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JASPER: Joint Optimization of Scaling, Placement,
and Routing of Virtual Network Services

Sevil Dräxler, Holger Karl, and Zoltán Ádám Mann

Abstract—To adapt to continuously changing workloads in
networks, components of the running network services may need
to be replicated (scaling the network service) and allocated to
physical resources (placement) dynamically, also necessitating
dynamic re-routing of flows between service components. In
this paper, we propose JASPER, a fully automated approach
to jointly optimizing scaling, placement, and routing for complex
network services, consisting of multiple (virtualized) components.
JASPER handles multiple network services that share the same
substrate network; services can be dynamically added or removed
and dynamic workload changes are handled. Our approach
lets service designers specify their services on a high level of
abstraction using service templates. JASPER automatically makes
scaling, placement and routing decisions, enabling quick reaction
to changes. We formalize the problem, analyze its complexity, and
develop two algorithms to solve it. Extensive empirical results
show the applicability and effectiveness of the proposed approach.

Index Terms—Cloud computing services, mathematical opti-
mization, orchestration, virtual networks.

I. INTRODUCTION

Network services and applications like video streaming
and online gaming, consist of different service components,
including (virtual) network functions, application servers, data
bases, etc. Typically, several of these network services are
hosted on top of wide-area networks, serving the continuously
changing demands of their users. The need for efficient and
automatic deployment, scaling, and path selection methods
for the network services has led to paradigms like network
softwarization, including software-defined networking (SDN)
and network function virtualization (NFV).

SDN and NFV provide the required control and orchestra-
tion mechanisms to drive the network services through their
life-cycle. Today, network services are placed and deployed
in the network based on fixed, pre-defined descriptors [1]
that contain the number of required instances for each service
component and the exact resource demands. More flexibility
can be achieved by specifying auto-scaling thresholds for
metrics of interest. Once such a threshold is reached, the
affected network services should be modified, e.g., scaled.

To react to addition and removal of network services,
fluctuations in the request load of a network service, or to serve
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new user groups in a new location, (i) the network services
can be scaled out or in by adding or removing instances of
service components, respectively, (ii) the placement of service
components and the amount of resources allocated to them can
be modified, and (iii) the network flows between the service
components can be re-routed through different, more suitable
paths.

Given this large number of degrees of freedom for finding
the best adaptation, deciding scaling, placement, and routing
independently can result in sub-optimal decisions for the
network and the running services. Consider a service platform
provider hosting a dynamically changing set of network ser-
vices, where each network service serves dynamically chang-
ing user groups that produce dynamically changing data rates.
Trade-offs among the conflicting goals of network services
and platform operators can be highly non-trivial, for example,
Placing a compute-intensive service component on a node
with limited resources near the source of requests (e.g., the
location of users, content servers, etc.) minimizes latency but
placing it on a more powerful node further away in the network
minimizes processing time.

To deal with these challenges, we propose JASPER, a
comprehensive approach for the Joint optimizAtion of Scaling,
PlacEment, and Routing of virtual network services. In
JASPER, each network service is described by a service
template, containing information about the components of the
network service, the interconnections between the components,
and the resource requirements of the components. Both the
resource requirements and the outgoing data rates of a com-
ponent are specified as functions of the incoming data rates.

The input to the problem we are tackling comprises service
templates, location and data rate of the sources of each
network service, and the topology and available resources of
the underlying network. Our optimization approach takes care
of the rest: based on the location and current data rate of the
sources, in a single step, the templates are scaled by replicating
service components as necessary, the placement of components
on network nodes is determined, and data flows are routed
along network paths. Node and link capacity constraints of
the network are automatically taken into account. We optimize
the solution along multiple objectives, including minimizing
resource usage, minimizing latency, and minimizing deploy-
ment adaptation costs.

Our main contributions are as follows:
• We formalize template embedding as a joint optimization

problem for scaling, placing, and routing service tem-
plates in the network.

• We prove the NP-hardness of the problem.
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• We present two algorithms for solving the problem, one
based on mixed integer programming, the other a custom
heuristic.

• We evaluate both algorithms in detail to determine their
strengths and weaknesses.

With the proposed approach, service providers obtain a
flexible way to define network services on a high level of
abstraction while service platform providers obtain powerful
methods to optimize the scaling and placement of multiple
services in a single step, fully automatically.

The main novelty of our approach is the flexibility that it
offers in several aspects:
• The number of instances of the service components does

not have to be pre-defined but is automatically determined
and adjusted as necessary.

• Scaling decisions are not based on simple and rigid
local rules, but rather on the global system state, thus
also taking into account the interplay between scaling
decisions for different service components.

• The resource needs of the service components do not have
to be pre-defined. Instead, they are specified as functions
of the input data rate of the component. This way, the
resource allotment of the components can be flexibly
adjusted as needed.

• Not only chains of service components are supported, but
also more complicated graph structures. Moreover, flows
between components can be split among multiple paths.

• Optimization is carried out with respect to multiple
metrics, including the minimization of node and link
overloads, the minimization of resource consumption, and
the minimization of deployment modification costs.

Although some existing approaches possess some of these
characteristics, we are not aware of any existing approach that
would offer the same level of flexibility as JASPER.

The flexible problem formulation results in a complex op-
timization problem, in which scaling, placement, and routing
decisions are taken in a single step for all – already deployed
or newly requested – network services. Efficiently solving such
a complex optimization problem is not trivial. The empirical
results demonstrate that our proposed algorithms can be used
to tackle this problem.

The rest of the paper is organized as follows. In Section II,
we give an overview of related work. Section III presents a
high-level overview of our approach and Section IV describes
the details of our model and assumptions. We discuss the
complexity of template embedding in Section V and formu-
late the problem as a mixed integer programming model in
Section VI. We present a heuristic solution in Section VII and
the evaluation results of our solutions in Section VIII, before
concluding the paper in Section IX.

II. RELATED WORK

Our solution can be applied in different contexts, e.g.,
(distributed) cloud computing and Network Function Virtu-
alization (NFV). In this section, after an analysis of related
approaches from a theoretical point of view, we give an
overview of related work in the cloud computing and NFV

contexts. The major difference among the existing work in
these two fields is usually the abstraction level considered
for the substrate network and the resulting assumptions for
the model. In particular, in the cloud computing context,
embedding is typically done on top of physical machines in
data centers, while in the NFV context, embedding is done on
top of geographically distributed points of presence.

A. Virtual network embedding problem

The combination of the placement and path selection sub-
problems of template embedding is similar to the Virtual
Network Embedding (VNE) problem. Both deal with mapping
virtual nodes and virtual links of a graph into another graph.
VNE does not include the scaling step that is an important
part of JASPER. Fischer et al. [2] have published a survey
of different approaches to VNE, including static and dynamic
VNE algorithms.

In contrast to static VNE solutions that consider the ini-
tial mapping process only, in this paper we also deal with
optimizing and modifying already embedded templates. Some
VNE solutions, for example, Houidi et al. [3], can modify the
mapping in reaction to node or link failures. The modifications
in their work, however, are limited to recalculating the location
for the embedded virtual network, i.e., migrating some of the
nodes and changing the corresponding paths among them. In
addition to these modifications, our approach can also modify
the structure of the graph to be embedded by adding or
removing nodes and links if necessary.

B. Cloud computing context

The related problem in cloud environments is typically
formulated as resource allocation for individual components,
i.e., scaling and placing instances of virtual machines on top of
physical machines while adhering to capacity constraints [4],
[5]. The communication among different virtual machines is
usually left out or considered only in a limited sense [6].
Among cloud computing approaches, even the ones that do
consider the communication among virtual machines [7], [8],
[9], [10] do not include routing decisions whereas JASPER
also includes routing.

Relevant to the placement sub-problem of template embed-
ding, Bellavista et al. [11] focus on the technical issues of de-
ploying flexible cloud infrastructure, including network-aware
placement of multiple virtual machines in virtual data centers.
Wang et al. [12] study the dynamic scaling and placement
problem for network services in cloud data centers, aiming
at reducing costs. These papers also do not address routing.
Moreover, our approach of specifying resource consumption
as a function of input data rates allows a much more realistic
modeling of the resource needs of service components than the
constant resource needs assumed by the existing approaches
in this context.

Keller et al. [13] consider an approach similar to our tem-
plate embedding problem in the context of distributed cloud
computing. Our terminology is partly based on their work but
there are important differences in the assumptions and the
models that make our approach stronger and more flexible than
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their solutions. In contrast to their model, where the number
of users determines the number of required instances, the
deciding factor in our work is the data rate originating from
different source components. Moreover, we do not enforce
strict scaling restrictions for components as done in their work.
(For example, their method needs as input the exact number
of instances of a back-end server that is required behind a
front-end server.) Finally, we use a more sophisticated multi-
objective optimization approach where different metrics like
CPU and memory load of network nodes, data rate on network
links, and latency of embedded templates are considered.

C. Network function virtualization context

The placement and routing problems are also relevant in the
field of Network Function Virtualization (NFV). In the NFV
context, the forwarding graphs of network services composed
of multiple virtual network functions (VNFs) are mapped into
the network. Herrera et al. [14] have published an analysis
of existing solutions for placing network services as part of a
survey on resource allocation in NFV. Addis et al. [15] study
the properties and complexity of this problem, comparing the
VNE-based and routing and location-based formulations.

Kuo et al. [16] consider the joint placement and routing
problem, focusing on maximizing the number of admitted
network service embedding requests. Gupta et al. [17] consider
placement and routing of (linear) chains of virtual network
functions focusing on minimizing the used network link capac-
ity. Ahvar et al. [18] propose a solution to this problem, with
the assumption that the VNFs can be re-used among different
flows. Their objective is to find the optimal number of VNFs
for all requests and to minimize the costs for the provider.
Another similar approach that considers re-using components
is proposed by Bari et al. [19]. Kebbache et al. [20] aim at
solving this problem in an efficient way that can scale with
the size of the underlying infrastructure and the embedded net-
work services. They measure the efficiency of their algorithms
with respect to run time, acceptance rate, and costs. Another
attempt to solve this problem in an efficient and scalable way
has been made by Luizelli et al. [21], focusing on minimizing
resource allocation. In comparison to all these approaches, we
consider a more comprehensive optimization objective, trying
to minimize the delay for network services, the number of
added or removed instances, resource consumption, as well as
overload of resources.

Liu et al. [22] consider the dynamic placement and adjust-
ment of services, similar to the joint placement and scaling
approach in this paper. However, their model uses different
assumptions than ours, e.g., considering a single user per
service function chain, which can only be linear. Also, unlike
our approach, they use pre-calculated paths in the network and
do not consider the latency of paths for routing.

In our work, the exact structure of the network service
does not have to be fixed in the deployment request. In a
previous work [23], we have studied another type of flexibility
in the network service structure, namely, the case where the
components are specified with a partial order and can be re-
ordered. JASPER is based on the assumption that the order of
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Fig. 2. Network service management and orchestration using JASPER

traversing the service components is fixed and given, however,
the number of instances for each component and the amount
of resources allocated to each component can be adapted
dynamically.

Several other solutions [24], [25], [26], [27] have been
proposed for placement, scaling, and path selection problems
for network services. Our template embedding approach has
two important differences compared to these solutions. First,
our approach can be used for initial placement of a newly
requested service as well as scaling and adapting existing
embeddings. Second, in our approach, the structure of the
service and mapping of the service components to network
nodes and the optimal routing are determined in one single
step, based on the requirements of the service and current
state of network resources, searching for a global optimum.

A preliminary version of this work was presented at the
CCGrid 2017 conference [28]. Compared to the conference
version, this paper contains the proof of NP-hardness, more
detailed explanation of the problem model and the devised
algorithms, and a more detailed evaluation and discussion of
the practical applicability of the proposed approach.

III. APPROACH OVERVIEW

In typical management and orchestration frameworks [1],
service providers need to submit exact descriptors of their
network service structure, resource demands, and expected
traffic from sources to a service management and orchestration
system (Fig. 1). Based on the descriptors, placement, scaling,
and routing decisions are made for each network service,
independently from one another.

JASPER makes several changes to this approach, partly
with respect to the description of the network services (Sec-
tion III-A) and partly with respect to handling the scaling,
placement, and routing decision processes (Section III-B).
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A. Templates instead of over-specified descriptors

Deploying several instances of service components might
be necessary in different scenarios, e.g., for load balancing
purposes or for instantiating new instances closer to the new
users in case of a delay-sensitive application. In existing
cloud and NFV orchestration solutions, auto-scaling rules are
defined in service descriptors, based on certain thresholds and
using strict minimum and maximum values for the number of
instances that can be created. Because of the limited precision
and flexibility of typical descriptors, we base our approach on
so-called service templates. Using service templates, service
providers are required to specify neither the exact resource
demands (e.g., memory or CPU) of service components nor
the required number of instances of each component.

The service template describes the components of the
network service and their required interconnections on an
abstract level, without deployment details. Moreover, it gives
the resource demands of the network service as a function of
the load:
• The required computational capacity (e.g., CPU and

memory) is described for each service component as
a function of the input data rate. This can be used to
calculate the network node capacity required to host the
service component.

• The amount of traffic leaving each service component
towards other components is specified as a function of
the data rate that enters the component. This can be used
to calculate the link capacity required to host the traffic
flowing between any two interconnected instance.

In addition to the service templates, service providers may
include the expected traffic originating from the sources of the
network service in the request to embed a service template.
As the traffic is constantly changing, the current traffic needs
to be monitored and fed back to the template embedding
process, to keep the network service in an optimal state.
In this way, depending on the location and data rate of
the sources of the network service, resource requirements
are calculated dynamically, based on the given functions,
eliminating the risk of over- or under-estimating the resource
demands. Based on the functions describing the dependency
of resource requirements and outgoing data rates on incoming
data rates, it is also possible to reason about possible changes
to the deployment and their impact, which is a pre-requisite for
effective optimization. The specific functions highly depend on
the type and implementation of the service component and can
be derived, for example, based on historical usage data or by
automatic service profiling methods [29].

B. Joint, single-step scaling, placement, and routing

As shown in Fig. 1, in typical management and orchestration
frameworks [1], based on the description of the network
service and the state of the network’s resources, the requested
number of instances for each service component are computed
and then placed and deployed with the requested amount of
resources, in an appropriate location. After path selection and
instantiation of the network service, the running instances are
monitored and re-scaled and re-placed based on pre-defined

TABLE I
NOTATIONS USED FOR GRAPHS IN THE MODEL

Graph Symbol Name Annotations

Template Gtmpl
j∈CT Component In(j), Out(j), p j,m j, rj
a∈AT Arc

Overlay GOL
i∈IOL Instance c(i), P(I )T (i)

e∈EOL Edge P
(E )
T (e)

Network Gsub
v∈V Node capcpu(v), capmem(v)

l∈L Link b(l), d(l)

scaling rules if required. Deciding the number of required
instances for each service component, the amount of resources
allocated to each component, and the optimal paths selected
for routing the network service flows are, however, highly
interdependent problems, which cannot be solved optimally
using such independent management and orchestration steps.

Our approach, illustrated in Fig. 2, changes the way network
service life-cycle is handled, by combining scaling, placement,
and routing steps into a joint decision process. Depending on
the location and data rate of the sources,

• each service template is scaled out into an overlay with
the necessary number of instances required for each
service component;

• each component instance is mapped to a network node
and is allocated the required amount of resources on that
node;

• the connections among component instances are mapped
to flows along network links, carrying the data rate.

JASPER is an integrated approach in multiple dimensions:
(i) scaling, placement, and routing decisions are made in a
single optimization step; (ii) all services that are to be placed
in the same substrate network are considered together; (iii)
newly requested and already deployed services are optimized
jointly. This way, a global optimum can be achieved. The main
difference in handling newly requested and already deployed
services is that for already deployed services, changes to the
existing deployment may incur costs which have to be captured
and optimized, thus adding one more optimization objective
to the problem.

IV. PROBLEM MODEL

In this section, we formalize our model and define the
problem we are tackling. Our model uses three different graphs
for representing (i) the generic network service structure, (ii)
a concrete and deployable instantiation of the network service,
and (iii) the actual network. We use different names and
notations to distinguish among these graphs (Table I).

Informally, the problem we address is as follows: given
a substrate network, a set of – newly requested or already
existing – network services with their templates, and the
source(s) for the services in the network along with the
traffic originating from them, we want to optimally embed
the network services into the network.
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A. Substrate network

We model the substrate network as a directed graph
Gsub=(V, L). Each node v ∈ V is associated with a CPU
capacity capcpu(v) and a memory capacity capmem(v) (this can
be easily extended to other types of resources). Moreover,
we assume that every node has routing capabilities and can
forward traffic to its neighboring nodes.1 Each link l ∈ L is
associated with a maximum data rate b(l) and a propagation
delay d(l). For each node v, we assume that the internal
communications (e.g., communication inside a data center) can
be done with unlimited data rate and negligible delay.

B. Templates

The substrate network has to host a set T of network
services. We define the structure of each network service
T ∈ T using a template, which is a directed acyclic graph
Gtmpl(T)=(CT , AT ). We refer to the nodes and edges of the
template graph as components and arcs, respectively. They
define the type of components required in the network service
and specify the way they should be connected to each other to
deliver the desired functionality. Fig. 3(a) shows an example
template.

A template component j ∈ CT has an ordered set of inputs,
denoted as In( j), and an ordered set of outputs, denoted as
Out( j). Its resource consumption depends on the data rates of
the flows entering the component. We characterize this using
a pair of functions pj,mj : R |In(j) |

≥0 → R≥0, where pj is the
CPU load and mj is the required memory size of component
j, depending on the data rate of the incoming flows. These
functions typically account for resource consumption due to
processing the input data flows as well as fixed, baseline
consumption (even when idle). Similarly, data rates of the
outputs of the component are determined as a function of the
data rates on the inputs, specified as rj : R |In(j) |

≥0 → R
|Out(j) |
≥0 .

Fig. 3(b) shows examples for functions pj,mj, rj that define
the resource demands and output data rates of an example
component.

Each arc in AT connects an output of a component to an
input of another component.

Source components are special components in the template:
they have no inputs, a single output with unspecified data rate,
and zero resource consumption. In the example of Fig. 3(a),
S is a source component, whereas the others are normal
processing components.

C. Overlays and sources

A template specifies the types of components and the
connections among them as well as their resource demands
depending on the load. A specific, deployable instantiation of
a network service can be derived by scaling its template, i.e.,
creating the necessary number of instances for each component
and linking the instances with each other according to the
requirements of the template. Depending on data rates of the
service flows and the locations in the network where the flows

1Capacities can be 0, e.g., to represent conventional switches by 0 CPU
capacity or an end device by 0 forwarding capacity.
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Fig. 3. Some examples: (a) a template, (b) a component, (c) an overlay
corresponding to the template, and (d) a mapping of the overlay into a
substrate network. The links of the substrate network are bi-directional.

start, different numbers of instances for each component might
be required. To model this, for each network service T , we
define a set of sources S(T). The members of S(T) are tuples
of the form (v, j, λ), where v ∈ V is a node of the substrate
network, j ∈ CT is a source component, and λ ∈ R+ is
the corresponding data rate assigned to the output of this
source component. Such a tuple means that an instance of
source component j generates a flow from node v with rate
λ. Sources may represent populations of users, sensors, or any
other component that can generate flows to be processed by the
corresponding network service. Fig. 3(c) shows two example
sources for the template of Fig. 3(a), located on different
nodes of the substrate network. The naming of the concrete
instances of components in this figure follows the convention
that the first letter identifies the corresponding component in
the template, e.g., S1 and S2 represent concrete instances of
the source component S from the template.

An overlay is the outcome of scaling the template
based on the associated sources. An overlay OL stemming
from template T is described by a directed acyclic graph
GOL(T)=(IOL, EOL). Each component instance i ∈ IOL corre-
sponds to a component c(i) ∈ CT of the underlying template.
Each i ∈ IOL has the same characteristics (inputs, outputs,
resource consumption characteristics) as c(i). Moreover, if
there is an edge from an output of an instance i1 to an
input of instance i2 in the overlay, then there must be a
corresponding arc from the corresponding output of c(i1) to the
corresponding input of c(i2) in the template. This ensures that
the edge structure of the overlay is in line with the structural
requirements of the network service, represented by the arcs
in the template.
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To be able to create the required number of instances for
each component, we assume either that the components are
stateless or that a state management system is in place to
handle state redistribution upon adding or removing instances.
In this way, requests can be freely routed to any instance of
a component. Alternatively, additional details can be added
to the model, for example, to make sure that the flows
belonging to a certain session are routed to the right instance
of stateful components that have stored the corresponding state
information.

Fig. 3(d) shows an example overlay corresponding to the
template in Fig. 3(a). The naming of the instances follows the
same convention as described for sources, e.g., A1 and A2 are
instances of component A.

An overlay might include multiple instances of a specific
template component, e.g., B1, B2, and B3 all are instances of
component B. An output of an instance can be connected to
the input of multiple instances of the same component, like
the output of A1 is connected to the inputs of B1 and B2. In a
case like that, B1 and B2 share the data rate calculated for the
connection between components A and B. Similarly, outputs
of multiple instances in the overlay can be connected to the
input of the same instance, like the input of C1 is connected
to the output of B1, B2, and B3, in which case the input data
rate for C1 is the sum of the output data rates of B1, B2, and
B3.

D. Mapping on the substrate network

Each overlay GOL(T) must be mapped to the substrate
network by a feasible mapping PT . We define the mapping
as a pair of functions PT =

(
P(I )T , P(E)T

)
.

P(I )T : IOL → V maps each instance in the overlay to a node
in the substrate network. We make the simplifying assumption
that two instances of the same component cannot be mapped
to the same node. The rationale behind this assumption is
that in this case it would be more efficient to replace the two
instances by a single instance and thus save the idle resource
consumption of one instance.2

P(E)T : EOL → F maps each edge in the overlay to a flow
in the substrate network; F is the set of possible flows in
Gsub. We assume the flows are splittable, i.e., can be routed
over multiple paths between the corresponding endpoints in
the substrate network.

The two functions must be compatible: if e ∈ EOL is
an edge from an instance i1 to an instance i2, then P(E)T (e)
must be a flow with start node P(I )T (i1) and end node P(I )T (i2).
Moreover, P(I )T must map the instances of source components
in accordance with the sources in S(T), mapping an instance
corresponding to source component j to node v if and only if
∃(v, j, λ) ∈ S(T).

The binding of instances of source components to sources
determines the outgoing data rate of these instances. As the
overlay graphs are acyclic, the data rate λ(e) on each further
overlay edge e can be determined based on the input data rates

2This simplification is mostly a technicality to simplify the problem write-
up and could be extended if necessary.

and the rj functions of the underlying components, considering
the instances in a topological order. The data rates, in turn,
determine the resource needs of the instances.

Fig. 3(e) shows a possible mapping of the overlay of
Fig. 3(d) to an example substrate network, based on the pre-
defined location of S1 and S2 in the network. Note that it
is possible to map two communicating instances to the same
node, like A2 and D2 in the example. In this case, the edge
between them can be realized inside the node, without using
any links. The flow between A2 and B3 is an example of a
split flow that is routed over two different paths in the substrate
network.

Note that Fig. 3(e) shows only a single overlay mapped
to the substrate network for the sake of clarity. In general,
JASPER can embed several overlays corresponding to different
network services into a substrate network.

E. Objectives

The system configuration consists of the overlays and their
mapping on the substrate network. A new system configuration
can be computed by an appropriate algorithm for the template
embedding problem.

A valid system configuration must respect all capacity
constraints: for each node v, the total resource needs of the
instances mapped to v must be within its capacity concerning
both CPU and memory, and for each link l, the sum of the
flow values going through l must be within its maximum data
rate. However, it is also possible that some of those constraints
are violated in a given system configuration: for example, a
valid system configuration (i.e., one without any violations)
may become invalid because the data rate of a source has
increased, because of a temporary peak in resource needs, or
a failure in the substrate network. Therefore, given a current
system configuration σ, our primary objective is to find a new
system configuration σ′, in which the number of constraint
violations is minimal (ideally, zero). For this, we assume that
violating node CPU, memory, and link capacity constraints is
equally undesirable.

There are a number of further, secondary objectives, which
can be used as tie-breaker to choose from system configura-
tions that have the same number of constraint violations:

• Total delay of all edges across all overlays
• Number of instance addition/removal operations required

to transition from σ to σ′

• Maximum amounts of capacity constraint violations, for
each resource type (CPU, memory, link capacity)

• Total resource consumption of all instances across all
overlays, for each resource type (CPU, memory, link
capacity)

Higher values for these metrics result in higher costs for the
system or in lower customer satisfaction, so our objective is to
minimize these values. Therefore, our aim is to select a new
system configuration σ′ from the set of system configurations
with minimal number of constraint violations that is Pareto-
optimal with respect to these secondary metrics.
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F. Problem formulation summary

Our aim is to handle the scaling, placement, and routing for
newly requested network services as well as already deployed
network services. Taking this into account, the Template
Embedding problem can be summarized as follows:

The inputs are the substrate network, a template for each
network service, and the location and data rate of the sources
for each network service. Additionally, for the already de-
ployed network services, an overlay and its mapping onto the
substrate network are given.

The outputs for the newly requested network services are the
overlays and their mappings onto the substrate network. For
the already deployed network services the modified overlays
and their modified mappings onto the substrate network are
calculated.

Scaling is performed while creating the overlay from the
template, while placement and routing are performed when
the instances and edges of the overlay are mapped onto the
substrate network.

A further important detail concerns the relationship between
different network services. The creation of the overlay from
the template and its mapping onto the substrate network are
defined for each network service separately; however, they
share the same substrate network. The objectives defined in
Sec. IV-E relate to the whole network including all network
services, aiming for a global optimum and potentially resulting
in trade-offs among the network services. A further connection
among different network services may arise if they share the
same component type. In this case, it is also possible that
the corresponding overlay instances are realized by the same
instance.

V. COMPLEXITY

Theorem 1. For an instance of the Template Embedding
problem as defined in Section IV, deciding whether a solution
with no violations exists is NP-complete in the strong sense3.

Proof. It is clear that the problem is in NP: a possible witness
for the positive answer is a solution – i.e., a set of overlays
and their embedding into the substrate network – with 0
violations. The witness has polynomial size and can be verified
in polynomial time wrt. to the input size.

To establish NP-hardness, we show a reduction from the Set
Covering problem (which is known to be NP-complete in the
strong sense [30]) to the Template Embedding problem. An
input of the Set Covering problem consists of a finite set U,
a finite family W of subsets of U such that their union is U,
and a number k ∈ N. The aim is to decide whether there is a
subset Z ⊆ W with cardinality at most k such that the union
of the sets in Z is still U.

From this instance of Set Covering, an instance of the
Template Embedding problem is created as follows. The

3NP-complete in the strong sense means that the problem remains NP-
complete even if the numbers appearing in it are constrained between
polynomial bounds. Under the P,NP assumption, this precludes even the
existence of a pseudo-polynomial algorithm – i.e., an algorithm the runtime
of which is polynomial if restricted to problem instances with polynomially
bounded numbers.

u1 u2 

u3 u4 

w2 

w1 

w3 

(a) An instance of Set
Covering (k = 2) and a
solution (thick lines)

S1

S2

S3

S4

A1

A3

B

s1

s2

s3

s4

a1

a2

a3

b

(b) The generated instance of Tem-
plate Embedding and the cor-
responding solution (placed in-
stances and thick links)

Fig. 4. An example for the proof of Theorem 1. The elements u1 . . . , u4 are
represented by nodes s1, . . . , s4, the sets w1, w2, w3 by nodes a1, a2, a3.

substrate network consists of nodes V = {s1, . . . , s |U |} ∪
{a1, . . . , a |W |} ∪ {b}, where each si represents an element of
U and each element aj represents an element ofW. There is a
link from si to aj if and only if the element of U represented by
si is a member of the set represented by aj . Furthermore, there
is a link from each aj to b. The capacities of the nodes are
as follows: capcpu(si) = capmem(si) = 0 for each i ∈ [1, |U |],
capcpu(aj) = 0 and capmem(aj) = 1 for each j ∈ [1, |W|], and
capcpu(b) = 1 and capmem(b) = 0. For each link, its maximum
data rate is 1, its delay is 0.

There is a single template consisting of a source component
S and two further components A and B, and two arcs (S, A)
and (A, B). Component A has one input and one output, its
resource consumption as a function of the input data rate λ is
given by pA(λ) = 0 and mA(λ) = 1; its output data rate is given
by rA(λ) = 1. Component B has one input and no output, its
resource consumption as a function of the input data rate λ is
given by

pB(λ) =

{
1, if λ ≤ k,
2, otherwise,

and mB(λ) = 0. In each si , there is a source corresponding to
an instance of S with data rate λ = 1.

Suppose first that the original instance of Set Covering is
solvable, i.e., there is a subset Z ⊆ W with cardinality at
most k such that the union of the sets in Z is U. In this case,
the generated instance of the Template Embedding problem
can also be solved without any violations, as follows (see Fig.
4 for an example). Each si must of course host an instance of
S. In each ai corresponding to an element of Z, an instance
of A is created. Since the union of the sets in Z is U, each si
has an outgoing link to at least one aj hosting an instance of
A, which can be selected as the target of the traffic leaving the
source in si through the link (si, aj). Further, a single instance
of B is created in node b and each instance of A is connected
to B through the (aj, b) link. Since the number of instances
of A is at most k, each emitting traffic with data rate 1, the
CPU requirement of the instance of B is 1, so that it fits on b,
and hence we obtained a solution to the Template Embedding
problem with no violation.

Now assume that the generated instance of the Template
Embedding problem is solvable without violations. Then,
we can construct a solution of the original instance of Set
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Covering, as we show next. In a solution of the generated
instance of the Template Embedding problem, each si must
host an instance of S and there is no other instance of S.
Instances of A can only be hosted by aj nodes because of the
memory requirement, and an instance of B can only be hosted
in b because of the CPU requirement. We define Z to contain
those elements of W for which the corresponding node aj

hosts an instance of A. Since each source generates traffic
that must be consumed by an instance of A and there is a path
(actually, a link) from si to aj only if the set corresponding
to aj contains the element corresponding to si , it follows that
the sets in Z cover all elements of U. Moreover, since the
instance of B must fit on b and each instance of A generates
traffic with data rate 1, it follows that the number of instances
of A is at most k and hence |Z| ≤ k, thus Z is a solution of
the original Set Covering problem.

Since all numbers in the generated instance of the Template
Embedding problem are constants, this reduction shows that
the Template Embedding problem is indeed NP-hard in the
strong sense. �

As a consequence, we can neither expect a polynomial or
even pseudo-polynomial algorithm for solving the problem
exactly nor a fully polynomial-time approximation scheme,
under standard assumptions of complexity theory.

VI. MIXED INTEGER PROGRAMMING APPROACH

In this section, we provide a mixed integer programming
(MIP) formulation of the problem. On one hand, this serves
as a further formalization of the problem; on the other hand,
under suitable assumptions (to be detailed in Section VI-C)
an appropriate solver can be used to solve the mixed integer
program, yielding an algorithm for the problem.

Based on the assumption that two instances of the same
component cannot be mapped to a node, instances can be
identified by the corresponding component and the hosting
node. This is the basis for our choice of variables, which are
explained in more detail in Table II.

We use the following notations for formalizing the con-
straints and objectives. C=

⋃
T ∈T CT denotes the set of

all components, A=
⋃

T ∈T AT the set of all arcs, and
S=

⋃
T ∈T S(T) the set of all sources across all network ser-

vices that we want to map to the network. M , M1, and M2
denote sufficiently large constants. (Λj,v)k denotes the kth
component of the vector Λj,v . 0 denotes a zero vector of
appropriate length.

Information about existing instances should also be taken
into account during the decision process. For this, we define
x∗j,v(∀ j ∈ C, v ∈ V) as a constant given as part of the problem
input. If there is a previously mapped instance of component
j on node v in the network, x∗j,v is 1, otherwise it is 0.

A. Constraints

Here we define the sets of constraints that enforce the
required properties of the template embedding process.

TABLE II
VARIABLES

Name Domain Definition

x j,v {0, 1} 1 iff an instance of component j∈C is mapped to
node v∈V

ya,v,v′ R≥0 If a∈AT is an arc from an output of j∈CT to an
input of j′∈CT , an instance of j is mapped on v∈V ,
and an instance of j′ is mapped on v′∈V , then
ya,v,v′ is the data rate of the corresponding flow
from v to v′; otherwise it is 0

za,v,v′, l R≥0 If a∈AT is an arc from an output of j∈CT to
an input of j′∈CT , an instance of j is mapped on
v∈V , and an instance of j′ is mapped on v′∈V , then
za,v,v′, l is the data rate of the corresponding flow
from v to v′ that goes through link l∈L; otherwise
it is 0

Λ j,v R
|In( j)|
≥0 Vector of data rates on the inputs of the instance

of component j∈CT on node v∈V , or an all-zero
vector if no such instance is mapped on v

Λ′j,v R
|Out( j)|
≥0 Vector of data rates on the outputs of the instance

of component j∈CT on node v∈V , or an all-zero
vector if no such instance is mapped on v

% j,v R≥0 CPU requirement of the instance of component
j∈CT on node v∈V , or zero if no such instance
is mapped on v

µ j,v R≥0 Memory requirement of the instance of component
j∈CT on node v∈V , or zero if no such instance is
mapped on v

ωv,cpu {0, 1} 1 iff the CPU capacity of node v∈V is exceeded
ωv,mem {0, 1} 1 iff the memory capacity of node v∈V is exceeded
ωl {0, 1} 1 iff the maximum data rate of link l∈L is exceeded
ψcpu R≥0 Maximum CPU over-subscription over all nodes
ψmem R≥0 Maximum memory over-subscription over all nodes
ψdr R≥0 Maximum capacity over-subscription over all links
ζa,v,v′, l {0, 1} 1 iff za,v,v′, l > 0
δ j,v {0, 1} 1 iff x j,v , x∗j,v

1) Mapping consistency rules:

∀(v, j, λ) ∈ S : x j,v = 1 (1)
∀(v, j, λ) ∈ S : Λ

′
j,v = λ (2)

∀j ∈ C, ∀v ∈ V, k ∈ [1, |In(j) |] : (Λ j,v )k ≤ M · x j,v (3)
∀j ∈ C, ∀v ∈ V, k ∈ [1, |Out(j) |] : (Λ′j,v )k ≤ M · x j,v (4)

∀j ∈ C, ∀v ∈ V : x j,v − x∗j,v ≤ δ j,v (5)

∀j ∈ C, ∀v ∈ V : x∗j,v − x j,v ≤ δ j,v (6)

Constraints (1) and (2) enforce that the placement respec-
tively the output data rate of source component instances are
in line with the tuples specified in S. Constraint (3) guarantees
the consistency between the variables Λj,v and xj,v: if Λj,v has
a positive component, then xj,v must be 1, i.e., only an existing
component instance can process the incoming flow. Constraint
(3) is analogous for the outgoing flows, represented by the Λ′j,v
variables. Constraints (5) and (6) together ensure that δj,v = 1
if and only if xj,v , x∗j,v .

2) Flow and data rate rules:

∀j ∈ C, j not a source component, ∀v ∈ V :
Λ
′
j,v = rj (Λ j,v ) − (1 − x j,v ) · rj (0) (7)

∀j ∈ C, ∀v ∈ V, k ∈ [1, |In(j) |] :

(Λ j,v )k =
∑

a ends in input k of j,v′∈V

ya,v′,v (8)
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∀j ∈ C, ∀v ∈ V, k ∈ [1, |Out(j) |] :

(Λ′j,v )k =
∑

a starts in output k of j,v′∈V

ya,v,v′ (9)

∀a ∈ A, ∀v, v1, v2 ∈ V :∑
vv′∈L

za,v1,v2,vv′ −
∑

v′v∈L

za,v1,v2,v′v =

=


0 if v , v1 and v , v2
ya,v1,v2 if v = v1 and v1 , v2
0 if v = v1 = v2

(10)

∀a ∈ A, ∀v, v′ ∈ V, ∀l ∈ L : za,v,v′, l ≤ M · ζa,v,v′, l (11)

Constraint (7) computes the data rate on the outputs of a
processing component instance based on the data rates on
its inputs and the rj function of the underlying component.
The constraint is formulated in such a way that for xj,v = 1,
Λ′j,v = rj(Λj,v), whereas for xj,v = 0 (in which case also
Λj,v = 0 because of Constraint (3)), also Λ′j,v = 0 so that
there is no contradiction with Constraint (4). Constraint (8)
computes the data rate on the inputs of a component instance
as the sum of the data rates on the links ending in that input.
Similarly, Constraint (9) ensures that the data rate on the
outputs of a component instance is distributed on the links
starting in that output. Constraint (10) is the flow conservation
rule, also ensuring the right data rate of each flow, thus
connecting the za,v,v′,l variables (flow values on individual
links) and the ya,v,v′ variables (flow data rate). Constraint (11)
sets the ζa,v,v′,l variables (on the basis of the za,v,v′,l variables),
so that they can be used later on in the objective function
(Section VI-B).

3) Calculation of resource consumption:

∀j ∈ C, ∀v ∈ V : % j,v = p j (Λ j,v ) − (1 − x j,v ) · p j (0) (12)
∀j ∈ C, ∀v ∈ V : µ j,v = m j (Λ j,v ) − (1 − x j,v ) · m j (0) (13)

Constraints (12) and (13) calculate CPU respectively mem-
ory consumption of each component instance based on the
pj and mj functions of the underlying component4. The logic
here is analogous to that of Constraint (7).

4) Capacity constraints:

∀v ∈ V :
∑
j∈C

% j,v ≤ capcpu(v) +M ·ωv,cpu (14)

∀v ∈ V :
∑
j∈C

% j,v − capcpu(v) ≤ ψcpu (15)

∀v ∈ V :
∑
j∈C

µ j,v ≤ capmem(v) +M ·ωv,mem (16)

∀v ∈ V :
∑
j∈C

µ j,v − capmem(v) ≤ ψmem (17)

∀l ∈ L :
∑

a∈A;v,v′∈V
za,v,v′, l ≤ b(l) +M ·ωl (18)

∀l ∈ L :
∑

a∈A;v,v′∈V
za,v,v′, l − b(l) ≤ ψdr (19)

The aim of these constraints is to set the ω and ψ variables
(based on the already defined %, µ and z variables), which will

4Adding more resource types would be reflected by adding corresponding
constraints here.

be used in the objective function (Section VI-B). Constraint
(14) ensures that ωv,cpu will be 1 if the CPU capacity of node
v is overloaded, while Constraint (15) ensures that ψcpu will
be at least as high as the amount of CPU overload of any node
(the appearance of ψcpu in the objective function will guarantee
that it will be exactly the maximum amount of CPU overload
and not higher than that). Constraints (16), (17) do the same
for memory overloads and Constraints (18), (19) do the same
for the overload of link capacity.

5) Interplay of the constraints: To illustrate the interplay
of the constraints, we assume that we need to optimize the
embedding shown in Fig. 3(e). Constraints (1) and (2) ensure
that instances of the source component, i.e., S1 and S2,
are embedded and their output data rates are set correctly.
Constraint (9) ensures that these data rates are then handed out
as flows that can only end up in instances of A. These flows
are mapped to network links and instances of A are assigned
input data rates using Constraints (10) and (8), respectively.
That being set, Constraint (3) marks the instances A1 and A2
as embedded, and Constraint (7) sets their output data rates
using the respective rj function. In a similar way, the rest of
the components are instantiated and embedded in the network.

Constraints (5) and (6) ensure that the δj,v variables are
set correctly. Constraints (12) and (13) compute the resource
consumption of each instance based on the input data rates and
the corresponding pj and mj functions. Constraints (14)–(19)
make sure that over-subscription of node and link capacities
are captured correctly, and collect the maximum value of
over-subscription for each resource type. This maximum value
is used in the objective function described in Section VI-B,
which drives the decisions based on the constraints.

B. Optimization objective

We formalize the optimization objective based on the goals
defined in Section IV-E as follows:

minimize M1 ·
( ∑
v∈V

(ωv,cpu +ωv,mem) +
∑
l∈L

ωl

)
+

+M2 ·
( ∑

a∈A
v,v′∈V
l∈L

(d(l) · ζa,v,v′, l ) +
∑
j∈C
v∈V

δ j,v

)
+

+ ψcpu + ψmem + ψdr +
∑
j∈C
v∈V

(% j,v + µ j,v ) +
∑
a∈A

v,v′∈V
l∈L

za,v,v′, l (20)

By assigning sufficiently large values to M1 and M2, we
can achieve the following goals with the given priorities (in
decreasing order): 1) Number of capacity constraint violations
over all nodes and links is minimized. 2) Template arcs are
mapped to network paths in such a way that their total latency
is minimized. Moreover, the number of instances that need
to be started/stopped is minimized. 3) The maximum value
for capacity constraint violations over all nodes and links
is minimized. Also, overlay instances and the edges among
them are created in a way that their resource consumption is
minimized.

The objective function is in line with the objectives defined
in Section IV-E. The primary objective is to minimize the
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number of constraint violations; a sufficiently large M1 ensures
that a decrease in the first term of the objective function has
larger impact than any change in the other terms. Moreover,
the resulting solution σ′ will be Pareto-optimal with respect to
the other, secondary metrics: otherwise, there would be another
solution σ′′ that is as good as σ′ according to each secondary
metric and strictly better than σ′ in at least one secondary
metric, but then, σ′′ would lead to a lower overall value of
the objective function.

This mixed integer program can be used for initial embed-
ding of service templates as well as for optimizing existing
embeddings. However, for the initial embedding of newly
requested network services, the term

∑
j∈C,v∈V δj,v should

be removed from the objective function because it would
introduce an unwanted bias towards embeddings with fewer
instances, although it is possible that having more instances
can decrease the overall cost of the solution.

C. Solving the mixed integer program

All our constraints are linear equations and linear inequal-
ities, and also the objective function is linear. Hence, if the
functions pj , mj , and rj are linear for all j ∈ C, then we
obtain a mixed-integer linear program (MILP), which can
be solved by appropriate solvers. For non-linear functions,
a piecewise linear approximation may make it possible to
use MILP solvers to obtain good (although not necessarily
optimal) solutions.

VII. HEURISTIC APPROACH

Now we present a heuristic algorithm that is not guaranteed
to find an optimal solution but is much faster than the mixed
integer programming approach. Moreover, it has the advantage
that it does not require the functions pj , mj , and rj to be linear.

The heuristic constructs the new solution from the existing
one by means of a series of small local changes.5 While doing
so, it has to be ensured that (i) the instantiation of source
components is in line with the given data sources, (ii) the
data flows produced by each instance are routed to appropriate
instances, and (iii) capacity constraints are satisfied as much
as possible. This can be achieved by iterating through the
instances of each overlay once in a topological order, possibly
creating new instances on the fly if necessary. Note that this
may indeed be necessary, for example, if a new data source
appeared or the output data rate of a data source increased.
A topological order of a directed graph G = (V, E) is an
order of its vertices as v1, v2, . . . , vn such that for each edge
vivj ∈ E , i < j holds; in other words, each edge points
“forward.” For any directed acyclic graph, a topological order
can be determined in linear time. In each step, the algorithm
aims at economical use of resources, e.g., by only creating
new instances if necessary, deleting unneeded instances, or
preferring short paths.

The heuristic is shown in Algorithm 1. It starts by checking
that each service has a corresponding overlay and each overlay

5Also the placement of a new service is done with a series of small local
changes, creating component instances one by one.

Algorithm 1 Main procedure of the heuristic algorithm
1: if ∃GOL(T) with T < T then
2: remove GOL(T)
3: for all T ∈ T do
4: if �GOL(T) then
5: create empty overlay GOL(T)
6: for all (v, j, λ) ∈ S(T) do
7: if �i ∈ IOL with c(i) = j and P(I )

T
(i) = v then

8: create i ∈ IOL with c(i) = j and P(I )
T
(i) = v

9: set output data rate of i to λ

10: if ∃i ∈ IOL, where c(i) is a source component but
�(P(I )

T
(i), c(i), λ) ∈ S(T) for any λ then

11: remove i
12: for all i ∈ IOL in topological order do
13: if all input data rates of i are 0 then
14: remove i and go to next iteration
15: compute output data rates of i
16: for all output k of i do
17: Φ: set of flows currently leaving output k
18: λ: sum of the data rates of the flows in Φ
19: λ′: new data rate on output k
20: if λ′ < λ then
21: E: set of edges leaving output k
22: DECREASE(E,λ − λ′)
23: else if λ′ > λ then
24: INCREASE(i,k,Φ,λ′ − λ)

corresponds to a service (lines 1–5). If a new service has
been started or an existing service has been stopped since the
last invocation of the algorithm, the corresponding overlay is
created or removed at this point.

Next, the mapping of the sources and source components is
checked and updated if necessary (lines 6–11): if a new source
emerged, an instance of the corresponding source component
is created; if the data rate of a source changed, then the output
data rate of the corresponding source component instance
is updated; if a source disappeared, then the corresponding
source component instance is removed.

Finally, to propagate the changes of the sources to the
processing instances, we need to iterate over all instances and
ensure that the new output data rates, which are determined
by the new input data rates, are discharged correctly by
outgoing flows (lines 12–24). For this purpose, it is important
to consider the instances in a topological order (according
to the overlay) so that when an instance is dealt with, its
incoming flows have already been updated. If a change in the
outgoing flows is necessary, then the INCREASE or DECREASE
procedures are called.

The auxiliary subroutines are detailed in Algorithm 2.
DECREASE first removes as many edges as possible (lines 3–
6); when a further decrease is necessary but no more edges
can be removed, it reduces the next flow on each link by
the same factor to achieve the required reduction (lines 7–9).
INCREASE first checks if new instances need to be created
to be consistent with the template (lines 12–16), then tries to
increase the existing flows (lines 17–19). If this is not sufficient
to achieve the necessary increase, it creates further instances
and flows (lines 20–23).

In the CREATEINSTANCEANDFLOW procedure (called by
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Algorithm 2 Auxiliary methods of the heuristic
1: /* Decrease the flows on the edges in E by ∆λ in total */
2: procedure DECREASE(E,∆λ)
3: sort E in non-decreasing order of flow data rate
4: for all e ∈ E while flow data rate λ(e) ≤ ∆λ do
5: ∆λ := ∆λ − λ(e)
6: remove e
7: if ∆λ > 0 then
8: let e be the next edge
9: reduce flow of e by a factor of (λ(e) − ∆λ)/λ(e)

10: /* Increase the flows in Φ leaving output k of instance i by ∆λ
in total */

11: procedure INCREASE(i,k,Φ,∆λ)
12: for all arc (c(i), j) leaving output k of c(i) do
13: if �i′ ∈ IOL with c(i′) = j and ii′ ∈ EOL then
14: ϕ := CREATEINSTANCEANDFLOW( j, i, ∆λ)
15: ∆λ := ∆λ − (data rate of ϕ)
16: Φ := Φ ∪ {ϕ}
17: for all ϕ ∈ Φ do
18: d := INCRFLOW(ϕ,∆λ)
19: ∆λ := ∆λ − d
20: while ∆λ > 0 do
21: (c(i), j): random arc leaving output k of c(i)
22: ϕ := CREATEINSTANCEANDFLOW( j, i, ∆λ)
23: ∆λ := ∆λ − (data rate of ϕ)
24: /* Create an instance of component j with flow from instance i

of high data rate (capped at cutoff) */
25: procedure CREATEINSTANCEANDFLOW( j,i,cutoff)
26: for all v ∈ V do
27: create temporary instance i′ of j on v
28: ϕ: flow of data rate 0 from i to i′
29: INCRFLOW(ϕ,cutoff)
30: remove i′ and ϕ

31: create instance of j on node resulting in best flow
32: /* Increase flow data rate by at most d */
33: procedure INCRFLOW(ϕ,d)
34: v := start node of ϕ
35: v′ := end node of ϕ
36: β1 := maximum flow based on capCPU (v

′)

37: β2 := maximum flow based on capmem(v
′)

38: d := min(d, β1, β2)
39: P: v { v′ path of high bandwidth (b) and low latency
40: increase ϕ by min(b, d) along P

INCREASE to create a new instance of a component together
with a flow from an existing instance), all nodes of the
substrate network are temporarily tried for hosting the new
instance. The candidate that leads to the best flow is selected
(lines 26–31). Finally, the INCRFLOW procedure (called by
both INCREASE and CREATEINSTANCEANDFLOW) increases
the data rate of a flow along a new path (lines 34–40).

As can be seen, we avoid computing maximum flows. This
is because the running time of the best known algorithms for
this purpose are worse than quadratic with respect to the size of
the graph [31]. Since these subroutines are run many times, the
high time complexity would be problematic for large substrate
networks. Instead, each run of INCRFLOW increases a flow
only along one new path. For finding the path, a modified best-
first-search [32] is used, which runs in linear time. It should
be noted that split flows can still be created if INCRFLOW is
run multiple times for a flow.

When improving a flow and when selecting from multiple
possible flows, the INCRFLOW and CREATEINSTANCEAND-
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Fig. 6. Illustrative example: Each component is shown with its CPU demand
(memory values not shown for better readability)

FLOW routines must strike a balance between flow data rate
and the increase in overall delay of the solution. Our strategy
for comparing two possible flows is to first compare their data
rates and compare their latencies only if there is a tie. This
strategy is used in line 31 to select the best flow. The rationale
is that selecting flows with high data rate leads to a small
number of instances to be created. However, we also employ
a cutoff mechanism: flow data rates above the cutoff (the
increase in data rate that we want to achieve) do not add more
value and are hence regarded to be equal to the cutoff value.
This increases the likelihood of a tie, so that the tie-breaking
method of preferring lower latencies is also important. An
analogous strategy is used in line 39 to compare paths: the
primary criterion is to prefer paths with higher bandwidth –
up to the given cutoff d – and, in case of a tie, to prefer paths
with lower latency. For finding the best path, a modified best-
first-search is used, in which the nodes to be visited are stored
in a priority queue, where priority is defined in accordance
with the comparison relation described above.

VIII. EVALUATION

We implemented the presented algorithms in the form of a
C++ program. For solving the MILP, Gurobi Optimizer 7.0.16

was used. For substrate networks, we used benchmarks for the
Virtual Network Mapping Problem7 from Inführ and Raidl
[33]. As service templates, we used examples from IETF’s
Service Function Chaining Use Cases [34].

A. An example

First, we illustrate our approach on a small substrate net-
work of 10 nodes and 20 links (see Fig. 5) in which the
CPU and memory capacity of each node is both 100. In
this network, a service consisting of a source (S), a firewall

6http://www.gurobi.com/
7https://www.ac.tuwien.ac.at/files/resources/instances/vnmp
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Fig. 7. Service template, with sources of data (S), streaming server (SRV),
deep packet inspector (DPI), video optimizer (OPT), and cache (CHE)
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Fig. 8. Temporal development of the demand, the allocated capacity, and the
total latency in a complex scenario

(FW), a deep packet inspection (DPI) component, an anti-virus
(AV) component, and a parental control (PC) component is
deployed. Initially, there is a single source in node 1 with
a moderate data rate. As a result, our algorithm deploys all
components of the service in node 1 (see Fig. 6(a)).

Subsequently, the data rate of the source increases. As a
result, the resource demand of the processing components
of the service increases so that they do not fit onto node 1
anymore. Our algorithm automatically re-scales the service by
duplicating the DPI, AV, and PC components and automat-
ically places the newly created instances on a nearby node,
namely node 3 (see Fig. 6(b)).

Later on, a second source emerges for the same service
on node 9. The algorithm automatically decides to create new
processing component instances on node 9 to process as much
as possible of the traffic of the new source locally. The excess
traffic from the new FW instance that cannot be processed
locally due to capacity constraints is routed to the existing
DPI, AV, and PC instances on node 3 because node 3 still has
sufficient free capacity (see Fig. 6(c)).

Already this small example shows the difficult trade-offs
that template embedding involves. Next, we show that our
approach is capable of handling also much more complex
scenarios.

B. Comparison of the algorithms

We consider a substrate network with 20 nodes and 44 links,
in which multiple services are deployed. Each service is a
virtual content delivery network for video streaming, consist-
ing of a streaming server, a DPI, a video optimizer, and a
cache. The service template is shown in Fig. 7. The number of
concurrently active services varies from 0 to 4, the number of
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Fig. 9. Scalability of the presented algorithms

sources varies from 0 to 20. Fig. 8(a) shows how the total data
rate of the sources (as a metric of the demand) and the total
CPU size of the created instances (as a metric of the allocated
processing capacity) change through re-optimization after each
event. An event is the emergence or disappearance of a service,
the emergence or disappearance of a source, or the change
of the data rate of a source. As can be seen, the allocated
capacity using both the heuristic and the MILP algorithms
follow the demand very closely, meaning that our algorithms
are successful in scaling the service in both directions to
quickly react to changes in the demand.

Regarding total data rate and total latency of the overlay
edges, the MILP algorithm performs better than the heuristic
algorithm. For example, Fig. 8(b) shows the total latency over
all paths created for the template in this scenario8. The reason
for this difference is that in the MILP algorithm, the optimal
location for all required instances can be determined at the
same time. This results in shorter distances between the source
and the instances. The heuristic algorithm, however, needs
to create instances one by one, resulting in larger data rates
traveling over larger distances in the substrate network.

In this scenario, to handle the peak demand, a total of 127
instances are created using the MILP algorithms, while the
heuristic algorithm creates 261 instances.

C. Scalability

Since the template embedding problem is NP-hard, it is
foreseeable that the scalability of the MILP solver will be
limited. In order to test this, we gradually increase the source
data rate of the service from our first experiment, leading to
an increasing number of instances; moreover, we also consider
substrate networks of increasing size. In each case, the MILP
solver is run with a time limit of 60 seconds, meaning that the
solution process stops at (roughly) 60 seconds with the best
solution and the best lower bound that the solver found until
that time. The measurements were performed on a machine
with Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM.

Fig. 9(a) shows the execution time of the MILP algorithm
for different data rates and substrate network sizes, while
Fig. 9(b) shows the corresponding gap between the found
solution and the lower bound. For a small network with 10
nodes and 20 links, the algorithm computes optimal results

8In Fig. 8(b), in the high-load area between event 20 and 50, some problem
instances are too complex to be solved within the 60 seconds time limit we
have set for the optimizer. This results in solutions with zero latency, as no
paths are created.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TNSM.2018.2846572

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, MONTH YEAR 13

for the lower half of source data rate values, and even for
larger source data rates, the optimality gap is quite low (around
20 %), meaning that the results are almost optimal. However,
for a bigger substrate network with 20 nodes and 44 links, the
solver reaches the time limit for much smaller source data
rate and also the optimality gap is much bigger. For even
bigger substrate networks, the performance of the algorithm
further deteriorates, up to the point where it cannot be run
anymore because of memory problems. The large sensitivity
to the size of the substrate network is not surprising, given
that the number of variables of the MILP is cubic in the size
of the substrate network.

In contrast, the execution time of the heuristic algorithm
remains very low even for the largest substrate networks: for
1000 nodes and 2530 links, the execution time is still below
20 milliseconds, rendering the heuristic practical for real-world
problem sizes as well.

D. Analysis

To gain further insight into the inter-dependencies between
the input and output parameters of the Template Embedding
problem, we experimented with different problem sizes and
different levels of resource availability. For this, we used the
video streaming template from Section VIII-B (Fig. 7) with a
single source injecting a total data rate of 1000 units into the
network, from a node selected randomly and uniformly. We
used three substrate networks: (i) 200 nodes and 472 links, (ii)
500 nodes and 1288 links, (iii) 1000 nodes and 2530 links.
We created low-resource and high-resource configurations as
follows9:
• CPU and memory capacities of each node were selected

randomly and uniformly from the range [1,5] for low
capacity and [10,50] for high capacity.

• Data rate of each link was selected randomly and uni-
formly from the range [50,100] for low capacity and
[500,1000] for high capacity.

We ran the heuristic algorithm 100 times on each setup
(low/high node capacity and low/high link capacity) and each
substrate network. Fig. 10 shows some aggregated results, with
confidence intervals at 95% confidence level.

As shown in Fig. 10(a), the algorithm adapts the amount
of used data rate to the amount of available link capacity. On
all three networks, in both setups with low link capacity, links
are carrying considerably less data rate than in the setups with
high link capacity. This figure also shows that the algorithm
uses more link capacity for embedding the same template
as the network gets larger, increasing the total available link
capacity in the network. With low link capacity, the algorithm
concentrates the instances on as few nodes as possible; there-
fore, the majority of the load remains inside nodes, instead of
traveling across the network. Obviously, this can result in over-
loaded nodes if the node capacities are not enough. Fig. 10(b)
shows the number of network nodes with over-subscribed
CPU capacities. In the setups with high node capacity, no

9These ranges were selected based on the amount of resources required to
embed the template with exactly one instance per component, as an estimation
of the required resources for handling the input data rate.
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CPU over-subscription is noticed. With low node capacity
and low link capacity, the instances are concentrated in fewer
nodes resulting in more node over-subscription. With low node
capacity, even with high link capacity, over-subscription could
not be avoided in our experiments. However, fewer nodes were
affected, as the the data rates could be distributed more freely
across the network.

IX. CONCLUSIONS

We have presented JASPER, a fully automatic approach
to scale, place, and route multiple virtual network services
on a common substrate network. JASPER can be used for
both the initial allocation of newly requested services and
the adaptation of existing services to changes in the demand.
Besides formally defining the problem and proving its NP-
hardness, we developed two algorithms for it, an MILP-based
one and a custom constructive heuristic. Empiric tests have
shown how our approach finds a balance between conflicting
requirements and ensures that the allocated capacity quickly
follows changes in the demand. Moreover, we have shown
that our solutions can adapt the embedding to the amount of
available resources in the network, e.g., using less link capacity
and concentrating the instances on less nodes when links have
a low capacity and nodes have enough capacity.

The MILP-based algorithm gives optimal or near-optimal
results for relatively small substrate network graphs, making
it suitable for, e.g., calculations on top of a geographically
distributed network where each node represents a data center.
The heuristic remains very fast for even the largest networks
that were tested. Overall, the tests gave evidence to the feasi-
bility of our approach, which makes it possible (i) for service
developers to specify services at a high level of abstraction
and (ii) for providers to quickly re-optimize the system state
after changes.
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