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Abstract. Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g,

and π a unitary representation of G. In this article we prove that the wave front set of π coin-
cides with the asymptotic cone of the orbital support of π, i.e. WF(π) = AC(⋃σ∈supp(π)Oσ),
where Oσ ⊂ ig∗ is the coadjoint Kirillov orbit associated to the irreducible unitary represen-

tation σ ∈ Ĝ.
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1. Introduction

The concept of wave front sets was introduced by Sato and Hörmander. Given a distribution
u ∈ D′(M) its wave front set is a closed conical subset WF(u) ⊂ T ∗M that encodes the singu-
larities of the distributions u. Informally speaking one can consider the wave front set as those
directions in which the distribution is not smooth (in a C∞ sense). Wave front sets are exten-
sively used in PDE theory as a very concise measure of singularities. For example Hörmanders
famous theorem about propagation of singularities is formulated in terms of wave front sets.

The concept of the wave front set for a unitary Lie group representation was introduced
by Howe [How81]1. Given a Lie group G with Lie algebra g and a unitary representation
(π,H) the wave front set of the representation yields a closed Ad∗(G)-invariant cone WF(π) ⊂
ig∗. Informally speaking it captures the singular directions of all matrix coefficients of π (see
Definition 2.2 for a precise definition). The remarkable property of WF(π) is that it is defined
entirely in terms of singularities of matrix coefficients but it captures essential information of
the spectral measure of π. This relation can be expressed by certain wave front-orbital support
(WFOS) theorems which we want to explain next: Suppose that the Lie group G is of type I

such that we can write any unitary representation (π,H) as a direct integral π = ∫
⊕

Ĝ σm(σ)µπ(σ)

where Ĝ is the unitary dual endowed with the Fell topology and µπ a Borel measure on Ĝ, the
spectral measure of π. Suppose furthermore that there is a canonical way to associate to any

1For compact Lie groups a very simliar concept based on the analytic instead of the C∞ regularities was
introduced slightly before by Kashiwara and Vergne in [KV79]
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σ ∈ suppµπ ⊂ Ĝ a coadjoint orbit Oσ ⊂ ig∗ (or possibly a finite collection of such orbits), then
we define the orbital support to be

(1) O − supp(π) ∶= ⋃
σ∈supp(µπ)

Oσ ⊂ ig
∗.

Furthermore, we define for any subset S ⊂ ig∗ its asymptotic cone

AC(S) ∶= {ξ ∈ ig∗∣C an open cone containing ξ ⇒ S ∩ C unbounded } ∪ {0}.

A Wave front-orbital support theorem is then a theorem that states (for a suitable class of Lie
groups G and unitary representations (π,H)) the equality

(2) WF(π) = AC(O − supp(π))

and thus connects the wave front set to the asymptotic support of the spectral measure. For
abelian Lie groups the WFOS-theorem is just a reflection of the defintion of the wave front set and
Fourier inversion formulas as had been noted by Howe [How81]. For non-commutativ Lie groups
the relation is much more subtle and has been shown for compact groups by Kashiwara-Vergne
[KV79]2 and Howe [How81]. Much more recently Harris, He and Ólafson [HHÓ16, Theorem 1.2]
have shown a WFOS-theorem for real reductive algebraic groups G and unitary representations
π which are weakly contained in the tempered representations (see [Har18, HO17] for follow up
works that aim to weaken the temperedness assumption).

The practical purpose of WFOS-theorems is that they connect the spectral measure µπ of
general unitary representations to the wave front set of π. While the former is in general very
difficult to determine, the latter has been shown to be explicitly calculable in very general
settings. For example if G is an arbitrary Lie group and H ⊂ G a closed subgroup such that
G/H carries a non-vanishing G-invariant smooth density then one can consider the regular
representation of G on L2(G/H). While determining the exact spectral measure (i.e. the
Plancherel measure) of L2(G/H) is in general extremely difficult and so far only known for
certain classes of homogeneous spaces, the wave front set of L2(G/H) is known [HW17, Theorem
2.1] without any further assumptions

WF(L2
(G/H)) = Ad∗(G)i(g/h)∗.

Similar identities have also been derived for certain classes of induced representations [HW17,
Theorem 2.2 and 2.3] and also the behaviour of wave front sets under restrictions is rather

well understood [How81, Prop 1.5][HHÓ16, Corollary 1.4]. Combining the explicit knowledge
of WF(L2(G/H)) with a WFOS-theorem one can then deduce results about the Plancherel
measures, e.g. existence of discrete series (see e.g. [HW17, Example 7.5][DKKS18, Theorem
21.1]).

In contrast to the knowledge about WF(L2(G/H)) that is known without any structural
assumptions on G and only mild assumptions on the quotient G/H, the cases in which WFOS-
theorems are established are rather limited (abelian [How81], compact [How81, KV79] and real

reductive groups [HHÓ16] as mentioned above). One might hope that they can be proven for
any class of Lie groups where a suitable relation between unitary irreducible representations and
coadjoint orbits is established, for example in the setting of real linear algebraic group (see e.g.
[Duf10]). The purpose of this article is to establish a WFOS-theorem for nilpotent Lie groups.
We prove

Theorem 1. Let G be a nilpotent, connected, simply connected Lie group and π a unitary
representation of G. Then

WF(π) = AC(O − suppπ).

2with their slightly different notion of wavefront set, as mentioned above
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Where the orbit support (1) is defined by the Kirrilov orbits Oσ ⊂ ig
∗ of the unitary irreducible

representation σ.

It was rather surprising to us, that the proof strategy of [HHÓ16] could not be transferred to
the setting of nilpotent Lie groups. A central object in the proof of the Wave front-Plancherel
theorem in [HHÓ16] was the analysis of integrated characters3

∫Ĝ χσf(σ)dµπ(σ) ∈ D
′(G) where

χσ ∈ D
′(G) is the distributional character of the tempered irreducible representation σ. Harris,

He and Ólaffson then use character formulas of Duflo and Rossmann as well as Harish-Chandra’s
invariant integrals to relate the wave front set of the integrated characters to the asymptotic
orbital support. While Kirillov’s character formula provides a natural (and even simpler) replace-
ment to the Duflo-Rossmann formula, the analogon to the Harish-Chandra invariant integrals for
nilpotent groups produces additional singularities which make the proof break down (see [Bud21,
Section 5.1] for a detailed discussion of the occurring problems). We therefore had to establish
an alternative method to prove the above result. Instead of working with integrated characters
and character formulas we directly work with matrix coefficients. In contrast to the characters,
the Fourier transform of individual matrix coefficients of an irreducible representation are not
supported on the coadjoint orbits. However we can show (Proposition 3.1 and Proposition 3.4)
that they are microlocally supported “near” the orbit and that the precise meaning of “near”
can be made uniform about all unitary representations. Our proof of these key propositions
is based on concrete microlocal estimates on induced representations. The induction scheme
hereby is similar to the induction in the traditional proof of Kirillov’s character formula.

Let us briefly outline the article: We first introduce the relevant notion on wave front sets (Sec-
tion 2.1) and the structure of nilpotent Lie groups and their unitary representations (Section 2.2).
We then proof Theorem 1 by proving separately the two inclusions AC(O − supp(π)) ⊂ WF(π)
(Section 3.1) and AC(O − supp(π)) ⊃ WF(π) (Section 3.2). For both inclusions we prove a
uniform estimate on the Fourier transforms of individual matrix coefficients (Proposition 3.1
and Proposition 3.4, respectively). A sketch of the central ideas of their proof is given after the
statement of each of the two propositions.

Acknowledgements We thank Benjamin Harris, Joachim Hilgert, Jan Frahm and Clemens
Weiske for many encouraging discussions and helpful remarks and suggestions. This project
has received funding from Deutsche Forschungsgemeinschaft (DFG) (Grant No. WE 6173/1-1
Emmy Noether group “Microlocal Methods for Hyperbolic Dynamics”)

2. Preliminaries

2.1. Wave Front Sets. In this section we give definitions of the wave front set of a distribution
and of a unitary Lie group representation and provide some facts about these objects that we
will use later in the article.

Let W be a real, finite-dimensional vector space and fix a Lebesgue measure dx on W . We
define the Fourier transform as the map F ∶ S(W )→ S(iW ∗) between Schwartz spaces with

F(ϕ)(ζ) ∶= ∫
W
ϕ(x)e−2π⟨ξ,x⟩ dx, ξ ∈ iW ∗,

and for a tempered distribution u ∈ S ′(W ) as F(u) ∈ S ′(iW ∗) with F(u)(ψ) ∶= u(F(ψ)) for
ψ ∈ S(iW ∗). The inversion formula for F ∶ S(W )→ S(iW ∗) gives us

F
−1
∶ S(iW ∗

)→ S(W ), ψ ↦ (x↦ ∫
iW ∗

ψ(ξ)e2π⟨ξ,x⟩ dξ)

for a suitable measure dξ on iW ∗.

3Such integrated characters had before been introduced and used in the context of restriction problems by
Kobayashi [Kob94, Kob98b, Kob98a].
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In addition to that, we define the Fourier transform of a distribution v ∈ E ′(W ) with compact
support to be

F(v)(ξ) ∶= v [e−2π⟨ξ,●⟩] , ξ ∈ iW ∗.

Definition 2.1. Let W be a real, finite-dimensional vector space and u ∈ D′(X) a distribution
on an open subset X ⊂ W . Then we say (x0, ξ0) ∈ X × iW ∗ ∖ {0} ⊂ iT ∗X is not in the wave
front set WF(u) ⊂ iT ∗X if there exist open neighborhoods U of x0 and V of ξ0 and a smooth
compactly supported function φ ∈ C∞

c (U) with φ(x0) ≠ 0 such that for all N ∈ N there exists a
constant CN,φ > 0 such that

∣F(φu)(τξ)∣ ≤ CN,φ∣τ ∣
−N

∀ τ ≫ 0, ξ ∈ V.

Note that (x,0) ∈ iT ∗X is never in the wave front set (contrary to Definition 2.2 for unitary
representations) because in order to analyze the singularities of a function or distribution it only
makes sense to look in the directions ξ ≠ 0.
Furthermore, it is easily seen from the definition that the wave front set WF(u) ⊂ iT ∗X is a
closed cone (in the second component).

Now, if ψ ∶ X → Y is a diffeomorphism between two open sets and u is a distribution on Y ,
then ψ∗ WF(u) = WF(ψ∗u), where the pullback on the cotangent bundle is defined by

ψ∗(y, ξ) = (ψ−1
(y), (Dψ(ψ−1

(y)))T ξ) , (y, ξ) ∈ iT ∗Y.

Thus, the notion of the wave front set of a distribution on a smooth manifold is independent of
the choice of local coordinates and is therefore well-defined.

Now let G be a n-dimensional Lie group with Lie algebra g and (π,H) a unitary representation
of G. Denote by J1(H) the space of trace class operators with trace class norm ∥T ∥1.

Definition 2.2. The wave front set of a unitary representation π is defined as the closure of
the union of the wave front sets at the identity of the matrix coefficients of π:

WF(π) ∶= ⋃
v,w∈H

WFe(⟨π(g)v,w⟩H) ∪ {0} ⊂ iT ∗e G ≅ ig∗.

Here we use the convention that zero is always in the wave front set (contrary to Definition 2.1)
because it makes the statements of the results for unitary representations cleaner.
Howe used in [How81] the equivalent definition

WF(π) = ⋃
T ∈J1(H)

WFe(Trπ(T )) ∪ {0},

where Trπ(T ) ∶= Tr(π(⋅)T ), T ∈ J1(H), is a continuous bounded function on G regarded as a

distribution on G by integration. The equivalence of these definitions was shown in [HHÓ16,
Proposition 2.4].

It is a well-known fact that the wave front set WF(π) ⊂ ig∗ is a closed, Ad∗(G)-invariant
cone.

The following result provides another description of the wave front set which we will use in
our proof.

Lemma 2.3 (see [How81, Theorem 1.4 v)] and [HHÓ16, Lemma 2.5 (iii)]).
Let ξ0 ∈ ig∗. Then ξ0 ∉ WF(π) if and only if there is an open set e ∈ U ⊂ G on which the
logarithm is a well-defined diffeomorphism onto its image and an open set ξ0 ∈ V ⊂ ig∗ such that
for every φ ∈ C∞

c (U) there exists a family of constants CN(φ) > 0 independent of both ξ ∈ V and
T ∈ J1(H), such that

∣∫
G

Trπ(T )(g)e−2πτξ(log g)φ(g) dg∣ ≤ CN(φ)∥T ∥1τ
−N
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for τ ≫ 0, ξ ∈ V , T ∈ J1(H).

For our proof in Section 3.1 we need to know more about the dependence of the constant
CN(φ) on the cut-off function φ ∈ C∞

c (G).

Lemma 2.4. For all N > n = dim(G) the above statement holds with the choice of the constant
CN(φ) = CN∥φ∥WN+n,1 where ∥φ∥WM,1 ∶= ∑∣α∣≤M ∥Dαφ∥L1 is a Sobolev norm.

Proof. We may assume without loss of generality that in Lemma 2.3 V = B2ε(ξ0) for an 1
2
> ε > 0

and ∥ξ0∥ = 1, and may prove our statement for ξ ∈ V ′ ∶= Bε(ξ0) with ∥ξ∥ = 1. Now, let U ⊂ G be
the open set given by Lemma 2.3 and take U ′ ⫋ U open and χ ∈ C∞

c (log(U)) a function on g
with χ = 1 on log(U ′) ⊂ g. Then we can estimate for all φ ∈ C∞

c (U ′), ϕ = φ ○ exp ∈ C∞
c (g):

I(φ, ξ, T )(τ) ∶= ∫
G

Trπ(T )(g)e−2πτξ(log g)φ(g) dg = ∫
g

Trπ(T )(exp(X))e−2πτξ(X)χ(X)ϕ(X) dg

= ∫
ig∗

(∫
g

Trπ(T )(exp(X))χ(X)e−2πη(X)dX)(∫
g
ϕ(Y )e2π(η−τξ)(Y )dY )dη,

and define J1(η) ∶= ∫g Trπ(T )(exp(X))χ(X)e−2πη(X)dX and J2(η) ∶= ∫g ϕ(Y )e2π(η−τξ)(Y )dY .

With the 1
2
> ε > 0 chosen above we split up the integral as I(φ, ξ, T )(τ) = I1 + I2 where

I1 ∶= ∫
∥τξ−η∥≥ετ

J1(η)J2(η)dη, I2 ∶= ∫
Bετ (τξ)

J1(η)J2(η)dη.

For the first integral we estimate for η ∉ Bετ(τξ) by estimation of the integrand and partial
integration, respectively

∣J1(η)∣ ≤ ∥T ∥1∥χ∥L1 , ∣J2(η)∣ ≤ ∥ϕ∥WN,1∥τξ − η∥−N

and therefore

∣I1∣ ≤ ∥T ∥1∥χ∥L1∥ϕ∥WN,1 ∫
∥τξ−η∥≥ετ

∥τξ − η∥−Ndη = ∥T ∥1∥χ∥L1∥ϕ∥WN,1 ∫

∞

ετ
r−Nrn−1dr

= ∥T ∥1∥χ∥L1∥ϕ∥WN,1ε−N+nτ−N+n.

For the second integral we estimate for η ∈ Bετ(τξ) with Lemma 2.3 applied to χ and 1
∥η∥
η ∈

B2ε(ξ0) = V

∣J1(η)∣ ≤ ∥T ∥1CN(χ)∥η∥−N , ∣J2(η)∣ ≤ ∥ϕ∥L1 ≤ ∥ϕ∥WN,1 .

Since ∥η∥ ≥ (1 − 2ε)τ we have

∣I2∣ ≤ ∥T ∥1CN(χ)∥ϕ∥WN,1 ∫
Bετ (τξ)

∥η∥−Ndη

≤ ∥T ∥1CN(χ)∥ϕ∥WN,1((1 − 2ε)τ)−NC(ετ)n ≤ CN∥T ∥1∥ϕ∥WN,1τ−N+n.

This proves the statement with U ′ as the open neighborhood of e ∈ G and V ′ as the open
neighborhood of ξ0 in ig∗. �

Lastly, the following simple result gives us an idea why wave front sets might be interesting
for the decomposition of unitary representations.

Proposition 2.5. Let (π1,H1),. . . , (πk,Hk) be unitary representations of G, then

WF(
k

⊕
j=1

πj) =
k

⋃
j=1

WF(πj).
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2.2. Nilpotent Lie Groups. In order to prove Theorem 1 we use the structure theory of
nilpotent Lie algebras and Lie groups. The required results below are mostly from the book by
Corwin and Greenleaf [CG90].

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g of dimension
n and g∗ its vector space dual. By Ĝ we denote the unitary dual of G and by ig∗/G the space
of coadjoint orbits.

The main results are the following two theorems:

Theorem 2 (see [CG90, Theorems 2.2.1 - 2.2.4]). There exists a homeomorphism Ĝ → ig∗/G,

σ ↦ Oσ, and σl ↤ Ol = Ad∗(G)l. For the continuity of the map ig∗/G→ Ĝ see [Kir62, Theorem

8.2] and for the continuity of the map Ĝ→ ig∗/G see [Bro73].

The structure and parametrization of the coadjoint orbits is given by

Theorem 3 (see [CG90, Theorem 3.1.14]). Fix a (strong Malcev) basis {X1, . . . ,Xn} of g. Then
there exits a finite set D of orbit types. Denote by Ud ⊂ ig

∗ the union of all orbits of type d ∈D.
Moreover, all orbits in Ud have the same dimension dn.
For each d ∈ D there also exists a cross-section Σd ⊂ ig∗ of the orbits in Ud, i.e. each orbit
O ⊂ Ud intersects Σd in a unique point. Then

Σ ∶= ⊔
d∈D

Σd ≅ ig
∗
/G

is a cross-section of all Ad∗(G)-orbits.
Furthermore, for each d ∈D there exists a decomposition

ig∗ = VS(d) ⊕ VT (d)

as a direct sum of vector spaces and a birational, non-singular, surjective map

ψd∶Σd × VS(d) → Ud

such that for each l ∈ Σd its orbit is given by Ol = ψd (l, VS(d)).

Remark 2.6. For d ∈D we know Hl ≅ L
2 (Rdn/2) for all l ∈ Σd, where dn = dimOl for all l ∈ Σd.

Now, we collect the ingredients and underlying concepts of the main statements starting at
the level of nilpotent Lie algebras. These details will not only be presented as background
material but will be crucial for our own results.

Lemma 2.7 (see [CG90, Kirillov’s Lemma 1.1.12]). Let g be a non-abelian nilpotent Lie algebra
whose center z(g) = RZ is one-dimensional. Then g can be written as

g = RZ ⊕RY ⊕RX ⊕w = RX ⊕ g0,

a vector space direct sum with a suitable subspace w. Furthermore, [X,Y ] = Z and g0 = RY ⊕

RZ ⊕w is the centralizer of Y and an ideal.

In order to study the coadjoint orbits we start with

Lemma 2.8 (see [CG90, Lemma 1.3.2]). For l ∈ ig∗ we define the bilinear form Bl(X,Y ) =

l([X,Y ]) on g. Then the radical

rl ∶= {X ∈ g ∶ Bl(X,Y ) = 0 ∀ Y ∈ g} = {X ∈ g ∶ ad∗(X)l = 0}(3)

has even codimension in g. Hence coadjoint orbits are of even dimension.
They are actually symplectic manifolds with the non-degenerate skew symmetric 2-form ω(l′) ∈
Λ2(Tl′Ol) such that ω(l′)(−(ad∗X)l′,−(ad∗ Y )l′) = l′([X,Y ]), l′ ∈ Ol. Note that ω is Ad∗(G)-
invariant.
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Now, we are interested in how we can define an irreducible unitary representation of G given
an element l ∈ ig∗ (with Theorem 2 in mind).

Definition 2.9. A polarizing subalgebra for l ∈ ig∗ is a subalgebra m ⊂ g that is a maximal
isotropic subspace for the bilinear form Bl ∶ g × g→ iR.
They are also called maximal subordinate subalgebras for l.

Proposition 2.10 (see [CG90, Proposition 1.3.3]). Let g be a nilpotent Lie algebra and let
l ∈ ig∗. Then there exists a polarizing subalgebra for l.

Now, for l ∈ ig∗ choose a polarizing m and let M = expm. Then χl(expY ) = e2πl(Y ) is a
one-dimensional representation of M since l([m,m]) = 0. Hence, we can define

σl ∶= IndGM(χl).

More precisely,

Hl = {f ∶ G→ C measurable ∶ f(mg) = χl(m)f(g) ∀m ∈M and ∫

M/G

∥f(g)∥2dġ <∞}

and
(σl(x)f)(g) = f(gx) ∀ x ∈ G,f ∈Hl.

With this construction one can prove the bijection Ĝ ≅ ig∗/G.
The proof is by induction on the dimension of G. The inductive step is based an the following

statement.

Proposition 2.11 (see [CG90, Proposition 1.3.4]). Let g0 be a subalgebra of codimension 1 in
a nilpotent Lie algebra g, let l ∈ ig∗, and let l0 = l∣

g0
. Let rl be the radical defined in Equation

(3). Then there are two mutually exclusive possibilities:

● Case I characterized by any of the following equivalent properties:
(i) rl ⊈ g0;

(ii) rl ⊃ rl0 ;
(iii) rl0 of codimension 1 in rl.
In this case, if m is a polarizing subalgebra for l, then m0 = m ∩ g0 is a polarizing
subalgebra for l0; m0 is of codimension 1 in m and m = rl +m0.

● Case II characterized by any of the following equivalent properties:
(i) rl ⊂ g0;

(ii) rl ⊂ rl0 ;
(iii) rl of codimension 1 in rl0 .
In this case, any polarizing subalgebra for l0 is also polarizing for l.

Even though this is a rather technical result its significance becomes clearer in the next
statements since we also know how the irreducible representations and the orbits of G and G0

are connected in these two cases.

Theorem 4 (see [CG90, Theorem 2.5.1]). Let the notation be as above. Let p ∶ ig∗ → ig∗0 be the
canonical projection and G0 = exp(g0).

(i) In Case I, where rl ⊈ g0, we have

σl0 ≅ σl∣G0
and p ∶ Ol → Ol0 ∶= Ad∗(G0)l0 is a bijection

(see Figure 1).
(ii) In Case II, where rl ⊂ g0, we have

σl ≅ IndGG0
(σl0), p(Ol) = ⊔

t∈R
(Ad∗ exp tX)Ol0 and Ol = p

−1
(p(Ol)),

where X is any element such that g = RX ⊕ g0.
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Figure 1. Orbits of G0 and G in Case II of Theorem 4

In order to nicely formulate the statements about the estimate of matrix coefficients in Section
3 we introduce the following notation:

Definition 2.12. Let N be a nilpotent, connected, simply connected, nilpotent Lie group with
Lie algebra n and fix an inner product on n. Then for a nilpotent Lie algebra g we write
(g, ⟨, ⟩g) ≺ (n, ⟨, ⟩n) if and only if g can occur in the induction process of n using the two cases
of Theorem 4, i.e. can be obtained via passing to a quotient by a central element or taking the
subalgebra of co-dimension 1 given by Kirillov’s Lemma 2.7, and the inner product on g is the
one it inherits from n.

We end this section with a technical lemma we will use in a proof in the next section regarding
the transition maps between two charts of G:
Let X0 ∈ g with ∥X0∥ = 1. Given an inner product in g we consider the orthogonal decomposition
g = RX0 ⊕ V as vector spaces and define βX0 ∶ RX0 ⊕ V → G, tX0 + v ↦ exp(tX0) exp(v). Then
βX0 is a global chart by an argument analogous to [CG90, Proposition 1.2.8] (after choosing
a weak Malcev basis of g through RX0 which exits by [CG90, Theorem 1.1.13]). Now, let
κX0 = β−1

X0
○ exp ∶ g → g be the smooth transition map. Then for each N ∈ N the quantity

Cg,N ∶= sup∥X0∥=1 ∥κX0∥CN (BR(0)) is finite since it depends continuously on X0 ∈ S
n−1.

Lemma 2.13. Let h ⊂ g be a subalgebra of co-dimension 1 or h = g/RZ a quotient with Z ∈ z(g)
and take compatible inner products on g and h. Then Ch,N ≤ Cg,N for all N ∈ N.

Proof. We start with the case that h ⊂ g is a subalgebra of co-dimension 1. Then the exponential
map exph on h is just the exponential map expg of g restricted to h. In particular, for X0 ∈ h

with ∥X0∥ = 1 we have h = RX0 ⊕ Vh and g = RX0 ⊕ Vh ⊕ h⊥, Vg = Vh ⊕ h⊥. Thus, βh
X0

= βg
X0

∣h

and therefore κhX0
= κgX0

∣h and Ch,N ≤ Cg,N .

If h = g/RZ is a quotient with Z ∈ z(g) we consider the orthogonal complement W ⊂ g of
RZ in g and the vector space isomorphism ι ∶ h → W such that pr ∶ g → h corresponds to the
orthogonal projection. On the level of the Lie groups we have H = G/A with A = exp(RZ), and

exph(X +RZ) = expg(ι(X))A ∈H, logh
(gA) = logg

(g) +RZ.

Now, let X0 =X0+RZ ∈ h, ∥X0∥ = 1, and h = RX0⊕Vh. Then βh

X0
(tX0+v) = β

g
ι(X0)

(ι(tX0+v))A

since Z ∈ z(g), and κh
X0

(tX0+v) = κ
g
ι(X0)

(ι(tX0+v))+RZ = prh ○κ
g
ι(X0)

(ι(tX0+v)). This finishes

the proof since the projection prh can only reduce the norm of derivatives. �
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3. Proof of Theorem 1

Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g of dimension
n and g∗ its vector space dual. By Ĝ we denote the unitary dual. It is isomorphic to the space
of coadjoint orbits ig∗/G. Let (π,H) be a unitary representation of G. Then we can write

π ≅ ∫

⊕

Ĝ
σ⊕m(π,σ) dµπ(σ), H ≅ ∫

⊕

Ĝ
H
⊕m(π,σ)
σ dµπ(σ),(4)

where m(π,σ) keeps track of the multiplicity of σ in π. We recall that for such a representation
the orbital support of π is given by

O − suppπ = ⋃
σ∈supp(π)

Oσ ⊂ ig∗, supp(π) = supp(µπ),

where Oσ ⊂ ig
∗ is the orbit of the coadjoint action corresponding to σ ∈ Ĝ under the isomorphism

Ĝ ≅ ig∗/G (see Theorem 2).
We start by using the structure of nilpotent Lie groups and the unitary representations. By
Theorem 3 after fixing a strong Malcev basis of g we have

Ĝ ≅ ig∗/G ≅ Σ = ⊔
d∈D

Σd ⊂ ig∗,

where Σ is a cross-section of all G-orbits and Σd is a cross-section of all orbits of a certain type
d ∈D, which, in particular, all have the same dimension. Moreover, the set D is finite.
Thus, we can push µπ forward to a positive measure on Σ and obtain

π ≅ ∫

⊕

Σ
σ
⊕m(π,σl)
l dµπ(l)

= ⊕
d∈D

∫

⊕

Σd
σ
⊕m(π,σl)
l dµπ(l) =∶ ⊕

d∈D

πd.

With this decomposition we have

WF(π) = ⋃
d∈D

WF(πd), AC(O − suppπ) = ⋃
d∈D

AC(O − suppπd)

by Proposition 2.5 and the fact that AC (⋃
n
i=1 Si) = ⋃

n
i=1 AC(Si).

Therefore, it suffices to show that

AC(O − supp(πd)) = WF(πd) ∀ d ∈D.(5)

From now on we fix d ∈ D and may assume that all the irreducible representations in the
support of π are of the form σl for an l ∈ Σd ⊂ Ud, where Ud ⊂ ig

∗ is the set of all l ∈ ig∗ such
that its orbit Ol = Ad∗(G)l is of type d (see Theorem 3).

Our strategy in the proof of (5) is to prove both inclusions separately in the following two

subsections. In both cases we begin with single matrix coefficients mσ
u,v(g) = ⟨σ(g)u, v⟩, σ ∈ Ĝ

of type d. For the inclusion AC(O − supp(π)) ⊂ WF(π) we find vectors u, v ∈ Hσ such that
the Fourier transform F(mσ

u,v) is bounded from below close to the corresponding orbit Oσ
(see Propositions 3.1 and 3.2 in Subsection 3.1). For the other inclusion WF(π) ⊂ AC(O −

supp(π)) we show that far away from the orbit Oσ the Fourier transform of all matrix coefficients
mσ
u,v is rapidly decaying (see Proposition 3.4 in Subsection 3.2). Since in both statements the

constants can be chosen uniformly for all representations σ ∈ Ĝ we can then use them to show
the desired estimates for the matrix coefficient mπ

u,v(g) = ⟨π(g)u, v⟩ = ∫
⊕

Σd
mσl
ul,vl

(g) dµπ(l) (with

corresponding ul, vl ∈H
⊕ml
l ) which imply the relation of AC(O − supp(π)) and WF(π).
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3.1. Proof of the Inclusion AC(O − supp(π)) ⊂ WF(π). For the first inclusion we use
Lemma 2.4 which states in our setting with n = dimg:

ξ ∉ WF(π) ⇔ ∃ e ∈ U ⊂ G, ξ ∈ V ⊂ ig∗ ∀ φ ∈ C∞
c (U) ∀ N > n ∃ CN > 0 ∶

∣F(⟨π(●)u, v⟩φ)(tη)∣ ≤ CN∥φ∥WN+n,1∥u∥∥v∥t−N for t≫ 0, η ∈ V, u, v ∈H,(6)

where the constants CN may be chosen independent of both η ∈ V and u, v ∈H.
As mentioned above we need to find matrix coefficients whose Fourier transform is bounded

from below:

Proposition 3.1. Fix an inner product on g. There exist C, ε > 0 and 1 > δ > 0 such that for all
ζ ∈ Ud ⊂ ig

∗ we can find vectors uζ ∈ H
∞
ζ , vζ ∈ Hζ with ∥uζ∥ = ∥vζ∥ = 1 that depend measurably

on ζ (i.e. the resulting map Ud → L2(Rdn/2) ≅ Hζ is measurable) such that for all η ∈ Ud with
∥η − ζ∥ < ε−1δ the following estimate holds for all non-negative φ ∈ C∞

c (Bε⟨∥ζ∥⟩−1/2(0)):

Re(∫
g
⟨σζ(exp(X))uζ , vζ⟩φ(X)e−2πη(X) dX) ≥ C ⋅ ∫

g
φ(X) dX ≥ 0.

Before we can begin with the proof however, we will need to restate this proposition in a
more detailed version (see Proposition 3.2). This is necessary since we want to prove it by in-
duction over dim(g) and need a more detailed induction statement for this. We use the notation
introduced in Definition 2.12 to specify the dependencies of the occurring constants. The proof
of Proposition 3.2 will be based on the distinction of cases for subalgebras of codimension 1 as
in Theorem 4. We therefore distinguish the following cases:

i) If ζ(Z) = 0 for some nonzero Z ∈ z(g), we consider g = g/(R ⋅ Z), ζ = prig∗(ζ) and find
that σζ ∣G ≅ σζ and Hζ ≅ Hζ analogously to Case I of Theorem 4. Thus, we can use for

σζ the same vectors that the induction hypothesis applied to σζ gives us and check the

desired estimates.
ii) If z(g) = R ⋅ Z and ζ(Z) ≠ 0, Kirillov’s Lemma 2.7 gives us a subalgebra g0 to which

we apply the induction hypothesis. Writing ζ0 = prig∗0(ζ) Theorem 4 tells us that

σζ = IndGG0
(σζ0) and this identification allows us to construct the desired vectors uζ , vζ ∈

Hζ from two vectors uζ0 , vζ0 ∈ cHζ0 that are obtained from the induction hypothesis.
However, two difficulties arise: In a first step, we can only construct a distributional
vector in H−∞

ζ which we then approximate in the next step to find a suitable vector
in Hζ . Furthermore, to estimate the Fourier transform of the corresponding matrix
coefficient we use a chart g → G resulting from the decomposition g = g0 ⊕ RX given
by the Kirillov Lemma. In order to change to the desired chart exp ∶ g → G we require
further estimations. For these we need an upper bound of the C1-norm of the matrix
coefficients which is also added to our second formulation of the proposition.

Proposition 3.2. Let N be a nilpotent, connected, simply connected Lie group with Lie algebra n
and fix an inner product on n. Let 0 < δ < 1 such that ∣ sin(2πx)∣ ≤ 2−3 dim(n) for all ∣x∣ < δ. Then

for any n ≤ dim(n) there exists a constant C̃n > 0 such that for all nilpotent, connected, simply
connected Lie groups G with Lie algebra (g, ⟨, ⟩g) ≺ (n, ⟨, ⟩n) and dimg = n, and all ζ ∈ Ud ⊂ ig

∗

we can find vectors uζ ∈ H
∞
ζ , vζ ∈ Hζ with ∥uζ∥ = ∥vζ∥ = 1 that depend measurably on ζ such

that the following estimates hold: For the matrix coefficient muζ ,vζ(X) ∶= ⟨σζ(exp(X))uζ , vζ⟩
we have

∥muζ ,vζ∥C1(G) ≤ C̃n⟨∥ζ∥⟩
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Furthermore, with ε ∶= min ( 1
4
, (23nC̃nCn,2)

−1/2) we have for all η ∈ Ud with ∣η − ζ ∣ < ε−1δ the

following estimate for all non-negative φ ∈ C∞
c (B(ε⟨∥ζ∥⟩−1/2,0)):

Re(∫
g
muζ ,vζ(X)φ(X)e−2πη(X) dX) ≥ 2−3n

∫
g
φ(X) dX ≥ 0.

Proof. We prove this statement by induction on n = dimg. If n = 1,2, the group is abelian.
In this case the irreducible unitary representations are one-dimensional, i.e. σζ(g) = e

2πζ(log g),

Hζ = C. We choose uζ = vζ = 1 and compute ∣dXmuζ ,vζ(X)∣ = 2π∥ζ∥, thus C̃n = 2π.
For the estimate of the integral we have

Re(∫
g
⟨σζ(exp(X))uζ , vζ⟩φ(X)e−2πη(X) dX) = Re(∫

g
e2π(ζ−η)(X)φ(X) dX)

= ∫
g

Re (e2π(ζ−η)(X))φ(X) dX = ∫
g

cos(2πi(η − ζ)(X))φ(X) dX ≥
1

2
∫
g
φ(X) dX

since ∣i((η − ζ)(X)∣ ≤ ∥η − ζ∥ ⋅ ∥X∥ ≤ ε−1δ ⋅ ε⟨∥ζ∥⟩−1/2 ≤ δ on suppφ and

cos(2πx) =
√

1 − sin(2πx)2 ≥

√

1 − 2−3 dim(n) >
1

2
∀ ∣x∣ < δ.(7)

Now we assume n = dimg ≥ 3. We will distinguish between the two cases following Theorem
4.

Case I: ζ(Z) = 0 for an Z ∈ z(g). Without loss of generality we may assume ∥Z∥ = 1. We
can choose the orthogonal complement W < g such that g = W ⊕ RZ. Then g = g/(R ⋅ Z) is
isomorphic toW and has a well-defined Lie algebra structure given by [v+RZ,w+RZ] = [v,w]g+

RZ since Z ∈ z(g).
On g we use the inner product induced from the one we fixed on g. Using the corresponding

inner products on ig∗ and ig∗ we also obtain an orthogonal decomposition ig∗ = iW ∗ ⊕RηZ ≅

ig∗ ⊕RηZ with ∥ηZ∥ = 1.
Note that ig∗ is Ad∗(G)-invariant (again due to Z ∈ z(g)). As we assumed ζ(Z) = 0, we

can identify ζ with an element ζ ∈ ig∗. Let η = η + rηZ ∈ ig∗ = ig∗ ⊕ RηZ . By assumption
∣r∣ = ∣(η − ζ)Z ∣ ≤

δ
ε
.

The induction hypothesis also gives us normalized vectors uζ ∈H
∞

ζ
, vζ ∈Hζ . By Theorem 4 (i)

Hζ ≅Hζ and σζ ○P ≅ σζ with the projection P ∶ G→ G. Thus, we obtain corresponding vectors

uζ = uζ ∈H
∞
ζ , vζ = vζ ∈Hζ and compute

dtmuζ ,vζ(X + tZ) = 0,

∣∂X0
muζ ,vζ(X + tZ)∣ = ∣∂X0

mu
ζ
,v
ζ
(X)∣ ≤ C̃n−1⟨∥ζ∥⟩ ≤ C̃n−1⟨∥ζ∥⟩, for X0 ∈ g with ∥X0∥ = 1,
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and can choose C̃n = C̃n−1. For the estimate of the integral we have

R ∶= Re(∫
g
⟨σζ(exp(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

= Re(∫
g
∫
R
⟨σζ(exp(X + tZ))uζ , vζ⟩φ(X + tZ)e−2πη(X+tZ) dX dt)

= Re(∫
g
∫
R
⟨σζ(exp(X) exp(tZ))uζ , vζ⟩φ(X + tZ)e−2π(η(X)+rηZ(tZ)) dX dt)

= Re(∫
g
∫
R
⟨σζ(exp(X))uζ , vζ⟩φ(X + tZ)e−2π(η(X)+rηZ(tZ)) dX dt)

= ∫
R

cos(−2πrt)Re(∫
g
⟨σζ(exp(X))uζ , vζ⟩φ(X + tZ)e−2πη(X) dX)

− sin(−2πrt) Im(∫
g
⟨σζ(exp(X))uζ , vζ⟩φ(X + tZ)e−2πη(X) dX) dt.

Since ∣rt∣ ≤ ε−1δ∣t∣ ≤ δ for X + tZ ∈ supp(φ) we have cos(−2πrt) > 1
2

as in (7) and ∣ sin(−2πrt)∣ ≤

2−3 dim(n) by assumption. The induction hypothesis grants that the real part is non-negative
and we can estimate

R ≥ ∫
R

1

2
Re(∫

g
⟨σζ(exp(X))uζ , vζ , ⟩φ(X + tZ)e−2πη(X) dX)

− ∣ sin(−2πrt)∣ ∣∫
g
⟨σζ(exp(X))uζ , vζ , ⟩φ(X + tZ)e−2πη(X) dX∣ dt

≥ ∫
R

1

2
Re(∫

g
⟨σζ(exp(X))uζ , vζ , ⟩φ(X + tZ)e−2πη(X) dX)

− 2−3 dim(n)
∫
g
∥uζ∥∥vζ∥φ(X + tZ) dX dt.

Now we can apply the induction hypothesis to the inner integral to finish the proof in this case:
since ∥uζ∥ = ∥vζ∥ = 1 we obtain

R ≥ (2−3(n−1)−1
− 2−3 dim(n))∫

R
∫
g
φ(X + tZ) dX dt

≥ (2−3n+2
− 2−3n)∫

g
φ(X) dX = 3 ⋅ 2−3n

∫
g
φ(X) dX.

Case II: z(g) = R ⋅Z and ζ(Z) ≠ 0. Kirillov’s Lemma 2.7 gives us X,Y ∈ g and an ideal
g0 ⊂ g with g = RX ⊕ g0 and [X,Y ] = Z. We may choose X such that the decomposition is
orthogonal. Furthermore, X ∉ rl and we are in Case II of Proposition 2.11 and Theorem 4 with
G0 = exp(g0) ⊂ G a normal subgroup. We define a chart for G via

β ∶ g = g0 ⊕RX → G, X0 + tX ↦ exp(X0) exp(tX).(8)

Let p ∶ ig∗ → ig∗0 be the canonical projection and ζ = ζ0 + zζX , η = η0 + rηX ∈ ker(p)⊥ ⊕ ker(p).
Then by assumption ∣z − r∣ = ∣(ζ − η)X ∣ ≤ δ

ε
.

By Theorem 4, we know σζ ≅ IndGG0
(σζ0) with Hζ ≅ L2(A,Hζ0), where A = exp(R ⋅ X).

Thus, if we regard u and v as elements of L2(A,Hζ0) and ũ, ṽ ∶ G → Hζ0 the corresponding
left-G0-equivariant functions we have for g0 ∈ G0 and a ∈ A:

⟨σζ(g0a)u, v⟩Hζ = ∫
A
⟨[σζ(g0a)u](b), v(b)⟩Hζ0 db and

[σζ(g0a)ũ](b) = ũ(bg0a) = ũ(bg0b
−1ba) = σζ0(bg0b

−1
)ũ(ba)
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since b−1g0b ∈ G0 as g0 is an ideal. This gives us [σζ(g0a)u](b) = σζ0(bg0b
−1)u(ba).

Furthermore, the induction hypothesis gives us measurable, normalized vectors uζ0 ∈ H∞
ζ0

,
vζ0 ∈ Hζ0 . In order to find the suitable vectors uζ , vζ ∈ Hζ we begin with a cut-off function

χ ∈ C∞
c (A) with 0 ≤ χ ≤ 1, χ = 1 on exp([− 1

4
, 1

4
] ⋅X) and ∥χ∥L2 = 1. Define

uζ ∶= χe
2πzζX○log

⊗ uζ0 ∈ C
∞
c (A,H∞

ζ0), vζ ∶= δe ⊗ vζ0 ∈H
−∞
ζ .

With these we can compute

R ∶= Re(∫
g
⟨σζ(β(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

= Re(∫
g0
∫
R
(∫

A
⟨σζ0(b exp(X0)b

−1
)uζ(be

tX
), vζ(b)⟩ db) ⋅

φ(X0 + tX)e−2π(η0(X0)+rηX(tX)) dX0 dt)

= Re(∫
g0
∫
R
(∫

A
⟨σζ0(b exp(X0)b

−1
)uζ0 , vζ0⟩χ(be

tX
)e2πzζX(log(betX))δe(b) db) ⋅

φ(X0 + tX)e−2π(η0(X0)+rηX(tX)) dX0 dt)

= Re(∫
g0
∫
R
⟨σζ0(exp(X0))uζ0 , vζ0⟩χ(e

tX
)e2πzζX(tX)φ(X0 + tX)e−2π(η0(X0)+rt) dX0 dt)

= ∫
R

cos(2π(z − r)t)χ(etX)Re(∫
g0

⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0)

− sin(2π(z − r)t)χ(etX) Im(∫
g0

⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0) dt.

Analogously to Case I we have ∣(z − r)t∣ ≤ ε−1δ∣t∣ ≤ δ for X0 + tX ∈ supp(φ) and therefore

cos(2π(z − r)t) > 1
2

as in (7) and ∣ sin(2π(z − r)t)∣ ≤ 2−3 dim(n) by assumption.
Again, the induction hypothesis grants that the real part is non-negative and we can estimate

R ≥ ∫
R

1

2
χ(etX)Re(∫

g0

⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0)

− ∣ sin(2π(z − r)t)∣χ(etX) ∣∫
g0

⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0∣ dt,

and by unitarity of σζ0 :

R ≥ ∫
R

1

2
χ(etX)Re(∫

g0

⟨σζ0(exp(X0))uζ0 , vζ0⟩φ(X0 + tX)e−2πη0(X0) dX0)

− 2−3 dim(n)χ(etX)∫
g0

∥uζ0∥∥vζ0∥φ(X0 + tX) dX0 dt.

Now we can apply the induction hypothesis to the inner integral to finish the estimation:
since ∥uζ0∥ = ∥vζ0∥ = 1 we obtain

R ≥ (2−3(n−1)−1
− 2−3 dim(n))∫

R
∫
g0

χ(etX)φ(X0 + tX) dX0 dt

≥ (2−3n+2
− 2−3n)∫

R
∫
g0

φ(X0 + tX) dX0 dt = 3 ⋅ 2−3n
∫
g
φ(X) dX,

where we used that χ ○ exp = 1 on suppφ(X0 + ●) for all X0 ∈ g0.
However, vζ is only a distributional vector. But we can approximate it by smooth vectors:

there exists a sequence (ϕk)k ⊂ C∞
c (A) converging to the delta distribution δe in D′(A) with
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∥ϕn∥L1 = 1 for all n ∈ N. We define vkζ ∶= ϕk ⊗ vζ0 and study the functions

Muζ ,vkζ
(X) ∶= ⟨σζ(β(X))uζ , v

k
ζ ⟩ ∈ C∞

(g).(9)

We can show that on a compact set they have a uniformly convergent subsequence by the
Arzela-Ascoli theorem (see [Rud76, Theorem 7.25]) - for details see the next Lemma 3.3. Since
Muζ ,vkζ

→Muζ ,vζ ∶= ⟨σζ(κ
−1(X))uζ , vζ⟩ ∈ C

∞(g) point-wise we have on suppφ:

∃ N ∈ N ∶ ∥Muζ ,vNζ
−Muζ ,vζ∥L∞(suppφ) ≤ 2−3n.

We can now choose vNζ ∈Hζ and estimate

RN ∶=Re(∫
g
⟨σζ(β(X))uζ , v

N
ζ ⟩φ(X)e−2πη(X) dX)

=Re(∫
g
⟨σζ(β(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

−Re(∫
g
(⟨σζ(β(X))uζ , vζ⟩ − ⟨σζ(β(X))uζ , v

N
ζ ⟩)φ(X)e−2πη(X) dX)

≥Re(∫
g
⟨σζ(β(X))uζ , vζ⟩φ(X)e−2πη(X) dX)

− ∣∫
g
(⟨σζ(β(X))uζ , vζ⟩ − ⟨σζ(β(X))uζ , v

N
ζ ⟩)φ(X)e−2πη(X) dX∣ ,

and by induction hypothesis and the choice of vNζ :

RN ≥ 3 ⋅ 2−3n
∫
g
φ(X) dX − ∥Muζ ,vNζ

−Muζ ,vζ∥L∞(suppφ) ∫
g
φ(X) dX

≥ 2 ⋅ 2−3n
⋅ ∫

g
φ(X) dX.

In order to prove the upper bound of the C1-norm of these matrix coefficient Muζ ,vNζ
we possibly

make N larger such that ∥ad(exp(sX)∥op ≤ 2 on suppϕN and compute for X0 ∈ g0 with ∥X0∥ = 1:

∣∂X0Muζ ,vNζ
(X0 + tX)∣ ≤ ∫

R
∥ad (esX)∥

op
∣∂X0Muζ0 ,vζ0

(ad (esX)X0)∣ϕN (esX) ds

≤ 2∥Muζ0 ,vζ0
∥C1∥ϕN∥L1 ≤ 2C̃n−1⟨∥ζ0∥⟩

by induction hypothesis. In the remaining direction we have:

∣∂t0Muζ ,vNζ
(X0 + tX)∣

= ∣∫
R
Muζ0 ,vζ0

(ad (esX)X0) (χ
′ (e(s+t)X) e2πiz(s+t)

+ χ (e(s+t)X)2πize2πiz(s+t))ds∣

≤ ∥χ′∥∞ + 2π∣z∣.

Thus, if we choose Ĉn ∶= max(∥χ′∥∞,2C̃n−1,2π) we have

∥Muζ ,vNζ
∥C1 ≤ Ĉnmax(⟨∥ζ0∥⟩, ∣z∣) ≤ Ĉn⟨∥ζ∥⟩

Now, recall that the matrix coefficients Muζ ,vNζ
are defined via the chart β from (8), so it remains

to transform this back to a matrix coefficient defined with the exponential map in order to finish
the inductive step. Thus, we define the transition map κ = β−1 ○exp ∶ g→ g to replace the matrix
coefficient Muζ ,vNζ

(X) by the matrix coefficients muζ ,vNζ
(X) =Muζ ,vNζ

(κ(X)). For the C1-norm

of these matrix coefficients we immediately see with Lemma 2.13 that

∥muζ ,vNζ
∥C1 ≤ ∥Dκ∥∞∥Muζ ,vNζ

∥C1 ≤ Cg,1∥Muζ ,vNζ
∥C1 ≤ Cn,1Ĉn⟨∥ζ∥⟩,
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and can choose C̃n ∶= max(1,Cn,1)Ĉn ≥ Ĉn. In order to estimate the Fourier transform we look
at the following difference in X ∈ suppφ:

∣muζ ,vNζ
(X) −Muζ ,vNζ

(X)∣ = ∣Muζ ,vNζ
(X) −Muζ ,vNζ

(κ(X))∣ ≤ ∥Muζ ,vNζ
∥C1∥κ(X) −X∥

by the mean value theorem. If we use the Taylor expansion of κ in 0 we have since D0κ = Idg:

∥κ(X) −X∥ ≤ ∥κ∥C2∥X∥
2
≤ Cn,2 diam(supp(φ))2,

using Lemma 2.13 again. Therefore, we have for all X ∈ supp(φ):

∣muζ ,vNζ
(X) −Muζ ,vNζ

(X)∣ ≤ ∥Muζ ,vNζ
∥C1Cn,2 diam(supp(φ))2

≤ Ĉn⟨∥ζ∥⟩Cn,2ε
2
⟨∥ζ∥⟩−1

= ĈnCn,2ε
2
≤ 2−3n

by our choice of ε. With this we can estimate

Re(∫
g
muζ ,vNζ

(X)φ(X)e−2πη(X) dX)

= Re(∫
g
Muζ ,vNζ

(X)φ(X)e−2πη(X) dX)

+Re(∫
g
(muζ ,vNζ

(X) −Muζ ,vNζ
(X))φ(X)e−2πη(X) dX)

≥ 2 ⋅ 2−3n
∫
g
φ(X) dX − ∫

g
∣muζ ,vNζ

(X) −Muζ ,vNζ
(X)∣φ(X) dX ≥ 2−3n

∫
g
φ(X) dX

This is the desired estimate. �

A technical lemma used in the previous proof:

Lemma 3.3. Let K ⊂ g be a compact set. Then there exists a uniformly convergent subsequence
of the matrix coefficients Muζ ,vkζ

(X) ∶= ⟨σζ(β(X))uζ , v
k
ζ ⟩ ∈ C∞(K), k ∈ N, defined in the

previous proof (see (9)).

Proof. The matrix coefficients are uniformly bounded:

∣Muζ ,vkζ
(W )∣ = ∣∫

A
⟨σζ0(b exp(W0)b

−1
)uζ0 , vζ0⟩χ(be

WX )e2πzζX(log(beWX ))ϕk(b) db ∣

≤ ∥uζ0∥∥vζ0∥∥χ∥∞ ∫
A
∣ϕk(b)∣ db = ∥χ∥∞ ∀W =W0 +WX ∈ g, k ∈ N.

Furthermore, their derivatives are bounded on K:

∂XMuζ ,vkζ
(W ) =

d

dt
∣
t=0

⟨σζ(κ
−1

(W + tX))uζ , v
k
ζ ⟩

=
d

dt
∣
t=0

⟨σζ(exp(W0) exp(WX) exp(tX))uζ , v
k
ζ ⟩

= ⟨σζ(exp(W0) exp(WX))dσζ(X)uζ , v
k
ζ ⟩.

Here dσζ(X)uζ(b) = ((Tbχ)(X)e2πzζX(log b) + χ(b)2πze2πzζX(log b)) ⊗ uζ0 where Tbχ is the tan-
gent mapping of χ at b ∈ A. With computations as above

∣∂XMuζ ,vkζ
(W )∣ ≤ ∥T●χe

2πzζX○log
+ χ2πze2πzζX○log∥

L∞ ≤ ∥Tχ∥∞ ∥X∥ + 2π∣z∣ ∥χ∥∞ .
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For the other directions X0 ∈ g0 we compute

∂X0Muζ ,vkζ
(W ) =

d

dt
∣
t=0

⟨σζ(exp(W0 + tX0) exp(WX))uζ , v
k
ζ ⟩

=
d

dt
∣
t=0

⟨σζ(exp(W0) exp(tX̃0) exp(WX))uζ , v
k
ζ ⟩

=
d

dt
∣
t=0
∫
A
⟨σζ0(b exp(W0) exp(tX̃0)b

−1
)uζ0 , vζ0⟩χ(be

WX )e2πzζX(log(beWX ))ϕk(b) db

= ∫
A
⟨σζ0(b exp(W0)b

−1
)dσζ0(Ad∗(b)X̃0)uζ0 , vζ0⟩χ(be

WX )e2πzζX(log(beWX ))ϕk(b) db,

where X̃0 = ∫
1

0 e
−sadW0X0 ds (see [DK01, Theorem 1.5.3]).

For W ∈K we can find constants C1,C2 > 0 such that

∥X̃0∥ ≤ ∫

1

0
∥e−sadW0∥∥X0∥ ds ≤ ∥X0∥∫

1

0
es∥−adW0∥ ds ≤ ∥X0∥

e∥adW0∥ − 1

∥adW0∥
≤ C1∥X0∥,

∥Ad∗(b)X̃0∥ ≤ ∥Ad∗(b)∥∥X̃0∥ ≤ C2C1∥X0∥.

Let {Xi} be a orthonormal basis for g0. Then there exists a constant C3 > 0 such that

∥dσζ0(Xi)uζ0∥ ≤ C3 for all i. Now write Ad∗(b)X̃0 = ∑αiXi and we have

∥dσζ0(Ad∗(b)X̃0)uζ0∥ ≤∑ ∣αi∣∥dσζ0(Xi)uζ0∥

≤ C3 dim(g0)∥Ad∗(b)X̃0∥ ≤ C1C2C3 dimg0∥X0∥.

With C ∶= C1C2C3 we can estimate as above

∣∂X0Muζ ,vkζ
(W )∣ ≤ ∥χ∥L∞∥vζ0∥∫

A
∥dσζ0(Ad∗(b)X̃0)uζ0∥∣ϕk(b)∣ db

≤ C dim(g0)∥X0∥∥χ∥∞.

This implies that the Muζ ,vkζ
are uniformly equicontinuous on K: Let ε > 0 and choose δ <

ε(dim(g)M)−1 with M = max{∥Tχ∥∞ ∥X∥ + 2π∣z∣ ∥χ∥∞ ,C dimg0∥χ∥∞} <∞ on the compact set
K. Then for ∥W − Y ∥ < δ we have for some 0 ≤ θ ≤ 1

∣Muζ ,vkζ
(W ) −Muζ ,vkζ

(Y )∣ ≤ ∥∇Muζ ,vkζ
(W + θ(Y −W ))∥∥W − Y ∥ ≤ δ dim(g)M < ε.

The Arzela-Ascoli theorem (see [Rud76, Theorem 7.25]) states that the uniform boundedness
and the uniform equicontinuity imply the existence of a uniformly convergent subsequence. �

Now we can turn to the desired statement:

Theorem 5. Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g
and (π,Hπ) a unitary representation of G. Then

AC(O − suppπ) ⊂ WF(π).

Proof. Let ξ ∈ AC(O−suppπ). We may assume without loss of generality that ∥ξ∥ = 1. Defining
the cones Cε ∶= {η ∈ ig∗ ∣ ∃ t > 0 ∶ ∣ξ − tη∣ < ε}, then for all ε > 0 there exists a sequence
(tmηm)m ⊂ Cε ∩O − supp(π) with tm →∞ and ηm ∈ Bε(ξ), ∥ηm∥ = 1.
We now use Theorem 3: For all m ∈ N let lm ∈ Σd be the corresponding element in the cross-
section of all orbits of type d, i.e. Olm = Otmηm . Then there exists vm ∈ VS(d) with tmηm =

ψd(lm, vm). For l ∈ Σd near lm we define ζl ∶= ψd(l, vm) ∈ Ol which depends continuously on l
(see Figure 2).
Now let 0 < δ < 1 be as in Proposition 3.2. Then there exists a neighborhood Nm ⊂ Σd of lm
such that ψd(Nm, vm) ⊂ Bδ(tmηm) and µπ(Nm) > 0 since lm ∈ O − supp(π) (see also Figure 2).
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Figure 2. The choice of lm and Nm.

Applying the above Proposition 3.2 to ζl, l ∈ Nm, we obtain measurable, normalized vectors
uζl , vζl ∈Hζl . Since σl ≅ σζl and Hl ≅Hζl we have corresponding measurable, normalized vectors
ul, vl ∈Hl. With these we define

u(m) ∶= (µπ(Nm))
− 1

2 ∫
Σd
χNm(l)ul dµπ(l) ∈Hπ,

since the ul are measurable in l and ∥u(m)∥2
Hπ

= (µπ(Nm))−1
∫Σd χNm(l)∥ul∥

2 dµπ(l) = 1. We

define v(m) ∈Hπ analogously.
Recall that Proposition 3.2 only gives us a lower bound for large ∥ζ∥ for functions φ with a

small support, more precisely the support of φ shrinks proportional to ⟨∥ζ∥⟩−1/2. Thus, let ε be
as in Proposition 3.2 and φ ∈ C∞

c (Bε(0)) be non-negative, ϕ = φ ○ log. To adapt its support

we define φm(X) ∶= ⟨tm⟩n/2φ(⟨tm⟩1/2X) ∈ C∞
c (Bε⟨tm⟩−1/2(0)), ϕm = φm ○ log. With this choice

∥φm∥L1 = ∥φ∥L1 and ∥φm∥WN,1 ≤ ⟨tm⟩N/2∥φ∥WN,1 Then, by definition of Nm:

∣F(⟨π(●)u(m), v(m)⟩ϕm)(tmηm)∣

= ∣∫
G
∫
Nm

(µπ(Nm))
−1

⟨σl(g)ul, vl⟩ϕm(g)e−2πtmηm(log g) dg dµπ(l)∣

≥ ∣Re(∫
G
∫
Nm

(µπ(Nm))
−1

⟨σl(g)ul, vl⟩ϕm(g)e−2πtmηm(log g) dg dµπ(l))∣

= (µπ(Nm))
−1

∣∫
Nm

Re(∫
g
⟨σl(exp(X))ul, vl⟩φm(X)e−2πtmηm(X) dX) dµπ(l)∣

Prop. 3.2
≥ (µπ(Nm))

−1
∫
Nm

2−3 dimg
∥φm∥L1 dµπ(l) = 2−3 dimg

∥φ∥L1∥u(m)∥∥v(m)∥.

We can use this to show that ξ ∈ WF(π): If we assume that ξ ∉ WF(π) we can employ Lemma
2.4 (see also (6)). It states that there exist ε1, ε2 > 0 such that for all ϕ ∈ C∞

c (exp(Bε2(0))) and
all N > n:

∣F(⟨π(●)u, v⟩ϕ)(tη)∣ ≤ CN∥ϕ∥WN+n,1∥u∥∥v∥t−N ∀ u, v ∈Hπ, η ∈ Bε1(ξ), t > t0.

For our sequence chosen above this means we would have

∣F(⟨π(●)u(m), v(m)⟩ϕm)(tmηm)∣ ≤ CN∥ϕm∥WN+n,1∥u(m)∥∥v(m)∥t−Nm

≤ CN∥ϕ∥WN+n,1∥u(m)∥∥v(m)∥⟨tm⟩
(N+n)/2t−Nm .

Since ⟨tm⟩(N+n)/2t−Nm ∈ O (t
(n−N)/2
m ) our estimations above show that this is not true for N > n.

�
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3.2. Proof of the Inclusion WF(π) ⊂ AC(O − supp(π)). For the proof of this inclusion we
again find explicit microlocal estimates of individual matrix coefficients which we again obtain
via induction over the dimension of g. For the formulation we use the notation introduced in
Definition 2.12 once more.

Proposition 3.4. Let N be a nilpotent, connected, simply connected Lie group with Lie algebra
n and fix an inner product on g0. Then for any n,N ∈ N with N > n there exists a constant
Cn,N > 0 such that for all nilpotent, connected, simply connected Lie groups G with Lie algebra
(g, ⟨, ⟩g) ≺ (n, ⟨, ⟩n), dimg = n, and for all 1 > ε > 0 there exists a neighborhood U ⊂ g of 0 such
that the following estimate holds for all φ ∈ C∞

c (U), l, η ∈ ig∗ and all u, v ∈Hl:

∣∫
g
⟨σl(exp(X))u, v⟩Hlφ(X)e−2πη(X) dX∣ ≤ Cn,N∥u∥Hl∥v∥Hl∥φ∥WN+n,1(g)⟨d(Bε∥η∥(η),Ol)⟩

−N ,

where dX the measure associated to the inner product on g.

For the proof of Proposition 3.4 we distinguish the same two cases as in the proof of Propo-
sition 3.2. We want to outline our approach in each case:

i) If l(Z) = 0 for an Z ∈ z(g), we consider g = g/(R ⋅Z), l = prig∗(l) and find that σl∣G ≅ σl
analogously to Case I of Theorem 4. Thus, we can express the Fourier transform of the
matrix coefficient of σl in terms of the Fourier transform of the corresponding matrix
coefficient of σl and apply the induction hypothesis. To find the desired estimate we use
the orbit structure prig∗(Ol) = Ol.

ii) If z(g) = R ⋅Z and l(Z) ≠ 0, Kirillov’s Lemma 2.7 gives us a subalgebra g0, l0 = prig∗0(l).

Since we are in Case II of Theorem 4 we know that σl ≅ IndGG0
(σl0). Thus, we can express

the Fourier transform of the matrix coefficient of σl using the Fourier transform of the
corresponding matrix coefficient of σl0 , apply the induction hypothesis and use the orbit
picture prig∗0(Oζ) = ⊔t∈R(Ad∗ exp tX)Oζ0 and Oζ = pr−1

ig∗0
(prig∗0(Oζ)) in the estimates.

However, we again face some difficulties: In order to express the Fourier transform of
the matrix coefficient of σl using the Fourier transform of the corresponding matrix
coefficient of σl0 we use a chart g → G resulting from the decomposition g = g0 ⊕ RX
given by the Kirillov Lemma. In order to switch to the desired chart exp ∶ g → G we
apply the Fourier inversion formula and use non-stationary phase. Due to the latter
we have to consider neighborhoods whose radius grows proportional to the norm of its
center. But this is no problem for us and actually matches the conical property of the
wave front set and the asymptotic cone.

Proof. We prove this statement by induction on dimg. If n = dimg = 1 or 2, the group is abelian.
In this case the irreducible unitary representations are one-dimensional, σl(g) = e

2πl(log g), and
have a zero-dimensional orbit Ol = {l}. We compute

∣∫
g
⟨σl(expX)u, v⟩Cφ(X)e−2πη(X) dX∣ = ∣∫

g
φ(g)e2π(l−η)(X)uv dX∣ = ∣φ̂(η − l)∣ ⋅ ∣u∣ ⋅ ∣v∣.

Fixing an inner product on g we obtain a corresponding one on ig∗. Now let {Xi}
n
i=1 be an

orthogonal basis for g and pick j ∈ {1, n} such that ∣(l − η)(Xj)∣ is maximal.
With this choice we have for N ∈ N and l ≠ η

∣φ̂(η − l)∣ = ∣(2π(l − η)(Xj))
−N
∫
g
φ(X)∂NXje

2π(l−η)(X)dX∣

≤ (2π)−N ∣(l − η)(Xj))∣
−N
∫
g
∣∂NXjφ(X)∣dX

≤ (2π)−N
√
n
N
∥l − η∥−N∥φ∥WN,1(g) ≤ Cn,N ⟨d(η, l)⟩−N∥φ∥WN+n,1(g).
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The claim now follows with U = g since d(l, η) ≥ d(Bε∥η∥(η), l) for all ε > 0.
Now we assume n = dimg ≥ 3. We will distinguish between the two cases:
Case I: l(Z) = 0 for an Z ∈ z(g). Given the inner product on g let W < g be the subspace

such that g =W ⊕RZ is an orthogonal decomposition. Then g = g/(R ⋅ Z) is isomorphic to W
and has a well-defined Lie algebra structure [v +RZ,w +RZ] = [v,w]g +RZ since Z ∈ z(g).
Given an inner product on g we choose one on g such that the decomposition above is orthogonal.
Furthermore, without loss of generality we may assume ∥Z∥ = 1. Using the corresponding inner
product on ig∗ we also obtain an orthogonal decomposition ig∗ = iW ∗ ⊕RηZ ≅ ig∗ ⊕RηZ with
∥ηZ∥ = 1.
Note that ig∗ is Ad∗(G)-invariant (again due to Z ∈ z(g)). We can identify l and its orbit

OGl ⊂ ig∗ with an element l ∈ ig∗ and its orbit OG
l
⊂ ig∗, respectively.

Let η = η + rηZ ∈ ig∗ = ig∗ ⊕RηZ . Then by the choice of the inner product we know d(η,OGl )2 =

d(η,OG
l
)2 + r2 and assuming d(Bε∥η∥(η),Ol) > 0 we can estimate

d(Bε∥η∥(η),Ol) = d(η,Ol) − ε∥η∥ =
√

d(η,Ol)
2 + r2 − ε∥η∥ ≤ d(η,Ol) + r − ε∥η∥

≤ d(Bε∥η∥(η),Ol) + ε∥η∥ + r − ε∥η∥ ≤ d(Bε∥η∥(η),Ol) + r,

since ∥η∥ − ∥η∥ ≤ 0. This implies that we are either in the case

a) r ≥
1

2
d(Bε∥η∥(η),O

G
l ) or b) d(Bε∥η∥(η),O

G
l
) ≥

1

2
d(Bε∥η∥(η),O

G
l ).(10)

Turning to the integral we want to estimate:

J ∶= ∣∫
g
⟨σl(exp(X))u, v⟩Hlφ(X)e−2πη(X) dX∣

= ∣∫
g
∫
R
⟨σl(exp(X + tZ))u, v⟩Hlφ(X + tZ)e−2πη(X+tZ)dX dt∣

= ∣∫
g
∫
R
⟨σl(exp(X) exp(tZ))u, v⟩Hlφ(X + tZ)e−2π(η(X)+rηZ(tZ))dX dt∣

= ∣∫
g
∫
R
⟨σl(exp(X))u, v⟩Hlφ(X + tZ)e−2π(η(X)+rηZ(tZ))dX dt∣

The last equality is due to l(Z) = 0 which implies σl(g exp(tZ)) = σl(g) for all g ∈ G, t ∈ R.
We start with case a) of (10) and define

φ̃(t) ∶= ∫
g
⟨σl(exp(X))u, v⟩Hlφ(X + tZ)e−2πη(X) dX ∈ C∞

c (R).

Then by integration by parts (as in the abelian case with l = 0 and u = v = 1) we obtain

J = ∣∫
R
φ̃(t)e−2πrt dt∣ ≤ C∥φ̃∥WN,1(R)r

−N
(10)a)
≤ CN∥φ̃∥WN+n,1(R)⟨d(Bε∥η∥(η),O

G
l )⟩

−N .

The claim now follows in this case with the following estimation:

∥φ̃∥WN+n,1(R) =
N+n

∑
k=1

∥∂kt φ̃∥L1(R,dt)

≤
N+n

∑
k=1

∫
R
∫
g
∣⟨σl(exp(X))u, v⟩Hl∂

k
t φ(X + tZ)e−2πη(X)

∣ dX dt

≤ ∥u∥∥v∥
N+n

∑
k=1

∫
R
∫
g
∣∂kt φ(X + tZ)∣ dX dt ≤ ∥u∥∥v∥∥φ∥WN+n,1(g).
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Now let’s turn to case b) of (10). Note that by Theorem 4 (i) we know Hl ≅Hl and σl ○ P ≅ σl
with the projection P ∶ G→ G.
Thus, we have

J = ∣∫
g
∫
R
⟨σl(exp(X))u, v⟩H

l
φ(X + tZ)e−2π(η(X)+rηZ(tZ))dX dt∣ .

Now define

φ̌(X) ∶= ∫
R
φ(X + tZ)e−2πirt dt ∈ C∞

c (g),

and choose the neighborhood 0 ∈ U ⊂ g such that supp φ̌ ⊂ U ⊂ g given by the induction
hypothesis applied to g. Then

J = ∣∫
g
⟨σl(exp(X))u, v⟩Hl φ̌(X)e−2πη(X)dX∣

(IH)
≤ Cn−1,N∥u∥∥v∥∥φ̌∥WN+n−1,1(g)⟨d(Bε∥η∥(η),O

G
l
)⟩
−N

(10)b)
≤ Cn,N∥u∥∥v∥∥φ̌∥WN+n,1(g)⟨d(Bε∥η∥(η),O

G
l )⟩

−N .

The claim now follows in this case with the following estimation:

∥φ̌∥WN+n,1(g) = ∑
∣α∣<N+n

∥∂αφ̌∥L1(g,dv)

=∑
α
∫
g
∣∫

R
∂α
X
φ(X + tZ)e−2πirt dt∣ dX

≤∑
α
∫
g
∫
R
∣∂α
X
φ(X + tZ)∣ dt dX ≤ ∥φ∥WN+n,1(g).

Case II: z(g) = R ⋅Z and l(Z) ≠ 0. Kirillov’s Lemma 2.7 gives us X,Y ∈ g and an ideal
g0 ⊂ g with g = RX ⊕ g0 and [X,Y ] = Z. We may choose X such that this decomposition is
orthogonal. Since dim(z(g0)) > 1 as Z,Y ∈ z(g0) we are in Case I in the induction hypotheses
for G0 . We define a chart for G via

β ∶ g = g0 ⊕RX → G, X0 + tX ↦ exp(X0) exp(tX).

Since X ∉ rl and we are in Case II of Proposition 2.11 and Theorem 4:

p ∶ ig∗ → ig∗0, l0 ∶= p(l), η0 ∶= p(η), O
G0

l0
∶= Ad∗(G0)l0,

p(OGl ) = ⊔
t∈R

(Ad∗ exp tX)O
G0

l0
, O

G
l = p−1

(p(OGl )).

where G0 = exp(g0) ⊂ G is a normal subgroup. Note that we also have an orthogonal decompo-
sition g∗ = RηX ⊕ g∗0, ηX(X) = 1, which gives us for all a ∈ A = exp(RX):

d(η0,O
G0

Ad∗(a)l0
) = d(η0,Ad∗(a)OG0

l0
) ≥ d(η0, p(O

G
l )) = d(η,OGl ).

Assuming d(Bε∥η∥(η),O
G
l ) > 0 we can estimate

d(Bε∥η∥(η),O
G
l ) = d(η,OGl ) − ε∥η∥ ≤ d(η0,O

G0

Ad∗(a)l0
) − ε∥η∥(11)

= d(Bε∥η0∥(η0),O
G0

Ad∗(a)l0
) + ε∥η0∥ − ε∥η∥ ≤ d(Bε∥η0∥(η0),O

G0

Ad∗(a)l0
),

since ∥η0∥ − ∥η∥ ≤ 0. In addition to that we have η = η0 + ηX with ηX ∈ ker(p).
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We start by estimating the following integral and deal with the transition from the chart β
to the exponential chart later on.

J(φ, η) ∶= ∣∫
g
⟨σl(β(X))u, v⟩Hlφ(X)e−2πη(X) dX∣

= ∣∫
g0
∫
R
⟨σl(exp(X0) exp(tX))u, v⟩Hlφ(X0 + tX)e−2π(η0(X0)+rηX(tX))dX0 dt∣ .

By Theorem 4, we also know σl ≅ IndGG0
(σl0). Note that Hl ≅ L

2(A,Hl0). If we regard u and

v as elements of L2(A,Hl0) and ũ, ṽ ∶ G → Hl0 the corresponding functions in the ’standard
model’ we have again

⟨σl(g0a)u, v⟩Hl = ∫
A
⟨[σl(g0a)u](b), v(b)⟩Hl0 db and

[σl(g0a)ũ](b) = ũ(bg0a) = ũ(bg0b
−1ba) = σl0(bg0b

−1
)ũ(ba)

since b−1g0b ∈ G0 as g0 is an ideal. This gives us [σl(g0a)u](b) = σl0(bg0b
−1)u(ba).

We deduce that

J(φ, η) = ∣∫
g0
∫
R
(∫

A
⟨σl0(b exp(X0)b

−1
)u(betX), v(b)⟩Hl0db) ⋅

φ(X0 + tX)e−2π(η0(X0)+rηX(tX))dX0 dt∣

≤ ∫
R
∫
A
∣∫

g0

⟨σl0(b exp(X0)b
−1

)u(betX), v(b)⟩Hl0φ(X0 + tX)e−2πη0(X0)dX0∣ ⋅

∣e−2πrηX(tX)∣db dt.

The conjugation Cb ∶ G0 → G0, g0 ↦ b−1g0b is a group automorphism and we know that χl0 ○Cb =

χAd∗(b)l0 for the character χl0 such that σl0 = IndG0

M (χl0), M = exp(m) for a polarizing subalgebra

m ⊂ g0. Now, Ad(b)m is a polarizing subalgebra for Ad∗(b)l0 and C−1
b M = exp(Ad(b)m). Thus,

[CG90, Lemma 2.1.3] gives us

σAd∗(b)l0 = IndG0

C−1
b
M

(χl0 ○Cb) ≅ IndG0

M (χl0) ○Cb = σl0 ○Cb.

We choose U ⊂ g such that for all φ ∈ C∞
c (U) and X0+tX ∈ U we have supp(φ(●+tX)) ⊂ U0 ⊂ g0,

where 0 ∈ U0 ⊂ g0 is given by the induction hypothesis for G0. We apply it to Ad∗(b−1)l0 instead
of l0:

J(φ, η) ≤ ∫
R
∫
A
∣∫

g0

⟨σl0(b exp(X0)b
−1

)u(betX), v(b)⟩Hl0φ(X0 + tX)e−2πη0(X0)dX0∣ ⋅

∣e−2πrηX(tX)∣db dt

(IH)
≤ ∫

R
∫
A
Cn−1,N∥φ(● + tX)∥WN+n−1,1(g0)∥u(be

tX
)∥Hl0 ∥v(b)∥Hl0 ⋅

⟨d(Bε∥η0∥(η0),O
G0

Ad∗(b−1)l0
)⟩
−N db dt

(11)
≤ Cn−1,N ⟨d(Bε∥η∥(η),Ol)⟩

−N
∫
R
(∫

A
∥Texp(tX)u(b)∥Hl0 ∥v(b)∥Hl0 db) ∥φ(● + tX)∥WN+n−1,1 dt

≤ Cn−1,N ⟨d(Bε∥η∥(η),Ol)⟩
−N
∫
R
∥Texp(tX)u∥Hl∥v∥Hl∥φ(● + tX)∥WN+n,1(g0) dt,
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where Texp(tX) is the translation by exp(tX) ∈ A which is an isometry on Hl ≅ L
2(A,Hl0). This

gives us

J(φ, η) ≤ Cn,N ⟨d(Bε∥η∥(η),Ol)⟩
−N

∥u∥Hl∥v∥Hl ∫R
∥φ(● + tX)∥WN+n,1(g0) dt

= Cn,N ⟨d(Bε∥η∥(η),Ol)⟩
−N

∥u∥Hl∥v∥Hl ∫R
∑

∣α∣≤N+n
∫
g0

∣∂NX0
φ(X0 + tX)∣dX0 dt

≤ Cn,N ⟨d(Bε∥η∥(η),Ol)⟩
−N

∥u∥Hl∥v∥Hl∥φ∥WN+n,1(g),

Now let κ = β−1 ○ exp ∶ g → g be the transition map. Then the integral we are interested in can
be written as

F ∶= ∣∫
g
⟨σl(exp(X))u, v⟩Hlφ(X)e−2πη(X) dX∣

= ∣∫
g
⟨σl(β(κ(X)))u, v⟩Hlχ(X)φ(X)e−2πη(X) dX∣ ,

where χ ∈ C∞
c (g) is a cut-off function with χ = 1 on supp(φ). The Fourier inversion formula

yields

F = ∣∫
ig∗
F (⟨σl(β(●))u, v⟩Hlχ(●)) (ξ)∫

g
φ(X)e−2π(η(X)−ξ(κ(X)) dX dξ∣ .

Now, F (σl(β(●))u, v⟩Hlχ(●)) (ξ) = J(χ, ξ) from above. Furthermore, we can use non-stationary
phase to estimate the inner integral

I(φ, ξ, η) ∶= ∫
g
φ(X)e−2π(η(X)−ξ(κ(X)) dX = ∫

g
φ(X)e−2πdε(η(X)−ξ(κ(X))/dε dX,

where dε = d(Bε∥ξ∥(ξ), η) > 0 is assumed. With the phase function fξ,η(X) ∶= 1
dε

(η(X)−ξ(κ(X))

we have dXfξ,η(X) ∶= 1
dε

(η − ξ ○Dκ(X))) where Dκ(X) ∶ g → g is the differential of κ in X.

Since Dκ(0) = 1 we have

∥ξ ○Dκ(X) − ξ∥ ≤ sup
X∈U

∥Dκ(X) − 1∥∥ξ∥ ≤ ε∥ξ∥,

after possibly shrinking the neighborhood 0 ∈ U ⊂ g. This gives us

∥η − ξ ○Dκ(X)∥ ≥ ∥η − ξ∥ − ε∥ξ∥ = dε ⇒ ∣dXfξ,η(X)∣ ≥ 1.

With [Hör03, Theorem 7.7.1] we can estimate

∣I(φ, ξ, η)∣ ≤ CN∥κ∥CN+1∥φ∥WN,1(g)d(Bε∥ξ∥(ξ), η)
−N .

Note that Hörmander uses on the right hand side instead of the Sobolev norm of φ the term

∑∣α∣≤N supX ∣Dαφ(X)∣. But when you take a closer look at his proof one finds that these suprema
occur as an estimate of the integral of φ. Hence, they can be replaced by the Sobolev norm.
Furthermore, by Lemma 2.13 we have ∥κ∥CN+1 ≤ Cg,N ≤ Cn,N and therefore can be absorbed
into the constant CN (since this may depend on n in our statement).
In order to prove the desired estimate it suffices to prove it in the case that d(Bε∥η∥(η),Ol) > 0
which is equal to

ε∥η∥ < d(η,Ol)(12)

and implies that 1
2
d ∶= 1

2
d(η,Ol) < d(Bε/3∥η∥(η),Ol) =∶ dε/3. Now, we split up the integral:

FI ∶= ∣∫
B(1/2dε/3,η)

J(χ, ξ)I(φ, ξ, η) dξ∣ , FII ∶= ∣∫
ig∗∖B(d/4,η)

J(χ, ξ)I(φ, ξ, η) dξ∣ .
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Since the two domains of integration are overlapping we have F ≤ FI + FII .
With the estimates above (with ε

9
instead of ε) we obtain

FI ≤ Cn,N ⟨d(Bε/9∥ξ∥(ξ),Ol)⟩
−N

∥u∥Hl∥v∥Hl∥χ∥WN+n,1(g)∥φ∥L1(g)d
n
ε/3.

For all ξ ∈ BR(η), R = 1
2
dε/3 ≤

1
2
d(η,Ol), we can estimate

d(Bε/9∥ξ∥(ξ),Ol) ≥ d(η,Ol) −R −
ε

9
∥ξ∥ ≥ d(η,Ol) − (1 + ε/9)R −

ε

9
∥η∥(13)

≥
1

3
(d(η,Ol) − ε/3∥η∥) =

1

3
d(Bε/3∥η∥(η),Ol).

This gives us

FI ≤ Cn,N ⟨d(Bε/3∥η∥(η),Ol)⟩
−N+n

∥u∥Hl∥v∥Hl∥φ∥WN,1(g)

≤ Cn,N ⟨d(Bε∥η∥(η),Ol)⟩
−N+n

∥u∥Hl∥v∥Hl∥φ∥WN,1(g),

since d(Bε∥η∥(η),Ol) ≤ d(Bε/3∥η∥(η),Ol) and −N + n < 0.
For the second part we use the above estimates again with ε

9
instead of ε:

FII ≤ CN∥φ∥WN,1(g)∥χ∥L1(g)∥u∥Hl∥v∥Hl ∫
ig∗∖B(d/4,η)

d(Bε/9∥ξ∥(ξ), η)
−N dξ.

We estimate with r = ∥ξ − η∥ ≥ 1
4
d(η,Ol) and ε < 1

d(Bε/9∥ξ∥(ξ), η) = ∥ξ − η∥ −
ε

9
∥ξ∥ ≥ (1 −

ε

9
) r −

ε

9
∥η∥

(12)
≥ (1 −

ε

9
) r −

1

9
d(η,Ol)

≥ (1 −
ε

9
−

4

9
) r ≥

4

9
r

and therefore with polar coordinates

FII ≤ CN∥φ∥WN,1(g)∥u∥Hl∥v∥Hl (
4

9
)

N

∫

∞

d/4
r−N+n−1 dr

= CN∥φ∥WN,1(g)∥u∥Hl∥v∥Hl
1

4N−n
d(η,Ol)

−N+n

≤ Cn,N∥φ∥WN,1(g)∥u∥Hl∥v∥Hld(Bε∥η∥(η),Ol)
−N+n,

since d(Bε∥η∥(η),Ol) ≤ d(η,Ol) and −N + n < 0. �

Corollary 3.5. The statement of the previous Proposition 3.4 also holds for u, v ∈ H⊕ml
l with

multiplicity ml ∈ N ∪ {∞}.

Proof. For u ∈ H
⊕ml
l we have u = (u1, u2, . . .) with (finitely or infinitely many) 0 ≠ ui ∈ Hl and

∑i ∥ui∥
2
Hl

<∞, ∥u∥ = (∑i ∥ui∥
2)

1/2
. Thus

∣∫
g
⟨σl(exp(X))u, v⟩Hlφ(X)e−2πη(X) dX ∣ = ∣∫

g
∑
i

⟨σl(exp(X))ui, vi⟩Hlφ(X)e−2πη(X) dX∣

= ∣∑
i
∫
g
⟨σl(exp(X))ui, vi⟩Hlφ(X)e−2πη(X) dX∣

Prop. 3.4
≤ Cn,N∥φ∥WN+n,1(g)⟨d(Bε∥η∥(η),Ol)⟩

−N
∑
i

∥ui∥ ⋅ ∥vi∥

≤ Cn,N∥φ∥WN+n,1(g)⟨d(Bε∥η∥(η),Ol)⟩
−N

(∑
i

∥ui∥
2
)

1/2

⋅ (∑
i

∥vi∥
2
)

1/2

= Cn,N∥φ∥WN+n,1(g)⟨d(Bε∥η∥(η),Ol)⟩
−N

∥u∥ ⋅ ∥v∥,
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where the interchanging of the order of integration and summation in the second equality is
possible since ∣⟨σl(exp(X))ui, vi⟩φ(X)e−2πη(X)∣ ≤ ∥ui∥ ⋅ ∥vi∥ ⋅ ∣φ(X)∣ ∈ L1(N × g). �

This inequality whose constant is in particular independent of l ∈ ig∗ now helps us to estimate
the matrix coefficients of the big unitary representation π using its direct integral decomposition
into the irreducibles σl.

Theorem 6. Let G be a nilpotent, connected, simply connected Lie group with Lie algebra g
and (π,Hπ) a unitary representation of G. Then

WF(π) ⊂ AC(O − suppπ).

Proof. Let η ∉ AC(O − suppπ), w.l.o.g. ∥η∥ = 1. Then there exists ε > 0 and t0 > 0 such that
d(tη,O − suppπ) ≥ 2εt for all t ≥ t0. In particular, for all l ∈ suppπ we know d(tη,Ol) ≥ 2εt
which implies d(Bεt(tη),Ol) ≥ εt.

Again, we use Hπ = ∫ΣdH
⊕m(π,σl)
l dµπ(l) for the Hilbert space of the unitary representation

π. If u = (ul), v = (vl) ∈ H, ul, vl ∈ H
⊕m(π,σl)
l , in this direct integral decomposition the matrix

coefficient is

⟨π(g)u, v⟩ = ∫
Σd

⟨σl(g)ul, vl⟩ dµπ(l).

Let U ⊂ g be the neighborhood of 0 from Proposition 3.4/Corollary 3.5 with ε as chosen above
and let φ ∈ C∞

c (U) with φ(0) ≠ 0. For t ≥ t0 and ϕ ∶= φ ○ log ∈ C∞
c (G), ϕ(e) ≠ 0, we conclude

∣F(⟨π(●)u, v⟩ϕ)(tη)∣ = ∣∫
G
⟨π(g)u, v⟩ϕ(g)e−2πtη(log g) dg∣

= ∣∫
G
∫

Σd
⟨σl(g)ul, vl⟩ϕ(g)e

−2πtη(log g) dµπ(l) dg∣

= ∣∫
Σd

(∫
G
⟨σl(g)ul, vl⟩φ(log g)e−2πtη(log g) dg) dµπ(l)∣

≤ ∫
Σd

∣∫
g
⟨σl(exp(X))ul, vl⟩φ(X)e−2πtη(X) dX∣ dµπ(l)

Cor. 3.5
≤ ∫

Σd
Cn,N∥u∥Hl∥v∥Hl∥φ∥WN+n,1(g)⟨d(Bεt(tη),Ol)⟩

−N dµπ(l)

≤ Cn,N∥φ∥WN,1(g)ε
−N t−N ∫

Σd
∥ul∥ ⋅ ∥vl∥ dµπ(l)

≤ Cn,N∥φ∥WN,1(g)ε
−N

∥u∥Hπ ⋅ ∥v∥Hπ t
−N .

This implies η ∉ WFe(⟨π(●)u, v⟩). �
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