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ABSTRACT

A wireless acoustic sensor network records audio signals with sam-
pling time and sampling rate offsets between the audio streams, if
the analog-digital converters (ADCs) of the network devices are not
synchronized. Here, we introduce a new sampling rate offset model
to simulate time-varying sampling frequencies caused, for example,
by temperature changes of ADC crystal oscillators, and propose an
estimation algorithm to handle this dynamic aspect in combination
with changing acoustic source positions. Furthermore, we show how
estimates of the distances between microphones and human speakers
can be used to determine the sampling time offsets. This enables
a synchronization of the audio streams to reflect the physical time
differences of flight.

Index Terms— Synchronization, time-varying sampling rate
offset, sampling time offset

1. INTRODUCTION

Sampling rate offset (SRO) and sampling time offset (STO) estima-
tion have received a lot of interest in recent years [1–6]. In particular,
in the context of wireless acoustic sensor networks (WASNs) these
topics are important, because for many signal processing tasks, such
as acoustic beamforming [7], the audio signals must be synchronized.

SROs are caused by the differences in the actual frequencies
of the oscillators driving the analog-digital converters (ADCs) of
the distributed devices despite their equal nominal frequencies [8].
The author of [9] showed that typical SRO values range between
−500 parts per million(ppm) and 400 ppm from the nominal fre-
quency for handheld devices, such as smartphones. STOs arise due to
the fact that the devices start recording at different moments in time.

The vast majority of works on SRO and STO estimation from
the recorded audio signals are conducted under the assumptions of
constant SROs and fixed positions of sources and sensors, which,
however, are unrealistic for many practical scenarios. The frequency
of a crystal oscillator is not only determined by the crystal’s shape
and the technique utilized to cut it, but is also influenced by a variety
of environmental factors, such as aging, temperature, humidity and
supply voltage [10]. While constant or slowly changing factors, like
aging, are sufficiently accurately modeled by assuming a constant
SRO, temperature and supply voltage can change more rapidly and
challenge the assumption of constant SROs [8]. In [11] the authors
noted that when the device is switched on or when it transits from
sleeping to processing mode, the change of the device’s temperature
incurs a sampling rate change of several ppm within a relatively short
period of time (a few minutes). But even after warm-up the SRO
can be time-varying, e.g., due to fluctuations of the supply voltage,
which are caused by the changing workload of the microprocessor [8].
This all stands in conflict with the assumption of constant SROs

for relatively long time intervals of, e.g., several minutes, made by
several SRO estimation algorithms.

Likewise, the assumption of a fixed position of the acoustic
source, that is made by most synchronization algorithms that esti-
mate the SRO from the acoustic signals received by the devices, is
not given in many application scenarios of a WASN. Consider, for
example, a meeting where different participants, each speaking at a
different position relative to the sensor network. Handling moving
speakers would be even more complicated. Estimating an SRO from
signals emitted by a moving source faces the challenging task of
separating the SRO-induced delays from delays caused by source
position changes. A reasonable simplification is to focus on time
periods where the positions remain fixed and to skip transient phases,
as proposed in [5].

In this contribution we attempt to overcome some of the above
mentioned assumptions. First, we will model the time-varying SROs
with an Ornstein-Uhlenbeck process [12] and devise an algorithm
for SRO estimation. We discuss the necessary modifications to a
previously proposed coherence drift based online algorithm [6] to
deal with source position changes and time-varying SROs. Second,
we consider STO estimation by separating time delay estimates into
the contribution of the recording start times and the contribution from
the time differences of flight (TDOFs) from the speakers’ positions
to the sensors. The latter requires an estimate of the distance of the
speaker to the microphones, which is obtained from a deep neural
network (DNN) based distance estimator [13]. By discriminating
these different contributions we arrive at an STO estimate that regards
the physical TDOFs. This is important, e.g., if the location of the sen-
sor nodes is to be estimated from time-difference of arrival (TDOA)
estimates.

The paper is organized as follows: In Sec. 2 we discuss the impact
of time-varying SROs on signals and show in Sec. 3 our modifications
to handle dynamic scenarios with source position changes and time-
varying SROs during SRO estimation. Subsequently, STO estimation
is presented in Sec. 4. Our approach for modeling time-varying SROs
is explained in Sec. 5, before we discuss the experiments in Sec. 6
and end with the conclusions drawn in Sec. 7.

2. PROBLEM STATEMENT

We consider a WASN consisting of two sensor nodes and an unknown
SRO and STO between them. Each sensor node is equipped with
at least two microphones whose signals are synchronously sampled.
Furthermore, we assume that both sensor nodes record the signals
emitted by sources at M stationary positions whereby at most one
source is active at any given time. Additionally, we consider that
there might be short periods of time without source activity when
the source position changes. Such a scenario could be typical of a



meeting with multiple participants sitting around a conference table
with multiple microphone arrays in the middle.

To simplify the presentation, only the first microphone channel
of each sensor node will be reflected in the notation. The continuous-
time microphone signal of the i-th sensor node, with i ∈ {1, 2}, is
given by

yi(t) =

M∑
m=1

h
(m)
i (t) ∗ x(m)(t) + vi(t), (1)

with x(m)(t) being the source signal emitted at the m-th position and
vi(t) representing white Gaussian sensor noise. h(m)

i (t) denotes the
room impulse response (RIR) modeling the sound propagation from
the m-th source position to the position of the i-th microphone.

Typically, the sampling processes of the microphone signals
will start at different points in time resulting in the STO Ti. In
addition to that, the sampling frequency of the i-th microphone
fi[n]= (1 + εi[n]) · fs will slightly deviate from the nominal sam-
pling frequency fs. Here, n denotes the discrete-time sample in-
dex and εi[n] the time-varying SRO of the i-th microphone with
|εi[n]|�1. Sampling the i-th microphone signal results in the fol-
lowing discrete-time signal (with 1/(1 + x) ≈ 1− x if |x| � 1):

yi[n] = yi

(
Ti +

n−1∑
ñ=0

1

fs · (1 + εi[ñ])

)

≈ yi

(
n

fs
− 1

fs
·

(
−Ti · fs +

n−1∑
ñ=0

εi[ñ]︸ ︷︷ ︸
:=τi[n]

))
. (2)

Compared to the synchronous signal y(sync)
i [n] being sampled with

the nominal sampling frequency fs (εi[n]=0 ppm and Ti=0 s) yi[n]
shows a shift of τi[n] samples.

Usually, the microphone signals are processed in a frame-oriented
fashion, e.g., in the short-time Fourier transform (STFT) domain. If
the shift τi[n] is much smaller than the STFT frame size N the
relation between the asynchronously sampled signal yi[n] and the
synchronously sampled signal y(sync)

i [n] can be modeled in the STFT-
domain as follows [3, 4, 14]:

Yi(lB, k) ≈ Y (sync)
i (lB, k) · exp

(
−j 2πk

N
τ̄i[l]

)
, (3)

with frame index l, frequency bin index k and frame shift B. In
addition, the SRO is assumed to change slowly and is therefore
approximated by ε̄i[l] during a STFT frame. Hence, the average shift
of the l-th frame is given by

τ̄i[l] = −Ti · fs +

N
2
ε̄i[0] +

l∑
l̃=1

ε̄i
[
l̃
]
·B

 . (4)

Without loss of generality, the first microphone is selected as
reference and the m-th position is regarded in the following. The
task at hand can now be described as follows: Estimate the SRO
ε̄12[l]≈ε̄2[l]− ε̄1[l] and the STO τ STO

12 =(T2−T1) · fs. Furthermore,
we wish to distinguish between the contribution of the STO τ STO

12 and
the TDOF τ (m)

12 =(d
(m)
2 −d(m)

1 )/c · fs to the overall signal shift with
c denoting the speed of sound and d(m)

i the distance between the i-th
microphone and the source at the m-th position.

3. DYNAMIC WEIGHTED AVERAGE COHERENCE DRIFT

In this section, we briefly recapitulate the concept of our previously
proposed online weighted average coherence drift (WACD) method

from [6] and describe how it is adapted to the considered dynamic
scenario, resulting in the dynamic weighted average coherence drift
(DWACD) method.

Online WACD estimates the coherence Γ
τ c
12[`]

12 (`Bs, k) segment-
wisely, where ` represents the segment index and Bs the segment
shift, and where a segment comprises several frames. Thereby, τ c

12[`]
corresponds to an adjustable shift of the segment taken from y2[n]
that coarsely compensates for the SRO-induced signal shift [6]. The
coherence is calculated from microphone signal segments of length
NW , where the `-th segment taken from the first microphone starts at
y1[`Bs] and the `-th segment taken from the second microphone at
y2[`Bs + τ c

12[`]]. It is to be mentioned that the SRO is also estimated
every Bs samples.

As shown in [4, Eq. (23)] the coherence is given by:

Γ
τ c
12[`]

12 (`Bs, k)≈H(m)
12 (k)·WSNR(`, k)· exp

(
j

2πk

N
τ̄CD
12 [`]

)
, (5)

with H
(m)
12 (k)=H

(m)
1 (k)·(H(m)

2 (k))∗ and WSNR(`, k) being a
weight depending on the signal-to-noise ratio (SNR) of the time-
frequency bins. τ̄CD

12 [`] corresponds to the average shift of the `-th
segment:

τ̄CD
12 [`]=−τ STO

12 −τ c
12[`]+

NW
2
ε̄12[0] +

∑̀
˜̀=1

ε̄12

[
˜̀
]
·Bs

 . (6)

The SRO is estimated based on the complex conjugated product
of consecutive coherence functions with a temporal distance of `dBs
samples:

PΓ(`, k) = Γ
τ c
12[`]

12 (`Bs, k) ·
(

Γ
τ c
12[`]

12 ((`− `d)Bs, k)
)∗
. (7)

Taking into account that the SRO changes only slowly, the SRO can
be approximated by ε̄12[`] in the interval [(`− `d)Bs, `Bs] resulting
in (see [4, Eq. (14)])

PΓ(`, k) ≈W (`, k) · exp

(
j

2πk

N
`dBsε̄12[`]

)
, (8)

whereby W (`, k)=
∣∣∣H(m)

12 (k)
∣∣∣2 ·WSNR(`, k)·W ∗SNR(`− `d, k) corre-

sponds to an SNR-related weight.
The DWACD method which is presented in the following utilizes

a temporally averaged version of the complex conjugated product of
consecutive coherence functions PΓ(`, k) to estimate the SRO:

PWACD(`, k) = α · PWACD(`− 1, k) + (1− α) · PΓ(`, k), (9)
with PWACD(−1, k)=0 as initial value and α being a smoothing factor
close to 1. In contrast to the online WACD method, the DWACD
method uses a temporal weighting by the autoregressive smoothing
to be able to adapt to fast SRO changes by giving more recent esti-
mates PΓ(`, k) a larger weight. Using an energy-based sound activity
detection (SAD), the weighted average coherence product is only
updated if a source is active in all signal segments needed to calculate
Γ
τ c
12[`]

12 (`Bs, k) and Γ
τ c
12[`]

12 ((`− `d)Bs, k).
A crucial assumption for coherence drift based SRO estima-

tion is that the weight W (`, k) does not contribute to the phase of
PΓ(`, k) [4], which in consequence means that the source position
has to be constant during the interval used to compute PΓ(`, k). Thus,
in a scenario with changing source positions, the DWACD method
has to use segments with smaller lengths NW and smaller time inter-
val `d between successive coherence functions to avoid or to at least
reduce the probability of a speaker change in the estimation interval.

Moreover, the SRO would have to be zero or at least close to
zero for the phase of the weight W (`, k) to be close to zero [4]. The
online WACD method does not specifically address this issue while



the offline WACD method as proposed in [4] utilizes a multi-stage
approach with resampling to solve it. The DWACD method takes
the SRO estimate of the previous segment ε̂12[`− 1] to resample the
segment of y2[n] which is currently used for coherence estimation.
This resampling is realized by a multiplication of the κ-th STFT-
frame of the Welch method used for coherence estimation with the
phase term exp

(
j 2πk
N
κBε̂12[`− 1]

)
.

The online WACD method estimates the SRO from the phase of
PWACD(`, k), which suffers from the 2π-periodicity of the phase and
outlier time-frequency bins, i.e., bins with exceptionally large phase
errors. Such outlier time-frequency bins occur more frequently in the
multi-position scenario where shorter averaging periods, shorter seg-
ments and shorter temporal distances `d have to be used to calculate
PWACD(`, k). Interpreting PWACD(`, k) as a generalized cross power
sprectral density (GCPSD) [15] with SNR-based weights, DWACD
estimates the SRO using the time lag λmax that maximizes the gener-
alized cross-correlation (GCC) function pWACD(`, λ):

ε̂12[`] = − 1

`dBs
· λmax = − 1

`dBs
· argmax

λ

|pWACD(`, λ)|, (10)

with pWACD(`, λ) = IFFT{PWACD(`, k)} as the N -point IFFT.
For an accurate SRO estimation a golden section search in the

interval [λmax−0.5, λmax+0.5] is used to find the non-integer time
lag λ ∈ R that maximizes |pWACD(`, λ)|. Note that a settling time is
introduced, i.e., the SRO is only estimated for ` ≥ 40, to guarantee
that PWACD(`, k) from (9) is settled. As discussed in [6], a coarse
synchronization of audio streams is necessary for accurate SRO es-
timation. Consequently, the integer offset between the microphone
signals is determined during the first 20 s of source activity using
a cross-correlation, and subsequently compensated before applying
DWACD. We propose to use the following parameters: STFT using
a Blackman window; B=29; N=212; Bs=211; NW=213; `d = 4,
α = 0.95.

4. SAMPLING TIME OFFSET ESTIMATION

In this section a method for STO estimation is proposed that utilizes
the SRO compensated signal of y2[n]. The remaining unknown shift
between the microphone signals for the m-th source position is given
by (see (4) with an additional shift corresponding to the TDOF)

τ12 = τ
(m)
12 − τ STO

12 =
d

(m)
2 − d(m)

1

c
· fs − τ STO

12 . (11)

The shift τ12 and the distances d(m)
1 and d(m)

2 needed for STO
estimation are segment-wisely estimated with a segment length of
214 samples and a segment shift of 211 samples. The generalized
cross-correlation with phase transform (GCC-PhaT) algorithm is
used to gather estimates τ̂12[`] for the remaining signal shift. Fur-
thermore, the DNN-based distance estimator [13] with coherent-to-
diffuse power ratio (CDR) and STFT as input features is used to
estimate the distances d̂(m)

1 [`] and d̂(m)
2 [`] of the source to the two

sensor nodes.
Based on these estimates, a least squares (LS) problem mini-

mizing the error
∑L−1
`=0 (τ STO

12 −(d̂
(m)
2 [`]−d̂(m)

` [l])/c · fs+τ̂12[`])2 is
solved for STO estimation. Hereby, L is the number of considered
segments. Segments without source activity are excluded from the
LS problem using an energy-based SAD. The LS problem leads to
the following STO estimate:

τ̂ STO
12 =

1

L

L∑
`=0

(
d̂

(m)
2 [`]−d̂(m)

1 [`]

c
· fs−τ̂12[`]

)
. (12)

Due to the fact that the shift estimates τ̂12[`] as well as the distance
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Fig. 1: Example SRO trajectories for a transient case (µ∞=31ppm;
ε[0]=µ∞+10ppm) and steady state case (µ∞=31ppm; ε[0]=µ∞).

estimates d̂(m)
1 [`] and d̂(m)

2 [`] may exhibit large errors (see [16] for
an exemplary distribution of the distance estimation error) we embed
the LS solver in a random sample consensus (RANSAC) [17] method
to remove outliers from the estimation.

5. TIME-VARYING SRO MODEL

In the experiments we model fluctuations of the SRO by an Ornstein-
Uhlenbeck process [12]. This process is flexible enough to model
both initial transients in SRO, e.g., caused by warm-up after switch-
ing on the device, and steady-state fluctuations, e.g., due to chang-
ing workload of the processor. The Ornstein-Uhlenbeck process is
implemented as an auto-regressive process using the discrete-time
Euler-Maruyama approximation:

ε[`] = ε[`− 1] + θ · (µ∞ − ε[`− 1]) + xε[`], (13)

with smoothing factor θ�1, xε[`] ∼ N (0;σ2
OU) drawn from a zero-

mean Gaussian distribution with variance σ2
OU and µ∞ being the

mean SRO value reached after all transient effects have died out. In
the experiments we set θ=0.001 and σOU = 0.05 ppm resulting in a
steady state standard deviation of the SRO of 1.25 ppm and limit the
SRO range for µ∞ to±100 ppm, which excludes the extreme values
reported in [9]. The start value is chosen to be ε[0] = µ∞ + ∆start

with ∆start in the range ±10 ppm. Fig. 1 shows two exemplary SRO
trajectories: The left plot displays a transient example simulating a
device with a temperature change and the right example showcases a
device in a steady state.

Note, if the circuit driving the ADC is using a temperature com-
pensated crystal oscillator (TXCO) the temperature dependent tran-
sient effect is marginalized (ε[0] := µ∞) while the other influences
remain [18], e.g., the SiT5156 achieves a temperature stability of
±0.5 ppm and has an overall stability of ±2.5 ppm.

6. EXPERIMENTS

On a simulated data set, we evaluate the presented STO estimator
and the DWACD approach, comparing the latter with two state-of-
the-art online SRO estimators1. The data is based on the RIR data set
(reverberation time T60=300 ms) utilized for geometry calibration
in [16]. Using this data set 100 WASNs with four nodes were simu-
lated whereby the first node was used as reference node for SRO and
STO estimation. The sensor nodes start recording with an STO in the
range ±1 s. The nominal sampling frequency is fs=16 kHz. Each
recording is 5 min long and contains a random number of positions
M at which up to 4 utterances from the TIMIT data base [19] are
used as source signals. Speech pauses with a length between 0.5 s and
2 s are optionally added during the source position changes. For the
generation of signals with time-varying SROs, which were modeled
as described in Sec. 5, the STFT-resampling method from [20] was

1Source code is available at https://github.com/fgnt/paderwasn

https://github.com/fgnt/paderwasn


Table 1: Average and maximum RMSE of the SRO estimates and the
resulting RMSE of the SRO-induced delay estimates τε12

ε
6=

co
ns

t.

M
ul

ti-
Po

s.

Si
le

nc
e

Method

avg. avg. max.
RMSE RMSE RMSE
ε12 τ ε

12 τ ε
12

/ ppm / samples / samples

Sc
en

ar
io

-1 Online WACD 0.21 0.14 0.50
DXCP-PhaT 0.15 0.36 0.68
DXCP-PhaT8 0.69 1.73 3.65

DWACD 0.40 0.15 0.50

Sc
en

ar
io

-2 3 Online WACD 0.63 0.73 2.09
3 DXCP-PhaT 0.66 0.97 2.73
3 DXCP-PhaT8 0.95 1.83 4.66
3 DWACD 0.51 0.27 1.04

Sc
en

ar
io

-3 3 3 3 Online WACD 2.98 6.04 21.00
3 3 3 DXCP-PhaT 28.96 21.84 161.54
3 3 3 DXCP-PhaT8 1.31 2.70 7.76
3 3 3 DWACD 0.57 0.32 1.20

Sc
en

ar
io

-4 3 3 Online WACD 2.80 3.25 10.96
3 3 DXCP-PhaT 22.42 16.61 160.49
3 3 DXCP-PhaT8 1.28 2.81 6.93
3 3 DWACD 0.64 0.32 1.10

utilized. Sensor noise was added such that the SNR has an average
value of 30 dB for a source-node distance of 3.2 m, which is the
average distance on the data set.

In Tab. 1 and Tab. 2 the proposed DWACD method is compared
to the online WACD method we presented in [6] and the DXCP-PhaT
algorithm [21]. For all algorithms the signals were initially coarsely
synchronized as described in Sec. 3 before SRO estimation. The
average over the last 160 complex conjugated coherence products is
used for SRO estimation in the online WACD method. Due to the fact
that the temporal distance between the two signal segments used to
calculate the secondary GCPSD function is quite long in the original
DXCP-PhaT (≈ 5 s) and inappropriate for the considered scenario
with source position changes, the algorithm is also evaluated with
a reduced temporal distance of 8 STFT frames (≈ 1 s) (denoted as
DXCP-PhaT8).

Tab. 1 shows the SRO error for four scenarios with different
degrees of dynamicity. Further, the average and maximum error of the
SRO-induced delay τε12, which is calculated as described in (4), are
shown. In Scenario-1 with constant SRO and a single source position
all methods are able to deliver precise SRO estimates. Hereby, the
online WACD method and DXCP-PhaT which were designed for such
a setup show the best performance. In Scenario-2 a time-varying SRO
is considered. Here, the performance of all estimators degrades, with
the DWACD method exhibiting the least degradation.

Taking into account source positions changes (Scenario-3 and
Scenario-4) the error grows a lot for the online WACD method and
DXCP-PhaT while the error for the DWACD method stays nearly

Table 2: Dependency of the average RMSE / ppm of the SRO esti-
mates on the standard deviation σε of ε12[`] for Scenario-2

σε / ppm Online WACD DXCP-PhaT DWACD

0 - 1 0.55 0.54 0.49
1 - 2 0.60 0.61 0.51
2 - 3 0.63 0.69 0.51
3 - 4 0.71 0.80 0.54
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Fig. 2: Influence of the signal length on the STO estimation error for
Scenario-3

on the same level as for a fixed source position. It is evident, that
position changes are more detrimental to the estimation performance
than a time-varying SRO. The large errors reported for DXCP-PhaT
stem from recordings where in most cases the secondary GCPSD
function is calculated from frames corresponding to two different
source positions. In contrast to Scenario-3, there are no speech pauses
in Scenario-4, when the speaker position changes. Although DWACD
can no longer use the SAD to skip segments during position changes
it shows only a small performance degradation.

The dependency of the performance of the different SRO estima-
tors on the standard deviation σε of the ground truth SRO process is
presented in Tab. 2. For the DWACD method the SRO error is nearly
constant despite the growing standard deviation σε. In contrast, for
the online WACD method and DXCP-PhaT the SRO estimation error
is increasing with σε.

In Fig. 2 the distribution of the absolute STO error is presented
for different signal lengths used for STO estimation. As expected, the
STO error gets smaller with growing signal lengths. In most cases,
a 1 min long signal is sufficient to achieve an STO error smaller
than 10 samples. However there are some outliers. These outliers
disappear for signals which are at least 4 min long.

7. CONCLUSIONS

In this paper, we present methods for SRO and STO estimation
in scenarios with time-varying SROs and source position changes.
The former is caused by the time-varying deviation of the sampling
frequencies from the nominal sampling frequency, e.g., due to tem-
perature and supply voltage changes, and is modeled as an Ornstein-
Uhlenbeck process, while the latter is typical of a meeting scenario
with multiple speakers engaged in a communication. It is shown that
previously proposed online SRO estimators fail to properly handle
the considered dynamic scenario, being particularly vulnerable to
source position changes. The presented DWACD algorithm which re-
sults from modifying our previously proposed online WACD method
handles these aspects by utilizing shorter signal segments for coher-
ence drift estimation in combination with a more robust GCC-based
method to estimate the SRO from a temporally weighted average
coherence drift. Furthermore, an STO estimation method is presented
which uses source-microphone distance estimates to separate the in-
fluence of the STO from the TDOFs. Thus, the STO can be removed,
while at the same time regarding the geometric arrangement of the
WASN.

Acknowledgment Funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) - Project 282835863.



8. REFERENCES

[1] Shmulik Markovich-Golan, Sharon Gannot, and Israel Cohen,
“Blind Sampling Rate Offset Estimation and Compensation in
Wireless Acoustic Sensor Networks with Application to Beam-
forming,” in Proc. International Workshop on Acoustic Echo
and Noise Control (IWAENC), 2012, pp. 1–4.

[2] Shigeki Miyabe, Nobutaka Ono, and Shoji Makino, “Blind
compensation of inter-channel sampling frequency mismatch
with maximum likelihood estimation in STFT domain,” in
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013, pp. 674–678.

[3] Mohamad Hasan Bahari, Alexander Bertrand, and Marc Moo-
nen, “Blind Sampling Rate Offset Estimation for Wireless
Acoustic Sensor Networks Through Weighted Least-Squares
Coherence Drift Estimation,” IEEE/ACM Transactions on Au-
dio, Speech, and Language Processing, vol. 25, no. 3, pp. 674–
686, 2017.

[4] Joerg Schmalenstroeer, Jahn Heymann, Lukas Drude, Christoph
Boeddecker, and Reinhold Haeb-Umbach, “Multi-stage coher-
ence drift based sampling rate synchronization for acoustic
beamforming,” in 19th International Workshop on Multimedia
Signal Processing (MMSP), 2017.

[5] Shoko Araki, Nobutaka Ono, Keisuke Kinoshita, and Marc
Delcroix, “Estimation of Sampling Frequency Mismatch be-
tween Distributed Asynchronous Microphones under Existence
of Source Movements with Stationary Time Periods Detection,”
in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 785–789.

[6] Aleksej Chinaev, Gerald Enzner, Tobias Gburrek, and Joerg
Schmalenstroeer, “Online Estimation of Sampling Rate Off-
sets in Wireless Acoustic Sensor Networks with Packet Loss,”
in 29th European Signal Processing Conference (EUSIPCO),
2021, pp. 1–5.

[7] Sharon Gannot, Emmanuel Vincent, Shmulik Markovich-
Golan, and Alexey Ozerov, “A consolidated perspective on
multi-microphone speech enhancement and source separation,”
IEEE/ACM Transactions on Audio, Speech and Language Pro-
cessing, vol. 25, no. 4, pp. 692–730, 2017.

[8] Joerg Schmalenstroeer, Patrick Jebramcik, and Reinhold Haeb-
Umbach, “A combined hardware-software approach for acoustic
sensor network synchronization,” Signal Processing, vol. 107,
pp. 171 – 184, 2015.

[9] “High-precision audio drift measurements with gps,”
https://protyposis.net/clockdrift/high-precision-audio-drift-
measurements-with-gps/, Aug. 2021.

[10] Fred L. Walls and Jean-Jacques Gagnepain, “Environmental
sensitivities of quartz oscillators,” IEEE transactions on ul-
trasonics, ferroelectrics, and frequency control, vol. 39, pp.
241–249, 1992.

[11] “Sample rate and frequency calibration,” https://www.qsl.net/dl
4yhf/speclab/frqcalib.htm/soundcard clock drift measurements,
Aug. 2021.

[12] George E. Uhlenbeck and Leonard S. Ornstein, “On the theory
of the brownian motion,” Phys. Rev., vol. 36, pp. 823–841, Sep
1930.

[13] Tobias Gburrek, Joerg Schmalenstroeer, and Reinhold Haeb-
Umbach, “On source-microphone distance estimation using

convolutional recurrent neural networks,” in Proc. 14th ITG-
Symposium Speech Communication, 2021.

[14] Lin Wang and Simon Doclo, “Correlation Maximization-Based
Sampling Rate Offset Estimation for Distributed Microphone
Arrays,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 24, no. 3, pp. 571–582, 2016.

[15] Charles H. Knapp and G. Clifford Carter, “The generalized
correlation method for estimation of time delay,” IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, vol. 24,
no. 4, pp. 320–327, 1976.

[16] Tobias Gburrek, Joerg Schmalenstroeer, and Reinhold Haeb-
Umbach, “Geometry calibration in wireless acoustic sensor
networks utilizing DOA and distance information,” EURASIP
Journal on Audio, Speech, and Music Processing, vol. 2021, no.
1, pp. 1–17, 2021.

[17] Martin A. Fischler and Robert C. Bolles, “Random sample
consensus: A paradigm for model fitting with applications to
image analysis and automated cartography,” Commun. ACM,
vol. 24, no. 6, pp. 381395, June 1981.

[18] “TCXO frequency stability and frequency accuracy budget,”
SiTime, SiT-AN10039 Rev 1.1, Jul. 2014.

[19] John S. Garofolo, Lori F. Lamel, William M. Fisher, Jonathan G.
Fiscus, David S. Pallett, Nancy L. Dahlgren, and Victor Zue,
“TIMIT acoustic-phonetic continuous speech corpus,” 1993,
Linguistic Data Consortium (LDC).

[20] Joerg Schmalenstroeer and Reinhold Haeb-Umbach, “Efficient
Sampling Rate Offset Compensation - An Overlap-Save Based
Approach,” in 26th European Signal Processing Conference
(EUSIPCO), 2018, pp. 499–503.

[21] Aleksej Chinaev, Philipp Thüne, and Gerald Enzner, “Double-
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