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Christopher Grimm, Graduate Student Member, IEEE, Tai Fei, Senior Member, IEEE, Ernst Warsitz,
Ridha Farhoud, Tobias Breddermann, Reinhold Haeb-Umbach, Fellow, IEEE

Abstract—We present an approach to automatically generate
semantic labels for real recordings of automotive range-Doppler
(RD) radar spectra. Such labels are required when training a
neural network for object recognition from radar data. The
automatic labeling approach rests on the simultaneous recording
of camera and lidar data in addition to the radar spectrum. By
warping radar spectra into the camera image, state-of-the-art
object recognition algorithms can be applied to label relevant ob-
jects, such as cars, in the camera image. The warping operation is
designed to be fully differentiable, which allows backpropagating
the gradient computed on the camera image through the warping
operation to the neural network operating on the radar data. As
the warping operation relies on accurate scene flow estimation,
we further propose a novel scene flow estimation algorithm which
exploits information from camera, lidar and radar sensors. The
proposed scene flow estimation approach is compared against a
state-of-the-art scene flow algorithm, and it outperforms it by
approximately 30% w.r.t. mean average error. The feasibility
of the overall framework for automatic label generation for
RD spectra is verified by evaluating the performance of neural
networks trained with the proposed framework for Direction-of-
Arrival estimation.

Index Terms—Automotive radar, neural network, lidar, virtual
testing, direction-of-arrival, cross-modal supervision

I. INTRODUCTION

In the past decade, deep neural network (DNN) based
algorithms have proven excellent performance for a wide range
of applications [1]–[3]. Those impressive results rely, however,
to a great degree on the availability of large labeled databases.
In case of range-doppler (RD) spectrum automotive frequency
modulated continuous wave (FMCW) radar signal processing
this requirement poses a significant practical problem. Not
only are those large-scale databases not available as of today,
they would be furthermore very difficult to build, because,
unlike, e.g., a camera image, an RD plot is very difficult
for a human to interpret and thus to label properly. Another
challenge comes from high variations in radar hardware and
parameterization, resulting in very specific radar measurement
capabilities. Therefore, researchers often require to generate
their own dataset, rather than using open public datasets [4].

Some recent works have dealt with automatic RD spectrum
labeling by lidar and/or camera [5]–[8]. However, these labels
are generally restricted to object level for certain classes as
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pedestrian and vehicles, which limits its use to “high-level”
radar classification tasks, such as moving object detection.
We, on the contrary, are here interested in applying DNNs
to low-level radar classification tasks, such as radar target
detection, stationary target detection and direction-of-arrivals
(DoAs) estimation.

In this paper, we address this problem by automatically
generating high-quality and dense labels from a reference
system consisting of camera, lidar and state-of-the-art visual
object classification algorithms. Neural object classification
algorithms are applied to the camera image to label relevant
objects. Those labels are then mapped to locations in an RD
spectrum by warping the RD spectrum into the camera image,
and then serve as labels for a neural network operating on radar
spectrum data. The warping task, however, is challenging, as
radar and camera measure quite different physical phenomena.
Furthermore, the field of view of camera and radar may only
partially overlap, and their coordinate systems are not aligned.

We augment the measurement space of the reference camera
system to cover the measurement space of the radar system
by estimating the 3D-velocity of each pixel in the camera
image. To this end, we extend a previously proposed scene
flow estimation algorithm to utilize information gained from
the radar spectrum. This significantly improves scene flow
estimation, and in turn the precision of the warping operation.

As the warping operation is designed to be fully differ-
entiable, the gradient computed on the camera image can be
backpropagated through the warping module to the neural net-
work operating on the RD spectrum, allowing for supervised
training of the network with real world radar data as input.
Fig. 1 illustrates the proposed framework. It can be viewed as
a universal framework for cross-modal supervision of neural
networks operating on FMCW radar data.

We demonstrate the effectiveness of the proposed frame-
work by applying it to radar based DoA estimation and present
both qualitative and quantitative results.

The main contributions of this paper can be summarized as
follows

• An improved camera scene flow estimation algorithm by
incorporating RD spectrum information

• Dense label generation for RD spectrum of FMCW radar
data by utilizing labels from camera vision models

• A method for warping radar data into camera images
• A framework to enable supervised training of DNNs on

real-world data for multiple radar applications.
The remainder of this paper is organized as follows. Sec. II

summarizes related work in the field of automotive dataset
generation. Sec. III introduces the utilized sensors and the
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Figure 1: Overview of the proposed approach: Lidar and
camera provide sensor readings to the vision model (typically
a DNN) which automatically generates labels in the camera
image. At the same time, the radar’s RD spectrum is processed
by a neural network and warped from RD spectrum into the
camera image domain. The residual between the generated
label and the warped neural network prediction is calculated
and then backpropagated through the warping operation to the
network operating on the radar data for parameter adjustment
(green arrow). The warping operation requires dense scene
flow and depth estimation, which is obtained by lidar, camera
and radar data. The lower row shows example images of a
semantic segmentation application. From left to right: RGB
image, reference semantic mask (only relevant pixels shown),
predicted semantic mask warped into camera image, predicted
semantic mask in RD-spectrum, RD-map.

basic sensor calibration procedure. Sec. IV describes the novel
scene flow estimation algorithm which is supported by radar
measurements. The scene flow estimates are used in the
warping algorithm given in Sec. V. In Sec. VI, camera labels,
training objectives for the neural networks (NNs) and network
architectures are given as well as techniques on how to make
the training more robust against reference label errors. In Sec.
VII the NN based DoA estimator’s accuracy is evaluated. The
conclusions are drawn in Sec. VIII.

II. RELATED WORK

In 2012, Geiger et al. [9] introduced the famous KITTI
dataset. The development and publication of this dataset
was motivated by the intention to foster the development of
computer vision for autonomous driving. At that time, algo-
rithms were mostly evaluated under laboratory conditions and
performed poorly when applied to field data [10]. Recognizing
the need for more realistic datasets, the authors collected
camera, lidar and GPS data from approx. 40 km real-world
driving scenarios around Karlsruhe, Germany. Starting with
benchmarks for stereo vision, optical flow, visual odometry
and 3D object detection, in which ground truth was provided
either by sensor fusion or, in case of object detection, by
human labelers, the range of applications and benchmark
systems has been extended since then to depth completion
of sparse depth measurements, semantic segmentation and
scene flow estimation [11]. However, automotive radar has not
been included in the dataset, and, accordingly, KITTI is not

suitable for the development of automotive radar applications
considered here.

In 2019, Caeser et al. [12] introduced the nuScenes multi-
modal dataset, which incorporates sensor data from multiple
cameras, lidar and radars. The ground truth was mostly pro-
vided by professional human labelers, for instance in the form
of 3D object bounding boxes. The dataset currently contains
approx. 242 km of driving data acquired in Boston, USA,
and in Singapore. The radar data is given as a point cloud
consisting of radar detections, in which each point has an
annotated position and velocity. From the perspective of radar
signal processing, the radar data in this dataset is already above
spectrum level, while raw spectrum level data is missing.
Accordingly, it is barely suitable for the development of signal
processing algorithms for RD spectrum data.

Similar concerns apply to the dataset provided in [13].
Other automotive datasets can be found e.g., in [14], [15]
which, however, are concerned with creating large and densely
annotated camera data only.

Recently, more and more synthetic datasets have been devel-
oped. The datasets of [16]–[18] contain artificially generated
camera images as well as detailed ground truth from simulated
environments. Bühren et al. [19] synthesized radar targets from
traffic simulations. Again, the simulation was carried out on
above spectrum level radar data, and thus is inappropriate
for the development of signal processing algorithms for RD
spectra.

In [20] the authors showcased deep-learning based object
detection trained on simulated RD spectra via raytracing.
Different driving scenarios were simulated and a trained object
detector was able to achieve decent performance on the test
data. Note, however, that the test data originated from the same
raytracing tool as the training data, and thus performance on
real world data remains unknown.

In [21] the authors propose a Differential-GPS (DGPS)
based reference system for radar target evaluation. While this
provides very precise measurements, the equipment is very
expensive and, thus, the acquisition of large and complex
datasets is practically impossible as only objects are covered,
equipped with such a system. Reference RD spectra can also
be generated from lidar data, as proposed in [5]. Vehicles
are detected in the lidars point cloud and tracked over time.
However, the reference RD spectra are very sparse, since only
a reference for vehicles was given, and since vehicles are
modeled as single point reflectors.

The idea of cross-modal supervision was followed in a
number of works. Zhao et al. proposed a framework to
leverage camera based label predictions for other sensors
[22]. In 2019, [6] and [7] trained DNNs for object detection
operating on range-azimuth-Doppler spectrum in real world
driving scenarios. The radar data is mapped from polar co-
ordinates to the Cartesian coordinate system of the reference
lidar sensor, in which the object labels are presented to the
network. However, the Cartesian coordinate transformation
relies on accurate azimuth resolution of the radar itself, which
can hardly be met by today’s series production radar sensors
for automatic driver assistance system (ADAS) applications.
Additionally, the framework was designed to only generate
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labels for vehicles on highway environments and thus only
provides a sparse label subset of the entire scene.

In [23], [24] the authors labeled radar target clusters by
fusing camera images, lidar pings and radar targets with the
help of state-of-the-art perception models and achieved 72 %
classification accuracy compared to human labeling with a
significant reduction in labeling time. They achieved 0.48m
average translational error on the nuScenes object detection
benchmark. But, again, this task is above spectrum level, and,
therefore, not applicable here.

One of the very few sets of annotated radar spectrum data
is [8], in which object annotations for vehicles, cyclists and
pedestrians are given in range-azimuth-Doppler space. The
annotations are generated by assigning object classes from
objects estimated by camera to matching objects estimated
by radar. Although annotations are given for spectrum data,
the accuracy of the automatically generated annotations highly
depends on the accuracy of the radar based object detections.
Furthermore, the matching becomes significantly harder in
dense urban environments with multiple objects per scene,
potentially resulting in a high number of mismatches and
therefore introducing label noise. The framework does not
provide labels for stationary environment and thus provides
only a subset of all labels in a complex environment.

In 2021, a dataset containing Range-Azimuth-Doppler spec-
tra from radar was presented in [4]. Object level labels are
provided for the classes: person, bicycle, car, motorcycle, bus
and truck. To auto-generate the labels, radar detection point-
clouds are extracted, by applying CFAR and beamforming to
the radar spectra. The pointcloud is clustered into radar objets,
which are then associated with class labels from instance
segmentation on stereo image pairs. This approach is very
similar to the approach presented in [8] and therefore we see
similar restrictions: Firstly, the label quality highly relies on
the quality of the radar pointcloud. The second issue is that the
labels provided here are limited to dynamic road users only.
Adding labels for stationary objects would likely compromise
the association accuracy between radar and camera objects.

Based on our research, we ranked the best suitable frame-
works for radar RD spectrum labeling from literature against
our proposed framework in Tab. I. We combined the ap-
proaches from [6] and [7] as well as [8] and [4] as they present
very similar approaches for auto-annotation. As prior publica-
tions focus on providing annotations for the application of
semantic segmentation in radar spectra, we do see significant
difference to our dataset, which is also able to provide dense
labels for DoA estimation, as proven in this paper and other
applications.

The reader will find information about classical DoA radar
applications e.g. phase-monopulse or Bartlett beamforming in
e.g. [25], [26].

In 2012 Sit et al. [27] proposed a NN based DoA estima-
tor. The NN was trained 859 samples referring two scatters
moving in azimuth. The NN was able to achieve better DoA
separability than classical MUSIC algorithm whilst offering
significant reduced processing time.

More recent NN based approaches were presented in [28]–
[30]. The authors installed a radar-under-test on an azimuth

positioner in an anechoic chamber and placed a corner reflector
1.5m in front of the sensor. Measurement data from the radar
sensor was acquired at different azimuth orientations. As the
target position was known, it served as ground truth label for
multi-layer perceptron (MLP) training. The MLP was trained
to estimate DoA for up to two targets, and achieved similar
performance as classical algorithms for instance Deterministic
Maximum Likelihood, while being significantly faster in infer-
ence. As the data collected in anechoic chamber might differ
from data obtained in real world traffic scenarios, we will focus
on training and evaluating NNs in the latter scenarios.

For the interested reader, a more elaborated overview can
be found in [31].

III. SENSOR CALIBRATION

In the following we assume the presence of the following
sensors, which reflects our measurement setup described in
Section VII-A further below:

• D: A Differential-GPS with inertial navigation system
(DGPS-INS) which delivers high-precision position in-
formation

• C1, C2: An array of two cameras, one pointing to the rear,
and the other to the right.

• L1, L2: Two lidar scanners
• R: the RD spectrum radar unit.

The spatial information they provide is given in their local co-
ordinate systems (COOSs). Since the sensors are not mounted
at the same position, the origins of their local COOSs differ.
For jointly processing the data, the COOSs of the sensors and
of the (ego) vehicle, denoted by E, have to be aligned first.

A transformation of a position xj in the COOS of sensor
j to the position xi in the COOS of sensor i, where i, j ∈
{D,C1, C2, L1, L2, R,E}, is achieved by affine transformation
with the rotation matrix iRj ∈ IR3×3 and the translation vector
itj ∈ IR3×1 as follows:

xi =
iRjxj +

itj. (1)

The parameters (ERL1,
EtL1) and (ERL2,

EtL2) from the COOS
of the lidar sensors L1 and L2 to the COOS of the ego
vehicle have been estimated via [32]. The tuples (C1RL1,

C1tL1)
and (C2RL1,

C2tL1) have been extracted from sensor mounting
parameters, because the cameras were mounted right next to
the lidar sensors, see Fig. 8 in Section VII. The radar posi-
tion relative to the ego vehicle (RRE,

RtE) was measured via
[33], including intrinsic calibration. The DGPS-INS position
(ERD,

EtD) has been measured via measuring tape. Transforma-
tion between other COOS pairs are derived from these tuples
by subsequent transformation, e.g. the transformation from ego
to camera COOS (CRE,

CtE) can be derived by transformation
from ego to lidar first and then from lidar to camera.

The output of the camera is an image. Angular information
is coded in the image pixels p

i
for camera i ∈ {1, 2}. This

information has to be first converted to camera coordinates xC1

and xC2. This is done by applying a camera-pinhole model [34]
from Eq. 2b and 2c with the intrinsic parameters focal lengths
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Table I: Comparison of automatic labeling frameworks.

Framework [6] / [7] [4] / [8] ours

Sensors (lidar/camera/radar) yes/no/yes no/yes/yes yes/yes/yes
Sceneflow approach None Optical flow based / no State-of-the-art
Classes (Pedestrian, car, stationary, background) yes, yes, no, yes yes, yes, no, yes yes, yes, yes, yes
Label density sparse sparse dense
Scene complexity in dataset highway test track / urban + highway urban + highway
Applications
(Semantic segmentation, DoA,Target detection, RCS estimation from camera) yes, no, no, no yes, no, no, no yes, yes, yes, yes

{fx1, fy1, fx2, fy2} and principal points {cx1, cy1, cx2, cy2}, es-
timated via [9]

p
i
= [ui, vi]

T (2a)

xCi,x =
ui − cxi

fxi

xCi,z (2b)

xCi,y =
vi − cyi

fyi

xCi,z, (2c)

where xCi = (xCi,x, xCi,y, xCi,z)
T . As the remainder of this

paper applies to both cameras, we will from now on discard
the camera index i for the sake of simplicity. The term xCi,z

is known by dense depth estimation, which will be discussed
later.

IV. NOVEL SCENE FLOW ESTIMATION APPROACH

In order to warp the radar RD data into camera image, which
is part of the overall processing chain shown in Fig. 1, we
first have to estimate the 3-D velocity of every pixel in the
camera image. This process is commonly referred as scene
flow estimation.

In [35], a scene flow estimation algorithm called deep rigid
instance scene flow (DRISF) was proposed, which achieves
state-of-the-art performance on the KITTI data set at the time
of the development of this paper. The idea is, that the overall
scene flow can be estimated by considering the 3-D motion
of each actor individually. DRISF is based on the definition
of an objective function consisting of energy terms, that is
optimized by a Gauß-Newton (GN) approach.

As we found the accuracy of DRISF insufficient to achieve
satisfactory warping performance, we here propose an ex-
tension called deep rigid instance scene flow with radar
(DRISFwR), which adds an energy term computed from RD
spectrum data to the objective function of DRISF. This radar
specific adaptation is schematically depicted in Fig. 2.

DRISFwR not only reduces scene flow errors, as will be
illustrated in Sec. VII-D, it also integrates automatic alignment
of scene flow estimation with radar data. Furthermore, we
incorporate precise ego-motion from DGPS-INS into the algo-
rithm to achieve an accurate estimation of static background
scene flow.

In the following, we first describe the input features for
DRISFwR, then define required pixel subsets, explain the
process of static background scene flow estimation and the
required adaptation of the energy formulation for foreground
objects.
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Figure 2: DRISFwR overview (adapted from [35]): The
original DRISF approach is drawn in the dashed rectangle.
Our DRISFwR extension is shown on top. After each iteration
of the GN solver, the RD object mask is updated and used for
next iteration.

A. Input data to DRISFwR

Four types of knowledge sources are exploited for scene
flow estimation: instance segmentation, optical flow, dense
depth information and RD spectrum. They are depicted in Fig.
2 as F , S, D and RD.

Optical Flow mask: For optical flow calculation between
two adjacent RGB frames, HD3-Flow [36] has been applied.
It learns probabilistic pixel correspondences to provide optical
flow confidence at pixel level and achieves state-of-the-art
results on the KITTI dataset. In the following, let F denote the
computed flow masks, which contain the optical flow values
for all the pixels in the camera image RGB.

Instance Segmentation mask: Segmentation information
of relevant objects in the camera’s image is obtained by
applying a pretrained NN for object segmentation to the cam-
era image. Here, semantic instance segmentation is produced
via mask rcnn inception v2 coco from the Tensorflow model
zoo [37]. This NN was trained on the COCO dataset and
selected here for its good accuracy and fast inference time.
During inference, semantic object masks S are generated
as well as object classes. Since the utilized network is not
specifically tailored for automotive classes, we retain only the
following five relevant classes: pedestrian, car, truck, bicycle
and motor bike.

Dense depth mask: In DRISF [35], Ma et al. ob-
tained depth estimation based on the stereo camera setup
of the KITTI dataset. As our sensor setup does not have a
stereo camera setup, we utilize sparse depth measurements



5

Dsparse := {p | p ∈ lidar} of those camera pixels that are in
the lidars field of view, and “densify” them with the help
of mono-cameras. This process is called depth completion
with lots of research done in [9], [38]. We employed the
algorithm proposed by [39] which solves depth completion
via Markov Random Fields and which requires no adjustment
to our sensor setup. The algorithm projects the sparse lidar
depth measurements onto the camera image using eqs. (1),
(2b) and (2c), and propagates the depth values from lidar
occupied pixels into regions with similar brightness values,
while enforcing second-order smoothness in depth, see Fig. 3
for an example.

depth →

RGB Dsparse D

Figure 3: Depth completion results: Left-to-right: RGB
image, sparse depth information for those pixels that corre-
spond to lidar measurements, dense depth obtained by depth
completion.

RD spectrum: As a new cue for scene flow estimation, radar
data is employed, which provides valuable velocity measure-
ments from the scene. The non-coherent power spectral density
RD(p

s
) of pixel p

s
is computed from the complex-valued RD

spectrum Ui ∈ C of receive antennas i ∈ [1, 2, 3] of a three-
channel radar, as

RD(p
s
) = 10 log10

3∑
i=1

|Ui(ps
)|2 . (3)

For further information please refer to [40]. We consider
RD to refer to the totality of all pixels in the spectrum.
Alternatively, we could have chosen pointclouds from tra-
ditional radar perception instead as a guide for scene flow
estimation. However, we selected the RD spectra, because
(a) we wanted to be more independent from classical radar
perception, and (b) radar pointclouds are obtained from RD
spectra and therefore are subsets of those spectra.

B. Pixel sets for scene flow estimation
Utilizing the instance segmentation information, the set of

the camera’s foreground pixels is formed by those pixels p
that have been identified to belong to one of the following
object classes:

Pfg :=
{
p
∣∣∣S(p) ∈ {pedestrian, car, truck, bicycle, motorbike}

}
(4)

by the instance segmentation algorithm. Further, let Pradar be
the set of camera pixels covered by the radar’s field of view
(FoV), which is defined as follows

Pradar :=
{

p(xR)
∣∣∣|ϕ(xR)| ≤

135

2

◦

∧ θ(xR)| ≤
22

2

◦}
,where

ϕ(xR) = tan−1(xR,x, xR,y), θ(xR) = tan−1(xR,x, xR,z).
(5)

Here, xR is the point in the COOS of the radar system, and
p(xR) the pixel in the camera image, corresponding xR.

To mitigate the effect of errors in instance segmentation, we
perform further object clustering on each pointcloud belonging
to an instance in camera image via DBSCAN [41]. Thereby,
points which have a spatial distance larger than 0.3m from
the closest point in the cluster i are classified as outliers and
removed from the main cluster corresponding to the instance,
resulting in the set PDBSCAN of valid pixels. The threshold of
0.3m was considered appropriate for the used lidar sensor.

For a pixel to be used for scene flow estimation, it must
be both in the set of valid pixels after DBSCAN clustering,
PDBSCAN, and in the FoV of the radar sensor:

Pi :=
{

p | p ∈ PDBSCAN ∧ p ∈ Pradar

}
. (6)

This set definition automatically handles the sensor parallax
between radar and camera. An example of valid pixels is vi-
sualized in Fig. 4 for both cameras. Valid pixels are highlighted
as yellow pixels. It can be seen, that no pixel of the ego-vehicle
was selected as valid. Similarly, only pixels from the radar
FoV are marked as valid. Some pixels surrounding objects are
automatically marked as invalid, according to PDBSCAN.

(a) Camera 1 (b) Camera 2

Figure 4: Masks for selection of valid pixels: Examples of
valid pixels (yellow) for all objects according to Pi visualized
for both cameras (left:camera 1. right: camera 2.).

C. Motion formulation

The overall scene flow ξ = [ξx, ξy, ξz]
T is a superposition

of background ξbg and foreground scene flow ξfg,

ξ = ξbg + ξfg. (7)

The background scene flow encodes the motion of the ego-
E over ground and applies to all pixels. Foreground motion
is the motion of objects over ground. Similar to DRISF,
the foreground motion is computed only for pixels in Pfg.
In contrast to DRISF, we decided to encode the foreground
motion in 3 translational motion parameters instead of 6
(3 rotational + 3 translational). This simplification was made
to improve the robustness and is justified by assuming small
object dimensions and low rotational rates for foreground
objects for the majority of traffic scenarios.
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Background motion formulation: The perceived motion
of the background highly depends on the motion of the ego
vehicle. Here, rotation cannot be neglected since, even when
the ego vehicle’s rotation is small, the scene flow can be high
for objects that are far away, see Eqs. (8) and (9a) below.

In the following, let k denote the discrete time index.
Background motion is understood to be the relative 3-D motion
of the environment, which is induced by the movement of
the ego vehicle over ground. The position xE(p, k + 1) of a
stationary point p at time step k+1 can be predicted from its
position xE(p, k) at time step k as follows:

xE(p, k + 1) = RE,bg

(
xE(p, k) + xRA

)
− xRA − tE,bg, (8)

in which RE,bg ∈ IR3×3 and tE,bg ∈ IR3×1 describe the rotation
and translation of the ego vehicle over ground, an information
that can be obtained by DGPS-INS. In Eq. (8), before applying
the rotation, the point xE(p, k) in the COOS of the ego vehicle
is first shifted onto the rear axle of the ego vehicle by adding
xRA, according to the Ackermann vehicle model [42], which
assumes that vehicles yaw around their rear axle. Similar as
described in [11], RE,bg and tE,bg are refined over a sequence
of camera images.

By applying the coordinate transformation, Eq. (1), from
ego to camera, we arrive at

xC(p, k + 1) = RC, bgxC(p, k) + tC, bg (9a)

RC, bg(k) =
CRERE,bg

ERC (9b)

tC, bg =
CRERE,bgxRA − CRE(xRA − tE,bg)

+
(
I − RC, bg(k)

)
CtE. (9c)

This eventually gives the background scene flow of point p:

ξbg(p) = xC(p, k + 1)− xC(p, k), (10)

Foreground motion formulation: In DRISFwR, a radar
specific energy term is added to the energy formulation of
DRISF:

min
ξ

{
λphotoEphoto(ξ; I) + λrigidErigid(ξ; I) + λflowEflow(ξ; I)︸ ︷︷ ︸

original DRISF

+

3∑
sd=1

λradar,sdEradar(ξ; I, sd)︸ ︷︷ ︸
extension by DRISFwR

}
.

(11)

For the sake of simplicity, let
I = {RGB0,RGB1,D0,D1,S0,F ,RD}, thus any time

an equation requires one or multiple of the arguments, we
use I instead. The λ’s are the weighting factors of the
individual energy terms. Ephoto describes, how well the RGB
pixels from the object agree to those corresponding to RGB,
when predicted according to ξ. Erigid describes how well pixel
positions agree between frames assuming a scene flow of ξ.
The energy term Eflow captures differences between the optical
flow mask F and the obtained scene flow. For more details
about these energy terms, we refer the reader to the original
DRISF paper [35], as we will focus on the radar specific
extension here.

The newly introduced Eradar energy captures how well ξ
agrees to the relative velocity measured by radar. This term is
formulated as

Eradar(ξ; I, sd) =
∑
p∈Pi

ρ (rradar(ξ,p; I, sd)) (12a)

rradar(ξ,p; I, sd) = RDsd

(
|xR(p)|, vR(ξ,p)

)
−RDtarget, (12b)

where ρ(rradar) = (r2
radar + 10−6)

0.45 (generalized Charbonnier
penalty) is the robust fitting function which we adopt from
the original DRISF. The power of the RD-map value at
range |xR| and relative velocity vR(ξ) seen from radar is
RD

(
|xR|, vR(ξ)

)
, whereas RDtarget is the target value of the

power and here set to be the maximum power of the RD-map.
This setting enforces the scene flow to maximize the RD-map
power of an object in its local RD-map vicinity determined
by the other energy terms. We found this behavior similar to
what human labelers would expect. The summation index sd,
the scale level, will be discussed later in this section.

The minimization of (11) can be formulated as a weighted
Least Squares (wLS) problem, see the supplementary material
of [35] for details,

ξ(m+1) = argmin
ξ

{∑
p∈Pi

rT (p, ξ(m))W(p, ξ(m))r(p, ξ(m))
}
.

(13)
Here, r ∈ RK is the vector of residuals, in which K is the
number of captured residuals from Eq. 11. W ∈ RK×K is the
diagonal weight matrix which is specified by the λ′s and the
selected fitting function as shown later in this section.

In each iteration m, the GN solver performs scene flow
updates ξ(m+1) = ξ(m) +∆ξ(m) by computing

∆ξ(m) = −

∑
p∈Pi

JT WJ

−1 ∑
p∈Pi

JT Wr. (14)

Here, J ∈ RK×3 is the Jacobian giving the gradient of the
residuals in each scene flow direction. All terms on the right
hand side depend on p and ξ(m), which we omitted, however,
for the sake of readability.

The Jacobian Jradar ∈ R1x3 corresponding to the residual of
the radar term rradar, which defines one row in J, is computed
as follows:

Jradar =
∂rradar(ξ; I, sd)

∂ξ
=

∂RD(ξ; I, sd)

∂vr(ξ)

∂vr(ξ)

∂ξradar(ξ)

∂ξradar(ξ)

∂ξ
.

(15)
The first term on the right hand side represents the de-

pendency of RD-map power on relative radial velocity in
form of image gradients. Example gradients are illustrated
in Fig. 5, the right-hand figures in the box with the yellow
background. At RD-map positions with high power, one can
see large negative or positive gradients, the sign depending on
the horizontal approaching direction.

Since the image gradients in the RD-map are very steep,
a scale-space [43] is created by repeated Gaussian smooth-
ing, max-pooling of RD and bilinear up-sampling along the
Doppler dimension. The smoothed RD-map is referred to as
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RDsd
. A Gaussian kernel is applied to obtain smooth gradi-

ents. Max-pooling enhances the receptive field of DRISFwR,
which allows object alignment in RD-map over a wider range
of velocities. Upscaling is performed to keep the bin resolution
constant over scales and to induce further content smoothing.
Different scale levels sd are considered in DRISFwR by
accumulating their energy in Eq. (11). To prefer alignment on
lower scales, energy weighting λradar, is bisected at every scale
level sd. Furthermore, to cope with aliasing in the Doppler
spectrum, copies of the radar spectrum are concatenated in
Doppler direction, see Fig. 5.

The second term on the right hand side of Eq. 15 incorpo-
rated the scalar projection of the scene flow onto positional
vector xR, both observed from radar perspective.

vr(ξradar) =
xT

R

|xR|
ξradar, (16)

Its derivative is given by:

∂vr(ξradar)

∂ξradar

=
xT

R

|xR|
. (17)

The relation between a position in the radar COOS and in the
camera COOS is given by coordinate transformation according
to Eq. (1). Thus

ξradar =
∂xR

∂t
= RRE

ERL
CR−1

L

∂xC

∂t
= RRE

ERL
CR−1

L ξ = RRCξ, (18)

which transforms the scene flow from camera coordinates into
radar coordinates via the rotational matrix RRC . We obtain

∂ξradar

∂ξ
= RRC . (19)

The adaptive weighting Wradar is given by:

Wradar = λradar

∂2ρ

∂r2
radar

= 0.45λradar (r
2

radar + 10−6)
−0.55

. (20)

An update step of the GN algorithm is depicted in Fig. 5.
The figure shows two cars highlighted by the red rectangles
in the camera image and the RD-map in the blue box. In the
yellow box, the position in the RD-map for one car is shown
in red for multiple update steps. After 100 iterations, the car’s
position in RD-map has shifted into the local power maxima
in the RD-map. The remaining gray box shows the RD-map
power warped into the camera image. At the location of the
cars in the camera image, the warped power has significantly
increased after 100 iterations. The warping operation will be
discussed in the next section.

GN iterations are stopped once ∥∆ξ∥2 < 0.1mm. Typically
this occurred after approx. 30 iterations but was stopped when
convergence was not reached after 100 iterations.

V. WARPING FROM RADAR SPECTRA INTO CAMERA IMAGE

In the previous section, we described the scene flow and
the dense depth estimation. As can be seen in Fig. 1, they
form the fundamental input for the warping operation which
we will describe in the following.
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Figure 5: Automatic scene flow alignment to Radar data
via DRISFwR: Top: RGB image and RD-map with two
vehicles. Middle: Scale-space of radar data used in DRISFwR
with energy (left) and partial derivative (right). One object
is visualized in scalespace as red point. Repositioning via
scene flow adjustment in consecutive DRISFwR update steps
with gray arrows marking shift direction. Bottom: Power
projections. After DRISFwR convergence, energy projection
from RD-map is captured correctly for both vehicles (bottom
right)

A. Bilinear warping operation

The radar RD grid is given by coordinates of radial relative
velocity vr and range |xr| seen from the radar perspective.
These can be obtained following Eq. (1) and Eq. (16). Note,
that only the radial relative velocity is relevant for the warping
operation, as the radar sensor is not able to measure tangential
velocities.

In our warping operation η(·, ·, ·), we select for each pixel
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in the camera image the corresponding pixel in the RD grid
depending on the assigned vr(ξ) and |xr| and project the
assigned RD grid pixel value back into the camera image grid.
If vr(ξ) and |xr| are not on the RD grid, bi-linear interpolation
is applied, since it provides visually appealing projections
while being differentiable, which enables the backpropagation
in NN training.

Fig. 6 shows an example of warping an RD-map into the
camera image. Such a warping helps a human to understand
how a radar sees the environment in terms of power. We will
refer to the projected RD-map as RDC in the following.

|xr|

vr

|xr| →

|vr| →

grid

RGB

RDCRD

magnification:

|xr|

vr

|xr| →

|vr| →

grid

RGB

RDCRD

magnification:

Figure 6: RD-map warping into camera image: As an
example for the warping operation, here for two pixels in the
camera image (upper left) their estimated range (upper center)
and radial velocity (lower left) determines their corresponding
position in the RD-map (lower center). The RD-maps intensity
value is bi-linearly interpolated (upper right) and then pro-
jected into the camera image (lower right). Notice that only
pixels in the radar’s FoV are warped here (non-white pixels
in RDC).

RDC can be calculated at the pixel position p, using bilinear
interpolation, as:

RDC(p) = η
(
RD, vr(ξ), |xr|,p

)
. (21)

Note, that in Eq. (21) and Fig. 6 the RD-map RD was
depicted as an illustrative example for the warping operation.
However, every information in the form of the RD grid can
be warped into a camera image in an analog fashion. In fact,
we will warp a radar based prediction by NNs in the same
manner, as will be discussed in the remainder of this paper.

B. Bilinear vs. trilinear warping

In the bilinear interpolation only velocity and distance
from our reference are used for warping. But the proposed
framework is flexible and can also employ 3-D data for
warping. To demonstrate that, Fig. 7 shows the warping of
a 3-D radar spectrum, which consists of velocity, distance
and azimuth DoA information, into a camera image. The 3-D
radar spectrum was obtained by performing FFT beamforming

[26] on the radars channel returns. For warping, trilinear
interpolation was used if the considered camera pixel does
not correspond to a point on the 3-D RD grid.

0 20 40 60

SNR in dB →
0 20 40 60

SNR in dB →

(a) Bilinear interpolation (b) Trilinear interpolation

Figure 7: Comparison of the interpolation methods: Left:
Projection of the power from RD-map via bilinear interpo-
lation. Right: Projection of the 3D beamforming spectrum
via trilinear interpolation. Pixels outside the radars FoV are
visualized dark.

We normalized the signal power in the beamfroming spec-
trum according to the number of used antennas, thus highly
reflective regions in Fig. 7 do have similar power values.
The main difference in the two images can be found in the
low power regions, e.g. the street area, in which better noise
suppression was achieved by beamforming.

VI. CROSS-MODAL SUPERVISED NN TRAINING ON RADAR
SPECTRUM DATA

In this section, we describe an example application for
training a “student” neural network operating on radar spec-
trum data, whose training targets have been provided from a
“teacher” neural network, which labeled the camera data.

A. Radar based DoA prediction via Neural Network

To estimate the DoA of the radar reflections, a convolu-
tional neural network (CNN) is used to operate on the radar
spectrum U . To be precise, the radar spectrum of the utilized
three-channel radar {U1,U2,U3} is preprocessed before being
transferred to the network. The first feature map is the RD-
map, while the second and third feature maps are the phase
spectra ∠ (Ui,Ui−1) between adjacent channels:

Γ =

 RD
∠ (U2,U1)
∠ (U3,U2) ,

 (22a)

∠ (Ui,Ui−1) = arg(UiU∗
i−1). (22b)

The RD-map is provided to allow the neural network to
discriminate between targets and noise and the phase spectra
are provided as a main clue for DoA inference.
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For every pixel in the RD grid, the NN, denoted as
ϕ-Net(Γ), delivers a DoA estimate ϕRD-grid in azimuth direction
which is warped into the camera image as ϕpred., RD:

ϕpred., RD = ϕ-Net(Γ) (23)

ϕpred., cam(p) = η
(
ϕpred., RD, vr(ξ), |xr|,p

)
. (24)

For the network training, DoA labels ϕreference are generated from
the dense depth estimation in the camera image, projected into
the radar COOS as:

ϕreference = arctan 2(xR,x, xR,y). (25)

Predictions of ϕ-Net are made, so that the objective lϕ−Net is
minimized during network training:

lϕ−Net =
∑

p∈Ptrain

∣∣ϕreference (p)− ϕpredict, cam (p)
∣∣, (26)

in which the summation is done over all pixels p in Ptrain, as
we want the network to focus on relevant targets. Examples
for ϕreference, ϕpredict, cam and ϕpredict, RD are depicted in Fig. 13. Note,
that ϕreference (p) and ϕpredict, cam (p) provide angles within sensor
FoV < 180◦ by physical properties and therefore 2π wrap
must not be treated.

VII. EVALUATION

A. Data Acquisition System

To gather real world sensor data from driving scenarios,
we equipped a car with a 77 GHz HELLA radar sensor, with
an overview of the sensor specifications given in Tab. II. The
sensor captures the raw data, computes RD spectra in the first
processing step and forwards them to an in-vehicle recording
PC. The radar sensor is mounted at the rear right corner and
behind the bumper, as illustrated in Fig. 8.

Table II: Specifications of the tested radar sensor

Operating frequency 77 GHz
Antenna design static 1Tx3Rx
Modulation scheme FMCW chirp sequence
Range resolution 0.25m
Doppler resolution 0.25m s−1

Maximum range 25m
Maximum unambiguous Doppler 10m s−1

FoV (horizontal/vertical) 140◦/20◦

The utilized reference sensor system consisting of 2 Velo-
dyne VLP-32C lidar scanners [44] at 10 FPS and a camera
array (2 FirstSensor DC3C-1-E4P-105 [45]) is mounted on a
luggage rack on top of the vehicle. In order to sample the
surrounding more densly, the system is equipped with two
lidar sensors, which are mounted with different orientations
on the vehicle. They jointly provide a denser point-cloud in
the radar’s FoV than a single lidar could provide, see Fig. 3. In
order to cover the entire radar FoV (azimuth: 135◦, elevation:
22◦), two cameras (azimuth: ≈ 104◦) with overlapping FoVs
were used. The camera array is able to record a continuous
videostream at 30 FPS. The Differential-GPS with inertial
navigation system (DGPS-INS) of type GeneSys ADMA-G-
Pro+ [46] is used as a reference sensor for precise vehicle

over ground motion estimation. All sensors have been properly
synchronised via temporal calibration proposed in [47]. To be
specific, the trigger times of the sensors have been recorded
and the temporally closest sensor samples were associated.
Additionally, motion correction was applied on the data of the
lidar sensors.

The driving trajectory for this dataset is given in Fig. 8 and
contains mostly urban environment. It has been recorded over
a period of approx. 1 h driving, giving rise to 36000 frames
at 10 FPS and approx. 7 billion samples on pixel level.

E

Lidar array L1L2

camera array

C1C2

DGPS-INS

D

radarR

recording PC

Figure 8: Data capturing setup: Top: vehicle sensor config-
uration; bottom: driving trajectory for recording the database;
bottom left: magnified scene flow evaluation area.

B. Scene flow evaluation

The performance of the proposed scene flow algorithm has
been benchmarked on a subset of our dataset, with known
ground truth for scene flow. A parking lot area (see Fig. 8)
with all objects being stationary, was selected. The ground-
truth for scene flow estimation was obtained rom DPGS-INS,
which delivered precise information about the ego motion of
the vehicle. Scene flow in stationary scenes has been described
in Sec. IV-C, and thus the scene flow ground truth ξgt is given
by by ξgt = ξbg.

The KITTI dataset provides scene flow evaluation metrics
mainly in camera image plane direction. In our scenario, scene
flow errors both orthogonal and tangential to the image plane
are important and thus we decided to use error metrics that
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consider both errors equally. The first is the mean absolute
error (MAE)

MAEsf =
1

N

∑
psf∈Psf

∥ξgt(psf
)− ξ(p

sf
)∥1

2

Psf := {p | p ∈ Pradar ∧ p ∈ Psparse ∧ p ∈ Pfg},
(27)

between ground truth and estimated scene flow, measured on
all pixels p visible to the radar, have assigned lidar sparse
depth measurement and have an instance mask (i.e., are
foreground pixels). Here, N is the cardinality of that set Psf .

The second evaluation metric is the scene flow error rate,
which is the number of foreground pixels exceeding an er-
ror threshold of 0.25m/s, which is a typical radar velocity
resolution.

As can be seen in Tab. III the DRISFwR algorithm achieves
lower MAE and error rates than the current top-ranking
scene flow estimation algorithm in KITTI benchmarks. Both
algorithms assign a strong motion prior, by assuming rigid
bodies for each instance from instance segmentation. As an
alternative scene flow estimation technique with weak motion
constraints, we include an estimation based on optical flow by
warping depth images between frames via HD3 [36]. It can be
seen, that scene flow performance without strong motion prior
assumption is much worse. This is expected, as the nominal
accuracy of the reference system is 0.16◦ tangential and
0.03m radial giving a theoretical three-dimensional accuracy
of ≈ 1.42m s−1 for a target in 20m distance. The rigid object
assumption often results in hundreds of pixel level samples
per object allowing to stay below the nominal accuracy of the
reference sensors itself. The runtime of DRISFwR exceeds
the one of DRISF slightly, as it includes an additional energy
term. The computation is performed offline, allowing us to
automatically label our 1 h long dataset within 1 day, which
we found acceptable. All algorithms have been implemented
in PyTorch [48], and the GPU code has been executed on
NVIDIA GeForce GTX TITAN X.

Table III: Quantitative comparison of scene flow ap-
proaches. DRISFwR reduces scene flow MAE and error rate
compared to DRISF and the an estimator without strong
motion prior HD3.

Methods runtime error rate (%) MAEsf (m/s)

HD3 0.12 sec 69.9 4.37
DRISF 0.6 sec 31.2 0.31
DRISFwR 0.8 sec 25.5 0.22

Note, that for our application the radial velocity error is
likely to be smaller than the values given in the table, as we
only require accurate radial velocity estimates, whereas the
metric measures both radial and tangential velocity deviations.

C. Automatic labeling quality

DRISFwR assists the warping of radar spectra into camera
images without human supervision, within the scope of the
evaluated accuracy, see prior section. However, sometimes
scene flow is found to be erroneous. Three error types can
be discerned:

1) stationary objects are mis-labeled as moving
2) significant portions of the RD-map power is not trans-

ferred into RDC

3) erroneous segmentation of point cloud resulting in un-
reasonable geometric extension in RD.

Fortunately, these types of errors can easily be spotted by a
trained human and labeled as anomalies and thus be excluded
from the subsequent comparison between the reference data
and the estimates from radar. Thus, with the help of our
reference label generation system, the human labeling task
can be tremendously simplified from a regression problem
(draw DoA reference angles) to a binary classification problem
(identify whether proposed label is plausible or not). We think,
the first problem cannot even be done by human labelers,
while the later one can easily be done. Our test dataset (10800
images) has been labeled by following this process. Examples
of anomalous masks are given in Fig. 9. Of all test dataset
images, approx. 20.3% received at least one anomaly mask.
We consider this value reasonable, as it is close to the warping
error rate for DRISFwR, identified in the last section. The
average human labeling time per image was approx. 5 s. As the
anomaly labeling catches all anomalies induced by erroneous
warping, the anomaly masks can be used not only for the
DoA application, but also for training other applications, such
as target detection and semantic segmentation.

Note that the human anomaly labeling has only been applied
to the test dataset in order to produce the most reasonable
metrics. The NN training, however, was performed without
this human intervention and thus includes even warping errors.

D. Direction-of-arrival evaluation

Typically, the radar based estimation quality highly depends
on the signal-to-noise-ratio (SNR). We therefore measured
the performance as a function of the SNR. Here, the signal
power is estimated as the power of the corresponding pixel
in RD. The noise level estimate is obtained by applying the
CFAR target detector [40] to RD and calculating the 99.5%
percentile of all non-target pixels. In stationary scenes with
low ego vehicle velocity < 2m s−1, the signal power from
multiple reflections accumulates in the zero Doppler velocity
pixels. These signal powers cannot be recovered, leading to
erroneous signal power estimation and therefore, deteriorate
the quality metrics unreasonable. Stationary scenes are thus
discarded from the test dataset.

The warping operation is non-bijective in the sense that
multiple pixels in the camera may correspond to a single pixel
in the RD-map and vice versa. In evaluation, this typically
means (as the former case is more typical), that one estimation
value (one pixel in the RD grid) is compared to an ensemble
of reference values Ps (multiple pixels in the camera image).
The set Ps can be formed by warping the linear pixel indices
of RD-map into camera image and selecting all pixels to a
certain pixel indice value. Ideally, one would want to assign
an electromagnetic contribution to each reference pixel and
compute the center of reflection to which the estimated value
is then compared to. However, at the current stage of this ref-
erence system, the electromagnetic contribution is unknown.
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RGB + S RDC RD

Figure 9: Examples of anomalous labels: From left to right:
camera images with semantic instance masks from radar FoV
only (red: pedestrian, green: vehicle), projected RD-maps, RD-
maps with semantic masks and anomaly masks (white rect-
angles). The orange arrows connect corresponding regions in
camera image and RD-map. In the two upper rows, stationary
objects were labeled as moving, due to an error in scene
flow estimation (error type 1). However, the misalignment in
RD-map is relatively small. The bottom row shows an error
in instance segmentation, in which background pixels were
mapped as pedestrian, resulting in an unreasonably extended
object range in RD-map (errort type 3).

In practice, we select the best matching pixel from the camera
ensemble to the RD grid pixel as the tuple

{
p

C
,pRD

}
such that

p
C
= argmin

pC∈Ps

∣∣∣ϕreference (pC
)− η

(
ϕpredict, RD(pRD

); vr, |xr|
)∣∣∣.

(28)
The DoA MAE is thus computed as

MAEDoA =
1

N

∑
pC∈Pradar

∣∣∣ϕreference (pC
)−η

(
ϕpredict, RD(pRD

); vr, |xr|
)∣∣∣,

(29)
where N is the number of RD grid pixels visible to camera
and radar, respectively the size of the set Pradar.

We developed a CNN for DoA estimation. It employs
ReLU activation on every layer except for the last, where
90 · tanh() is applied to scale the logits’ angular values to
degrees. The convolutions are operated with unit stride and
the layers have the following number of output channels:
[3, 32t, 64t, 128t, 64t, 32t, 32t, 1]. We experimented with dif-
ferent convolution kernel sizes of 1×1 and 3×3 and equalized
the networks parameter count with the layer modifier t. The
inference of the 1 × 1 network will be influenced by one
pixel in the RD grid only, while the 3 × 3 network may
use the RD grid pixel vicinity to perform inference. The
receptive fields thus compute to 1 (0.25m × 0.25m s−1) and
15 (3.75m× 3.75m s−1), respectively.

We subdivided the pixels in RD map into two groups, the
first being pixels from real reflections, thus carrying a noisy

signal, and the second being pixels from noise only. As we
want to focus the network training on the first group only,
we automatically identify pixels of the second group as those
whose SNR is found to be below the threshold of 10dB, giving
rise to the following definition of the training set

Ptrain := {p | p ∈ Pradar ∧RDC(p) > 10dB}. (30)

This threshold has been found by plotting the distribution of
RDC for the entire test dataset, see Fig. 10, and identifying
the SNR value in which the likelihood of the second group
samples can be neglected. To this end, a two-component
mixture model was fitted to the data, consisting of a Gaussian
and a Chi-squared distribution. The parameters of the Gaussian
probability density function (PDF), that represents noise, was
determined according to central limit theorem [49]. Assuming
Swerling type 3 fluctuations for the radar reflections, see e.g.
[50], the parameters of the Chi-squared PDF representing the
signal were identified.

As can be seen, at +10dB the likelihood of sampling from
the identified noise mixture is very low (< 0.1%) and samples
above +10dB are mainly provided by signal.
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Figure 10: SNR distribution: The sample distribution is
shown in red, which is decomposed into a noise component
(green) and a signal component (blue). Additionally, the
sample mixtures are approximated by Gaussian PDF (dashed
black) and Chi-squared PDF (dashed magenta).

To explore the influence of the above mentioned threshold
selection, we tested each network either with or without the
SNR-based sample selection. The parameters of the three
tested NN architectures are depicted in Tab. IV.

Table IV: NN architectures and their configurations.

Name kernel size layer modifier (t) SNR selection

NN0 1× 1 3 -
NN1 1× 1 3 RDC > 10dB
NN2 3× 3 1 -
NN3 3× 3 1 RDC > 10dB

As we want the training and test datasets to be independent
and identically distributed (i.i.d.), the 1 h long dataset (Fig. 8)
is split into 10 s long sequences of 100 frames each. The
sequences are randomly assigned to training, validation and
test sets with ratios 70%, 15%, 15% and with no frame overlap.
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All networks are optimized via ADAM and a learning rate
of 10−5. Early stopping was performed by checking network
performance on the validation dataset after each training
epoch.

The performance of different DoA estimators in terms of
MAE is shown in Fig. 11. In addition to NN-based estimators
we include the performance of a phase-comparison monopulse
(PM) [25] DoA estimator and Bartlett beamforming (BF) [26]
as baseline algorithms which do not require a training phase.

As expected, it can be seen, that BF achieved better MAE
than PM over the entire SNR range.

The (3x3) NNs achieved better MAE than their (1x1)
counterparts, which suggests, that neighboring RD-map pixels
carry valuable information that can be used for a better
DoA estimation. A possible explanation for this is (a) the
windowing performed before computing the FFT based RD
grid, which smears energy over multiple pixels, and (b) the
fact that geometrically neighboring pixels in the camera image
tend to occupy neighboring locations in the RD-grid

All NNs with enabled SNR selection during training
achieved significantly better MAE at higher SNR values.

Finally it can be seen, that the best performing NN (NN3)
achieved equal or better MAE accuracy as the best performing
classical DoA estimator (BF).
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Figure 11: Performance of DoA estimation methods: Mean
Absolute Error of azimuth estimation of different DoA esti-
mators and performance of moving target indication (MTI).

Additionally we perform moving target indication (MTI),
which heavily relies on DoA predictions to classify stationary
versus moving targets. The utilized MTI algorithm is from
[51], [52]. If ∥ξfg∥1

2 > 0.5m s−1 we set the reference label
to “moving” and otherwise to “stationary”. MTI accuracy is
calculated by comparing the prediction to the reference label.
It can be observed in the figure that in low SNR regions,
the (3x3) NN achieved better accuracy compared to the other
estimators, while it is surpassed by beamforming in the high
SNR regime.

For a more detailed analysis, Fig. 12 depicts the MAE
as a function of the azimuth angle and SNR for selected
estimators. Comparing the MAE histogram of NN0 with NN1

and NN2 with NN3, we see that the NNs with enabled
SNR selection (NN1 and NN3) achieved better MAE values

especially at the bordering azimuth regions. This suggests, that
optimizing the NN on pixels from the signal mixture only,
see Fig. 10, in combination with the used loss function, see
Eq. 26, is beneficial. However, to get isotropic DoA estimation
behaviour over the entire azimuth range, it might be necessary
to experiment with other loss functions in the future.
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Figure 12: MAE histograms: Mean Absolute Error in depen-
dency on azimuth and SNR for different DoA estimators. The
NNs with enabled SNR selection (NN1 & NN3) achieved better
MAE at bordering azimuth regions than their counterparts
(NN0 & NN2).

Qualitative examples for DoA estimation and MTI are
depicted in Fig. 13. It can be seen, that the color hue between
DoA label and DoA prediction images mostly match and thus
the predictions mostly resemble the DoA labels. The main
difference between DoA label and prediction images comes
from the selected visualization method, in which the color
intensity of the prediction is scaled by the underlying RD-
map SNR value. This visualization method helps to focus on
regions with high SNR and reduces the distraction by low SNR
regions, which mostly correspond to irrelevant noise regions.
When comparing the non SNR color coded predictions from
NN and PM (right hand side images in the Figure) for instance,
it is obvious, that the NN predictions appear to be less noisy in
low SNR regions. However, as stated above, DOA predictions
in low SNR regions are in general of little interest.

As our framework provides full label density for a camera
image with roughly 185.000 pixels per single frame, the DoA
NN starts to provide reasonable estimations even after only 10
training steps/images. As the dataset consists of 72000 frames,
we found this to be a very efficient usage of data.
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Figure 13: Qualitative results of direction-of-arrival estimation on test data examples. From left-to-right: RGB image with
color coded azimuth labels, RGB image with color coded azimuth predictions from NN, RGB image with color coded azimuth
predictions from PM, RD-map with color coded azimuth prediction from NN, RD-map with color coded azimuth prediction
from PM, azimuth predictions from NN in RD-grid, azimuth predictions from PM in RD-grid.

VIII. CONCLUSIONS

In this paper we developed an algorithm for warping FMCW
radar data into camera image, enabling us to utilize high-
quality labels generated from camera and lidar reference
sensors for the supervised training of NNs operating on radar
spectra as input. An important factor for a reliable warping
operation is the development of a novel scene flow estimation
algorithm utilizing radar, camera and lidar data that is pro-
posed in this paper. The automatic labeling method enabled
us to densely label high-resolution spectrum level radar data
from real world driving scenarios.

The validity of the approach was verified by evaluating
the performance of NNs for DoA estimation, which achieved
comparable or superior performance to classical DoA estima-
tion methods. As the warping operation projects the spectrum
level radar data and NN predictions into camera image, the
results are easy to interpret for humans and allow qualitative
assessment.

Furthermore, we could show that the use of the pixel
vicinity through the NNs receptive field when performing DoA
inference was beneficial. Although the general approach of
utilizing pixel vicinity for better estimation is known from,
e.g., classical image processing, to the best of our knowledge,
we are the first to utilize this in radar based DoA estimation.
The development of this automatic labeling framework was
key contribution for this observation,
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[15] G. Neuhold, T. Ollmann, S. Bulò, and P. Kontschieder, “The mapillary
vistas dataset for semantic understanding of street scenes,” in Proceed-
ings of the IEEE International Conference on Computer Vision (ICCV),
2017.

[16] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez, The
SYNTHIA Dataset: A large collection of synthetic images for semantic
segmentation of urban scenes. in CVPR, 2016.

[17] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, Virtual worlds as proxy for
multi-object tracking analysis. in CVPR, 2016.

[18] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in Proceedings of
Machine Learning Research, vol. 78. PMLR, 13–15 Nov 2017, pp. 1–
16. [Online]. Available: http://proceedings.mlr.press/v78/dosovitskiy17a.
html

[19] M. Bühren and B. Yang, “Automotive radar target list simulation
based on reflection center representation of objects,” in in Proc. Intern.
Workshop on Intelligent Transportation (WIT, 2006, pp. 161–166.

[20] A. P. Sligar, Machine Learning-Based Radar Perception for Autonomous
Vehicles Using Full Physics Simulation. IEEE Access, 2020.

[21] Z. Shuqing, Performance Evaluation of Automotive Radars Using
Carrier-Phase Differential GPS. in IEEE Transactions Instrumentation
and Measurement, 2010.

[22] M. Zhao, T. Li, M. Alsheikh, Y. Tian, H. Zhao, A. Torralba, and
D. Katabi, “Through-wall human pose estimation using radio signals,”
in Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[23] L. Wang, C. Anklam, and F. Baumgaertner, “Labelling of data for
classification with automotive radar sensors,” in automotive Forum of
European Microwave Integrated Circuit Conference (EuMIC), 2019.

[24] L. Wang, T. Chen, C. Anklam, and B. Goldluecke, “High dimensional
frustum pointnet for 3d object detection from camera, lidar, and radar,”
in Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2020.

[25] V. Stabilito, “Phase-comparison monopulse radar,” United States US
US3167765A, 1961.

[26] H. Krim and M. Viberg, “Two decades of array signal processing
research,” IEEE Signal Processing Magazine, vol. 13, 1996.

[27] Y. L. Sit, M. Agatonovic, and T. Zwick, “Neural network based direction
of arrival estimation for a mimo ofdm radar,” 2012 9th European Radar
Conference, pp. 298–301, 2012.

[28] M. Gardill, J. Fuchs, C. Frank, and R. Weigel, “A multi-layer perceptron
applied to number of target indication for direction-of-arrival estimation
in automotive radar sensors,” in Proceedings of the IEEE 28th Interna-
tional Workshop on Machine Learning for Signal Processing (MLSP),
2018.

[29] J. Fuchs, R. Weigel, and M. Gardill, “Single-snapshot direction-of-
arrival estimation of multiple targets using a multi-layer perceptron,”
in Proceedings of the 2019 IEEE MTT-S International Conference on
Microwaves for Intelligent Mobility (ICMIM), 2019.

[30] ——, “Model Order Estimation using a Multi-Layer Perceptron for
Direction-of-Arrival Estimation in Automotive Radar Sensors,” in Pro-
ceedings of the 2019 IEEE Topical Conference on Wireless Sensors and
Sensor Networks (WiSNet), 2019.

[31] M.-Y. You, A.-N. Lu, Y.-X. Ye, K. Huang, and B. Jiang, “A review on
machine learning-based radio direction finding,” Mathematical Problems
in Engineering, vol. 2020, pp. 1–9, 08 2020.

[32] J. Levinson and S. Thrun, Unsupervised Calibration for Multi-beam
Lasers. in Experimental Robotics, 2014.

[33] U. Kuehnau, “Sensor development for autonomous driving,” Automo-
tive Radar Sensors for Semi-Automatic and Autonomous Driving and
Parking Systems, IWPC Wolfsburg, Tech. Rep., 2017.

[34] G. Xu and Z. Zhang, Epipolar Geometry in Stereo, Motion, and Object
Recognition: A Unified Approach. USA: Kluwer Academic Publishers,
1996.

[35] W. Ma, S. Wang, R. Hu, Y. Xiong, and R. Urtasun, “Deep rigid instance
scene flow,” in [cs. CV, April 2019.

[36] Z. Yin, T. Darrell, and F. Yu, “Hierarchical discrete distribution decom-
position for match density estimation,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[37] Tensorflow, “Detection model zoo,” 2020, gitHub repository.
[Online]. Available: https://github.com/tensorflow/models/blob/master/
research/object detection/g3doc/detection model zoo.md

[38] J. Diebel and S. Thrun, “An application of Markov random fields
to range sensing,” in proceedings of Advances in Neural Information
Processing Systems (NIPS), 2006.

[39] A. Harrison and P. Newman, “Image and sparse laser fusion for dense
scene reconstruction,” in Proceedings of the Field and Service Robotics,
2009.
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