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Abstract—Far-field multi-speaker automatic speech recognition
(ASR) has drawn increasing attention in recent years. Most
existing methods feature a signal processing frontend and an
ASR backend. In realistic scenarios, these modules are usually
trained separately or progressively, which suffers from either
inter-module mismatch or a complicated training process. In this
paper, we propose an end-to-end multi-channel model that jointly
optimizes the speech enhancement (including speech dereverbera-
tion, denoising, and separation) frontend and the ASR backend as
a single system. To the best of our knowledge, this is the first work
that proposes to optimize dereverberation, beamforming, and
multi-speaker ASR in a fully end-to-end manner. The frontend
module consists of a weighted prediction error (WPE) based
submodule for dereverberation and a neural beamformer for
denoising and speech separation. For the backend, we adopt a
widely used end-to-end (E2E) ASR architecture. It is worth noting
that the entire model is differentiable and can be optimized
in a fully end-to-end manner using only the ASR criterion,
without the need of parallel signal-level labels. We evaluate the
proposed model on several multi-speaker benchmark datasets,
and experimental results show that the fully E2E ASR model can
achieve competitive performance on both noisy and reverberant
conditions, with over 30% relative word error rate (WER)
reduction over the single-channel baseline systems.

Index Terms—End-to-end, dereverberation, beamforming,
speech separation, multi-talker speech recognition

I. INTRODUCTION

In recent years, with the rapid development of deep learning,
much progress has been achieved in single-speaker automatic
speech recognition (ASR), even with performance on a par
with humans [1], [2]. However, there still remains a large per-
formance gap between single-speaker and multi-speaker condi-
tions [3], [4]. Recently, more and more researchers have drawn
their interest in tackling the multi-speaker speech recognition
problem in the so-called cocktail party scenario [5], where
multiple sound sources coexist with the presence of noise and
reverberation. It is much more challenging than in clean and
anechoic conditions, and the ASR performance on the multi-
speaker overlapped speech is still far from satisfactory.
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While existing multi-speaker ASR methods can be cate-
gorized into single-channel and multi-channel, we focus on
the latter one in this paper because additional spatial in-
formation can be leveraged to boost the performance. One
straightforward way is to directly extend the single-channel
approaches [3], [6]–[8] by incorporating the spatial feature
into the original architecture [9], [10]. Another widely adopted
method is known as the neural beamformer [11], [12], which
integrates deep learning based approaches into the conven-
tional beamforming [13] module. The neural beamformer is
often favored for its good compatibility with the downstream
ASR task, as it explicitly constrains the distortion of the
desired signal and thus enjoys better generalizability in unseen
conditions. The neural beamformer and ASR models are
usually trained with separate losses [14] or in a progressive
manner [15] with warm-start.

More recently, there has been increasing interest in end-
to-end (E2E) training of neural beamformer based frontend
and ASR backend modules, which solely uses the final ASR
loss to optimize the entire system. This type of training
scheme can naturally work around the limitations of the afore-
mentioned separate or progressive training schemes, where
parallel clean reference signals are required in the training
stage. However, existing research on E2E training of frontend
and backend modules either only focuses on single-speaker
scenarios [16]–[20] or mainly considers anechoic and noise-
free conditions [21], [22]. Thus, it is still unclear whether the
fully E2E training is feasible in more realistic environments
such as the cocktail party scenario where background noise,
reverberation, and interference speakers are present.

In this paper, we aim to fill this gap and provide more
insights into the practical issues when applying E2E training in
noisy and reverberant multi-speaker conditions. We extend the
prior study on this problem and investigate the effectiveness
of the proposed methods in various conditions. The main
novelties of this paper are summarized below:
(1) This is the first work that proposes an E2E dereverbera-

tion, beamforming, and multi-speaker ASR model, which
can be trained in a fully E2E manner, with only the ASR
criterion.

(2) We analyze the numerical instability issue in the frontend,
which often impedes the success of E2E training of the
proposed model. We propose to apply several techniques
to greatly improve the numerical stability and system
performance.

(3) We investigate the frequency permutation problem under
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the E2E framework, and propose a 1-D mask approach
and a frequency permutation adjustment strategy to sig-
nificantly mitigate this problem.

(4) We present an extensive evaluation of the proposed
model on several multi-speaker benchmark datasets, in-
cluding spatialized WSJ0-2mix [23], SMS-WSJ [24], and
WHAMR! [25].

(5) We propose several strategies to facilitate E2E training:
multi-condition training, channel sampling, and approxi-
mated truncated back-propagation through time.

(6) We compare three different training schemes of the pro-
posed model, i.e., fully E2E training, multi-task learning,
and independent training of different modules.

This paper is an extension of our previous work [26],
[27], which proposes and improves the E2E model for joint
dereverberation, beamforming, and speech recognition in the
multi-speaker scenario. In this paper, we first summarize the
above efforts in a unified model with a tight and consistent
formulation. Then several new training strategies are proposed
to facilitate E2E training of the proposed model. In addition,
more detailed experimental results and analyses are given. We
extend the evaluation in the previous work [26], [27] from
noise-free conditions to more realistic scenarios with back-
ground noise, and conduct extensive experiments on several
multi-speaker benchmark datasets. Furthermore, thanks to the
flexibility of the proposed model that allows using different
training schemes, we compare the proposed fully E2E training
scheme with other commonly adopted training schemes. The
results on several multi-speaker benchmark datasets show
that our proposed model can be easily adapted to different
scenarios with a competitive performance.

II. SIGNAL MODEL AND PROBLEM DEFINITION

In this paper, we focus on the speech recognition problem in
the multi-channel multi-speaker scenario. In noisy conditions,
we assume the observed signal y ∈ RC is composed of speech
signals xj from J different speakers and the background noise
n. C is the number of channels, and the superscript j denotes
the j-th speaker. In the short-time Fourier transform (STFT)
domain, the signal model is written as:

Yt,f =

J∑
j=1

Xj
t,f + Nt,f =

J∑
j=1

(
X(d),j
t,f + X(r),j

t,f

)
+Nt,f , (1)

where the subscripts t and f denote the indices of
time frames and frequency bins, respectively. Y∈ CT×F×C ,
X∈ CT×F×C , and N∈ CT×F×C represent the spectrum of
the observed signal, speech signal, and background noise,
respectively. In reverberant conditions, the speech component
Xj
t,f∈ CC is further decomposed into an “early” part X(d),j

t,f

and a “late” part X(r),j
t,f , as shown in Eq. (1). The “early”

signal X(d),j
t,f includes the direct path signal and early-arriving

reflection of the j-th speaker, and the “late” signal X(r),j
t,f

denotes the late reverberation. Assume the room impulse
response (RIR) is longer than the STFT analysis window, the
“early” and “late” signals are often defined as follows [28]:

X(d),j
t,f =

∆−1∑
τ=0

ajτ,fS
j
t−τ,f ≈ vjfS

j
t,f ∈ CC , (2)

X(r),j
t,f =

La∑
τ=∆

ajτ,fS
j
t−τ,f ∈ CC , (3)

where ajf ∈ CLa×C is the convolutional acoustic transfer
function (ATF) from the j-th speaker to all microphones,
and the subscript τ denotes taking the τ -th frame from each
ATF whose total length is La. ∆ > 0 is the frame index in
ATF from which on it is regarded to contribute to the late
reverberation. Sjt,f ∈ C denotes the clean source signal of the
j-th speaker. In Eq. (2), the “early” signal is often simplified
as the product of the source signal Sjt,f and the corresponding
steering vector vjf ∈ CC , based on the multiplicative transfer
function approximation [29]. In the following discussion, we
normalize the steering vector w.r.t. the reference channel, and
refer to it as the relative transfer function (RTF).

Given the above signal model, the goal of multi-talker
dereverberation and separation is to estimate the “early”
signal X(d),j

t,f of each speaker j, while eliminating the late
reverberation X(r),j

t,f , interference speakers
∑
i6=j Xi

t,f , and
background noise Nt,f . Finally, the goal of multi-talker speech
recognition is to generate the transcript corresponding to each
speaker from the frontend output.

III. E2E DEREVERBERATION, BEAMFORMING, AND
MULTI-TALKER ASR

In this section, we first introduce the proposed differen-
tiable E2E multi-channel model for joint speech enhancement
(including speech dereverberation, denoising, and separation)
and multi-speaker speech recognition. Then, we analyze the
well-known numerical instability issue in the frontend pro-
cessing and propose several techniques to alleviate this is-
sue. Moreover, we revisit the frequency permutation problem
under the E2E framework and propose a 1-D voice activity
detection (VAD)-like mask as well as a frequency permutation
adjustment strategy as a remedy. Moreover, we propose several
strategies to facilitate E2E training. Finally, the relationship
between different training schemes is discussed.

A. The proposed E2E multi-channel multi-talker model

Fig. 1 shows the overview of the proposed model. It is
mainly composed of two cascaded modules: (1) the speech en-
hancement frontend for dereverberation, denoising, and speech
separation; (2) the speech recognition backend for multi-talker
ASR. The multi-channel input signal Y is first processed by
the frontend module to generate separated signals {X̂j}Jj=1 for
all speakers j ∈ {1, 2, · · · , J}. Each separated stream is then
fed into the multi-talker ASR backend separately to obtain the
respective transcript. The feature extraction block bridges the
two modules and makes the entire model fully differentiable,
which enables E2E training of the whole system.

B. Speech enhancement frontend

The speech enhancement (SE) frontend consists of two
main submodules: dereverberation and separation. Both sub-
modules are based on the conventional signal processing
approaches [13], [28], [30], which have been shown to yield
low-distortion outputs [31] that are beneficial to both percep-
tual listening quality [32], [33] and the downstream speech
recognition task [11], [12], [33]–[37]. More specifically, the
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Fig. 1: Proposed E2E multi-channel model for joint dereverberation, beamforming, and multi-talker speech recognition.
Learnable modules are depicted as , while non-learnable modules are depicted as . The annotated variables in
the figure are: 1© estimated masks {Mj

wpe}Jj=1 for WPE. 2© estimated target speech masks {Mj
bf-S}Jj=1 and noise masks

{Mj
bf-N}Jj=1 for beamforming. 3© dereverberated signals {Ŷ(d),j}Jj=1 with respect to each speaker j. 4© separated signals

{X̂j}Jj=1 after beamforming. 5© extracted features {Oj}Jj=1 for speech recognition. 6© encoder representations {Hj}Jj=1.
7©CTC losses{Ljctc}Jj=1 for all possible permutations of the separated streams and labels. 8© encoder representations {Ĥj}Jj=1

rearranged according to the best permutation obtained from the permutation solver. 9© attention-decoder losses {Ljatt}Jj=1.

dereverberation submodule is based on the weighted prediction
error (WPE) algorithm [30], and the separation submodule
is based on the beamforming technique [11]–[13], includ-
ing minimum variance distortionless response (MVDR) [38],
minimum power distortionless response (MPDR) [39] beam-
former and the recently proposed convolutional beamformers
(wMPDR and WPD) [40]–[44]. Both submodules rely on a
neural network, MaskNet, to estimate masks for calculating
the required statistics, e.g., the correlation matrix and vec-
tor for WPE and the cross-channel power spectral density
(PSD) matrices for beamforming. The former is previously
known as DNN-WPE [45] in the context of single-speaker
speech enhancement, and the latter is usually called a neural
beamformer [11], [12]. For the cascade order of the two
submodules, we opt to perform WPE-based dereverberation
before beamforming, which has proven to be effective in
various prior works [41], [46].

The detailed speech enhancement procedure (left part in
Fig. 1) is described as follows. The input signal Y is first fed
into MaskNet to obtain the masks for frontend processing1:

{Mj
wpe,M

j
bf-S,M

j
bf-N}

J
j=1 = MaskNet(Y) , (4)

where Mj
wpe ∈ RT×F×C denotes the corresponding mask of

the j-th speaker for WPE. Mj
bf-S ∈ RT×F×C and Mj

bf-N ∈
RT×F×C denote the target speech and noise masks w.r.t.
the j-th speaker respectively for beamforming. Note that all
masks used in this paper are magnitude-only masks, and
the investigation of complex-valued masks is left for future
work. F is the total number of frequency bins. It is worth
noting that in the implementation of MaskNet, the masks
are estimated for each input channel independently, which
naturally allows processing a varying number of input channels
with different array geometries. After mask estimation, the
single-target WPE filter ˆ̃Wj

f∈ CCK×C is estimated separately
for each speaker j following Eqs. (6)–(8) in [47], while the

1Another possible design is using two separate DNNs for WPE and
beamforming mask estimation, respectively, which has been discussed in our
previous work [27]. Here, we followed the single MaskNet design to simplify
the discussion.

time-varying variance for each speaker j is replaced with

λjt,f =
1

C

C∑
c=1

M j
wpe,t,f,c∑T

τ=1M
j
wpe,τ,f,c

|Yt,f,c|2 ∈ R , (5)

where subscripts t, f , c denote taking the element of the t-
th frame, f -th frequency bin, and c-th channel in a variable.
The summation in the denominator normalizes the WPE mask
along the time frame dimension. Note that different from the
iterative process usually used in conventional WPE, the mask-
based DNN-WPE can be applied with a single pass given the
accurate mask estimation from MaskNet. The dereverberated
signal Ŷ(d),j

t,f for each speaker j is then obtained:

Ŷ(d),j
t,f = Yt,f −

(
ˆ̃Wj
f

)H
Ỹt−∆,f ∈ CC , (6)

where (̃·) denotes the stacked representations of a
variable, e.g., Ỹt−∆,f =

[
YT
t−∆,f ,Y

T
t−(∆+1),f , · · · ,

YT
t−(K+∆−1),f

]T ∈ CCK .
Meanwhile, the beamforming filter of various beamformer

types can be also estimated for each speaker j based on the
following unified formulas:

wX ,jf =



(
ΦX ,j1,f

)−1
ΦX ,j2,f

Trace
[(

ΦX ,j1,f

)−1
ΦX ,j2,f

]uX , [w/o RTF] (7)

(
ΦX ,j1,f

)−1
vX ,jf(

vX ,jf

)H(
ΦX ,j1,f

)−1
vX ,jf

, [w/ RTF] (8)

where ΦX ,j1,f and ΦX ,j2,f are different covariance matrices
defined by the specific beamformer type X ∈ {MVDR,
MPDR, wMPDR, WPD2}. (·)∗ denotes complex conjugate.
uX is a one-hot reference channel selection vector. vX ,jf is
the RTF vector. The beamformer filter wX ,jf for a specific
beamformer type X can be formulated either dependent on
the RTF [Eq. (8)] or based on the reference channel selection
[Eq. (7)]. The definition of the beamformer-specific variables
in Eqs. (7)–(8) is summarized in Table I.

More specifically, Φj
S,f∈ CC×C and Φj

N,f∈ CC×C in Ta-
ble I are the speech and noise PSD matrices of the j-th source,

2Note that the WPE submodule in Fig. 1 is unused for the WPD beam-
former, as it is implicitly included inside the beamformer design.
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TABLE I: Definition of variables in Eqs.(7)–(19) for different beamformer types.

Beamformer Type X ΦX ,j1,f ΦX ,j2,f uX vX ,jf ŶX ,jt,f

MVDR Φj
N,f : Eq. (10)

Φj
S,f : Eq. (9) u vjf : Eqs. (13)–(16) Ŷ(d),j

t,f : Eq. (6)MPDR ΦO,f =(1/T )
∑
t

[
Yt,fY

H
t,f

]
wMPDR Φj

d,f : Eq. (11)

WPD R̄j
f : Eq. (17) Φ̄j

S,f : Eq. (18) ū =
[
uT,0, · · · ,0

]T
v̄jf =

[(
vjf
)T
,0, · · · ,0

]T
Ȳt,f =

[
YT
t,f , Ỹ

T
t−∆,f

]T

respectively:

Φj
S,f =

∑T
t=1

(∑C
c=1M

j
bf-S,t,f,c

)
Ŷ(d),j
t,f

(
Ŷ(d),j
t,f

)H∑T
t=1

∑C
c=1M

j
bf-S,t,f,c

, (9)

Φj
N,f =

∑T
t=1

(∑C
c=1M

j
bf-N,t,f,c

)
Ŷ(d),j
t,f

(
Ŷ(d),j
t,f

)H∑T
t=1

∑C
c=1M

j
bf-N,t,f,c

. (10)

Φj
d,f in the wMPDR beamformer is the power-normalized

PSD matrix, which can be estimated based on Eqs. (5)–(6):

Φj
d,f =

1

T

T∑
t=1

Ŷ(d),j
t,f

(
Ŷ(d),j
t,f

)H
λjt,f

∈ CC×C . (11)

To estimate the RTF vector vjf , we adopt the covariance
whitening based RTF estimation approach [48]:

v̂jf = Φj
N,f MaxEigVec

[(
Φj

N,f

)−1
Φj

S,f

]
∈ CC , (12)

where MaxEigVec[·] calculates the principal eigenvector of a
complex matrix. Based on our preliminary experiments [26],
[27], we resort to the power iteration method [49], which
has proven to have high convergence speed while providing
accurate RTF estimation [50], for approximating the eigen-
value decomposition result. Letting Dj

f =
(
Φj

N,f

)−1
Φj

S,f , the
detailed procedure can be formulated as follows:

Step 1) initialize: v̂jf ← u , (13)

Step 2) iterate for p times: v̂jf ← Dj
f v̂

j
f , (14)

Step 3) estimate ATF3: v̂jf ← Φj
N,f v̂

j
f , (15)

Step 4) calculate RTF: v̂jf ← v̂jf/v̂
(b),j
f , (16)

where Steps 1), 2) correspond to the power iteration algorithm
for approximating the MaxEigVec[·] operation in Eq. (12).
The RTF v̂jf is initialized in Step 1) as a one-hot vector u ∈
RC with the b-th element being 1. p is the number of iterations.

For the weighted power minimization distortionless re-
sponse (WPD) beamformer [26], [40], R̄j

f and Φ̄S,f in Table I
are respectively the stacked power-normalized PSD matrix and
zero-padded speech PSD matrix:

R̄j
f =

1

T

T∑
t=1

Ȳt,fȲ
H
t,f

λjt,f
∈ CC(K+1)×C(K+1) , (17)

Φ̄j
S,f =

[
Φj

S,f 0

0 0

]
∈ CC(K+1)×C(K+1) . (18)

The final enhanced signal X̂j
t,f is obtained as follows:

X̂j
t,f =

(
wX ,jf

)H
ŶX ,jt,f ∈ C . (19)

The above process in the frontend is fully differentiable
while only involving elementary operations such as matrix

3The estimated ATF in this step has the scale ambiguity problem, which is
later solved in Step 4) by normalizing w.r.t. the reference channel.

multiplication and inverse. It can be thus easily implemented
in various deep learning frameworks as long as the gradient
support for these elementary operations is available.

C. Speech recognition backend

Since the frontend output {X̂j}Jj=1 is the time-frequency
spectrum, we can directly calculate ASR features based on it:

Oj = MVN-LMF
(
|X̂j |

)
∈ RT×D , (20)

where MVN-LMF(·) denotes calculating the log Mel-
filterbank coefficients with mean and variance normalization.
D is the feature dimension.

We adopt the joint connectionist temporal classifica-
tion (CTC) / attention-based encoder-decoder [51] as the ASR
backend. As shown in Fig. 1, it consists of three main
submodules: encoder, CTC, and decoder. All submodules are
shared when processing different separated streams. Firstly, the
encoder transforms the speech feature Oj = [oj1, · · · ,o

j
T ]T

of each speaker j into a high-level representation Hj =
[hj1, · · · ,h

j
T ′ ]T ∈ RT ′×D (T ′ ≤ T ) with subsampling along

the time frame dimension. Then, each representation is fed
into the CTC submodule individually to calculate the pair-wise
loss between the CTC predictions and labels. Note that when
multiple speakers are present (J ≥ 2), the well-known label
ambiguity problem [52], [53] arises. Here, we adopt the widely
used permutation invariant training (PIT) [53], [54] approach
as the permutation solver. That is, the final permutation π̂
of the separated streams is determined by enumerating all
possible permutations and finding the optimal permutation that
leads to the smallest CTC loss of all speakers:

π̂ = arg min
π∈PJ

J∑
j=1

Lossctc

(
CTC

(
Hπ(j)

)
,Rj

)
, (21)

where PJ is the set of all possible permutations on {1, · · · , J},
and π(j) is the permutation for the j-th separated stream.
Rj = [rj1, · · · , r

j
L]T is the reference token sequence for the

j-th speaker, and L is the sequence length. The encoder
representations are then rearranged into Ĥj = Hπ̂(j) based
on the best permutation π̂, and fed into the decoder:

cjn = Attention
(
ejn−1, Ĥ

j
)
, (22)

ejn = Update(ejn−1, c
j
n−1, r̂

j
n−1) , (23)

r̂jn ∼ Decoder
(
cjn, r̂

j
n−1

)
, (24)

where r̂jn is the generated output token at the n-th decoding
step, with R̂j = [r̂j1, · · · , r̂

j
L]T the final decoding output.

cjn denotes the context vector obtained from the attention
mechanism. ejn is the decoder hidden state. During training,
we adopt the teacher-forcing strategy by replacing the history
information r̂jn−1 in Eqs. (23) and (24) with the corresponding
reference label rjn−1.
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The final loss function Le2e for optimizing the entire system
is defined as the combination of two ASR objective functions:
Le2e = αLctc + (1− α)Latt , (25)

Lctc =

J∑
j=1

Ljctc =

J∑
j=1

Lossctc

(
CTC

(
Ĥj
)
,Rj

)
, (26)

Latt =

J∑
j=1

Ljatt =

J∑
j=1

Lossatt

(
R̂j ,Rj

)
, (27)

where 0 ≤ α ≤ 1 is the interpolation factor. While both
frontend and ASR backend are optimized solely based on the
above ASR loss, it can be shown later in Section V that this
fully E2E training scheme can effectively achieve both decent
SE performance and strong ASR performance.

D. Attacking the numerical instability issue
In the frontend module, the numerical instability issue [55]

has been a well-known problem, which often leads to degraded
performance or even failure in speech enhancement. This
problem is especially important in the proposed fully E2E
approach. Since no explicit signal-level supervision is provided
to guide the training of the frontend module, the numerical
instability issue would be a major obstacle that prevents the
entire system from being well-trained.

The numerical problem in WPE and beamforming gener-
ally originates from the complex operations involved in both
algorithms, which can be sensitive to the data involved in the
operation. For example, the complex matrix inverse is a typical
cause of instability, which is prone to large numerical errors
when the processed matrix is ill-conditioned or even singular.
Such behaviors are particularly undesirable in the joint training
with ASR [19], [56], because they can easily cause not-a-
number (NaN) gradients in the backward process, which fail
to backpropagate correctly and even lead to poor convergence
of the entire model [26]. Therefore, in order to improve the
numerical stability, we propose to apply the following four
complementary approaches to both WPE and beamforming
submodules:

(1) Diagonal loading: Diagonal loading [57], [58] is one of
the most widely used regularization techniques in conventional
beamforming for improving the robustness and numerical
stability. It is proven in Chapter 6.6.4 of [39] that diagonally
loading the PSD matrix can be regarded as enforcing a
quadratic constraint on the MVDR / MPDR beamformer that
the norm of the beamformer filter

∥∥wX ,jf

∥∥2
is bounded by a

constant, which improves the robustness against array pertur-
bations. While there exist various approaches to determining
the diagonal loading for specific beamformers [59], [60], we
found the following simple strategy is sufficiently working:

Φ′ = Φ + εTrace(Φ)I , (28)
where Φ is any Hermitian matrix to be diagonally loaded. I
is an identity matrix with the same dimension as Φ. ε is a
tiny constant that controls the relative loading level. Note that
too large ε will diminish the ability of beamforming to null
the weak interference with power less than the loading level.
The trace of Φ is multiplied in the loading term to make it
adaptive to the signal level for better stabilization.

(2) Mask flooring: As described in Section III-B, in our
proposed frontend, the matrix inverse operation is applied to
a cross-channel PSD matrix such as Eqs. (7)–(8), which is
often obtained based on the estimated masks as in Eqs. (9)–
(10). Therefore, the masks play an important role in improving
the numerical stability in the frontend. In our preliminary
experiments, it is noticed that the MaskNet can sometimes
generate sparse or spiky mask values along certain frequency
bins, especially in the early training stage. That means, the
MaskNet assigns large weights (close to 1) to only a few
most relevant time-frequency bins, and tiny weights (close to
0) to the remaining ones. Taking Eq. (10) as an example,
the resulting PSD matrix Φj

N,f , which can be approximated
as the weighted sum of d rank-1 matrices with d being
a small digit, is likely to be ill-conditioned. Consequently,
the WPE / beamforming operation in those frequency bins
becomes unstable and may fail frequently. In order to alleviate
this problem, we propose to apply a mask flooring operation
to the estimated masks from Eq. (4):

M̂ = Maximum(M, ξ) , (29)

where M ∈ {Mj
wpe,M

j
bf-S,M

j
bf-N}, and M̂ is the floored

mask. ξ is a constant flooring factor. The operator
Maximum(·, ·) finds the element-wise maximum between two
inputs. As a result, more snapshots of the observation are used
(with nonzero weights) in the PSD matrix estimation. The
intuition behind this operation is that enough mask values have
to be nonzero to overwrite the effect of the constant flooring
value. Therefore, MaskNet is prevented from learning very
sparse or spiky masks, and the stability is potentially improved.

(3) More stable complex matrix operation: There is a
rich literature [61]–[63] in approximating the complex matrix
inverse using only basic matrix operations. In our initial
work [26], we adopted the algorithm in Section 4.3 of [62],
which tries to find a factor to construct an invertible real matrix
based on the original complex matrix, thus converting the
complex matrix inversion into some real matrix operations.
However, the success of this algorithm highly depends on the
selection of the factor, which can fail in a limited number
of trials. Here, a more stable matrix inverse algorithm [61]
is implemented, which converts the complex matrix inverse
Φ−1 ∈ Cm×m into the inverse of a real matrix Z ∈ R2m×2m.
By replacing each complex matrix with the sum of its real and
imaginary parts, the following equation

ΦΦ−1 = I (30)
becomes(
R{Φ}+ iI{Φ}

)(
R{Φ−1}+ iI{Φ−1}

)
=I + i0 , (31)

where R{·} and I{·} denote the real and imaginary parts of
a complex matrix. Thus, the solution to the above equation is
equivalent to that of the following system[

R{Φ} −I{Φ}
I{Φ} R{Φ}

]
︸ ︷︷ ︸

Z

[
R{Φ−1}
I{Φ−1}

]
=

[
I
0

]
. (32)

Consequently, we can easily derive Φ−1 as follows:
Φ−1 = Z−1[0 : m, 0 : m] + iZ−1[m : 2m, 0 : m] , (33)

where 0 : m and m : 2m in each square bracket denote
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Fig. 2: Frequency permutation problem in the output of the
E2E trained frontend. This sample is randomly selected from
the evaluation set of spatialized WSJ1-2mix [21], where the
energy ratio between speaker 1 and speaker 2 is -4 dB. (a)
and (b) correspond to the separated signals of T-F mask-based
beamforming. (c) and (d) correspond to VAD-like 1-D mask-
based beamforming. (e) and (f) are the clean speech.

taking the first m rows / columns and the last m rows / columns
respectively from the 2m×2m matrix. i is the imaginary unit.
While we can directly calculate each complex matrix inverse
term in equations in Section III-B using Eq. (33), it is often
unnecessary to perform such explicit computation when it is
immediately multiplied with another matrix or vector. That is,
when we have the form Φ−1A, where A is either a vector
or a matrix, its result B can be viewed as the solution to the
system(s) of linear equations with complex coefficients:

ΦB = A . (34)
It can be similarly converted into a linear equation system with
real coefficients:[

R{Φ} −I{Φ}
I{Φ} R{Φ}

] [
R{B}
I{B}

]
=

[
R{A}
I{A}

]
. (35)

There have been well-established implementations for solving
the above real systems of linear equations in the mainstream
deep learning toolkits such as torch.linalg.solve in
PyTorch and tf.linalg.solve in TensorFlow. Therefore,
we further replace operations of this form in all related
equations in Section III-B with the solve operation, which
can further improve the numerical accuracy and stability.

(4) Double precision: Another major cause of the nu-
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Fig. 3: The log Mel-filterbank features of the separated signals
in Fig. 2. (a) and (b) correspond to the separated signals of T-F
mask-based beamforming. (c) and (d) correspond to VAD-like
1-D mask-based beamforming. (e) and (f) are the features of
the clean speech.

merical stability issue is the finite precision of the floating-
point numbers used in the frontend processing. Our pro-
posed E2E system by default operates with single-precision
data / parameters, which is prone to overflow and underflow
in some complex operations. If we increase the precision
to double-precision in the frontend processing, the potential
numerical error can be reduced in complex operations such as
the inverse of a close-to-singular matrix. The overall stability
and performance in the frontend processing can be thus
improved. Similar effects are also observed in Section 4.4
in [35] when jointly optimizing WPE and acoustic models.

E. Frequency permutation problem
The neural beamformer has shown its capability of sepa-

rating different speakers when trained with signal-level su-
pervision [64], [65]. However, it is still vulnerable to the
well-known frequency permutation problem in the proposed
E2E training framework, as shown in Fig. 2. In the separated
spectrograms (a) and (b), we can observe several incongruous
horizontal patterns such as those around frequencies 4.7 kHz
and 6 kHz. The separation results in these frequency bins are
apparently misassigned to the wrong speaker according to the
clean spectrograms in (e) and (f).

In conventional blind source separation approaches [66],
[67], the frequency permutation problem arises due to the sep-
arate and independent estimation of the demixing / separation
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matrix at each frequency bin. In our case, the beamformer
filter for speech separation is also estimated separately for each
frequency bin, and the separated spectra are converted into log
Mel-filterbank features before the ASR module. Since the fre-
quency information is averaged within each triangle window,
which is relatively longer in high frequency bins, the final ASR
loss may not well reflect the separation quality of individual
frequency bins in the window. To better illustrate this issue,
we visualize the extracted log Mel-filterbank features of the
separated signals and clean signals in Fig. 3. As we can see,
the frequency permutation problem that is clearly shown in
Fig. 2 (a) and (b) has been greatly smoothed in the filterbank
feature. This largely reduces the impact of permutation errors
in local frequency bins, and can be suboptimal for speech
enhancement in the frontend when it is the only supervision
for training.

In order to alleviate this problem, we propose to replace the
time-frequency 2-D masks in MaskNet with voice activity
detection (VAD) like 1-D masks [56], [68]. That is, only a
single mask value is estimated for each time frame, which
is then broadcast to all frequency bins in that frame. Since
the same mask value is now shared among all frequencies,
the frequency permutation problem can be naturally mitigated,
as shown in Fig. 2 (c) and (d). Note that the frequency
resolution of the estimated masks is sacrificed, thus there
is a tradeoff between mitigating the frequency permutation
problem and preserving the fine-grained masks for suppressing
frequency-specific noise. The overall performance of applying
the VAD-like 1-D masks in different scenarios is evaluated in
Section V-C.

On the other hand, in some practical scenarios, the mi-
crophone array geometry may be known during inference,
i.e., the relative positions of all microphones are available.
In such cases, it is possible to mitigate the frequency per-
mutation problem in the T-F mask-based beamformer via
direction-of-arrival (DOA) estimation. Here, we propose a
simple frequency permutation adjustment strategy based on
DOA consistency, which does not rely on the ground-truth
DOA information of each speaker. First, a magnitude mask
Mj

doa is calculated based on each separated signal X̂j after
beamforming:

Mj
doa =

|X̂j |
|Yb|

∈ RT×F , (36)

where Yb ∈ CT×F denotes the input signal at the reference
channel b. Second, the DOA for each separated signal is
estimated, denoted as θ̂j . Here, we adopt the widely used
steered response power phase transform (SRP-PHAT) [69]
method for DOA estimation, and enhance it with the estimated
time-frequency (T-F) mask Mj

doa as in [70]:

θ̂j = SRP-PHAT(Y,Mj
doa) . (37)

Finally, we repeat the DOA estimation process for each
single frequency bin f , and obtain the frequency-dependent
DOA estimate θ̂jf . In each frequency bin f , we calculate the
difference between the frequency-dependent DOA estimates
for all speakers and the corresponding overall DOA estimates

θ̂1, · · · , θ̂J , which is similar to the PIT process in Eq. (21):

π̂doa,f = arg min
π∈PJ

J∑
j=1

∣∣∣AngDiff
(
θ̂
π(j)
f , θ̂j

)∣∣∣ , (38)

where π̂doa,f is the best permutation of separated signals at
the f -th frequency bin that minimizes the overall angular
difference. The angular difference function is defined as
AngDiff(a, b) = (a − b + 180◦) mod 360◦ − 180◦. We can
then adjust the frequency permutation according to π̂doa,f for
each frequency bin. Additionally, we can set a threshold β to
restrict the condition for frequency permutation adjustments.
That is, the frequency permutation will be adjusted only when

J∑
j=1

∣∣AngDiff(θ̂
π̂doa,f (j)
f , θ̂j)

∣∣ < β . (39)

This is based on the consideration that a very large angular
difference usually indicates poor speech separation perfor-
mance. In this case, it might be better to stick to the default
permutation for the current frequency bin.

F. Strategies for E2E training

In E2E training of the proposed model, there are two main
practical issues that need to be resolved. The first is the
poor convergence of the model due to lack of intermediate
supervision on the frontend module. The second is the massive
memory consumption when jointly optimizing both frontend
and backend modules. In this section, we propose to solve
these problems respectively with the strategies below.

(1) multi-condition training In our prior work [21], [22],
it is empirically found difficult to perform straightforward
E2E training of frontend and backend modules from scratch.
The problem originates from the lack of regularization on
individual modules in E2E training. Since the ASR module
only observes the separated signals from the frontend, and
the frontend is optimized according to the final ASR loss, it is
likely for the frontend to learn feature-level enhancement (e.g.,
Fbank enhancement) instead of signal-level enhancement. Al-
though it is also acceptable if we only care about the ASR
performance, such “blind” optimization can easily run into
the numerical instability issues introduced in Section III-D
and thus leads to poor convergence. Therefore, it is important
to regularize the E2E optimization process.
In this paper, we adopt a multi-condition training scheme as
in [21], [22] to enforce regularization on the ASR backend.
More specifically, in addition to the multi-channel multi-talker
training data, we further include auxiliary single-speaker clean
data during training. The former is fed into both frontend and
backend modules, while the latter is only used to train the ASR
backend. As a result, the ASR module learns to obtain good
performance on clean data, which in turn rectifies the frontend
to generate cleaner signals even without explicit supervision.

(2) memory-efficient training strategies Another chal-
lenge in the fully E2E training is the large GPU memory con-
sumption. Speech enhancement models are generally trained
with chunked input, which can have much smaller length than
the original data to reduce the memory cost. On the other
hand, E2E ASR models need to be trained with full-length
utterances to match the corresponding transcript. Therefore,
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Algorithm 1: Approximated truncated back-
propagation through time for E2E training

1 TBPTT (Y, Tbp)
inputs : multi-channel input signal Y;

predefined chunk length for truncation Tbp;
output: separated signals with a partially retained

backward graph {X̂j}Jj=1;
2 Feed Y into the frontend w/o backward graph:

{X̂j
no_grad}Jj=1 ← StopGradient (Frontend(Y));

3 Randomly cut a chunk of length Tbp from Y:
Ychunk ← Truncate(Y, Tbp);

4 Feed Ychunk into the frontend w/ backward graph:
{X̂j

chunk}Jj=1 ← Frontend(Ychunk);
5 Obtain {X̂j}Jj=1 by overwriting the corresponding

part in {X̂j
no_grad}Jj=1 with {X̂j

chunk}Jj=1;
6 return {X̂j}Jj=1;

the training data for the proposed E2E model also needs to
be full-length utterances, which can cause enormous memory
costs either when the input utterance is long or the number
of input channels is large. To work around this problem, we
propose two alternative training strategies for the E2E model:

a) Channel sampling. If there are many input channels
(C > 2) in the training data, we will randomly select
C ′ channels from the original input to construct a new
C ′-channel input for training. Here, C ′ is a relative small
number compared to C, so that the memory consump-
tion is largely reduced. This strategy fits well with the
MaskNet introduced in Section III-B, which estimates
masks for each channel independently. Thus, it naturally
allows us to use different numbers of input channels
during training and evaluation.

b) Approximated truncated back-propagation through
time (TBPTT). The approximated truncated back-
propagation through time strategy has shown its
effectiveness in the joint training of time-domain speech
enhancement and ASR models [8], [33]. In this paper,
we also verify its efficacy in the context of fully E2E
training. The detailed process of the approximated
TBPTT strategy is summarized in Algorithm 1. The
resulting frontend output only retains the backward
graph for a small chunk in the full-length utterance,
thus greatly reducing the memory consumption. The
full-length output is then fed into the backend module
for calculating the ASR loss, which still allows us to
jointly optimize both modules effectively. Since our
experiments adopt the recurrent neural network (RNN)
based MaskNet in the frontend module, it can naturally
work with this strategy. In addition, as mentioned in [8],
the convolutional neural network (CNN) based model is
also compatible with this strategy.

In Section V-D, we evaluate both training strategies to illus-
trate their effectiveness in different conditions.

G. Comparison of training schemes

Although this paper is focusing on the fully E2E training of
the proposed model, it can be still trained with various training
schemes, as the proposed model is explicitly modularized into
frontend and backend modules, as shown in Fig. 1. Therefore,
in this section, we would like to discuss the relationship
between three training schemes of the proposed model4, i.e.,
(1) independent training, (2) fully E2E training, and (3) multi-
task learning of different modules.

The training scheme (1) is the most straightforward since it
can directly combine pre-trained SE and ASR models without
additional efforts. Another advantage of this training scheme
is that each module can be designed and updated individually,
allowing fast development and reuse of different modules. In
many conditions, however, there could be a large mismatch
between the resulting frontend and backend modules, since
they are often trained on different data. This generally results
in severely degraded performance in the testing phase. We will
also demonstrate this issue in Section V-E.

The rest training schemes (2) and (3) are very similar,
and we can regard (2) as a special case of (3), where only
one of the multiple tasks are used. Both training schemes
can counteract the mismatch in (1) by jointly optimizing all
involved modules during training. The key difference is that
(2) only requires labeled data for the final ASR task, while
(3) requires supervised data for each involved module. The
obvious benefit of (2) is the loosened constraint on data
collection, because parallel clean and noisy speech signals
are very difficult to collect. On the other hand, it is thus
sensitive to the local optima and vulnerable to the frequency
permutation problem and numerical instability issues, as no
direct constraint is enforced on the frontend module. The
training scheme (3) overcomes these problems via the explicit
regularization on all involved modules, and generally achieves
the best overall performance among the three training schemes.
Based on its close connection with (2), we can thus consider
multi-task learning as a potential direction to further improve
the proposed model when parallel signal-level references are
available. Meanwhile, it also provides a reference for the upper
bound of fully E2E training in simulation experiments.

IV. EXPERIMENTAL SETUP

In Table II, we summarize the four datasets used in our
experiments, which can be roughly divided into two different
categories: (1) reverberant clean mixtures of J = 2 speak-
ers, e.g. spatialized WSJ1-2mix [21] and spatialized WSJ0-
2mix [23]; (2) reverberant noisy mixtures of J = 2 speakers,
e.g. SMS-WSJ [24] and WHAMR! [25].

The multi-condition training strategy in Section III-F is
applied when training all E2E models, as it is proven essential
for good convergence in the prior work [21]. More specifically,
the single-speaker clean speech from the WSJ train_si284
dataset is used for regularizing the ASR backend. In addition,
for corpora that contain both anechoic and reverberant versions

4One can also perform multi-task learning only on simulated data, while
performing the fully E2E training on real data. This can be viewed as the
combination of training schemes (2) and (3) in a multi-condition style. For
simplicity, however, we only discuss each individual training scheme here.
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TABLE II: Detailed information of the corpora used in our experiments. The “max” versions are used for the first four
corpora. #Ch denotes the number of channels in the data. T60 denotes the reverberation time. SIR and SNR represent the
signal-to-interference ratio and signal-to-noise ratio, respectively.

Dataset Hours Sampling
Rate (Hz) #Ch Condition

Train Dev Test T60 (ms) SIR (dB) SNR (dB) Noise

Spatialized WSJ1-2mix [21] 98.5 1.3 0.8 16k 8 [200, 600] [-10, 10] - -
Spatialized WSJ0-2mix [23] 46.9 11.9 7.3 16k 8 [200, 600] [-10, 10] - -
SMS-WSJ [24] 87.4 2.5 3.4 8k 6 [200, 500] [-5, 5] [20, 30] White noise
WHAMR! [25] 58.0 14.7 9.0 16k 2 [100, 1000] [-10, 10] [-6, 3] Real recording
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Fig. 4: Architecture of the MaskNet in the frontend module.

of data (i.e., spatialized WSJ1-2mix, spatialized WSJ0-2mix,
WHAMR!), we further include the anechoic data in the
training process to improve the performance. The number of
sampled channels in the channel sampling strategy is set to
C ′ = 2. The chunk length in the TBPTT training strategy is
set to Tbp = 288 frames, which is about 3 seconds for 16kHz
speech data.

Our experiments were conducted based on the ESPnet
toolkit. For all experiments in different corpora, we adopt the
following model architectures:

a) Frontend: For 16kHz speech data, the window length
and hop length for STFT are 400 and 160, respectively, while
the number of discrete Fourier transformer points is 5125. For
8kHz speech data, these parameters are respectively 200, 80,
and 256. The frequency dimension in the resulting spectrum
is thus F = 257 and F = 129, respectively. The MaskNet
in Section III is based on the bi-directional long short-term
memory (BLSTM) architecture. It consists of 3 BLSTM layers
followed by linear projection layers, as illustrated in Fig. 4.
The number of hidden units in each layer is also depicted in
the figure. It takes as input the magnitude spectrum of the
observed signal |Y|, and generates 3 × J estimated masks
for WPE and beamforming. As mentioned in Section III-B,
each input channel is processed independently, thus yielding
3 × J multi-channel masks. For models based on the VAD-
like 1-D masks in Section III-E, the number of hidden units
in the final linear projection layers is 1 instead of F , and the
generated masks are then repeated F times along the frequency
dimension. The number of parameters of the frontend model
is 21.99 M. The reference channel b is set to 0 by default

5This is a typical window configuration that has been widely used in the
ASR task.

for all datasets. Following the setting in [19], the number of
filter taps and the delay factor for WPE / WPD are respectively
set to K = 5 and ∆ = 3 during training. The number
of iterations is 1 for performing mask-based WPE, and 3
for performing conventional iterative offline WPE (denoted
as Nara-WPE [47]). We empirically set the diagonal loading
constant ε in Eq. (28) to 10−3 and 10−8 for WPE and
beamforming, respectively. The mask flooring factor ξ in
Eq. (29) is empirically set to 10−6 and 10−2 for WPE and
beamforming, respectively. The number of power iterations
for RTF estimation in Eqs. (13)–(16) is set to p = 2. We
found this smaller number of iterations is sufficiently working
for the proposed model, which coincides with the observation
in [50].

b) Backend: Before the ASR module, we extract 80-
dimensional log Mel-filterbank features from each separated
stream in the frontend. The ASR module is based on the
Transformer architecture, with 12 layers in the encoder and
6 layers in the decoder as in [22]. Each Transformer layer
consists of a 4-head self-attention layer with 64 dimensions
in each head and a subsequent feedforward layer with 2048
hidden units. Before the Transformer encoder, the log Mel-
filterbank features are downsampled by 4 times in the time
frame dimension by two convolutional neural network (CNN)
layers. Each CNN layer consists of a 3 × 3 kernel, followed
by the ReLU activation. The number of feature maps in the
first and second CNN layers are 64 and 128, respectively. The
number of parameters of the ASR model is 27.14 M.

To compare with the proposed E2E model, we additionally
evaluate the performance of a single-channel multi-speaker
ASR baseline, denoted by “1-ch 2-spkr ASR”. It is also a joint
CTC / attention-based encoder-decoder network based on the
Transformer architecture [22], [71], whose encoder layers con-
sist of three parts: the mixture encoder, speaker-differentiating
(SD) encoder and recognition encoder. We refer the reader
to [22] for more detailed introduction of this baseline model.
To match the number of parameters in the proposed model, we
use 8 SD encoder layers and 14 recognition encoder layers in
the baseline model, while other configurations are the same.
When training / evaluating the single-channel baseline model,
an external Nara-WPE [47] module is used to preprocess the
reverberant data. During training, one of the input channels
is randomly selected for each sample, so that all channels are
likely to be used to train the single-channel baseline after some
iterations. In the testing phase, only the reference channel is
used for evaluation.

All E2E models are trained using the Adam [72] optimizer
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TABLE III: Evaluation of the proposed techniques with the
WPE + MVDR + ASR model of different architectures on the
spatialized reverberant WSJ1-2mix evaluation set. The number
of filter taps K and channels C are set to 5 and 2 for evaluation
(same as training), respectively.

Architecture WER (%) PESQ STOI SDR (dB)

Original mixture - 1.20 0.65 -1.45
1-ch 2-spkr ASR 24.86 - - -

+ Nara-WPE pre-processing 21.29 - - -
Proposed model 16.59 1.30 0.74 2.49
+ (1) Diagonal loading 15.12 1.32 0.75 3.25
+ (2) Mask flooring 16.20 1.30 0.74 2.82
+ (3) Stable complex op. 15.77 1.32 0.75 3.13
+ (4) Double precision 16.43 1.31 0.74 2.87
+ Techs (1)–(4) 15.01 1.31 0.74 2.81

with 25000 warmup steps and an initial learning rate of 1.0.
We also apply the gradient clipping technique to ensure that
the norm of the gradient vector is at most 5. All models are
trained for at most 100 epochs, while an early stop will be
triggered if no improvement is observed on the development
set for 10 epochs. The interpolation factor in the training
objective in Eq. (25) is set to α = 0.2 during training. The
checkpoint at the epoch where the best speech recognition
accuracy is obtained on the development set is selected for
final evaluation. In the testing phase, the CTC score is also
used for joint decoding with a weight of 0.3. Unless otherwise
mentioned, an external word-level recurrent neural network
language model (RNNLM) [73] trained on the corresponding
corpus is used for rescoring.

V. EXPERIMENTAL RESULTS

We used the pb_bss_eval package6 for calculat-
ing speech enhancement metrics, including the signal-to-
distortion ratio (SDR) [74], short-time objective intelligibility
(STOI) [75] and perceptual evaluation of speech quality score
(PESQ) [76]. Here, we did not adopt the scale-invariant signal-
to-distortion ratio (SI-SDR) [77] as the evaluation metric,
because it requires the target signal to be aligned with the
input [78], which is hard to achieve in reverberant conditions7.

A. Evaluation of proposed techniques for improving the nu-
merical stability

We first evaluate the basic performance of the proposed
E2E model, where only the essential techniques are applied
to ensure a successful training. These techniques include the
multi-condition training strategy for good convergence and the
channel sampling strategy for fitting in the GPU memory8

as introduced in Section III-F. The basic performance of the
proposed model is shown in the gray row in Table III, where
the MVDR beamformer without RTF estimation is used in
the frontend. Compared to the single-channel 2-speaker ASR
baselines in the second and third row, our proposed model can

6https://pypi.org/project/pb-bss-eval/0.0.2/
7This is even harder when evaluating the E2E trained models, because there

is no explicit supervision on the frontend, whose output is thus unlikely to be
aligned with a pre-defined target signal.

8While either channel sampling or approximated TBPTT can be used here,
we opt for the former due to its simplicity. And the performance comparison
of these strategies is discussed later.

TABLE IV: Evaluation of different beamformer variants on
the spatialized reverberant WSJ1-2mix evaluation set. The best
performance is presented for each proposed model by tuning
the number of filter taps K and channels C during evaluation.

No. Model (+ASR) Formula WER (%) PESQ STOI SDR (dB)

1 WSJ eval92 [80] - 4.4 - - -
2 MVDR

Eq. (7)

11.66 1.46 0.80 6.48
3 WPE+MVDR 9.50 1.56 0.83 7.73
4 WPE+wMPDR 9.44 1.63 0.82 8.49
5 WPD 10.60 1.61 0.82 7.89
6 WPE+MVDR

Eq. (8)
9.02 1.50 0.83 6.93

7 WPE+wMPDR 9.23 1.54 0.82 7.12
8 WPD 9.31 1.58 0.85 7.91

achieve much better ASR performance, while also being able
to provide enhanced speech signals as a byproduct. Next, we
evaluate the proposed techniques in Section III-D. The last
five rows show the respective performance of applying each
individual technique and their combination to the proposed
model. It is observed that all techniques lead to better SE
performance and thus better ASR performance. This attributes
to the improved numerical stability by applying these tech-
niques, as better convergence can be reached under the same
model configuration. The combination of all techniques further
slightly boosts the ASR performance. Although the final SE
performance is slightly degraded compared to that of applying
some individual techniques, we would like to emphasize
that all four techniques work complementarily to improve
the numerical stability, as mentioned in Section III-D. The
combination of all techniques makes the E2E training much
easier and more stable across various conditions. In addition,
it is noticed that the SE performance does not necessarily
improve along with the ASR performance. This is also in line
with the observation in the previous study on the joint training
of SE and ASR models [79]. For the rest experiments below,
we apply all four techniques by default to the proposed E2E
model.
B. Evaluation of different beamformer variants

Thanks to the flexible design of the frontend module in
Section III-B, we can use different numbers of input channels
C and filter taps K (in WPE / WPD beamformer) in the
evaluation phase, even though the model is trained with a
fixed configuration of C = 2 and K = 5. In this section,
we compare the best performance of proposed models based
on different beamformer variants, by tuning the configurations
of C ∈ {2, 4, 6} and K ∈ {1, 3, 5, 7, 10} for each individual
model in the evaluation phase. The best results for each
model are tabulated in Table IV. Firstly, the importance of
the mask-based WPE component can be shown by comparing
rows 2 and 3. Both ASR and SE performances of the E2E
model are significantly improved after integrating the WPE
module into the beamformer frontend. Secondly, it is shown
that the proposed models based on convolutional beamformers
(WPE+wMPDR and WPD) achieve better SE performance
than those based on the conventional MVDR beamformer,
with either Eq. (7) or Eq. (8). This is consistent with the
observation in [40], [41], as the convolutional beamformer is
designed to be optimal in terms of joint dereverberation and
beamforming. Thirdly, comparing rows 3, 4, 5 and rows 6,
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TABLE V: Evaluation of different mask types on the spa-
tialized reverberant WSJ1-2mix evaluation set. The best per-
formance is presented for each proposed model by tuning the
number of filter taps K and channels C during evaluation.
Three beamformer types based on Eq. (7) are evaluated.

No. Model (+ASR) Mask WER (%) PESQ STOI SDR (dB)

1 WPE+MVDR
T-F

9.50 1.56 0.83 7.73
2 WPE+wMPDR 9.44 1.63 0.82 8.49
3 WPD 10.60 1.61 0.82 7.89
4 WPE+MVDR

1-D
9.45 1.95 0.86 12.54

5 WPE+wMPDR 10.26 1.97 0.86 12.20
6 WPD 10.48 2.19 0.87 14.15

7, 8, the RTF-based beamformer formula, i.e., Eq. (8), tends
to yield better ASR results with the proposed E2E model.
On the other hand, the SE performance degrades to some
extent, which might be caused by the approximation error in
the power iteration method in Eqs. (13)–(16). Lastly, since the
spatialized WSJ1-2mix evaluation dataset was generated based
on the WSJ eval92 subset, the first row in Table IV can be
regarded as a topline for our systems. The best WER of the
proposed model is only ∼5% worse than this topline, which
further illustrates the capability of the proposed model.

C. Evaluation of different mask types

In this section, we evaluate the proposed VAD-like 1-
D masks for mitigating the frequency permutation problem.
Similar to the last section, in Table V, we compare the best
performance of the proposed models based on conventional
T-F 2-D masks and VAD-like 1-D masks. As we can see,
the proposed models trained with the VAD-like 1-D mask
achieve significantly better overall SE performance than the T-
F mask based ones on the spatialized WSJ1-2mix data, where
no background noise is involved. This result also coincides
with the observation in Fig. 2.

On the other hand, however, the ASR performance does
not always improve with the proposed VAD-like masks, even
though a better SE performance is obtained. This phenomenon
has been widely observed in the literature [33], [79], [81],
while the cause has not been clearly studied. Here, our
conjecture is that the ASR model might learn to ignore some
unreliable features from certain frequency bins (e.g., those
affected by the frequency permutation problem). This still
allows the ASR model to obtain a relatively good performance,
while the SE performance is much more sensitive to the
frequency permutation problem. To better illustrate this effect,
we show the detailed performance comparison of the proposed
models with different configurations of C and K in Table VI.
It can be observed that the ASR performance with VAD-like 1-
D masks is generally worse when the number of input channels
C or filter taps K is small. This may originate from the
sacrificed frequency resolution due to the VAD-like mask. As
mentioned above, the SE and ASR models do not always have
consistent improvement, which indicates that the two tasks
may favor different optimization directions. For the VAD-like
mask based method, since all frequency bins within a time
frame share the same mask value, it is harder for MaskNet
to learn optimal masks for achieving better ASR performance.
As C and K increase, the ASR performance with both masks

TABLE VI: Performance (Avg. WER [%]) of the proposed
models with different mask types and configurations of filter
taps K and input channels C on the spatialized reverberant
WSJ1-2mix evaluation set. Numbers in brackets are based on
VAD-like 1-D masks, while others are based on T-F masks.
Three beamformer types (MVDR, wMPDR, and WPD) based
on Eq. (7) are evaluated.

W
PE

+M
V

D
R

+A
SR K C 2 4 6

1 16.43 (19.29) 11.03 (12.56) 14.86 (10.94)
3 15.49 (18.60) 10.57 (11.49) 10.10 (10.13)
5 15.01 (17.90) 10.29 (11.04) 9.81 (9.87)
7 14.84 (17.63) 9.75 (10.50) 9.52 (9.45)

10 14.73 (17.39) 9.76 (10.28) 9.50 (9.51)

W
PE

+w
M

PD
R

+A
SR K C 2 4 6

1 17.51 (20.31) 12.48 (13.02) 11.04 (11.64)
3 16.38 (19.49) 10.95 (12.08) 9.85 (10.65)
5 15.35 (18.86) 10.70 (11.76) 9.62 (10.43)
7 15.48 (18.20) 10.36 (11.72) 9.44 (10.26)

10 15.11 (18.46) 10.11 (11.42) 10.03 (10.71)

W
PD

+A
SR

K C 2 4 6

1 18.22 (19.11) 11.95 (12.51) 10.86 (10.57)
3 16.87 (17.72) 11.42 (11.65) 10.60 (10.48)
5 16.43 (17.12) 11.27 (11.07) 11.06 (10.79)
7 16.03 (16.98) 11.38 (11.04) 11.05 (11.56)

10 16.13 (17.00) 11.53 (11.37) 11.67 (13.25)

becomes close, because more spatio-temporal information can
be exploited to compensate the loss of frequency resolution.

In order to validate the effectiveness of the proposed method
in different scenarios, we further trained and evaluated the
proposed models on three additional multi-speaker datasets,
i.e., spatialized WSJ0-2mix, SMS-WSJ, and WHAMR!. In
these experiments, we only test the MVDR beamformer-
based E2E models to simplify the discussion. As shown in
Table VII, the proposed models clearly outperform the single-
channel two-speaker ASR baselines with Nara-WPE-based
preprocessing (2nd row), even when only two input channels
are used for evaluation (same as training). Both SE and ASR
performances are further improved when all available channels
are used for evaluation, which is in line with the observation on
the spatialized WSJ1-2mix dataset. Comparing models based
on the T-F mask and VAD-like 1-D masks, we can also
observe a similar trend that the SE performance improves
when applying the VAD-like 1-D masks, except for the
WHAMR! corpus. The noise in the WHAMR! corpus consists
of real recordings collected in various urban environments
(restaurants, cafes, bars, and parks), with a relatively low
signal-to-noise ratio (SNR), as shown in Table II. Therefore,
the noise energy is usually high and distributed unevenly
among different frequency bins, especially for the commonly
observed music and babble noise. In such conditions, it can
be harmful to use the same mask value for all frequency
bins within each frame, as this will inevitably cause noisier
estimation of the PSD matrices for certain frequency bins
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TABLE VII: Evaluation of the proposed model (WPE+MVDR+ASR) on the evaluation sets of other multi-speaker corpora.
The number of filter taps K is set to 5 for all corpora in the evaluation phase.

No. Model Mask Formula spatialized WSJ0-2mix SMS-WSJ WHAMR!
WER (%) PESQ STOI SDR (dB) WER (%) PESQ STOI SDR (dB) WER (%) PESQ STOI SDR (dB)

1 Original mixture - - - 1.19 0.65 -1.41 - 1.50 0.66 -0.40 - 1.08 0.61 -5.16

2 1-ch 2-spkr ASR - - 34.73 - - - 34.95 - - - (68.82)* - - -+ Nara-WPE
3

Proposed model
(2 channels)

T-F Eq. (7) 11.53 1.30 0.74 3.23 23.26 1.57 0.72 1.68 28.89 1.10 0.66 -2.27
4 1-D Eq. (7) 14.68 1.36 0.75 4.33 25.72 1.69 0.75 4.93 37.57 1.11 0.68 -1.83
5 T-F Eq. (8) 11.48 1.29 0.74 2.93 22.06 1.56 0.71 1.64 27.64 1.09 0.67 -3.09
6 1-D Eq. (8) 12.31 1.35 0.76 3.93 25.53 1.68 0.75 4.49 31.45 1.09 0.67 -3.18
7

Proposed model
(all channels)

T-F Eq. (7) 7.56 1.54 0.83 8.55 17.23 1.69 0.78 3.93

same as above8 1-D Eq. (7) 7.80 1.85 0.85 11.85 17.50 2.10 0.85 11.18
9 T-F Eq. (8) 7.22 1.50 0.83 8.14 16.12 1.68 0.77 3.77
10 1-D Eq. (8) 6.59 1.84 0.86 11.83 17.14 2.05 0.85 10.36

* The single-channel ASR baseline suffered from overtraining severely on the WHAMR! corpus. Its speech recognition accuracy converges at ∼91% on
the development set, while our proposed models can reach 95%.

TABLE VIII: Evaluation of the proposed DOA-consistency-based frequency permutation adjustment strategy on the SMS-WSJ
evaluation set. The T-F mask-based beamforming is used. We set K = 5 and C = 6 in the evaluation phase.

Threshold β Formula: Eq. (7) Formula: Eq. (8)
WER (%) PESQ STOI SDR (dB) WER (%) PESQ STOI SDR (dB)

< 0◦ 17.23 1.69 0.78 3.93 16.12 1.68 0.77 3.77
30◦ 21.67 1.74 0.78 4.67 21.52 1.70 0.76 3.53
60◦ 25.85 1.74 0.77 4.80 24.86 1.70 0.76 3.63
90◦ 28.79 1.74 0.77 4.86 28.05 1.70 0.76 3.75
120◦ 31.95 1.75 0.77 5.00 30.43 1.71 0.76 3.93
150◦ 34.55 1.75 0.78 5.14 34.00 1.71 0.77 4.10
180◦ 38.04 1.76 0.78 5.31 37.87 1.73 0.77 4.32
210◦ 36.83 1.76 0.78 5.35 35.36 1.73 0.77 4.35
240◦ 34.66 1.76 0.78 5.35 33.03 1.73 0.77 4.36
270◦ 31.91 1.76 0.78 5.35 29.90 1.73 0.77 4.37
300◦ 30.48 1.76 0.78 5.36 28.30 1.73 0.78 4.37
330◦ 29.18 1.76 0.78 5.36 27.08 1.73 0.78 4.38
360◦ 28.67 1.76 0.78 5.37 26.52 1.73 0.78 4.38

that are dominated by the noise. In addition, while we can
observe some relative SDR improvement compared to the
original mixture on the WHAMR! corpus, the absolute SE
performance is still very poor. Our conjecture is that the small
number of channels (C = 2) limits the capability of the E2E
trained frontend, and the relatively low SNRs also increase the
difficulty in such conditions.

Finally, we evaluate the proposed DOA-estimation-based
strategy for alleviating the frequency permutation problem
with the T-F mask-based beamforming. Note that the strategy
is only applied during inference, and the same model as
above is used for evaluation. Since this method requires the
microphone array geometry to be known in advance, we select
the 6-ch test data from the SMS-WSJ corpus for evaluation9,
where all data are simulated based on a 6-mic circular array
with radius 10 cm. Table VIII lists the performance when
different thresholds β in Eq. (39) are used. Note that when
β < 0◦, the results are equal to the previous ones we obtained
(Nos. 7 and 9 in Table VII). We can see that the proposed
strategy can significantly improve the PESQ and SDR scores
in most threshold settings for beamforming with different
formulas, especially for the formula defined in Eq. (7). When
a larger threshold β is used, the PESQ and SDR scores
tend to be further improved, but gradually converge as β
approaches 360◦. The STOI score is also slightly improved as

9In contrast, other corpora we used above randomly sampled the micro-
phone positions during simulation, thus the array geometry is not fixed.

β becomes larger. On the other hand, the ASR performance is
severely degraded for all settings with β > 0◦. This is likely
attributed to the mismatch between training and inference, as
the frequency permutations are only adjusted during inference.
In addition, the improved SE performance still largely lags
behind the VAD-like 1-D mask-based results in Table VII
(Nos. 8 and 10). This indicates that the estimated beamforming
masks are not optimal even if the frequency permutation is
corrected. Therefore, it might be better to directly constrain
the estimated masks during training to improve the consistency
of frequency permutations, and we would like to investigate it
in our future work.
D. Evaluation of different memory-efficient training strategies

In this section, we validate the effectiveness of the proposed
memory-efficient training strategies with MVDR beamformer-
based E2E models on the SMS-WSJ corpus. Table IX shows
the peak allocated GPU memory when different strategies
are used to train the proposed model on the longest samples
in SMS-WSJ (around 24s). It can be clearly seen that both
proposed training strategies can effectively reduce the GPU
memory consumption by about half compared to the plain
training with full 6-channel data. Table X further presents
the performance of these training strategies, where the first
four rows are copied from Table VII, as they used the same
configuration. The last four rows show the performance of
another proposed strategy in Section III-F, i.e., approximated
TBPTT. It can be seen that although only a small portion of
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Fig. 5: Evolutionary performance (WER, SDR, PESQ, and STOI) of the proposed fully E2E trained model (WPE+MVDR+ASR)
after each epoch on SMS-WSJ development (cv_dev93) and evaluation (test_eval92) sets. The model at the 97-th epoch
corresponds to the 6-th row of the SMS-WSJ section in Table VII.

TABLE IX: Peak allocated GPU memory when applying
different training strategies with batch size 1. The training
samples here are all around 24s.

Strategy Mask Formula Mem. (GB)

Plain training (full 6-ch)

T-F Eq. (7) 4.484
1-D Eq. (7) 4.057
T-F Eq. (8) 4.889
1-D Eq. (8) 4.484

Channel sampling (2-ch)

T-F Eq. (7) 2.538
1-D Eq. (7) 2.383
T-F Eq. (8) 2.366
1-D Eq. (8) 2.393

Approx. TBPTT

T-F Eq. (7) 2.019
1-D Eq. (7) 2.000
T-F Eq. (8) 2.013
1-D Eq. (8) 1.996

TABLE X: Evaluation of the proposed memory-efficient
training strategies on the SMS-WSJ evaluation set. We set
K = 5 and C = 6 in the evaluation phase.

Strategy Mask Formula WER (%) PESQ STOI SDR (dB)

Channel sampling

T-F Eq. (7) 17.23 1.69 0.78 3.93
1-D Eq. (7) 17.50 2.10 0.85 11.18
T-F Eq. (8) 16.12 1.68 0.77 3.77
1-D Eq. (8) 17.14 2.05 0.85 10.36

Approx. TBPTT

T-F Eq. (7) 18.36 1.71 0.76 4.30
1-D Eq. (7) 16.32 2.09 0.84 10.61
T-F Eq. (8) 15.94 1.79 0.78 4.30
1-D Eq. (8) 18.58 2.04 0.83 9.15

the input signal is used for backpropagation in the frontend
module, the approximated TBPTT strategy can still attain
similar ASR and SE performance to the channel sampling
strategy. This indicates that we can flexibly select the training
strategy accordingly. For example, the approximated TBPTT
strategy is favorable when many training samples are very
long that cannot fit into the memory even with only 2 channels.
Otherwise, channel sampling can be adopted, which is simpler
and can be used with any network architectures.

E. Comparison of training schemes of the proposed model

In this section, we compare the aforementioned three train-
ing schemes in Section III-G. We follow a similar experimental
setup to Section V-D, while the proposed models are trained
based on different training schemes. For the independent train-
ing and multi-task learning schemes, we additionally include
the parallel single-speaker clean speech as the signal-level
label for training the frontend module. The convolutive transfer
function invariant SDR (CI-SDR) [78] criterion is adopted as

TABLE XI: Comparison of different training schemes on the
SMS-WSJ evaluation set. We set K = 5 and C = 6 in the
evaluation phase.

Training scheme Mask Formula WER (%) PESQ STOI SDR (dB)

(1) Independent training

T-F Eq. (7) 42.30 2.08 0.83 11.88
1-D Eq. (7) 37.30 2.13 0.85 11.95
T-F Eq. (8) 38.20 2.08 0.84 11.38
1-D Eq. (8) 40.30 2.04 0.84 10.90

(2) Fully E2E training

T-F Eq. (7) 17.23 1.69 0.78 3.93
1-D Eq. (7) 17.50 2.10 0.85 11.18
T-F Eq. (8) 16.12 1.68 0.77 3.77
1-D Eq. (8) 17.14 2.05 0.85 10.36

(3) Multi-task learning

T-F Eq. (7) 15.52 1.98 0.83 10.86
1-D Eq. (7) 15.36 2.11 0.85 12.14
T-F Eq. (8) 17.15 1.82 0.81 7.81
1-D Eq. (8) 15.69 2.07 0.85 11.43

the frontend loss, and the source signal of each speaker is used
as the reference. The ASR module in the independent training
scheme is trained on the clean WSJ train_si284 dataset. For the
multi-task learning scheme, the SE and ASR losses are linearly
combined with equal weights to obtain the final objective.

The experimental results are shown in Table XI. (1) We
first show the performance of the systems composed of inde-
pendently trained frontend and backend modules in the first
four rows. All systems achieve similarly strong SE perfor-
mance, which are close to the reported SDR performance
(12.9 dB) with oracle ideal binary masks (IBM) in [24].
However, the ASR performance is very poor, with very high
WERs on the evaluation set. This attributes to the mismatch
between independently trained SE and ASR modules. The
ASR module only sees clean speech without reverberation
and noise during training, while the beamformer-based SE
module inevitably generates imperfect outputs that contain
residual noise. Such mismatch thus leads to severe ASR per-
formance degradation. (2) In comparison, our proposed fully
E2E training scheme yields reasonably good performance for
both speech enhancement and recognition. Since both modules
are jointly optimized based on the ASR criterion, the mismatch
is largely mitigated. The proposed models with VAD-like
1-D masks can even achieve very similar SE performance
to the independently trained frontend module. This further
illustrates the effectiveness of the proposed method. (3) In
the last four rows, the multi-task learning scheme shows that
the performance can be further improved by combining both
SE and ASR training criteria. The frontend module is trained
to optimize the ASR criterion, while also explicitly guided
by the signal-level supervision. It is thus much more stable
than the fully E2E training scheme, and achieves much better
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SE performance for the models with T-F masks (∼7 dB SDR
improvement). Moreover, the ASR performance of all four
types of systems is also improved. Overall, we can see that
both proposed models trained with (2) and (3) can achieve
strong ASR performance, and multi-task learning can further
improve the overall performance when parallel signal-level
references are available. This observation validates the efficacy
of the proposed model and training schemes in the noisy and
reverberant condition. In addition, it is also noted that the
training scheme (3) is the only one that achieves proportionate
performance improvement in both speech separation and ASR.
This illustrates the benefit of providing supervision to both
frontend and backend modules, and indicates that there is
still room for improvement in the proposed fully E2E training
scheme.

Finally, in order to better illustrate the training process of
the proposed fully E2E model, we manually evaluate the SE
and ASR performance of all checkpoints after each epoch. The
resultant curve on the SMS-WSJ corpus is shown in Fig. 5.
Note that we use the same configuration (e.g., C = 2 and
K = 5) as in training, and unlike in Table VII, no external
language model is used when evaluating WERs to better
demonstrate the evolution of the acoustic modeling capability.
While the ASR performance is initially very poor due to the
flat start, it is interesting to see that the SE performance
increases very fast and reaches the same level as its final
performance after only a few epochs. After the first 8 epochs,
the SE performance starts to fluctuate and increases slowly.
This phenomenon indicates that the speech enhancement task
has a much faster convergence speed than the ASR task, and
that the E2E training scheme tends to firstly improve the
frontend module so that it can provide relatively stable outputs
for the downstream ASR module. Fig. 5 provides an intuitive
view of how fully E2E training works in the multi-speaker
ASR task, and may inspire further application of this training
scheme such as fast adaption of the frontend module in a new
domain.

VI. CONCLUSION

In this work, we present an E2E multi-channel multi-
speaker ASR model in noisy and reverberant conditions. The
proposed model is composed of a neural beamformer-based
frontend and an E2E ASR backend, which is E2E optimized
solely based on the final ASR criterion. Several techniques
and training strategies are proposed to improve the numerical
stability and convergence performance of the E2E model.
Extensive experiments on existing multi-channel benchmark
datasets have been conducted to validate the efficacy of
the proposed method on various conditions. The proposed
model is shown to work well with various beamformer types
and can achieve competitive performance even in noisy and
reverberant conditions, with over 30% relative WER reduction
over the single-channel baseline systems. Detailed comparison
and performance analyses are also given to better understand
the proposed method. Finally, the relationship of the fully
E2E training scheme with other existing training schemes is
also discussed. In future work, we would like to investigate
the E2E training scheme for sparsely overlapped conditions

such as conversational speech, which is more realistic in daily
communication. More advanced network architectures in the
frontend and backend modules will also be explored.
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