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Abstract—Dynamically steering flows through virtualized net-
work function instances is a key enabler for elastic, on-demand
deployments of virtualized network functions. This becomes par-
ticular challenging when stateful functions are involved, necessi-
tating state management. The problem with existing solutions is
that they typically embrace state migration and flow rerouting
jointly, imposing a huge set of requirements on the on-boarded
VNFs, e.g., solution-specific state management interfaces.

In this paper, we introduce the seamless handover proto-
col (SHarP). It provides an easy-to-use, loss-less, and order-
preserving flow rerouting mechanism that is not fixed to a
single state management approach. This allows VNF vendors to
implement or use the state management solution of their choice.
SHarP supports these solutions with additional information when
flows are migrated. Further, we show how SHarP significantly
reduces the buffer usage at a central (SDN) controller, which
is a typical bottleneck in existing solutions. Our experiments
show that SHarP uses a constant amount of controller buffer,
irrespective of the time taken to migrate the VNF state.

I. INTRODUCTION

The concept of network function virtualization (NFV) com-
bined with software-defined networking (SDN) allows the
dynamic deployment of virtualized network functions (VNFs)
in different locations of the network [1], [2]. Its main benefit
is the possibility to add or remove additional resources on-
demand, a process usually referred to as (automated) scaling.
In such an elastic system, resources are not only added to
existing VNF instances but new, replicated instances can also
be started as needed (horizontal scaling). This leads to the
problem that a NFV platform needs to dynamically reroute
flows that are processed by the VNFs to distribute the load to
new instances or to consolidate existing flows if instances are
removed. While such traffic steering processes are executed,
services should be interrupted as briefly as possible and no
additional packet loss or reordering should occur [3].

Such elastic deployments become even more challenging
when the involved VNFs are stateful and are required to
maintain information about single or groups of flows, e.g.,
an intrusion detection systems (IDS). To tackle this problem,
several state management solutions, like Split/Merge [4] or
OpenNF [3], exists. They jointly manage the state migration
between VNF instances and the traffic rerouting between them.
The downside of these approaches is that they impose complex
modifications of the VNF implementations in order to provide
the required interfaces to extract and inject state information
into the involved instances. We argue that this is a major
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obstacle for an interoperable and open NFV landscape. It
requires VNF vendors to custom-tailor their VNFs to the NFV
platform on which they should ‘be on-boarded if they want to
benefit from the state management solutions offered by these
platforms.

To remove this obstacle, we present SHarP, a very
lightweight traffic-steering solution for elastic VNF deploy-
ments that supports state management solutions (e.g. triggers
for handover start) but leaves the actual choice of the state mi-
gration solution to the VNF vendor. The resulting system pro-
vides a clearer separation of concerns than existing solutions,
making it a better fit for practical, real-world deployments.

The key contributions of this paper are as follows: We
introduce a seamless flow handover protocol design that does
not require a dedicated control interconnection between the
SDN controller and the involved VNFs. Our handover protocol
assigns the packet buffering tasks, required to provide a loss-
free and order-preserving flow rerouting mechanism, to the
detination VNF instances and thus reduces the load to the
centralized SDN controller. In addition, we introduce the
handover support layer (HSL): a helper component that can
easily be integrated into existing VNF implementations and
requires fewer modifications than existing approaches, like the
FreeFlow library used by Split/Merge [4]. Finally, we provide
an extensive evaluation that first analyses the theoretic scaling
behavior of our solution and compares it to OpenNF [3]
before backing the theoretic expectations with a set of testbed
experiments. These experiments verify that controller buffer
usage of the proposed approach scales well with the packet
rate of the date plane and stays even constant irrespective of
the time required for state transfers between the VNFs.

II. RELATED WORK

Steering and moving flows between dynamically allocated
VNFs is already well studied and several approaches, targeting
different use cases like load balancing, service chaining, or
scaling exist [S]-[7]. However, none of them provides support-
ing information and triggers to integrate with additional state
management mechanisms and not all of them provide seamless
handover mechanisms that do not introduce additional packet
loss. As a result, the usefulness of these approaches for stateful
VNFs is limited.

Other solutions that are designed to migrate state of virtual
machine instances exist. But they come with a large overhead
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because they move much more state information than needed
to operate a VNF [8]. In addition, more specific approaches
that focus on joint traffic steering and state migration of
VNFs have been proposed. The most prominent ones are
Split/Merge [4] and its extension called Pico Replication [9],
OpenNF [3] with its extensions [10], [11], CoGS [12], as well
as a novel approach called SliM [13] and a tagging-based
solution presented in [14].

With Split/Merge [4], an orchestrator can migrate flows and
move the corresponding function state using a simple API
call. However, its failure recovery and migrate operation can
cause lost or out-of-order state updates at the network function
as flow processing is stopped during handover and arriving
packets are dropped. In Pico Replication [9], the internal
function state is cloned to other network functions at policy-
defined intervals using modules that manage the packet flow
of individual instances. The system uses OpenFlow to provide
flow-level failure recovery by dynamically rerouting flows. Its
focus is high availability rather than dynamic scaling of VNFs.
While providing limited control over the desired functions,
both systems fail at executing seamless handovers that are
required to guarantee service availability and accuracy.

OpenNF [3] provides coordinated control of network func-
tion state and network forwarding rules. This framework
consists of a central management application that uses a
manager component to move state and flows from one instance
to another. To integrate a VNF into the system, it has.to
implement a set of API functions that are used by the manage-
ment component to pull and push state information. When the
central control application decides to move a flow from one
instance to another, it fetches the state from the source instance
and pushes it to the destination instance. During this process,
arriving packets are sent to a buffer at the controller until the
state is transferred to the destination. The buffered: packets
are then forwarded to the SDN switch and from there to
the destination instance. By using these mechanisms, OpenNF
is able to perform loss-free and order-preserving flow move
operations. A key concern with OpenNF is that it buffers
the majority of the packets at the controller. The controller
starts the buffering of all packets destined for the VNF as
soon as the state is exported from the source VNF and only
starts releasing the packets when the state is imported in the
destination instance. This extensive usage of the controller as
a proxy prevents OpenNF from scaling well with increasing
amount of state and traffic volume. In the worst case, it can
result in buffer overflow and lost packets at the controller,
compromising the handover’s safety.

To prevent buffer overflows the creators of OpenNF in-
troduced an extension to OpenNF allowing the controller to
drop packets from its internal buffer by utilizing a different
method of packet buffering and state transfer [10]. Packets
are duplicated at the source VNF, applied to the state, and
sent to the controller to be buffered and then processed a
second time at the destination VNF. This allows the controller
to drop the packets from the buffer and simply restart the
handover process since all packets are still applied to the

state and the process of redirecting and buffering can be
repeated. However, the reprocessing of the packets requires
extensive modifications to the packet processing part of the
VNF implementation as all output of the packet processing
has to be suppressed [10] and therefore presents a bigger
challenge for adopting the system than desirable. Additionally,
duplicating packets at the source VNF and sending them to
the controller uses the network path to the source VNF twice
as much as it would previously. This can present a problem
if the handover was executed to prevent a data plane overload
at the source VNF.

DiST [11] improves on OpenNF by a peer-to-peer approach
of transferring packets and states between VNFs. Instead of
buffering packets and processing the state at the controller, the
VNFs interact directly with each other over the data plane,
reducing the controller link utilization to control messages
only. This reduces the risk of overloading the controller or the
control network. DiST uses the source VNF to redirect packets
that cannot be applied to the state anymore to the destination
instance where they are buffered. It generates additional load
on the source’ VNF and the network plane as packets during
the handover need to traverse the network path between source
and destination VNE.

The authors of [14] present an in-depth analysis of OpenNF
and propose small improvements to the system to reduce
migration times. They also introduce a mechanism that follows
similar ideas as SHarP. Their mechanism tags packets by
utilizing the capability of SDN switches to modify unused
packet header fields. The tags are used to identify affected
flow and ensure a loss-free, order-preserving handover that
only buffers packets at the VNFs. The number of parallel
VNF migrations is however limited by the size of unused
header fields that can be used for tagging. Their work is
more theoretical and backs our findings of drastically reduced
controller load when the majority of buffering tasks is moved
to the destination VNF. In contrast to our SHarP prototype,
their solution does not provide a flow detection mechanism to
support the selection of the right parts of the overall state to be
migrated. Further, the presented system relies on changes of
the VNF implementations to export state, like OpenNF does,
but its architecture appears to be compatible to the handover
support layer approach introduced in this paper that removes
this requirement.

In contrast to these approaches, which focus on joint
state management and traffic steering, our approach (SHarP)
focuses on the latter only. As a result, SHarP integrates
much more flexibly by leaving the choice of the used state
management approach to the VNF vendor instead of fixing
it for the complete execution environment; even different
state management schemes for different VNFs or groups of
VNFs are possible. This simplifies the on-boarding of VNFs
to different platforms since the platforms do not introduce
any requirements for specific state-management interfaces.
An example for a complementary state management solu-
tion is our E-State [15]; it works seamlessly with SHarP.
Other distributed state management solutions, like the recently



introduced CoGS [12] or SliM [13] approaches, are also
complementary to SHarP and could benefit from its loss-
less flow migration procedures. In contrast to OpenNF, our
system distributes the buffering process required for loss-
less handovers to the destination VNF instances; this heavily
reduces the controller load and provides better scalability.

III. SEAMLESS HANDOVER PROTOCOL (SHARP)

The design of our handover protocol follows two main
goals. First, the flow handover mechanism has to explicitly
support state migration procedures but should not mandate
any specific state migration solution. Second, our solution will
offer improved scalability compared to existing approaches,
specifically it should reduce the load on the central controller
by minimizing the number of packets the controller has to
buffer to ensure a loss-less and order-preserving handover.

To achieve these design goals, we defined the following
set of requirements: The first requirement for a handover
mechanism is a flexible flow selection (RI) interface that
allows to select single flows as well as groups of flows that
shall be moved from one VNF to another. These handovers
should be performed as fast as possible to minimize service
interruption times (R2) and they have to ensure that they do not
introduce additional packet loss or packet reordering (R3). To
be able to handle many flows, the scalability (R4) in terms of
control load and buffer usage is important. Finally, a handover
mechanism has to be designed for compatibility (R5) and not
require specific modifications from VNF implementations to
accommodate a wide range of different VNFs.

A. Handover scenario

SHarP is designed to work with networks that contain at
least two SDN switches: an ingress and an egress switch
as shown in Fig. 1. Our design extends to any number of
switches, yet to simplify presentation, we limit ourselves here
to only two switches; evaluation results do not depend on
number of switches. Between the switches, multiple VNF
instances are located and their dataplane interfaces are con-
nected with one port to either switch. In addition to this, the
VNFs are connected to a management network that allows
them to exchange information in a peer-to-peer manner. Data
flows enter the SHarP-enabled VNF deployment from a source
(Host,) through the ingress switch, traverse one VNF instance
(or a chain of multiple VNF instances), and leave the system
through the egress switch towards the destination (Hosts). Bi-
directional flows in whichpackets are sent from the destination
(Hosts) to the source (Hosty) are also supported (Fig. 1). Flows
can be moved between VNF instances using the proposed
handover mechanism by triggering the handover procedure
through the northbound API of the controller. For example,
the flow shown in Fig. 1 will be moved from VNF; to VNF,,.

The involved VNFs do not need a direct connection to the
controller as this is not commonly the case and thus would
impose a needless requirement. Instead, control messages sent
by the controller to the VNFs are forwarded by the switches
and intercepted by an intermediate software layer that is
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Fig. 1: Example network with multiple VNF instances, ingress
and egress switch as wells as a data flow processed by VNF,

running inside the VNF’s container (or VM). This layer also
buffers packets as required to ensure loss-free and order-
preserving handovers (described in Sec. III-B). We assume
that the links of the example networks do not introduce any
additional packet loss or packet reordering.

B. Transparency towards VNF and state management

One of the main requirements for SHarP is to be as
transparent as possible towards VNF implementations that
operate in a SHarP-enabled environment (RS5). This also
means that SHarP does not enforce the use of a particular
state management or-state sharing framework. Instead, it
provides the means to assist state sharing solutions, like E-
State [15], with functionalities to pause and buffer incoming
flows or to inform the actual state migration solutions when
a handover is performed by the network. This functionality
is completely encapsulated in an additional software layer,
called handover support layer (HSL), that is located between
the actual VNF implementation and the network interfaces of
the VNF container (VNFC) as shown in Fig. 2. This software
layer acts as a bridge and is able to forward packets between
the interfaces of the VNFC and the VNF implementation. In
addition, it implements a control logic that intercepts control
messages sent by the SHarP controller through an SDN switch
over the data plane of the system. Those control messages
allow the SHarP controller to trigger events, like preparing
the destination VNF for a handover, without requiring a direct
connection between controller and VNF. Besides this control
logic, packet buffers are implemented and used to buffer
incoming packets when the destination VNF is not yet ready to
process them, i.e., the state transfer from the source VNF has
not completed. Optionally, HSL offers a control channel to the
VNF implementation used to inform the VNF about the status
of the handover, e.g., to trigger its state migration mechanism.
We leave it to the VNF to prepare and migrate all state
belonging to the flows that are handed over. This allows us to
transparently handle multiple VNF implementations without
needing information about the internal state structure, a major
difference to OpenNF [3].

All interfaces of HSL are implemented as modular, plugin-
like components (shims) that can easily be replaced to make
the HSL agnostic to different data layer interfaces. Besides
the standard UNIX socket shim shown in Fig. 2a, more
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Fig. 2: Handover support layer (HLS) sitting between VNFC
and VNF implementation

NFV-specific implementations are possible. For example, HSL
shims that are based on DPDK [16] as shown in Fig. 2b.

C. Handover procedure

SHarP’s handover procedure can be split into three main
phases. They are shown in Fig. 3 for handing over a single
unidirectional flow from VNF; (source VNF) to VNF,, (des-
tination VNF); it also shows the forwarding table entries of
the ingress switch (IngrSw). We decided to show the han-
dover of an unidirectional flow to keep the figures clean and
understandable. SHarP supports the handover of bidirectional
flows by performing symmetric handover steps on the ingress
and the egress switch at the same time.

At the beginning of the first phase, the scenario looks like
the one shown in Fig. 1 in which all flows between Hosty
and Hosty are processed by VNF;. A handover is triggered
by a request to the northbound API of the SHarP controller
(Ctrl) and contains an OpenFlow-like matching rule for a
flow (or a group of flows) to be moved, a priority r for the
handover request, as well as the identifier (e.g., MAC address
or switch port ID) of the destination VNF to which the flows
should be moved. The priority r allows our system to organize
the handover procedure among multiple handover requests
and allows the user of the system, e.g., a MANO system, to
overwrite existing handover rules. A SHarP handover request
does not require any further knowledge about the state of the
network, in particular, the requesting external entity, e.g., a
MANO system, does not need to know by which VNFs the
flows matching the request are currently processed (R1/RS).
In the example given in Fig. 1, the handover request will move
all flows from VNF; to VNF,, by using a wildcard (*) in its
match field.

Once the request arrives at Ctrl, it installs a so-called
flow detection table entry on IngrSw that matches all flows
specified by the handover request and forwards their packets
to Ctrl. The priority of this entry p; is set to p; = 2r + 1
so that there is room for another table entry belonging to this
handover request with priority r. Using this fixed mapping of
handover rule priorities 7 to forwarding table entry priorities ¢,
on the switch ensures a clear separation of forwarding entries
belonging to different handover requests. Next, a second table
entry is installed that matches the same flows but forwards

their packets to the destination VNF,,. This entry has priority
2r 4+ 0 such that it will only be used once the detection table
entry is removed.

Fig. 3a shows how incoming packets from Host; are
matched and forwarded to Ctr1, which buffers them. Packets
that are still processed by VNF; leave the system via EgrSw.
In this state, the controller learns about all flows that are
affected by the handover and can generate exact match entries
for each of these flows to hand them over one by one. To do
so, one exact table entry for each flow is installed in IngrSw
which forwards all packets of this particular flow to Ctrl.
These exact entries implicitly have the highest priority since
no wildcard fields are used anymore'. The detection phase
stays active until a maximum silence time, which is set as
the idle timeout of the detection entry is reached and the
detection entry is removed from IngrSw. Flows that have
not been detected during this time are treated as new flows
by our system. They are directly forwarded to VNF,, by the
table entry with priority 2r + 0. When the detection phase
is over, Ctrl sends START_HO messages to the involved
VNFs using a PACKET_OUT event on IngrSw to inject them
into the data plane. The controller knows the destination VNF
from the handover request and the source VNF by utilizing
the controller internal knowledge about the previous network
configuration. The HSL in the VNFs intercepts the control
message and can, e.g., trigger the preparation of the state
transfer before replying with acknowledgments as shown in
Fig. 3a.

Once Ctrl receives the ACKs it enters the second phase of
the handover procedure that is shown in Fig. 3b. Immediately
after this phase has started, Ctr1 starts to mark (e.g. by
VLAN tag or encapsulation) and release the packets from
its buffer and sends them towards the destination VNF,, via
IngrSw. VNF,, detects the marked packets and puts them in
its internal ctr1_buff because it knows that they have been
buffered at Ct r1 before. At the same time, Ct r1 updates the
exact forwarding table entry to forward all new packets of
the flow arriving at IngrSw directly to VNF,,. At VNF,,, the
packets are buffered in the internal sw_buff of the VNF to
not mix them up with the packets previously buffered at the
controller (important for R3).

One problem at this point is that Ctrl needs to know
when it has received all packets that are not already forwarded
to VNF,,. But there may be packets that are still in flight
between IngrSw and Ctrl. To solve this, Ctrl instructs
IngrSw for a short time to duplicate and flag packets
(BUFFER_FOLLOW_UP) that are forwarded to VNF,, and
to send the flagged copy of them also to Ctrl. In this
configuration, Ctrl can inject a test packet into the data
plane at IngrSw and will immediately know that it has seen
all packets not yet forwarded to VNF,, once it sees the test
packet. Thus, Ctr1 knows that it does not need to buffer any
new packets and removes the packet duplication configuration
from IngrSw.

Uhttp://openvswitch.org/support/dist-docs/ovs-ofctl.8.txt



During the entire second phase shown in Fig 3b, no traffic
is processed by any of the VNFs and all arriving packets are
buffered in the two buffers of the destination VNF,,. In this
state, the VNFs can trigger their state management solutions,
which can transfer the VNF’s internal states in a peer-to-peer
fashion over the management network between the VNFs.
HLS can support these state management solutions by giving
them information about the source and destination VNF as
well as the exact flow identifier.

The third phase of the handover, shown in Fig. 3c, is
entered once Ctrl has released all its buffered packets and
the state management mechanism at the VNFs indicates that
all state has been moved. The HSL then immediately starts to
release the buffered packets towards the VNF implementation
of VNF,, to be processed using the state that has been moved
from VNF; to VNF,, in the previous step. It first releases
its ctrl_buff and afterwards its sw_buff to ensure that
all packets are processed by VNF,, in the same order as they
have entered the SHarP system. Finally, Ct r1 can remove the
additional handover table entries from IngrSw and reach a
stable system state in which all flows involved in the handover
are processed by VNF,,. More details, like control packet
formats and handover rule removal procedures are described
in [17].

D. Removing buffer load from the controller

For a seamless handover, packets need to be buffered while
the state is synchronized between the VNF instances and no
state updates can be performed. Later, the buffered packets
can be released to the destination instance to be applied to the
state. In OpenNF [3], packet buffering takes place completely
at the controller which may lead to performance issues. The
controller can quickly be overloaded if the amount of packets
to be buffered is large, i.e., because of a long-lasting state
transfers. Our system design, in contrast, reduces the buffer
load of the controller by moving the responsibility to buffer
incoming packets during a state transfer to the destination
VNF instance. The SHarP controller only needs to buffer
packets during the small period of time in which the handover
is initialized (cf. Fig 3a) and tries to release this buffer as
early as possible (R2). In particular, the buffer is released
before the actual state transfer is started, which makes the
controller buffer usage of SHarP independent of the state
transfer. We will show this property in more detail in our
evaluation (Sec. IV-B).

Buffering most of the  packets directly at the destination
instance has the additional advantage of using the capacity of
the destination VNF instance. A VNF only needs to buffer the
packets belonging to flows that are redirected to that instance
and not of all handovers in the network, further improving
scalability of the entire system (R4).

IV. EVALUATION

We analyzed the performance of SHarP to highlight the
improvements compared to OpenNF. This theoretical analysis
is than backed by a set of experiments performed with our
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Fig. 3: Three phases of SHarP’s handover procedure for a flow
moved from VNF; to VNF,,

SHarP prototype and validates that our handover protocol
behaves like expected, e.g., no packet loss or reordering occurs
and the controller buffer usage remains constant even when the
state migration time increases. We used the following metrics
to characterize the performance of our system: The handover
duration (1), maximum packet delay introduced by handover
(2), controller buffer usage (3), VNF buffer usage (4), packet
loss (5), and packet reordering (6).

Our results present these metrics as a function of data plane
data rate and the duration it takes the VNFs to migrate their
state. The maximum packet delay is the main indicator for the
delay introduced into the service as the handover is executed.
The buffer usage at the controller and at the VNF indicate
how well SHarP fulfills the claim that only a small amount
of data has to be buffered and processed at the controller.

A. Theoretical evaluation

In OpenNF, a loss-free order-preserving handover requires
a transmission of a total of 3N + 2R + C' messages over
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the control plane, where N represents the number of state
messages, R the number of redirected packets, and C a
constant number of control messages. In SHarP, only 27 + C
messages need to be sent over the control channel, where
T < R is the subset of the redirected packets that is buffered
at the controller. Additionally, V' + 2R + C' messages are
transmitted over the data plane, where V' is the number of
messages needed by the VNF implementation to synchronize
state which is not under our control. We can assume that V'
is close to NV if the state transfer is implemented efficiently.
In both approaches, the overall cost of a handover scales with
the amount of state to transfer and the number of redirected
packets. In SHarP, however, that cost is incurred mostly at the
destination VNF and only partly at the controller. Furthermore,
T, the number of packets processed at the controller in SHarP,
only depends on the packet rate and the network delay, not on
the state transfer duration, as packet buffering is outsourced
to the destination VNF after a short period of time.

Fig. 4 shows the comparison of the amount of packets
a controller in OpenNF and SHarP has to process during
a handover with an execution time of 70 ms and an initial
signalling period of 10 ms. In Fig. 4a the size of the state that
has to be transferred is set to 10 packets of 1000 bytes each,
which is a realistic estimate for state sizes [4]. The packet rate
of the flow during the handover is increased from 100 packets
per second to 10000 packets per second. It can be seen that
with a higher packet rate the increase of packets processed
at the OpenNF controller is vastly higher than the packets
processed in SHarP. In Fig. 4b, the number of packets the
controllers of both protocols has to process is shown in relation
to the VNF state size. The packet rate of the flow during the
handover is fixed to 1000 packets per second while the state
size is increased from 1 to 100 kilobytes. The difference of
both approaches is clearly visible as the number of processed
packets in OpenNF increases linearly while it is constant in
SHarP. This is a significant advantage of SHarP over OpenNF,
as it, from a controller perspective, allows exceedingly better
scalability independent of the VNF state size.

B. Experimental evaluation

We implemented a prototype of the SHarP controller based
on the Ryu SDN Framework?. Our prototype offers an easy-
to-use, RESTful northbound interface that offers the required
functionalities to trigger handover procedures between arbi-
trary VNF instances. In addition to the controller prototype,
we implemented a Python-based HSL prototype that acts as a
bridge between the VNFC and the actual VNF implementation
using standard Unix sockets as shown in Fig. 2a. The use of
Python limits the throughput of the HSL prototype but still
allows us to evaluate SHarP in terms of buffer usage and
handover performance. A high-performance implementation of
the HSL using DKDK [16] is planned as future work. Both
prototypes (SHarP and HSL) are open source and available on
GitHub’.

Using these prototypes, we executed a set of experiments to
evaluate the performance of the proposed handover protocol.
These experiments have been executed on a SDN testbed based
on the emulation framework Containernet [18] running on a
server with an Intel(R) Core(TM) i7 CPU 960 @ 3.20GHz
and 24GB memory. The used network topology was the same
as shown in Fig. I consisting of two hosts, two switches, and
two VNFs that are able to forward arbitrary traffic between
their' input and output interfaces. Both the hosts and VNFs are
represented by Docker (1.12.3) containers connected to the
emulated network created by Containernet (2.3.0d1) contain-
ing two Open vSwitches (2.5.2). Our prototype controller is
implemented on top of Ryu 4.13.

During the experiments, a constant UDP traffic flow is
generated on Hostl and sent to Host2 over the first VNFE
Host2 receives the packets and sends them back to Hostl,
creating a bidirectional traffic flow which is then handed over
to VNF,, by our SHarP controller. During this procedure, we
collect the metrics mentioned before as follows: First, each
of the packets is identified by a unique sequence number so
that any lost, reordered, or duplicated packet can be easily
identified. Second, the round trip time (RTT) of the packets is
measured at Host! to identify packet delays that are introduced
by the execution of a handover. Third, we measure the buffer
usage at the VNFs as well as at the SHarP controller during
the entire experiment. Finally, the total handover duration,
which is defined as the time taken between the initial handover
request and the final migration of the flow to the destination
VNE, is measured at the controller. The experiments have been
executed with different packet rates, packet sizes, and state
transfer durations. Each configuration was executed 100 times,
each with a fully restarted network and controller setup to
eliminate side effects from previous runs.

The first set of results given in Fig. 5 shows the handover
performance as a function of the data rate of the moved flow
given as packets per second. The results shown in Fig. 5
are based on measurements using a packet size of 1000
bytes. Measurements with a small packet size of 58 bytes

2Ryu SDN Framework, https://osrg.github.io/ryu/
3SHarP prototype, https://github.com/CN-UPB/sharp
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Fig. 5: Handover performance of SHarP dependent on UDP
packets per second with a packet size of 1000 bytes

produce similar results with smaller absolute buffer usage
numbers (Fig. 6). During all experiments, no packets were lost,
reordered or duplicated, which verifies the seamless nature of
our handover mechanism (Fig 5e and Fig 5f).

Fig. 5a shows that the overall handover duration yields
a linear increase with the increased packet rate, since more
packets need to be processed. The maximum packet delay
introduced by the handover procedure is shown in Fig. 5b. It
starts by increasing linearly and ends with the delay stagnating
around 27 ms. This maximum delay has an upper limit in
the time it takes the controller to notify the VNF about the
handover and the VNFs to synchronize the state. If there is no
state to be exchanged the packet delay stagnates towards the
end since the round-trip time between controller and VNF does
not increase. The buffer usage of the controller and the VNFs
is shown in Fig. 5c and Fig. 5d, respectively. As the packet
rate increases, the entire system has to buffer more packets;
this results in a linear increase in buffer usage at both the
controller and the VNF. However, the controller buffer usage
is lower by a factor of about five than the VNF buffer usage,
contributing to the scalability of the system since the VNF
buffer usage is distributed across the involved VNFs.

The handover performance as a function of state transfer
duration is shown in Fig. 7. The increase in the state transfer
duration is achieved by artificially introducing a delay after
which the VNFs signal the completion of the state transfer.
The experiments are executed with a fixed packet rate of 1000
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Fig. 6: Handover performance of SHarP dependent on UDP
packets per second with a packet size of 58 bytes

packets per second and 1000 byte packets, while the state
transfer duration was increased by 100 ms every step, ranging
from 100 ms to 1000 ms. The experiments are repeated with a
packet size of 58 bytes as before and the results are virtually
identical compared to the 1000 byte packets as shown in Fig. 8.

Fig. 7a shows that the handover duration increases linearly
with the additional time introduced by the state transfer, as
expected. The maximum packet delay shown in Fig. 7b is only
offset by a small constant delay from the state transfer duration
it experiences; this shows that the packets are indeed released
from the buffers as soon as possible and that the service delay
is directly influenced by the state size and transfer duration.

The most important results of our evaluation are given in
Fig. 7c and Fig. 7d. They present the buffer usage at the
controller as well as at the VNF and highlight the reduced
controller load of SHarP. Even though the total amount of
packets buffered in the system increases with the state transfer
duration, the number of packets buffered at the controller
remains constant. As predicted in Sec. IV-A, this produces
a significantly lower workload for the controller compared to
OpenNF which is achieved by buffering the majority of the
packets during the state transfer at the VNF, as the graph in
Fig. 7d attests.

V. CONCLUSION

We introduced SHarP, a novel flow handover mechanism
that provides loss-free and order-preserving flow migration
functionality. In contrast to existing approaches, it does not
come with an integrated state management solution but pro-
vides the means to support any state management solution
implemented by a given VNF by sending triggers to it when-
ever flows are migrated. We believe that this is a much more
practical separation of concerns since it leaves the choice of
the used state management mechanism to the VNF vendors.

Our experimental evaluation clearly shows that with SHarP
the maximum packet delay that constitutes the service inter-



software on GitHub to make it available for integration with
different state management solutions.
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ruption time is kept to a minimum as it mostly depends on the
initial time required to signal the VNF plus the state transfer
duration. The interruption time only increases slightly with an
increased packet rate and does not worsen at higher packet
rates. The evaluation of the controller buffer at increasing
packet rate and state transfer duration shows that with SHarP,
the controller’s buffer usage, and thus the amount of processed
packets, only depends on the round-trip time between con-
troller and VNFs and on the packet rate. It does not depend on
the time taken for the state transfer process that is usually hard
to predict and heavily depends on the VNF implementation.
This gives SHarP a major advantage over similar handover
approaches. We published the SHarP prototype as open source
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