
Pre-
pri

nt
Containernet 2.0: A Rapid Prototyping Platform for

Hybrid Service Function Chains
Manuel Peuster

Paderborn University
manuel.peuster@uni-paderborn.de

Johannes Kampmeyer
Paderborn University

johannes.kampmeyer@uni-paderborn.de

Holger Karl
Paderborn University

holger.karl@uni-paderborn.de

Abstract—One of the biggest challenges for the real-world
application of network function virtualization (NFV) is reduc-
ing the development complexity of both virtualized network
functions (VNF) and service functions chains (SFC). This is
in particular important for the upcoming 5th generation of
networks in which service agility is one of the key concepts to
allow quick development and integration cycles and to reduce
costs. Still, the availability of tools to support VNF and service
developers is limited and existing solutions mainly focus on
packaging support and static validation of descriptors.

To change this, we introduce Containernet 2.0 a novel, open-
source NFV prototyping platform supporting the creation and
local execution of complex SFCs. Containernet 2.0 is the first
prototyping tool that explicitly supports hybrid SFCs composed
of both container-based and virtual machine-based VNFs that
are combined in a single chain. During our demonstration, the
end-to-end SFC prototyping workflow, including composition,
execution, and configuration, is shown.

I. INTRODUCTION

In network function virtualization (NFV), complex net-
work services are composed of multiple, chained virtual-
ized network functions (VNFs) as so-called service function
chains (SFC) [1]. Such SFCs are usually defined by network
service descriptors that are static files describing the interrela-
tionship and chaining of the involved VNFs. In addition, VNFs
are defined with VNF descriptors (VNFD) that describe how a
VNF and its deployment units (VDU), e.g., a virtual machine
image or a container, should be provisioned and deployed on
top of the available NFV infrastructure (NFVI) [2]. All these
artifacts are usually developed by a network service developer
who writes down the descriptors, provisions new or re-ues
existing VNFs, and configures these VNFs according to the
needs of the network service.

Today, most parts of this development process are manual,
complicated, and error-prone steps with very limited tool
support. Existing NFV development support solutions, so
called NFV service development kits (SDK), mainly focus on
descriptor creation or generation as well as static syntactical
and semantical checks among them [3], [4]. These tools help
to identify bugs and errors in the static descriptors, like a
missing link in an SFC definition. But they do not offer support
for developers when VNFs and their contained software com-
ponents should be integrated and configured. For example, a
firewall software that should be installed and configured inside
an existing VM or container image. In practice, this means that
a developer needs to set up a local NFVI testbed on which the

developed service is deployed and manually configured and
tested. Once everything works and is tested, the developer has
to export the VM or container images to ship them—a process
that is far too complicated for an agile environment.

To solve this issue, rapid prototyping platforms are required
that allow the local execution and configuration of complex
SFCs on a developer’s laptop. First solutions use single-node
NFVI deployments [5] or Java-based VNF proxy functions in
simulated environments to create lightweight prototyping plat-
forms [6]. Others offer explicit debugging support, but focus
more on software-defined networking (SDN) and not on the
integration of real-world VNFs [7]. Another solution, which
was introduced in our previous work [8], is called MeDICINE
and supports rapid prototyping of container-based VNFs in
multi-PoP environments. MeDICINE, however, focuses mainly
on the integration between orchestration systems and the
developed network services rather than on the network services
and the VNFs as such [9]. More importantly, none of these
solutions supports hybrid SFCs that are composed of both
container-based and VM-based VDUs at the same time, which
will be a common scenario for 5G deployments [10].

In this demonstration, we introduce Containernet 2.0 [11],
the first rapid prototyping platform that supports the execu-
tion of hybrid SFCs consisting of container- and VM-based
VNFs (Sec. II). Our platform can be installed and executed
locally on a developer’s laptop and comes with an intuitive
service composition GUI that allows developers to compose
service prototypes within minutes. During our demonstration,
an example network service is composed, configured, and
executed on the prototyping platform. Further, live interactions
and reconfigurations of the involved VNFs through Container-
net’s interactive command line interface (CLI) will be shown.
Finally, the service will be tested with video streaming traffic
as described in Sec. III.

II. RAPID-PROTOTYPING OF HYBRID NETWORK SERVICES

One key requirement for rapid prototyping is the availability
of an execution environment in which the developed com-
ponents can be quickly deployed and tested by a developer.
To build this execution environment for complex SFCs, we
initiated the Containernet [11] project, a fork of the famous
Mininet network emulator [12]. Containernet allows to execute
VNFs in form of Docker containers and to interconnect them
to arbitrary complex topologies. Containernet 2.0 extends

Manuel Peuster
This work has been accepted for publication in 2018 IEEE Conference on Network Softwarization (Netsoft 2018). 
Copyright © 2018 by IEEE. ISBN: 978-1-5386-4633-5�



Pre-
pri

nt
Fig. 1: Demonstration overview showing a network ser-
vice developer prototyping a hybrid SFC consisting of three
container-based and two VM-based VNFs, all running in an
locally emulated network.

the existing project by adding execution support for VM-
based VNFs to the platform. Fig. 1 shows the architecture
of Containernet 2.0 and how a network service developer uses
it. As a first step, the developer defines the SFC by using
either Containernet’s GUI editor or a script that calls Contain-
ernet’s Python API (1). After this, Containernet deploys and
interconnects the involved VNFs in its local, Mininet-based
emulation environment (2). Once all VNFs are running, the
developer uses Containernet’s interactive CLI to interact with
and configure the running VNFs that can either be Docker
containers or full-featured VMs (3). To establish the network
between the VNFs, the underlying Mininet is used. Our
platform is fully backwards compatible to the original Mininet
emulation API, e.g., it allows to emulate arbitrary delays,
loss, and jitter on the links between VNFs. It also allows
to include SDN switches and customized SDN controllers
into the prototyped topologies, e.g., to build custom chaining
solutions.

A. Supporting VMs in Containernet

Our main requirement for the integration of VMs into
Containernet 2.0 is to be fully aligned with the existing
Mininet and Containernet APIs. Our design allows a user to
add a fully-featured VM to an emulation topology with a single
Python command that expects the path to the VM image to
be used as additional parameter, as shown in Listing 1 line
6 and line 7. Other parameters, like the node name or the IP
addresses to be used, remain the same as in the existing im-
plementations. This enables the seamless integration of VMs
into existing emulation topologies. Additional parameters, like
the hypervisor type, can be optionally passed to the underlying
libvirt1 implementation.

A more challenging problem was the integration with Con-
tainernet’s interactive CLI that should allow a user to interact
with all nodes (Mininet hosts, Docker container, and VMs)
in the emulated network through a common CLI interface.
In contrast to the CLI interaction scheme used in Mininet and
Containernet, which uses pipes to directly connect to the TTYs

1Libvirt project: https://libvirt.org

of the emulated hosts or containers, a direct interaction with
VMs is not possible. To solve this, we opted for a network-
based solution that adds a management network interface to
each VM and connects to it using SSH2. This solution solves
the problem and gives seamless access to all VMs in the
emulated topology (see Fig. 1). The downside of this approach
is that it introduces the requirement that all used VMs need
to have SSH installed and their access credentials have to
be available to Containernet 2.0. We argue that this is an
acceptable requirement since the majority of existing NFV
and cloud orchestration solutions rely on such management
interfaces in any case.

1 net = Containernet()
2 # add Mininet host, Docker host, VM-based host
3 h1 = net.addHost("h1", ip="10.0.0.1")
4 d1 = net.addDocker(
5 "d1", ip="10.0.0.2", image="ubuntu:trusty")
6 v1 = net.addLibvirthost(
7 "v1", ip="10.0.0.3", image="˜/ubuntu1604.qcow2")
8 # connect hosts to switches
9 s1 = net.addSwitch("s1")

10 net.addLink(h1, s1)
11 net.addLink(d1, s1)
12 net.addLink(v1, s1)
13 # start the emulation
14 net.start()

Listing 1: Example Conatinernet 2.0 topology with Mininet
host (h1), Docker host (d2), and VM-based host (v1).

B. Extending MiniEdit for Containernet

To simplify the composition of complex SFCs, we extended
Mininet’s graphical editor, called MiniEdit, as shown in Fig. 2.
In particular, we added support for Docker-based and VM-
based hosts as well as support for multihoming and direct
interconnections between all types of nodes. The multihom-
ing feature is especially important since VNFs usually have
multiple network interfaces, like data input, data output,
and management/control. Having these features in place, our
platform can be used to prototype complex SFCs including
their data plane and control plane.

III. DEMONSTRATION

The objective of the planned demonstration is three-fold.
First, we demonstrate how a complex network service can
be composed with our graphical user interface. The created
network service consists of both container-based and VM-
based VNFs creating a hybrid SFC. Second, we demonstrate
how our prototyping platform can be used to run production-
ready network services on a developer’s laptop. Finally, we
show how the developer can interact and reconfigure the
running service as well as test its functionality.

A. Demonstrated Scenarios

Our demonstration comes with a set of example VNFs that
operate on different layers of the networking stack, i.e., a proxy
based on Squid3 deployed in a Docker container acting on

2Secure Shell protocol: https://www.ssh.com/ssh/
3Squid: http://www.squid-cache.org



Pre-
pri

ntFig. 2: Containernet’s intuitive SFC composition editor show-
ing our demo service consisting of a proxy (Docker), a
firewall (VM), and a IDS (VM) VNF. It also shows additional
nodes used to emulate users, management network, and con-
tent server to test the SFC.

L3, a firewall based on Iptables4 deployed in a VM acting on
L2, and an intrusion detection system (IDS) based on Snort5

deployed in a VM acting on L2. Additionally, a Docker-based
content server for video streaming is used to generate test
traffic. During the demo, these example VNFs are combined
to an SFC as shown in Fig. 2.

In particular, we show how the available VNFs are con-
figured prior and after their deployment, e.g., we show how a
developer can reconfigure a firewall or analyze the correctness
of the IDS rules.

B. Demonstration Steps

The demonstration includes the following steps:
1) Step 1: Composition of a hybrid network service, consist-

ing of VMs and containers, using Containernet’s intuitive
graphical composition interface (Fig. 2).

2) Step 2: Instantiation of the hybrid network service in the
local emulation environment.

3) Step 3: Live interaction and reconfiguration of running
VNFs through Containernet’s interactive CLI.

4) Step 4: End-to-end verification of the service composition
and configuration using test traffic, i.e., video streaming.

C. Demonstration Requirements

The demonstration can be executed either locally on a single
laptop running the entire emulation platform or remotely on a
server. It requires a power outlet for a laptop and one or two
large screens to show the visualizations and executed services.

IV. CONCLUSION

Our novel prototyping platform simplifies the development
of hybrid network services that are composed of containers

4Iptables: http://www.netfilter.org
5Snort: https://www.snort.org

and VMs at the same time. It is in particular useful to test and
configure container and VM images before they are deployed
on real NFVI testbeds or production platforms. Our graphical
composer drastically lowers the barrier for new VNF and ser-
vice developers. The presented tools are complementary and
compatible to existing NFV SDKs and bridge the gap between
static descriptor creation on the developer’s laptop and the
actual execution of the service and its VNFs. Containernet 2.0
is open source and available on GitHub6 [11]. There is a video
available that shows parts of the described demonstration7.

ACKNOWLEDGMENTS

This work has been partially supported by the 5GTANGO project, funded
by the European Commission under Grant number H2020-ICT-2016-2 761493
through the Horizon 2020 and 5G-PPP programs (http://5gtango.eu), and the
German Research Foundation (DFG) within the Collaborative Research Centre
“On-The-Fly Computing” (SFB 901).

REFERENCES

[1] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Mar-
trat, M. S. Siddiqui, S. van Rossem, W. Tavernier et al., “DevOps for
network function virtualisation: an architectural approach,” Transactions
on Emerging Telecommunications Technologies, vol. 27, no. 9, pp. 1206–
1215, 2016.

[2] J. Garay, J. Matias, J. Unzilla, and E. Jacob, “Service description in
the NFV revolution: Trends, challenges and a way forward,” IEEE
Communications Magazine, vol. 54, no. 3, pp. 68–74, March 2016.

[3] S. V. Rossem, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester,
“Introducing Development Features for Virtualized Network Services,”
IEEE Communications Magazine, vol. PP, no. 99, pp. 2–10, 2018.

[4] S. V. Rossem, M. Peuster, L. Conceio, H. R. Kouchaksaraei, W. Tav-
ernier, D. Colle, M. Pickavet, and P. Demeester, “A network service de-
velopment kit supporting the end-to-end lifecycle of NFV-based telecom
services,” in 2017 IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), Nov 2017, pp. 1–2.

[5] OpenStack Project, “DevStack,” online at: https://docs.openstack.org/
devstack/latest/, 2018.

[6] S. Clayman, L. Mamatas, and A. Galis, “Experimenting with control
operations in software-defined infrastructures,” in NetSoft Conference
and Workshops (NetSoft). IEEE, 2016, pp. 390–396.

[7] T. Lévai, I. Pelle, F. Németh, and A. Gulyás, “EPOXIDE: a modular
prototype for SDN troubleshooting,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 359–360.

[8] M. Peuster, H. Karl, and S. van Rossem, “MeDICINE: Rapid prototyping
of production-ready network services in multi-PoP environments,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN), Nov 2016, pp. 148–153.

[9] M. Peuster, S. Draxler, H. R. Kouchaksaraei, S. v. Rossem, W. Tav-
ernier, and H. Karl, “A flexible multi-pop infrastructure emulator for
carrier-grade MANO systems,” in 2017 IEEE Conference on Network
Softwarization (NetSoft), July 2017, pp. 1–3.

[10] R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros, “Container-based
network function virtualization for software-defined networks,” in 2015
IEEE Symposium on Computers and Communication (ISCC), July 2015,
pp. 415–420.

[11] Containernet Project, “Containernet a Mininet Fork adding Container
Support to Network Emulations,” online at: https://containernet.github.
io, Paderborn University, 2017.

[12] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

6GitHub: https://github.com/containernet/containernet
7YouTube Video: https://youtu.be/TODO


