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Abstract—Management and orchestration (MANO) systems
are the key components of future large-scale NFV environments.
They will manage resources of hundreds or even thousands
of NFV infrastructure installations, so called points of pres-
ence (PoP). Such scenarios need to be automatically tested during
the development phase of a MANO system. This task becomes
very challenging because large-scale NFV testbeds are hard to
maintain, too expensive, or simply not available.

In this paper, we present a multi-PoP NFV infrastructure
emulation platform that enables automated, large-scale testing
of MANO stacks. We show that our platform can easily emulate
hundreds of PoPs on a single physical machine and reduces the
setup time of a test PoP by a factor of 232× compared to a
DevStack-based test PoP installation. Further, we present a case
study in which we test ETSI’s Open Source MANO (OSM)
against our proposed system to gain insights about OSM’s
behaviour in large-scale NFV deployments.

I. INTRODUCTION

Network function virtualization (NFV) is expected to be one
of the key enablers for highly agile network service deploy-
ments in future 5G networks. The key component of each NFV
system is its management and orchestration (MANO) stack
that controls the deployment and configuration of individual
virtualized network functions (VNF) as well as complex
network services (NS). Several of these MANO stacks are cur-
rently developed, some as commercial products, others as open
source community or research projects, like SONATA [1],
ONAP [2], or Open Source MANO (OSM) [3].

Those MANO systems are complex software systems that
are built to control multiple NFV infrastructures (NFVI)
provided by many spatially-distributed cloud data centers
through so-called virtual infrastructure managers (VIM), e.g.,
OpenStack installations [4]. Such deployments are also called
multi-point-of-presence (multi-PoP) environments, where each
PoP is assumed to provide some NFVI resources as well as a
VIM that offers interfaces to request the available resources,
e.g., start a VNF. This scenario leads to a big challenge for the
development of MANO systems, which obviously need to be
tested against such large-scale environments. The problem here
is that large multi-PoP environments are costly, hard to set up,
and usually are just not available to MANO developers. Even
if they are available, it is often too expensive to use them in
automated test pipelines for continuous integration (CI), which
would occupy resources whenever a developer submits code
and triggers a new test run.

In this paper, we present a solution for this: An emulation-
based test platform that can emulate multiple NFVI envi-
ronments on a single machine, enabling automated tests of
MANO systems in large multi-PoP scenarios. The presented
solution is inspired by a concept called smoke testing [5].
The smoke testing concept focuses on testing only the main
functionality of a complex system and skips unimportant
details to reduce test times. Our platform does exactly this
by re-implementing a subset of the OpenStack APIs, the de-
facto standard for VIM interfaces, today. A MANO system can
then use these APIs to deploy container-based test services on
the emulated NFVI PoPs and thus verify the MANO system
in end-to-end scenarios.

The contributions of this paper are as follows: First, we
describe how we extended the emulation platform, presented in
our previous work [6], to act as an emulated test environment
for MANO systems and how we integrate it with an automated
test pipeline in Sec. III-A. Second, we analyze the scalability
of our platform to show that it can easily emulate hundreds
of PoPs on a single physical machine or VM in Sec. III-C.
Finally, Sec. IV presents a case study in which we tested
OSM [3] against our platform and discovered some interesting
insights and bugs that would not have been found with
existing, lab-scale NFVI testbeds offering only a handful of
PoPs.

II. RELATED WORK

NFV development support and especially automated testing
in the NFV domain is still a novel research direction with
a limited amount of existing solutions. Some recent work
focuses on end-to-end testing in 5G networks [7] or the
verification and validation of network services [8]. But none
of them explicitly considers the need of testing the core part
of NFV deployments: The MANO system. In the software
community, smoke testing has already been established since
several years, providing the ability to quickly integrate new
versions of different software components [5], which is what
our solution introduces for NFV MANO systems.

One way to setup end-to-end smoke tests for a MANO
system is to use either local or remote testbed installations.
The problem with local installations, like [9], are their resource
limits which prevent large-scale test cases, e.g., with a high
number of PoPs. Remote testbeds, like [10]–[12], may offer
the required NFV infrastructure and interfaces, but their main
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focus is the development and evaluation of network services.
In addition, they are shared between many users which means
they may not always be available to quickly execute auto-
mated tests on them. In general, these testbed solutions are
complementary to our presented approach and should be used
for final, manually-deployed integration tests rather than for
automated smoke testing.

Another option for automated smoke tests is using locally
available network emulation approaches, like Mininet [13],
CORE [14], or VLSP [15]. Unfortunately, these solutions
focus on prototyping and evaluation of new protocols or net-
work management paradigms rather than on interactions with
production-ready MANO solutions. None of these solutions
offers de-facto standard VIM northbound interfaces for easy
MANO system integration, like our solution does with its
OpenStack-like interfaces. Even if VLSP focuses on MANO-
like experiments in the NFV domain, it lacks the ability to
execute real-world VNF software, which is possible in our
platform that uses lightweight container solutions to run VNFs
in an emulated environment.

III. AN NFV MULTI-POP TEST PLATFORM

The presented platform is based on our previous work
on an emulation-based rapid prototyping platform, called
MeDICINE [6], which allows to emulate realistic multi-PoP
topologies. This work extends the emulated PoPs of the
MeDICINE platform with OpenStack-like northbound APIs
to allow their integration with real-world MANO systems, a
concept that was initially demonstrated in [16]. In this paper,
we go beyond this initial integration and use our extended
emulation platform as part of an automated test pipeline to
speed up tests of complex, real-world MANO systems and
analyze some of their scaling capabilities.

A. Architecture & Design

Our emulation platform consists of three main components.
First, the network emulation part, which is based on Con-
tainernet [17], a Mininet extension [13]. It allows to execute
network functions inside Docker containers that are connected
to arbitrary, user-defined network topologies [6]. Second, the
VIM emulation part, which creates an abstraction layer for
the network emulation and allows a user to define arbitrary
topologies with emulated NFVI PoPs, each representing a
single VIM endpoint. This allows the emulation platform
to emulate realistic, distributed NFVI deployments, e.g., by
adding artificial delays to the links between the PoPs. The
abstraction layer allows to deploy single VNFs, in form of
Docker containers, inside each of the emulated PoPs. The third
part, which is one of the main contributions of this paper, are
additional APIs on top of the emulation platform. These APIs
mimic the original OpenStack APIs for each of the emulated
PoPs and translates OpenStack requests, e.g., openstack
compute start, into requests that are then executed by
the emulation platform, e.g., start a Docker-based VNF in one
of the emulated PoPs.

Figure 1 shows a usage scenario in which our emulation
platform (bottom layer) emulates five interconnected PoPs,
each offering its own OpenStack-like northbound API. This
emulated infrastructure can be controlled by any real-world
MANO system that is able to use OpenStack, e.g., OSM [3]
or SONATA [1] (top layer). The MANO system is used to
instantiate a complex, distributed network service, consisting
of five VNFs, on top of the emulated infrastructure (middle
layer). With this setup, the emulated infrastructure and the
instantiated services look like a real-world multi-PoP NFVI
deployment from the perspective of the MANO system.

Fig. 1: A multi-PoP topology with five emulated, OpenStack-like
NFVIs running on a single physical machine (bottom) and five
Docker-based VNFs running on the emulated infrastructure (middle),
all controlled by a real-world MANO system (top).

B. Emulation-based Smoke Testing

Our emulation platform can be used to rapidly prototype
network services or to experiment with different MANO
solutions on a local machine [6] as shown in Fig. 1. But it
can also be used for automated testing of MANO systems. As
mentioned earlier, integration tests for NFV MANO systems
are complicated to set up and usually require a huge amount of
resources, especially if tests against multi-PoP infrastructures
should be performed. Our solution resolves these issues by
testing the MANO system against the emulated multi-PoP
infrastructure instead of using real, multi-PoP NFVI deploy-
ments. We call this approach emulation-based smoke testing.

Fig. 2 shows the proposed testing setup in which a test
controller, e.g., Jenkins1 or a simple shell script, automatically
sets up our emulation platform with a pre-defined multi-PoP
topology (1). Once this is done, it configures the MANO
system to be tested, e.g., OSM, connects it to the VIM
interfaces of the emulated PoPs, and finally triggers some
test requests against the MANO’s northbound interface, e.g.,
deploying a test service (2). The test controller can then check
if the resulting deployments on the emulated infrastructure are
correct (3). Once all tests are done, the test controller destroys
the emulated infrastructure by stopping the emulation platform

1Jenkins CI: https://jenkins.io
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and can start a new emulation instance, e.g., with a different
multi-PoP topology, for further tests.

Fig. 2: A automated testing setup for a MANO system, e.g., OSM.
The test controller automatically sets up the emulated infrastructure
(multiple PoPs) and tests the MANO system against this fresh
infrastructure.

Using an emulation-based test infrastructure provides some
major benefits when compared to a real multi-PoP OpenStack
deployment. First, the state of the emulated VIM and NFVI
is volatile, which ensures that tests are always executed in a
clean environment, e.g., there are no zombie VMs left in a PoP.
Second, the setup of the emulation platform is much quicker
and the required resources are far less than for a full-featured
VIM, e.g., an OpenStack installation. More importantly, the
emulation platform can be executed on a single machine
(physical or VM), making it a much better fit for existing
test pipelines, e.g., a Jenkins installation. Third, the emulated
infrastructure can be easily scaled to hundreds of PoPs whereas
an automated, interconnected setup of hundreds of OpenStack
installations is very challenging.

To get a first idea about the setup time savings that can
be expected from emulated PoPs, we compared the setup
times of our emulation platform configured to emulate a single
OpenStack-like PoP with the setup times of a single-node
OpenStack DevStack [4] installation, which can be considered
as the most simple way to install a fully-featured OpenStack in
a PoP. We executed both setup procedures 10 times on a single
physical machine with Intel(R) Core(TM) i5-4690 CPU @
3.50 GHz and 16 GB memory and found a mean setup time for
a single emulated PoP of 2.48 s compared to a mean setup time
of 576.42 s for a fresh DevStack installation, which is more
than 232 times slower. This comparison makes sense since we
want to ensure that we always test against a clean environment
and thus a fresh installation of DevStack would be always
required. When considering multi-PoP deployments with a
large number of PoPs, the benefits of our emulation platform
become even more interesting, as discussed in Sec. III-C.

As expected, there are also a couple of limitations when
using emulation-based infrastructure for testing. First, not all
features of the original OpenStack APIs are supported by our
platform. In the current implementation, we focused on the
API endpoints required to let typical MANO solutions, like

OSM, believe that it talks to a real OpenStack installation,
namely the Keystone, Nova, Glance, and Neutron endpoints.
However, new endpoints can easily be added to the emulation
framework. Second, the emulated infrastructure is only able
to deploy VNFs based on containers instead of full-blown
VMs. This limitation is required to keep the the emulation
lightweight. Third, the total available resources of the emulated
infrastructure is limited since it is executed on a single ma-
chine. However, the lightweight emulation design still allows
to emulate hundreds of PoPs as shown in Sec. III-C. These
limitations must be kept in mind when using our platform
in a testing pipeline. In general, our emulation-based smoke
tests should not be considered as a full replacement of a final
integration test against a real multi-PoP environment but as
a much faster, intermediate testing stage that can easily be
executed for each new commit to the MANO system’s code
base—something that is certainly not feasible with existing
setups based on real-world PoP installations.

C. Multi-PoP Scalability Testing

In addition to functionality-focused integration tests be-
tween MANO system and emulated VIMs, our platform also
enables advanced scalability testing with a very large number
of PoPs and/or a high number of deployed services. These
kinds of tests are often infeasible with real-world deployments
since globally distributed test networks with tens, hundreds,
or even thousands of PoPs are usually not available. Further,
tests with hundreds of deployed service instances require a
huge amount of resources which are too expensive to just
use them in an automated test pipeline. Nevertheless, users
of production-ready, carrier-grade MANO systems, like OSM,
expect that these systems scale well with the number of
attached PoPs and the number of deployed services. To solve
this, our emulation-based approach is a perfect fit since it
is able to emulate many PoPs and allows to deploy many
lightweight services on the emulated infrastructure. All this
can be done on a single machine whereas similar DevStack-
based testbed installations would require hundreds of ma-
chines.

To quantify the scaling abilities of our emulation platform,
we did a set of experiments to study its behaviour when
topologies with many PoPs are emulated or when hundreds of
service instances are deployed on the emulated infrastructure.
All experiments have again been executed on a single physical
machine with Intel(R) Core(TM) i5-4690 CPU @ 3.50 GHz
and 16 GB memory and have been repeated 10 times. In the
first experiment, we analyzed the startup and configuration
time of the emulation platform for different numbers of PoPs
and different PoP interconnection patterns. Fig. 3 shows the
setup time breakdown for up to 100 PoPs for three topologies.
It shows how much time is used by which of the four phases of
the emulation setup procedure: Initialization, PoP setup, link
setup, and emulation start. The linear topology connects all
PoPs into a long chain, the star topology connects all PoPs
to a single central PoP, and the mesh topology creates a link
between each pair of PoPs in the emulation. All error bars in
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this paper show standard deviations. The results show that with
linear and star topologies, 100 PoPs can be set up in about
40 s, which is a huge improvement when compared to 100
DevStack installations (see Sec. III-B). In the mesh topology
case, the setup takes longer which is caused by the much
higher number of links that need to be established between
each pair of PoPs accounting for the connection setup and
emulation start phases.
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Fig. 3: Set up time breakdown of artificial topologies

We also analyzed the memory consumption for these three
scenarios (Fig. 4a). The figure shows the total memory used by
the test machine which increases proportionally to the number
of PoPs and links in the topology. In general, not more than
6.6Gb of memory are used, which shows that our emulation
platform can easily be executed in existing test nodes or even
on a developer’s laptop.

Finally, we studied the time required to deploy a large
number of VNFs on top of the emulated infrastructure. We
again used our liner, star, and mesh topologies with 50 PoPs
and deployed up to 256 VNFs on the emulated PoPs (randomly
placed). The used VNFs are based on the default Docker
ubuntu:trusty images and do not run any additional
software, since we are only interested in the bare instantiation
times. Fig. 4b shows that the instantiation times linearly scale
with the number of VNFs and that the instantiation process
takes longer in larger topologies. It can be seen that with our
platform hundreds of VNFs can be quickly deployed on a
single machine which enables fast tests of large deployment
scenarios.
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Fig. 4: Memory usage of topologies with up to 50 PoPs and VNF
instantiation times for up to 256 VNFs.

IV. CASE STUDY: TESTING OPEN SOURCE MANO (OSM)
We picked OSM [3] as it is one of the most prominent

open source MANO solutions and performed a case study to

verify the usefulness of the described approach. The setup
for the study was the same as described in Fig. 2 but we
used a scripted test controller that automatically performs a
series of experiments and collects additional data. Besides the
general functionality of the VIM attach and network service
deployment procedures, we investigated the behaviour of OSM
when it has to interact with large multi-PoP deployments and
a high number of instantiated network services. To be more
realistic, we used a set of real-world topologies with different
sizes that are taken from the Internet Topology Zoo (ITZ)
library [18]. In our case study, each node of a given topology is
turned into a single PoP emulating an OpenStack VIM. These
are test cases which are not covered by existing NFV testbed
installations that usually only use a single PoP installation.

A. OSM in large Multi-PoP Environments

In the first set of experiments, we analyzed the VIM attach
procedure, which is used to connect OSM to a single PoP using
the the osm vim-create <vim-endpoint> command.
Fig. 5 shows the total setup time breakdown to start the
emulated infrastructure and to attach all emulated VIMs to
OSM. The numbers behind the topologies indicate the number
of nodes and links in the topology. The results show that the
time required to attach the VIMs to OSM uses most of the test
environment’s setup time, but the system can still be deployed
and configured in less than 150 s, even if the largest topology
with more than 150 PoPs is used. The figure also shows the
request times for all osm vim-create requests. It indicates
that the attachment procedure becomes slightly slower when
larger topologies are used.
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B. OSM Service Instantiation and Termination

In the second set of experiments, we investigated OSM’s
network service instantiation (osm ns-create) and net-
work service termination (osm ns-delete) operations. To
do so, we used a test network service consisting of two
linked VNFs. We requested OSM to successively create 64
instances of this service, which corresponds to 128 deployed
VNFs, and terminate them later, one after each other. In each
instantiation request, the service was randomly placed on the
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available PoPs of the used topologies (Fig. 6). The results
show that a service instantiation takes between 10 s and 22 s
and a service termination between 5 s and 10 s. The median of
the instantiation times appears to be not affected by the size of
selected topology. The second plot of Fig. 6 indicates that the
request times tend to slow down when more service instances
are already running.
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C. Insights and Lessons Learned

During our case study, we found and reported some in-
teresting issues, for example, a bug that prevents a user to
instantiate a network service on the 101st or higher PoPs. The
reason for this is a hard-coded query limit that causes the
OSM client to only fetch the first 100 PoPs that are attached
to the system. This results in a PoP not found exception when
a network service should be instantiated on, e.g., PoP 101.
We also noticed that for every osm vim-show <pop x>
command the entire VIM list is fetched by the OSM client,
instead of only fetching the information of the requested PoP.
This can result in increasing request delays when OSM is used
with large numbers of attached PoPs.

It is important to note that such issues would not be
discovered by today’s NFV test deployments which usually
do not use more than a handful of PoPs. But the 5G and NFV
community envisions very large multi-PoP scenarios for future
use cases, like IoT. As a result, MANO systems need to be
tested against such large multi-PoP networks. To do this, our
platform provides a flexible and easy to apply test solution that
allows to verify and improve the quality of MANO systems
for use cases of future networks.

V. CONCLUSION

Using emulation-based smoke testing as part of the auto-
mated test and integration pipeline, used by MANO software
projects, contributes to the quality and production readiness
of these complex software systems. The presented approach
enables the pre-validation of future-readiness of MANO sys-
tems for upcoming, large-scale 5G scenarios with hundreds or
thousands of PoPs. This is not possible with today’s lab-scale
NFV testbed installations.

The presented platform was developed as part of the Eu-
ropean H2020 project SONATA [1] and was recently adopted

by the ETSI OSM project [3], where it is maintained under
the name vim-emu as part of the DevOps module development
group. An outstanding example for the sustainability of Eu-
ropean H2020 project results. It is open source and publicly
available23 under Apache 2.0 license.
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