembers the payment status for the user’s pseudonym). Through this

79

6 Anonymous credential systems

mechanism, S is guaranteed that only users who have paid can register for their service.
S does not learn the user’s billing information. P does not learn anything about U ’s
behavior with S (other than that he paid them). And if U registers with some other
(paid) service S′, none of the organizations P, S, S′ can link any of his pseudonyms to
any other.

In conclusion, anonymous credential systems enable users to preserve their anonymity
on a variety of services, and organizations are guaranteed that users, despite being
anonymous, still fulfill some basic requirements for gaining access to a resource.

In the remainder of this chapter, we will give a formal experiment-based definition of
anonymous credential systems (Section 6.1), and then define and discuss revocation in
that context (Section 6.2).

6.1 Definition of anonymous credential systems

Anonymous credential systems are typically defined over an “ideal-world” model, where
the anonymous credential system instantiates some ideal functionality [Lys02]. Proofs
of correctness and security then boil down to showing that the credential system’s be-
havior is computationally indistinguishable from the ideal functionality. In contrast,
we will present an experiment-based definition of anonymous credential systems. One
consideration here is that our more traditional way of defining security might be less
prone to misunderstandings than its ideal-world counterpart. While we do not neces-
sarily claim equivalence to the definition of [Lys02], our definition covers the desirable
informal properties of such systems, as we will discuss later.

6.1.1 Syntax

We start with the syntax definition. In an anonymous credential system, we need oper-
ations and protocols to generate user and organization keys, to establish a pseudonym
for a user at an organization, and to issue and show credentials. We start by formally
defining the syntax of (anonymous) credential systems. Afterwards, we explain how the
defined operations can be used in practice.

Definition 6.1. An anonymous credential system consists of the following polynomial-
time algorithms:

• KeyGen(1λ) is a probabilistic algorithm that generates public parameters pp and
a description of the attribute universe A and the predicate universe Φ ⊆ 2A.

• OInitpp(1
λ) is a probabilistic algorithm that generates a public key opk and a secret

key osk.

• UInitpp(1
λ) is a probabilistic algorithm that generates a user secret usk.

80

6.1 Definition of anonymous credential systems

• UFormNym(usk, opk),OFormNym(osk) are two probabilistic interactive algorithms
that both output a pseudonym N and UFormNym additionally outputs a corre-
sponding secret r.

• UIssue(N, r, S),OIssue(osk,N, S) are two probabilistic interactive algorithms where
in the end, UIssue outputs a credential cred for attributes S ⊆ A or the failure
symbol ⊥.

• UShow(N ′, r′, N, r, cred , φ),OShow(osk,N, opk′, φ) are two probabilistic interac-
tive algorithms that both output either 0 or 1 for a formula φ ∈ Φ.

We say that an anonymous credential system is correct if for all λ ∈ N, all (pp,A,Φ) ∈
[KeyGen(1λ)], usk ∈ [UInitpp(1

λ)], (opk, osk), (opk′, osk′) ∈ [OInitpp(1
λ)], and all S ⊆ A

and φ ∈ Φ with S ∈ φ

Pr[(·, (N, r), N)← (UFormNym(usk, opk)
o↔ OFormNym(osk)),

(·, (N ′, r′), N ′)← (UFormNym(usk, opk′)
o↔ OFormNym(osk′)),

(·, cred , ·)← (UIssue(N ′, r′, S)
o↔ OIssue(osk′, N ′, S)),

(·, bUShow, bOShow)← (UShow(N ′, r′, N, r, cred , φ)
o↔ OShow(osk,N, opk′, φ)) :

oUShow = oOShow = 1] = 1

In such a scheme, UFormNym,UIssue,UShow are executed by users, and their respec-
tive counterparts these algorithms interact with, namely OFormNym,OIssue,OShow, are
run by organizations. Consider the following example run. First, the system is set up
by running KeyGen(1λ). Two organizations generate their key pairs (opk, osk) and
(opk′, osk′) using OInit. A user generates his secret key usk using UInit. The user
registers at the organization with public key opk′ by establishing a pseudonym N ′ us-
ing UFormNym(usk, opk′) (while OFormNym(osk′) is run on the organization’s end).
The user also remembers a secret r′ for his pseudonym. The organization can issue the
user (which it knows as N ′) a credential cred for some set S of attributes by running
OIssue(osk′, N ′, S) (while UIssue is run on the user’s end). Then the user may establish
another pseudonym N at another organization and then run UShow(N ′, r′, N, r, cred , φ)
(while OShow(osk,N, opk′, φ) is run on the organization’s end) to prove possession of
a credential cred , whose attributes S fulfill φ (i.e. S ∈ φ), issued by the organization
with public key opk′ (and that N,N ′ belong to the same user secret usk). Correctness
of the scheme exactly says that in this scenario (provided S ∈ φ), UShow and OShow
both output 1 with probability 1.

For illustration, note that such a system can be constructed as follows [Lys02]. A
pseudonym N is a commitment on a user secret usk (and r its open value). A credential
cred is an organization’s signature on usk (signed knowing only the commitment N
to usk) and on S. The protocol for showing a credential is a zero-knowledge proof of

81

6 Anonymous credential systems

knowledge of a hidden signature on hidden values usk, S such that S ∈ φ, and that both
pseudonyms N,N ′ and the signature contain the same user secret usk.

In the following, we define security for anonymous credential systems.

6.1.2 Anonymity

We now start defining security of anonymous credential systems. First, we formalize
that honest users should stay anonymous against collaborating organizations. It should
hold that

• Establishing a pseudonym does not leak any information about the user’s identity.

• Two different pseudonyms of the same user should not be linkable to one another.

• Showing a credential should only reveal exactly what the user chooses to, i.e.
only the user’s pseudonym with the verifier organization, the identity of the issuer
organization, and that its attributes fulfill the formula φ.

We will first give a rough overview of the experiment, then give the formal definition,
and then discuss details.

In the experiment, we set up two honest users. The adversary A can set up any
number of corrupted users and corrupted organizations itself by running UInit and OInit,
respectively. A then sets up the situation it wants to attack by commanding the two
honest users to run some sequence of UFormNym,UIssue,UShow with A’s organizations.
Eventually, A points out two credentials that the honest users have received. The
experiment chooses one of the two credentials, which A can again use in its requests
for UFormNym,UIssue,UShow in order to try to distinguish the chosen credential from
the other one. Intuitively, it should be infeasible for A to distinguish which of the
two credentials was chosen unless it explicitly asks to be shown the credential for an
attribute formula φ that is fulfilled by only exactly one of the two credentials. Special
care needs to be taken that A is not trivially given distinguishing information about the
credential. For example, if the two credentials belong to two different users, showing the
credential to an organization using a pseudonym of the credential holder will succeed,
doing the same with a pseudonym of the other user should fail, since credentials are
non-transferable.

Definition 6.2. A anonymous credential system Π has anonymity if for all probabilistic
polynomial-time adversaries A, there exists a negligible function µ such that

Advanon
Π,A (λ) := |Pr[Expanon−1

Π,A (λ) = 1]− Pr[Expanon−0
Π,A (λ) = 1]| ≤ µ(λ)

for all λ ∈ N, where the experiments Expanon−b
Π,A (λ) for b ∈ {0, 1} work as follow:

1. (pp,A,Φ)← KeyGen(1λ), usk0, usk1
R←− [UInitpp(1

λ)].

2. A is given pp,A,Φ.

82

6.1 Definition of anonymous credential systems

3. A can request to interact1 with UFormNym(uskj , opk) by specifying j ∈ {0, 1} and
opk. Let (N, r) be the output of UFormNym. The experiment stores (j`, opk`, N`, r`)
:= (j, opk,N, r) on an `-indexed list N .

4. A can request to interact with UIssue(N`, r`, S) by specifying an index ` on the list
of pseudonyms N . It may choose S ⊆ A freely. Let cred be the output of UIssue.
The experiment stores (cred `,k, S`,k) := (cred , S) on a k-indexed list C`.

5. A can request to interact with UShow(N`′ , r`′ , N`, r`, cred `′,k, φ) by specifying φ ∈
Φ, two indices `, `′ on N , and an index k on C`′ .

6. Eventually A outputs two indices `0, `1 on N and two indices k0, k1 on C`0 , C`1 ,
respectively. The experiment sets cred∗ := cred `b,kb , S

∗ := S`b,kb , usk? := uskb,
opk∗ := opk`b , and (N∗, r∗) := (N`b , r`b).

7. If ⊥∈ {cred `0,k0 , cred `1,k1} (i.e. one of the credentials is invalid) or opk`0 6= opk`1
(i.e. the credentials were created by different organizations), the experiment out-
puts 0 and aborts.

8. If j`0 = j`1 , let � = j`0 , otherwise, let � = ?. The experiment adds (j`, opk`, N`, r`)
:= (�, opk∗, N∗, r∗) to N for a fresh index ` =: `∗, and it adds (cred `,1, S`,1) :=
(cred∗, S∗) to C`.

9. A may continue to request interactions with UFormNym, UIssue, and UShow as
before.

10. In addition, A may query UFormNym with j = ?.

11. In the end, A outputs a bit b′.

12. If A has requested an interaction with UShow for φ, `, `′, k where j`′ 6= j` and
? ∈ {j`, j`′}, then the experiment outputs 0.

13. Otherwise, if A has requested an interaction with UShow for φ, `, `′, k where `′ = `∗

and k = 1 and either S`0,k0 ∈ φ and S`1,k1 /∈ φ, or S`0,k0 /∈ φ and S`1,k1 ∈ φ, then
the experiment outputs 0.

14. Otherwise it outputs b′.

Note that in the first phase (before A outputs its challenge credential indices), A has
full information about the relation between users and pseudonyms, and what credentials
and attributes were issued to which pseudonyms. It does not have full information about

1Interaction with an algorithm here means that the algorithm sends, receives, and processes protocol
messages to and from A. In particular, A cannot rewind the algorithm to any previous state.
Furthermore, while an interaction is in progress, A cannot start another one (a similar restriction is
made in [Lys02]).

83

6 Anonymous credential systems

cred∗ (it only knows that it is one of two possible credentials). Afterwards, A may again
fully control the system but should not be able to link cred∗ to what it knows, except
through trivial means.

The corresponding real-world scenario is as follows: suppose collaborating organiza-
tions gathered all possible information about two honest users, their pseudonyms and
credentials (e.g., by inferring from request timing). Suppose the two users each have a
credential from organization O. At some point, the organizations lose track and cannot
distinguish between two users through side channels anymore. Then the user needs to
explicitly choose to give the organizations distinguishing information, for example by
showing his credential for a formula φ specific enough to distinguish his attributes from
the other user’s.

Note that for its challenge credentials, A may adaptively choose any two credentials
that it has previously issued to the honest users. The two credentials that A points
out can be either from the same user or from different users. The first case (same user)
covers that organizations cannot learn anything about a credential’s attributes other
than what is revealed by the user through φ. The second case (different users) covers
that UFormNym,UShow,UIssue do not leak any information about the user’s identity
and that pseudonyms are unlinkable.

After A points out the two credentials, the experiment stores the challenge credential’s
pseudonym with the issuer organization as a new entry (j`∗ , opk`∗ , N`∗ , r`∗) onN at index
`∗ (we will explain the role of j`∗ = ? later). Hence, A can afterwards interact with this
pseudonym using the same mechanisms as in the first phase. Furthermore, it stores the
credential cred∗ on C`∗ .

Note the following ways that A can trivially distinguish the two credentials cred `0,k0
and cred `1,k1 .

• If exactly one of the credentials is invalid (e.g., because A refused to do a correct
run of OIssue when issuing it), A can trivially distinguish the invalid credential
from the valid one in the show protocol.

• If the credentials were issued by different organizations opk`0 6= opk`1 , running the
show protocol will succeed for the correct of the two organization keys. It should
fail for the other, which allows A to distinguish the two credentials.

• If exactly one of the credentials’ attributes fulfills some formula φ, running the
show protocol with φ distinguishes the credentials intentionally.

• If the credentials belong to two different users j`0 6= j`1 , then A can distinguish the
credentials by running the show protocol with a pseudonym for which it knows the
corresponding user. By design, the protocol will succeed if the pseudonym belongs
to the user the credential was issued to. It should fail if the pseudonym belongs to
the other user.

Note that if A attempts to exploit one of the first three trivial distinguishers, the
experiment will abort and output 0 in Step 7 or Step 13.

84

6.1 Definition of anonymous credential systems

To prevent last one, we use the following mechanism: if j`0 6= j`1 , the experiment sets
the user index j`∗ for pseudonym N∗ to the special symbol ? in Step 8. Intuitively, this
represents the fact that A does not know which of the two honest users the pseudonym
belongs to (as it depends on b). To prevent A from using the trivial distinguishing
mechanism described above, the experiment aborts in Step 12 if A attempts to run the
show protocol for a pseudonym index `′ = ? (the credential owner) and pseudonym
index ` 6= ? (the user’s pseudonym at the verifier organization), or vice versa. If A
were to run this, it could immediately judge that the user behind pseudonym `′ is the
same as the one behind `. Since A knows the user behind ` if ` 6= ?, this would allow
A to trivially distinguish the two credentials. Note that A may show the credential to
other pseudonyms (that it does not know) by querying UFormNym with j = ? (Step 10)
beforehand, which allows it to create new pseudonyms (and other credentials) for the
unknown user (which are also marked with j` = ?).

Note that all of these restrictions are reasonable. Users need to be aware that when
showing their credential, they reveal the credential issuer, their pseudonym with the
verifier, and information about the attributes according to φ.

In the construction mentioned above, the hiding property of the commitment scheme
implies that A cannot gain any information about the user from his pseudonym N .
Furthermore, the show protocol being zero-knowledge corresponds to A not gaining any
information from its UShow queries on the challenge credential. Finally, in the issue
protocol, the issuer is just given a commitment to create a signature, so the organi-
zation does not learn anything else about the user through this (again because of the
commitment scheme’s hiding property).

6.1.3 Soundness

We now define soundness, which guarantees that dishonest users cannot claim possession
of a credential or attributes that they did not receive.

More specifically, organizations expect that if OShow(osk,N, opk′, φ) outputs 1, then
the user should indeed have been issued a credential from the organization with public
key opk′, and with attributes S fulfilling φ. Furthermore, the user behind the pseudonym
N should be the same as the user who was issued the credential.

The latter property guarantees that users do not simply hand their credentials to
other users. This still leaves the option that users hand their credential and their secret
key(s) to another person. As noted in [Lys02], this should be discouraged through other
means, e.g., by embedding a valuable secret in the user’s key.

In the experiment, we set up two honest organizations and an arbitrary number of hon-
est users. Again, A can set up any number of corrupted users (and organizations) itself.
A controls the system, allowing it to issue commands to the honest organizations and
honest users to interact with its corrupted entities. Furthermore, A may request tran-
scripts of interactions between any honest user and any honest organization. Eventually,
A outputs a challenge formula φ∗ and a challenge pseudonym N∗. Then A participates
in the showing protocol with the first honest organization under pseudonym N∗, trying

85

6 Anonymous credential systems

to convince it that it has a valid credential from the second honest organization. If A
never requested such a credential but the show protocol accepts, A wins the game.

Definition 6.3 (Soundness). An anonymous credential system Π is sound if for all
probabilistic polynomial-time adversaries A, there exists a negligible function µ such
that

Advsoundness
Π,A (λ) := Pr[Expsoundness

Π,A (λ) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expsoundness
Π,A (λ) is defined as follows:

1. The experiment sets up the system (pp,A,Φ) ← KeyGen(1λ) and two honest
organizations (opk∗0, osk

∗
0), (opk∗1, osk

∗
1)← OInitpp(1

λ). The experiment maintains
a list U of honest user keys uskj . Whenever an index j is accessed for the first
time, the experiment runs uskj ← UInitpp(1

λ).

2. A is given pp and opk∗0, opk
∗
1.

3. For t ∈ {0, 1}, Amay request interaction with OFormNym(osk∗t), OIssue(osk∗t , ·, ·),
and OShow(osk∗t , ·, ·, ·).

4. A may request interaction with UFormNym(uskj , opk) by specifying opk and a
user index j. Let (N, r) be the output of UFormNym. The experiment stores
(j`, opk`, N`, r`) := (j, opk,N, r) on an `-indexed list N .

5. Amay request interaction with UIssue(N`, r`, S) by specifying an index ` on N and
any S ⊆ A. Let cred be the output of UIssue. The experiment stores cred `,k :=
cred on a k-indexed list C`. A is given cred .

6. A may request interaction with UShow(N`′ , r`′ , N`, r`, cred `′,k, φ) by specifying φ ∈
Φ, two indices `, `′ on N , and an index k on C`′ .

7. A may request a transcript for UFormNym(uskj , opk
∗
t) ↔ OFormNym(osk∗t) by

specifying a user index j and t ∈ {0, 1}. Let (N, r) be the output of UFormNym.
The experiment stores (j`, opk`, N`, r`) := (j, opk∗t , N, r) on a N .

8. A may request a transcript for UIssue(N`, r`, S) ↔ OIssue(osk∗t , N`, S) by speci-
fying an index ` on N , t ∈ {0, 1}, and S ⊆ A. Let cred be the output of UIssue.
The experiment stores cred `,k := cred on C`. A is given cred .

9. A may request a transcript for UShow(N`′ , r`′ , N`, r`, cred `′,k, φ) ↔ OShow(osk∗t ,
N`, opk

∗
t′ , φ) by specifying t, t′ ∈ {0, 1}, φ and two indices `, `′ on N and an index

k on C`′ .

10. Eventually, A outputs a formula φ∗ ∈ Φ and a pseudonym N∗.

11. The experiment runs z ← OShow(osk∗0, N
∗, opk∗1, φ

∗) to interact with A.

86

6.2 Anonymous credential systems with revocation

12. If z = 1 and A never requested interaction with OIssue(osk∗1, ·, S) in Step 3 where
S ∈ φ∗, the experiment outputs 1.

13. Otherwise it outputs 0.

In the corresponding real-world scenario, a group of dishonest users tries to convince
an honest organization that they were issued a credential (with certain attributes) by
another honest organization which none of them was issued directly.

Note that after any honest run of UIssue, A is given the resulting credential cred .
This corresponds to the requirement that credentials are tied to their owners (and hence,
should be useless without revealing the corresponding pseudonym secret r). Revealing
r should be discouraged, for example, by embedding a valuable user secret in r [Lys02]
(in case of the construction mentioned above, r allows computing the user secret, which
in turn should be made undesirable for users).

Among others, our definition covers

• It is infeasible to make OShow accept using a credential with attributes S /∈ φ.

• A user cannot combine attributes from multiple credentials to fulfill a more specific
formula φ than either of the original credentials.

• The transcripts of honest parties do not reveal any information that could be used
to impersonate an honest user or to forge a credential.

• Credentials are bound to a specific user and cannot be shown without the user’s
secrets.

In the construction mentioned above, unforgeability of the signature scheme implies
that users cannot create credentials that they did not request. The show protocol being
a proof of knowledge implies that it is essentially necessary to have such a credential in
order to reliably pass the protocol. Furthermore, the show protocol needs to ensure that
the signed user identity is the same as in the user’s pseudonym, which corresponds to
(among others) the binding property of the commitment scheme.

6.2 Anonymous credential systems with revocation

In this section, we will explore revocation for anonymous credential systems. We identify
three general types of revocation: (1) revocation of users, (2) revocation of pseudonyms,
and (3) revocation of credentials.

Revoking users is the most broad application of revocation. It requires a central
authority that maintains and dictates the revocation status of users. In order to make
meaningful revocation decisions, the central authority would have to be able to uncover
identities from pseudonyms.

87

6 Anonymous credential systems

Revoking pseudonyms can be done by each organization individually and without any
special capabilities. Revoking a pseudonym should invalidate all credentials issued to
that pseudonym.

However, in many cases, organizations just need to revoke a single credential, for
example, because the user’s attributes changed. In these cases, it would be dispropor-
tionate to revoke the user’s pseudonym or even the whole user across all organizations.
For this reason, we will focus on revocation of credentials, which can also be used to
realize the semantics of pseudonym revocation. Note that revocation of users may still
have its applications (possibly in addition to revocation of credentials) because it al-
lows revoking a user across multiple services, which cannot be easily replicated through
credential revocation without a dedicated entity that can link pseudonyms.

We model revocation of credentials as follows. An organization embeds a (unique)
identifier i into every issued credential. Periodically or on change, it broadcasts new
epoch information E that contains information about the set of valid identifiers. Before
showing a credential cred , the user computes a witness wit for the credential identifier
being valid (this needs to be done only once per epoch E). Then the show protocol
additionally proves that the credential identifier is unrevoked in the current epoch.

One can instantiate this idea with accumulators: E is an accumulator value accV of
the set V of valid identifiers i. The witness wit is simply the accumulator witness, and
the proof protocol ensures knowledge of wit that fulfills the accumulator verification
equation. Alternatively, E could be a list of valid/invalid identifiers, wit is unused (no
updates required), and one proves inclusion/exclusion on E (cf. revocation lists like
for group signatures [BS04]). However, note that our anonymity definition will require
that users of revoked credentials retain their anonymity (since revocation of credentials
is a normal process that does not imply user misbehavior). Hence the revocation list
must not reveal any information that can be used to identify previous credential show
transcripts.

In the following, we give definitions of anonymous credential systems with revocation
(syntax, anonymity, and soundness).

6.2.1 Syntax

Notable changes to the corresponding definitions without revocation (Section 6.1) are
underlined.

Definition 6.4. An anonymous credential system with revocation consists of the fol-
lowing polynomial-time algorithms:

• KeyGen(1λ) is a probabilistic algorithm that generates public parameters pp and
a description of the attribute universe A and the predicate universe Φ ⊆ 2A.

• OInitpp(1
λ, 1n) is a probabilistic algorithm that generates a set U (|U | = n) of

credential identifiers, a public key opk and a secret key osk.

88

6.2 Anonymous credential systems with revocation

• EpochCreate(osk, V) is a probabilistic algorithm that outputs epoch information
E.

• EpochVerify(opk, V,E) is a deterministic algorithm that returns 0 or 1.

• WitCreate(opk, V, i) is a deterministic algorithm that creates a witness wit = witV,i
for an identifier i ∈ V .

• UInitpp(1
λ) is a probabilistic algorithm that generates a user secret usk.

• UFormNym(usk, opk),OFormNym(osk) are two probabilistic interactive algorithms
that both output a pseudonym N and UFormNym additionally outputs a corre-
sponding secret r.

• UIssue(N, r, i, S),OIssue(osk,N, i, S) are two probabilistic interactive algorithms
where in the end, UIssue outputs a credential cred for identifier i and attributes
S ⊆ A, or the failure symbol ⊥.

• UShow(N ′, r′, N, r, cred , φ,E,wit),OShow(osk,N, opk′, φ,E) are two probabilistic
interactive algorithms that both output either 0 or 1 for a formula φ ∈ Φ.

We say that an anonymous credential system is correct if for all λ, n ∈ N, all (pp,A,Φ) ∈
[KeyGen(1λ)], usk ∈ [UInitpp(1

λ)], (U, opk, osk), (U ′, opk′, osk′) ∈ [OInitpp(1
λ, 1n)], all

V ⊆ U , i ∈ V , E ∈ EpochCreate ∈ [EpochCreate(osk′, V)], and all S ⊆ A and φ ∈ Φ
with S ∈ φ

Pr[(·, (N, r), N)← (UFormNym(usk, opk)
o↔ OFormNym(osk)),

(·, (N ′, r′), N ′)← (UFormNym(usk, opk′)
o↔ OFormNym(osk′)),

(·, cred , ·)← (UIssue(N ′, r′, i, S)
o↔ OIssue(osk′, N ′, i, S)),

(·, bUShow, bOShow)← (UShow(N ′, r′, N, r, cred , φ,E,WitCreate(opk′, V, i))
o↔ OShow(osk,N, opk′, φ,E)) :

oUShow = oOShow = 1] = 1

and

EpochVerify(opk′, V,E) = 1

Note that we added three new operations: EpochCreate for an organization to create
new epochs E, WitCreate for users to compute their credential identifiers’ witnesses, and
EpochVerify for users to check that E indeed corresponds to some claimed set V .

Note that revocation opens up new possibilities for organizations to circumvent anonymity.
For example, using an epoch for V = {i} allows the verifier organization to test whether
the credential shown in a protocol has identifier i (which allows the issuer and verifier

89

6 Anonymous credential systems

organization to link the user’s pseudonyms). When the user is given the set V to create
his witness, he may judge whether or not he wants to let an organization narrow down
his credential identifier to V by running the show protocol.

The setup for organizations has an additional parameter 1n, corresponding to an upper
bound on the number of credential identifiers (for example to set up the underlying
accumulator construction).

6.2.2 Anonymity

As indicated earlier, credential revocation generally restricts user anonymity. Organiza-
tions now gain information on whether the identifier of the shown credential is one of the
valid values of the current epoch. Hence, we need to adapt the anonymity experiment.
We add an additional restriction that the distinguisher A may not trivially distinguish
the two credentials by simply creating an epoch where only exactly one of the credential
identifiers is revoked.

Definition 6.5. A anonymous credential system with revocation Π has anonymity if
for all probabilistic polynomial-time adversaries A, there exists a negligible function µ
such that

Advanon
Π,A (λ) := |Pr[Expanon−1

Π,A (λ) = 1]− Pr[Expanon−0
Π,A (λ) = 1]| ≤ µ(λ)

for all λ ∈ N, where the experiments Expanon−b
Π,A (λ) for b ∈ {0, 1} work as follow:

• (pp,A,Φ)← KeyGen(1λ), usk0, usk1
R←− [UInitpp(1

λ)].

• A is given pp,A,Φ.

• A can request to interact with UFormNym(uskj , opk) by specifying j ∈ {0, 1} and
opk. Let (N, r) be the output of UFormNym. The experiment stores (j`, opk`, N`, r`)
:= (j, opk,N, r) on an `-indexed list N .

• A can request to interact with UIssue(N`, r`, i, S) by specifying an index ` on the
list of pseudonyms N . It may choose S ⊆ A and i freely. Let cred be the output
of UIssue. The experiment stores (cred `,k, S`,k, i`,k) := (cred , S, i) on a k-indexed
list C`.

• A can request to interact with UShow(N`′ , r`′ , N`, r`, cred `′,k, φ,E,WitCreate(opk`′ ,
V, i`′,k)) by specifying φ ∈ Φ, V,E, two indices `, `′ on N , and an index k on C`′ .

• Eventually A outputs two indices `0, `1 on N and two indices k0, k1 on C`0 , C`1 ,
respectively. The experiment sets cred∗ := cred `b,kb , S

∗ := S`b,kb , i
∗ := i`,k and

usk? := uskb, (N∗, r∗) := (N`b , r`b), opk
∗ := opk`b .

• If ⊥∈ {cred `0,k0 , cred `1,k1} (i.e. one of the credentials is invalid) or opk`0 6= opk`1
(i.e. the credentials were created by different organizations), the experiment out-
puts 0 and aborts.

90

6.2 Anonymous credential systems with revocation

• If j`0 = j`1 , let � = j`0 , otherwise, let � = ?. The experiment adds (j`, opk`, N`, r`)
:= (�, opk∗, N∗, r∗) to N for a fresh index ` =: `∗, and (cred `,1, S`,1, i`,1) :=

(cred∗, S∗, i∗) to C`.

• A may continue to request interactions with UFormNym, UIssue, and UShow as
before.

• In addition, A may query UFormNym with j = ?.

• In the end, A outputs a bit b′.

• If A has requested an interaction with UShow for φ, `, `′, k, V,E where j`′ 6= j` and
? ∈ {j`, j`′}, then the experiment outputs 0.

• Otherwise, if A has requested an interaction with UShow for φ, `, `′, k, V,E where
`′ = `∗ and k = 1 and either S`0,k0 ∈ φ and S`1,k1 /∈ φ, or S`0,k0 /∈ φ and S`1,k1 ∈ φ,
then the experiment outputs 0.

• Otherwise, if A has requested an interaction with UShow for φ, `, `′, k, V,E where
`′ = `∗ and k = 1 and either i`0,k0 ∈ V and i`1,k1 /∈ V , or i`0,k0 /∈ V and i`1,k1 ∈ V ,
then the experiment outputs 0.

• Otherwise it outputs b′.

Since A controls all organizations, it can create any necessary epoch information itself.
Note that when A interacts with UShow for the challenge credential, it needs to specify

the set V in addition to epoch information E. This is because V is needed to compute
the witness for the challenge credential’s identifier i∗ and in order for the experiment to
judge whether or not i∗ is included in the epoch. The indirect link between V and E is
through WitCreate – if E and V do not fit together, WitCreate should not be able to
compute a valid accumulator witness, so the protocol should fail regardless of revocation
status.

Note that according to this definitions, revoked users retain their anonymity, i.e. after
a user is revoked, their old transcripts still cannot be traced to them. This is a necessary
condition that arises from the fact that organizations, which are potentially interested
in disabling anonymity, are the ones dictating revocation.

Overall, the changes to the anonymity experiment are unsurprising. The focus is on
the additional restriction that A may not request being shown the challenge credential
for epoch information that trivially distinguishes the two credentials.

6.2.3 Soundness

We now consider the soundness definition (i.e. users should not be able to show a
credential they were not issued). Here, users gain a new way to break the scheme,

91

6 Anonymous credential systems

namely by circumventing the revocation mechanism and successfully showing a revoked
credential.

Definition 6.6 (Soundness). An anonymous credential system with revocation Π is
sound if for all n ∈ N and all probabilistic polynomial-time adversaries A, there exists a
negligible function µ such that

Advsoundness
Π,A (λ, n) := Pr[Expsoundness

Π,A (λ, n) = 1] ≤ µ(λ)

for all λ ∈ N, where the experiment Expsoundness
Π,A (λ, n) is defined as follows:

1. The experiment sets up the system (pp,A,Φ) ← KeyGen(1λ) and two honest
organizations (U∗0 , opk

∗
0, osk

∗
0), (U∗1 , opk

∗
1, osk

∗
1)← OInitpp(1

λ, 1n). The experiment
maintains a list U of honest user keys uskj . Whenever an index j is accessed for
the first time, the experiment runs uskj ← UInitpp(1

λ).

2. A is given pp and U0, opk
∗
0, U1, opk

∗
1 and oracle access to EpochCreate(osk∗0, ·) and

EpochCreate(osk∗1, ·).

3. For t ∈ {0, 1}, Amay request interaction with OFormNym(osk∗t), OIssue(osk∗t , ·, ·, ·),
and OShow(osk∗t , ·, ·, ·, ·).

4. A may request interaction with UFormNym(uskj , opk) by specifying opk and a
user index j. Let (N, r) be the output of UFormNym. The experiment stores
(j`, opk`, N`, r`) := (j, opk,N, r) on an `-indexed list N .

5. A may request interaction with UIssue(N`, r`, i, S) by specifying an index ` on N
and any S ⊆ A and any i. Let cred be the output of UIssue. The experiment
stores cred `,k := cred on a k-indexed list C`. A is given cred .

6. A may request interaction with UShow(N`′ , r`′ , N`, r`, cred `′,k, φ,E,wit) by speci-
fying φ ∈ Φ, E,wit , two indices `, `′ on N , and an index k on C`′ .

7. A may request a transcript for UFormNym(uskj , opk
∗
t) ↔ OFormNym(osk∗t) by

specifying a user index j and t ∈ {0, 1}. Let (N, r) be the output of UFormNym.
The experiment stores (j`, t`, N`, r`) := (j, t,N, r) on N .

8. Amay request a transcript for UIssue(N`, r`, i, S)↔ OIssue(osk∗t , N`, i, S) by spec-
ifying an index ` on N ∗, t ∈ {0, 1}, i, and S ⊆ A. Let cred be the output of UIssue.
The experiment stores cred `,k := cred on C`. A is given cred .

9. A may request a transcript for UShow(N`′ , r`′ , N`, r`, cred `′,k, φ,E,wit)↔ OShow(
osk∗t , N`, opk

∗
t′ , φ,E) by specifying φ, E,wit , t, t′ ∈ {0, 1}, and two indices `, `′ on

N ∗ and an index k on C∗`′ .

10. Eventually, A outputs a formula φ∗ ∈ Φ, a set V ∗, epoch information E∗, and a
pseudonym N∗.

92

6.2 Anonymous credential systems with revocation

11. The experiment runs z ← OShow(osk∗0, N
∗, opk∗1, φ

∗,E∗) to interact with A.

12. If z = 1, EpochVerify(opk∗1, V
∗,E∗) = 1, and A never requested interaction with

OIssue(osk∗1, ·, i, S) where S ∈ φ∗ and i ∈ V ∗, the experiment outputs 1.

13. Otherwise it outputs 0.

Note that A gets oracle access to EpochCreate for the two honest organizations, which
it can use to create arbitrary revocation situations.

Alongside φ∗, the challenge that A chooses now includes a set V ∗ of valid identifiers
and E∗, which should be accepted by EpochVerify (without this requirement, there is no
link between V ∗ and E∗, which would make accumulator proofs impossible). A wins the
game if it can pass the show protocol for φ∗ and E∗ without having queried a credential
that both fulfills the attribute formula and is unrevoked.

Again, the necessary changes are minor.

93

7 Conclusion

In this thesis, we have shown how the Camenisch et al. accumulator [CKS09] can
be applied for revocation in group signature schemes. For this, we formally defined
revocation semantics of group signature schemes with accumulator revocation and gave a
generic construction based on our ring signature construction. We also defined revocation
semantics for anonymous credential systems.

In the case of group signatures, accumulator revocation turns out to be very useful.
In contrast to the standard revocation list semantics, our definition implies backward-
unlinkability, which means that signatures of users whose signing rights were revoked
are still not traceable to the signer (and old signatures stay valid). This is desirable in
many contexts where revocation occurs in cases other than misuse. As a result of using
accumulators, epoch information in these schemes is quite short in size and can be sent
alongside messages. Anyone can verify the signature offline and in time independent
of the number of revoked users (as opposed to similar approaches with revocation lists
where this effort is linear in the number of revoked users). The burden of updating
(accumulator) witnesses lies with the signers (who need to do this once for every new
epoch they want to sign messages in), which is reasonable as signing typically occurs
less often than verifying.

For anonymous credential systems, however, accumulator revocation shows some weak-
nesses. First, the burden of updating accumulator witnesses lies with the users (although
this computation can be outsourced to untrusted third parties [CKS09]). This may prove
problematic, for example, on smart cards with limited computational resources and lim-
ited internet access. This holds especially true since the smart card terminal cannot
easily fetch the credential’s witness for the smart card, considering that the terminal
should not learn the credential identifier needed to compute the witness. Second, as
pointed out in Section 6.2, revocation of credentials can be a dangerous tool given to
organizations that they can use to defeat a user’s anonymity. For example, setting the
set of valid credential identifiers to V = {i} basically yields an oracle to distinguish a
shown credential from credential i. In theory, users can judge from the set V whether or
not they want to let the organization narrow its credential identifier down to one of the
values in V . However, in practice this is difficult: even if the set V seemingly contains
many credential identifiers, the user’s identifier i might still be the only one that was ever
issued a credential for. Furthermore, having to check the set V for anonymity threats
negates the desirable effect of accumulators that they represent V in a very compact
form. Storing or processing the complete set V might again represent a problem for
smart cards.

95

Bibliography

[BB04] Dan Boneh and Xavier Boyen. Short Signatures Without Random Oracles.
In Advances in Cryptology - EUROCRYPT 2004, number 3027 in Lecture
Notes in Computer Science, pages 56–73. Springer Berlin Heidelberg, 2004.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In
Advances in Cryptology–CRYPTO 2004, pages 41–55. Springer, 2004.

[BKM06] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring Signatures:
Stronger Definitions, and Constructions Without Random Oracles. In Theory
of Cryptography, number 3876 in Lecture Notes in Computer Science, pages
60–79. Springer Berlin Heidelberg, 2006.

[BMW03] Mihir Bellare, Daniele Micciancio, and Bogdan Warinschi. Foundations of
Group Signatures: Formal Definitions, Simplified Requirements, and a Con-
struction Based on General Assumptions. In Advances in Cryptology — EU-
ROCRYPT 2003, number 2656 in Lecture Notes in Computer Science, pages
614–629. Springer Berlin Heidelberg, 2003.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Proceedings of the 13th ACM Confer-
ence on Computer and Communications Security, CCS ’06, pages 390–399.
ACM, 2006.

[Bra97] Stefan Brands. Rapid Demonstration of Linear Relations Connected by
Boolean Operators. In Advances in Cryptology — EUROCRYPT ’97, number
1233 in Lecture Notes in Computer Science, pages 318–333. Springer Berlin
Heidelberg, 1997.

[BS04] Dan Boneh and Hovav Shacham. Group Signatures with Verifier-local Re-
vocation. In Proceedings of the 11th ACM Conference on Computer and
Communications Security, CCS ’04, pages 168–177, New York, NY, USA,
2004. ACM.

[CKS09] Jan Camenisch, Markulf Kohlweiss, and Claudio Soriente. An Accumulator
Based on Bilinear Maps and Efficient Revocation for Anonymous Credentials.
In Public Key Cryptography – PKC 2009, number 5443 in Lecture Notes in
Computer Science, pages 481–500. Springer Berlin Heidelberg, 2009.

[CS97] Jan Camenisch and Markus Stadler. Proof systems for general statements
about discrete logarithms. Citeseer, 1997.

97

Bibliography

[DHS15] David Derler, Christian Hanser, and Daniel Slamanig. Revisiting Crypto-
graphic Accumulators, Additional Properties and Relations to Other Prim-
itives. In Topics in Cryptology — CT-RSA 2015, number 9048 in Lecture
Notes in Computer Science, pages 127–144. Springer International Publish-
ing, April 2015.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Prove All NP
Statements in Zero-Knowledge and a Methodology of Cryptographic Proto-
col Design (Extended Abstract). In Andrew M. Odlyzko, editor, Advances
in Cryptology — CRYPTO’ 86, number 263 in Lecture Notes in Computer
Science, pages 171–185. Springer Berlin Heidelberg, 1987.

[Lys02] Anna Lysyanskaya. Signature schemes and applications to cryptographic pro-
tocol design. PhD thesis, Massachusetts Institute of Technology, 2002.

[NF06] Toru Nakanishi and Nobuo Funabiki. A Short Verifier-Local Revocation
Group Signature Scheme with Backward Unlinkability. In Advances in Infor-
mation and Computer Security, number 4266 in Lecture Notes in Computer
Science, pages 17–32. Springer Berlin Heidelberg, 2006.

[Oka06] Tatsuaki Okamoto. Efficient blind and partially blind signatures without
random oracles. In Theory of cryptography, pages 80–99. Springer, 2006.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signa-
tures and blind signatures. Journal of cryptology, 13(3):361–396, 2000.

[Sch15] Berry Schoenmakers. Cryptographic Protocols. 2015.

98

	Introduction
	Foundation and Notation
	Notation
	Basics of (pairing-based) cryptography
	Proofs of knowledge
	Forking lemma
	Ring signatures
	Group signatures
	Assumptions
	Constructions

	Accumulators
	Definition
	The necessity of witness updates
	The Camenisch et al. accumulator
	Anonymously proving inclusion in the accumulator

	A ring signature scheme from the Camenisch et al. accumulator
	A protocol to prove revocation status
	Signing accumulator identities
	Combining the signature and accumulator protocol

	Constructing the ring signature scheme
	Construction
	Correctness
	Anonymity
	Unforgeability

	Revocation for group signatures
	Defining group signatures with accumulator revocation
	Syntax definition
	Security definitions

	A generic construction of group signature schemes with accumulator revocation
	Construction
	Correctness
	Anonymity
	Traceability
	Unforgeability
	Unforgeability of epoch information
	Performance

	Anonymous credential systems
	Definition of anonymous credential systems
	Syntax
	Anonymity
	Soundness

	Anonymous credential systems with revocation
	Syntax
	Anonymity
	Soundness

	Conclusion
	Bibliography

