
mobile-env: An Open Platform for Reinforcement
Learning in Wireless Mobile Networks

Stefan Schneider, Stefan Werner
Paderborn University, Germany
{stschn, stwerner}@mail.upb.de

Ramin Khalili, Artur Hecker
Huawei Technologies, Germany

{ramin.khalili, artur.hecker}@huawei.com

Holger Karl
Hasso Plattner Institute,

University of Potsdam, Germany
holger.karl@hpi.de

Abstract—Recent reinforcement learning approaches for con-
tinuous control in wireless mobile networks have shown im-
pressive results. But due to the lack of open and compatible
simulators, authors typically create their own simulation en-
vironments for training and evaluation. This is cumbersome
and time-consuming for authors and limits reproducibility and
comparability, ultimately impeding progress in the field.

To this end, we propose mobile-env, a simple and open platform
for training, evaluating, and comparing reinforcement learning
and conventional approaches for continuous control in mobile
wireless networks. mobile-env is lightweight and implements
the common OpenAI Gym interface and additional wrappers,
which allows connecting virtually any single-agent or multi-agent
reinforcement learning framework to the environment. While
mobile-env provides sensible default values and can be used out
of the box, it also has many configuration options and is easy to
extend. We therefore believe mobile-env to be a valuable platform
for driving meaningful progress in autonomous coordination of
wireless mobile networks.

Index Terms—wireless mobile networks, network manage-
ment, continuous control, autonomous coordination, reinforce-
ment learning, gym environment, simulation, open source

I. INTRODUCTION

There is an ongoing trend towards self-learning and self-
adapting approaches for continuous control and coordination
in networking [1]. Examples are self-learning approaches for
management in wired networks [2] but also for cell selection or
power control in wireless mobile networks [3], [5]. In contrast
to conventional approaches (e.g., heuristics or mixed-integer
linear programs), such self-learning approaches use reinforce-
ment learning or contextual bandits, trained on simulation
environments, to adapt to various scenarios autonomously
without requiring expert or a priori knowledge [1].

While there are existing network simulators (Sec. III), they
are often not directly compatible with typical reinforcement
learning frameworks requiring the OpenAI Gym interface [6].
They are also rather cumbersome to set up and configure,
preventing fast prototyping of new self-learning approaches.
Therefore, many authors currently resort to creating their own
environments when designing and publishing a new rein-
forcement learning approach. Creating a suitable simulation
environment is time-consuming and error-prone, slowing down
authors in their research. It is also more difficult for others to
interpret and compare published approaches if they each rely
on different simulation environments. Often, the corresponding
environment is not publicly available, making reproduction

and reuse of the published approach impossible. These limita-
tions severely hinder comparability and meaningful progress in
the field of autonomous control for wireless mobile networks.

To mitigate these problems, we propose mobile-env, which
is a simple and open platform for training, evaluating,
and comparing coordination approaches, particularly suitable
for wireless mobile networks. The mobile-env platform is
lightweight and fast, simple to install and use, written purely
in Python, and compatible to existing reinforcement learn-
ing frameworks by complying with the OpenAI Gym inter-
face. Besides novel self-learning approaches, mobile-env also
supports existing conventional approaches, facilitating their
evaluation and comparison. To encourage adoption by the
community, mobile-env is open source [7], available on the
official Python package index (PyPI), comes with sensible
default values yet extensive configuration options, and is well
documented. Thanks to its modular architecture, it is also easy
to adjust and extend (Sec. II). With mobile-env, we hope to
provide a useful tool for prototyping, training, and evaluating
new approaches as well as for benchmarking and comparing
existing approaches.

II. THE mobile-env PLATFORM

mobile-env is a minimalist and lightweight simulation plat-
form that can serve as training and evaluation environment
for reinforcement learning and other control algorithms in
wireless mobile networks. Sec. II-A outlines our design goals.
Sec. II-B describes the simulation procedure and interaction
with an agent through the OpenAI Gym interface, pointing
out common challenges and our approaches to address them.
Sec. II-C presents the resulting architecture.

A. Design Goals

Current simulation environments are typically either tailored
to a specific use case [8], [9] or versatile, generic network sim-
ulation frameworks [10], [11] (detailed in Sec. III). Custom-
tailored simulation environments are ideal to quickly prototype
new approaches in a specific use case but are difficult to adjust
and extend to other scenarios. Generic network simulators pro-
vide a wealth of features and configuration options, allowing
fine-grained simulation of many different scenarios but also
requiring significant overhead for modeling each new scenario
and additional effort for integrating self-learning approaches.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.



OpenAI Gym

Agent
Wrappers

Core Simulation Logic

Handlers

Fig. 1: mobile-env simulation procedure.

With mobile-env we aim to fill the gap between these
two sides of the spectrum. Our goal is to keep mobile-
env simple and lightweight with sensible default values and
predefined example scenarios, enabling easy adoption and fast
prototyping of new approaches. At the same time, we aim at
configurability and extensibility, allowing users to customize
all aspects of the simulation environment with low overhead to
experiment with different scenarios and address their specific
use cases. Core to this configurability and extensibility are
the many provided configuration options and the modular
architecture (Sec. II-C).

B. Simulation Procedure

When training and evaluating self-learning approaches, the
control agent repeatedly interacts with the simulation envi-
ronment, typically through the standardized OpenAI Gym
interface [6]. Fig. 1 illustrates this simulation procedure, where
the agent obtains an observation oi−1 of the environment’s
current state at time ti−1 and selects an action ai−1 to
control the environment (e.g., cell selection, power control,
scheduling, ...). This action is applied to the environment,
affects its state, and leads to a new observation oi and a
reward ri at time ti.

Authors wanting to devise and prototype new self-learning
approaches often face multiple challenges: How do they
quickly set up the environment’s simulation logic? How do
they integrate the learning agent with the simulation loop?
How do they customize the environment to experiment with
different scenarios and with varying observations, actions, and
reward, which are crucial to reinforcement learning? How
do they deal with multi-agent scenarios and with different
available reinforcement learning frameworks?

mobile-env addresses these challenges in different ways:
The core simulation logic is inside the environment’s step
function (as defined by OpenAI Gym), which takes an action,
applies it to the environment, progresses simulation time,
and returns the next observation and reward. We call step
periodically rather than event-based to let the agent decide
itself for each time step whether to take an action or to choose
a no-op. An exemplary use case of mobile-env is multi-cell
selection for scenarios with coordinated multipoint (CoMP),
where users can connect to more than one serving cell
simultaneously for higher data rates or improved coverage.
Here, the action defines which cells to (dis-)connect, and
the step function applies these actions and updates users’

mobile-env

Core

base
entities
movement 
channel
schedule

Handlers

abstract
single-agent
multi-agent
obs., actions,
reward

Scenarios
small
medium
large
...

Wrappers

Ray RLlib
PettingZoo
...

O
pe

nA
I G

ym

Ray 
RLlib

stable-
baselines

Mava

OpenAI 
Baselines

...

Fig. 2: mobile-env modular architecture.

connections, positions, data rates, etc. To this end, it leverages
realistic realistic models for path loss (Okumura-Hata [12]),
user mobility (improved random waypoint [13]), scheduling
(e.g., proportional-fair), etc., which are included in mobile-
env and can be replaced, customized, and extended freely.
For other use cases, e.g., power control or scheduling, these
models can be replaced by the agent’s actions. To facilitate
quick prototyping, mobile-env comes with predefined example
scenarios and all configuration options have sensible defaults.

In addition to providing the core simulation logic, mobile-
env also introduces “handlers”, which allow customizing ob-
servations, actions, and reward easily and “wrappers” to align
the environment to interfaces other than OpenAI Gym, e.g.,
for multi-agent learning (detailed in Sec. II-C).

C. Modular Architecture

We built mobile-env in a modular, object-oriented fashion.
Fig. 2 illustrates the architecture consisting of four main
packages: core, scenarios, handlers, and wrappers. The core
package contains all main functionality and simulation logic,
e.g., modeling properties of users and base stations (entities)
or implementing different algorithms for scheduling resources
to connected users (scheduling). It also implements rendering
functionality to visualize learned policies, e.g., when running
inside a Jupyter notebook. Each of these core modules contains
classes that can be extended easily through inheritance and by
overwriting the desired attributes or methods. The scenarios
package contains predefined configurations, currently for a
small, medium, and large scenario, i.e., for cell selection with
different numbers of users and cells.. Over time, we plan to
include more and more predefined scenarios, depending on
feedback and contributions by the community. Each scenario
is versioned and registered as Gym environment such that it
can be used out of the box after importing mobile-env (e.g.,
gym.make("mobile-medium-central-v0")).

As described in Sec. II-B, mobile-env implements the
common OpenAI Gym interface with its step function [6].
Rather than hard-wiring specific observations, actions, and
rewards inside step, they are configurable through handlers.
A handler class has full access to the environment state,
defines the observation and action space, and is called by
step to process actions, calculate rewards, and return new
observations. mobile-env already provides example handlers



for both single-agent and multi-agent approaches, which can
be sub-classed, adjusted, and extended.

Some reinforcement learning frameworks deviate from the
standard OpenAI Gym interface, e.g., for multi-agent ap-
proaches. Here, wrapper classes wrap the Gym interface and
transform observations, actions, or reward into the desired
format but, unlike handlers, do not change their meaning. We
provide a wrapper for multi-agent learning with the popular
Ray RLlib framework [14], which, for example, expects the
observation space to be defined per agent, not combined for
all agents. Through the OpenAI Gym interface and these
wrappers, researchers can connect their approaches based on
virtually any framework to mobile-env and leverage it for fast
and simple training and evaluation.

III. COMPARISON AGAINST OTHER PLATFORMS

mobile-env is inspired by highway-env [9], which is
also a simple and lightweight environment for reinforcement
learning but considers autonomous driving instead of wireless
mobile networks. Brunori et al. [8] propose a related platform
for multi-agent reinforcement learning in wireless networks
but focuses on autonomous unmanned aerial vehicles (UAVs).
Besides, their platform has little documentation and examples
and is limited by an overly restrictive, custom license, denying
open-source use, modification, or redistribution. In contrast,
mobile-env is more flexible, better documented, and licensed
by the standard, permissive MIT license, allowing private and
commercial use, modification, and distribution.

On the other side of the spectrum, there are established,
generic network simulators like ns-3 [10] or OMNeT++ [11],
which are very flexible and model networking in detail. These
simulators provide far more features than mobile-env, but their
flexibility comes at the cost of increased complexity and over-
head when testing many different scenarios and approaches.
mobile-env can be installed quickly with a single command
(pip install mobile-env; 25 kB) and can train or
evaluate a reinforcement learning agent in less than 10 lines
of Python code. In contrast, OMNeT++ requires defining
the structure of the desired simulation environment in NED
language within a custom IDE, then implementing its logic
in various C++ classes, then parametrizing it in a separate
omnetpp.ini file, and finally building and compiling it,
before the simulation is ready to run. At this point, the
simulation still lacks the interaction with the reinforcement
learning agent through the OpenAI Gym interface (Python)—a
considerable, often prohibitive overhead for researchers. While
there is an OpenAI Gym implementation for ns-3 [15], the
complexity and overhead are still comparable to OMNeT++.

In comparison, mobile-env represents an intermediate solu-
tion with reasonable features and flexibility, built-in single-
and multi-agent support via OpenAI Gym and wrappers, as
well as fast and simple installation and usage.

IV. DEMONSTRATION

We demonstrate mobile-env, we provide an interactive
Jupyter notebook, which others can experiment with at their

own pace.1 In this demonstration, we show how to set up
mobile-env, illustrate the predefined default scenarios, and
options for configuration and extension (e.g., regarding the
number and movement of simulated users and the observation
or action space). We also demonstrate how to connect different
reinforcement learning frameworks to mobile-env for training
and visualizing single-agent and multi-agent approaches.

V. CONCLUSION

With mobile-env we propose an open and simple yet config-
urable platform for reinforcement learning in wireless mobile
networks [7]. We look forward to others using and extending
mobile-env for their research and welcome their contributions!

ACKNOWLEDGMENTS

This work has received funding from the German Research
Foundation (DFG) within the Collaborative Research Center
“On-The-Fly Computing” (SFB 901) and the open6GLab
(German BMBF funding; grant 16KISK011).

REFERENCES

[1] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C.
Liang, and D. I. Kim, “Applications of deep reinforcement learning
in communications and networking: A survey,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3133–3174, 2019.

[2] S. Schneider, A. Manzoor, H. Qarawlus, R. Schellenberg, H. Karl,
R. Khalili, and A. Hecker, “Self-driving network and service coordi-
nation using deep reinforcement learning,” in International Conference
on Network and Service Management (CNSM). IEEE, 2020, pp. 1–9.

[3] W. Liu, L. Wang, E. Wang, Y. Yang, D. Zeghlache, and D. Zhang, “Rein-
forcement learning-based cell selection in sparse mobile crowdsensing,”
Computer Networks, vol. 161, pp. 102–114, 2019.

[4] S. Vimal, M. Khari, N. Dey, R. G. Crespo, and Y. H. Robinson,
“Enhanced resource allocation in mobile edge computing using re-
inforcement learning based MOACO algorithm for IIOT,” Computer
Communications, vol. 151, pp. 355–364, 2020.

[5] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning
for dynamic power allocation in wireless networks,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 10, 2019.

[6] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “OpenAI Gym,” arXiv preprint
arXiv:1606.01540, 2016.

[7] S. Schneider and S. Werner, “mobile-env GitHub repository,” https://
github.com/stefanbschneider/mobile-env, 2021.

[8] D. Brunori, S. Colonnese, F. Cuomo, and L. Iocchi, “A reinforcement
learning environment for multi-service UAV-enabled wireless systems,”
in IEEE PerCom Workshops. IEEE, 2021, pp. 251–256.

[9] Leurent, “highway-env,” https://github.com/eleurent/highway-env, 2018.
[10] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena,

“Network simulations with the ns-3 simulator,” SIGCOMM Demonstra-
tion, vol. 14, no. 14, p. 527, 2008.

[11] OpenSim, “OMNeT++ website,” https://omnetpp.org/, 2021.
[12] A. Medeisis and A. Kajackas, “On the use of the universal okumura-

hata propagation prediction model in rural areas,” in IEEE Vehicular
Technology Conference (VTC), vol. 3. IEEE, 2000, pp. 1815–1818.

[13] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered harm-
ful,” in IEEE International Conference on Computer Communications
(INFOCOM). IEEE, 2003, pp. 1312–1321.

[14] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gon-
zalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for distributed rein-
forcement learning,” in International Conference on Machine Learning
(ICML). PMLR, 2018, pp. 3053–3062.

[15] P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI Gym: The playground
for machine learning in networking research,” in ACM International
Conference on Modeling, Analysis and Simulation of Wireless and
Mobile Systems (MSWiM). ACM, 2019.

1Interactive Jupyter notebook: https://bit.ly/3FDHKEk (Jan. 18, 2022)

https://github.com/stefanbschneider/mobile-env
https://github.com/stefanbschneider/mobile-env
https://github.com/eleurent/highway-env
https://omnetpp.org/
https://bit.ly/3FDHKEk

	Introduction
	The mobile-env Platform
	Design Goals
	Simulation Procedure
	Modular Architecture

	Comparison Against Other Platforms
	Demonstration
	Conclusion
	References

