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ABSTRACT

We consider a network of initially unsynchronized microphone ar-
rays to be used to capture a meeting which is afterwards transcribed.
Beamforming is applied to exploit the spatial diversity of the setup
for signal enhancement. We propose and compare two approaches to
compute the beamformer coefficients. The first, informed beamform-
ing, localizes speakers and sensors and computes speaker activity
information, from which beamformer filter coefficients are derived,
while the second, blind beamforming, estimates the beamforming
coefficients in an unsupervised manner employing a spatial mixture
model. We discuss the pros and cons of the two approaches and
experimentally assess their sensitivity to synchronization errors, lo-
calization errors, erroneous activity information, etc. Simulations
show that the informed beamforming achieves a promising perfor-
mance as measured by the word error rate of a downstream speech
recognizer.

Index Terms— beamforming, meeting transcription, ad-hoc
acoustic sensor network

1. INTRODUCTION

Transcribing the conversation of a meeting is a challenging task for at
least two reasons. There is first the interaction dynamics among the
speakers, which articulate themselves in an intermittent manner with
alternating segments of speech inactivity, single-, and multi-talker
speech. Second, the speech signal is usually captured by microphones
from a distance resulting in noisy and reverberated recordings.

What comes to the rescue is the use of multiple microphones that
can be combined to form spatial filters for the extraction of the signals
of the individual speakers. In the considered scenario, an ad-hoc
acoustic sensor network consisting of two or more microphone arrays
is used for signal capture. Neither the positions of the speakers nor
the positions and orientations of the microphone arrays are, however,
known in advance. Furthermore, the microphone arrays are initially
asynchronous having an unknown sampling rate offset (SRO) and
sampling time offset (STO) w.r.t. each other. While the first is time-
varying [1] and originates from the oscillators driving the sampling
processes [2], the latter is due to the fact that each device starts
recording at a different point in time [3].

To be able to combine the multi-channel recordings to spatial
filters for signal extraction, the data streams have to be first synchro-
nized and, second, beamformer filter coefficients have to be estimated,
which account for the intermittent nature of speech activity. The main
purpose of this contribution is to compare two approaches to speech
activity estimation for beamformer coefficient computation in a meet-
ing setup with initially unsychronized microphone arrays. The first
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is an informed approach to beamforming, where estimated source
position and activity information controls (informs) the estimation of
the spatial covariance matrices (SCMs) of the desired and interfering
signals. It is based on [4], but unlike there, where the activity infor-
mation is used to initialize a spatial mixture model, we here employ
it to directly compute SCMs for each of the speakers. The second
is a blind approach, where a spatial mixture model is learned in an
unsupervised manner to obtain activity information, from which the
beamformer coefficients are derived.

Note, that there exists a third approach, neural-network-based
speech activity estimation [5, 6]. It relies on supervised training with
the need for “parallel” data, where an utterance to be enhanced is pre-
sented at the input of the network, while the training target is derived
from the clean, undistorted version of the very same utterance. As
parallel data may not always be available, we exclude this approach
from our study here.

Once activity masks have been obtained, actual spatial filtering
can be done with different beamformer designs. Here, we employ
the minimum variance distortionless response (MVDR) beamformer,
which is a particularly popular front-end to automatic speech recog-
nition (ASR) [7]. The above two approaches are compared w.r.t.
the word error rate performance of a downstream ASR engine. We
are also interested in assessing their sensitivity to remaining clock
synchronization errors.

Several approaches to sampling rate offset estimation have been
proposed in the literature, e.g., [8, 9, 10]. Here, we employ the
method of [3], because it can track a time-varying SRO. It further
allows to discern the STO and the time of flight (ToF) contributions
to the time-difference of arrival (TDoA), which comes in handy when
computing a beamformer steering vector based on estimates of the
speakers’ and sensors’ positions.

Informed beamforming using narrow-band DoA or position esti-
mates to control the computation of the desired and undesired signal
SCMs has been developed in [11, 12], and studied in the context
of meetings in [13]. In this contribution we assume that more than
one microphone array is available and we employ steered-response
power phase transform (SRP-PhaT) to infer speech activity at es-
timated speaker positions. Spatial mixture models for computing
time-frequency activity masks have been extensively investigated
both for beamforming [5] and source separation [14]. In the context
of meeting recognition it has been investigated in [15, 16]. While
studied individually, those works do not allow for a fair comparison
of informed vs. blind activity estimation in the meeting setup. This
contribution is meant to fill this gap.

The paper is organized as follows: After giving a coarse overview
of the overall system and the synchronisation component in Sec. 2
and Sec. 3, we describe informed and blind source extraction in
Sec. 4. Section 5 compares them experimentally, and we draw some
conclusions in Sec. 6.
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Fig. 1: Meeting transcription for ad-hoc acoustic sensor networks

2. MEETING TRANSCRIPTION SYSTEM

Figure 1 gives an overview of the considered meeting transcription
system. The signals of I speakers at positions si, i∈{1, . . . , I},
are recorded by an ad-hoc acoustic sensor network (ASN), which
consists of J ≥ 2 compact microphone arrays with M microphones
each. While the geometric arrangement within an array is assumed
to be known, the location and orientation of the arrays relative to the
speakers is not known in advance.

The signals stemming from different microphone arrays are first
synchronized. Next, the signals of the individual speakers are ex-
tracted by spatial filtering and transcribed by the speech recognition
engine.

3. SYNCHRONIZATION

Synchronization is concerned with estimating the SROs and STOs
of the microphone signals relative to a reference channel, e.g., the
first microphone of the first array. Then, the signals are resampled to
remove the offsets. To estimate the SROs we employ the dynamic
weighted average coherence drift (DWACD) method [3] which is
able to track a time-varying SRO. Furthermore, the approach to
STO estimation from [3] is utilized which allows to discern between
the STO, stemming from the different recording start times of the
arrays, and the delays caused by the propagation times from the
speakers to the microphones. This distinction is important for the
subsequent position-based diarization used in the informed approach
to beamforming, which relies on TDoA information that reflects the
true physical positions of the speakers and the microphones. SRO and
STO compensation is achieved with the short-time Fourier transform
(STFT) based resampling method from [17].

4. SOURCE EXTRACTION

We employ an MVDR beamformer to extract the single speakers’
signals from the meeting recordings. In the following the concept
of the MVDR beamformer is shortly recapitulated. Afterwards an
informed and a blind manner to estimate the SCMs needed to calculate
the beamformer coefficients are introduced.

4.1. MVDR beamforming

The individual speakers’ signals are extracted by employing a beam-
former for each speaker. Let Y (`, k)=[Y1,1(`, k), . . . , YJ,M (`, k)]T

denote the stacked STFTs of the synchronized multi-channel input
data of the J arrays with M microphones each, at time frame ` and
frequency bin k. The STFT of the extracted signal of the i-th speaker
is computed as

X̂i(`, k) = WH
i (`, k) · Y (`, k), (1)

with Wi(`, k) denoting the beamformer coefficients to extract the
signal of the i-th speaker.
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Fig. 2: Informed source extraction via MVDR beamforming. Dashed
lines present the flow of position information used to estimate the
target speaker’s SCMs based on the steering vector.

In this work the MVDR beamformer in the formulation of [18] is
employed:

Wi(`, k) =

(
Φi(`, k)

)−1 ·Φi(`, k)

tr
{(

Φi(`, k)
)−1 ·Φi(`, k)

} · u. (2)

Here, Φi(`, k) and Φi(`, k) are the SCMs of the desired signal to
be extracted and the SCMs of the interference, respectively. Fur-
ther, tr{·} is the trace operator, and u is a unit vector pointing to a
reference microphone.

To compute the beamformer coefficients, we describe two alter-
native approaches in the following. The first, called informed source
extraction, derives information about the spatial arrangement of the
sources and sensors and the temporal activity of each speaker, and
computes the beamformer coefficients from it. The second is a blind
approach, that is agnostic to the spatial arrangement and is based on
fitting a spatial mixture model to the observations. It computes the
beamformer coefficients from the estimated posterior probabilities
of source activity.

4.2. Informed SCM estimation

Figure 2 gives an overview of the proposed informed source extraction
method. It is based on the spatial diarization component presented
in [4]. However, the usage of the diarization information to estimate
the SCMs differs from [4].

First, geometry calibration is conducted. It determines both
the positions ŝi, i∈{1, . . . , I}, of the speakers and the positions
and orientations of the microphone arrays, via the iterative data set
matching method from [19]. Based on the estimated microphone
and speaker positions a spatial diarization, i.e., an estimation of
the information when and at which position a speaker is active, is
performed via SRP-PhaT based multi-speaker tracking. For more
details on the spatial diarization procedure we refer to [4].

Given the information about “who speaks when and where”,
SCMs of each speaker can be computed. Let Ii be the set of time
frame indices, where the speaker at position si is active. Then

Ĩi = Ii\
{
∪
i′ 6=i

(Ii ∩ Ii′)
}

(3)

is the set of indices, where the speaker is solely active. We compute
the speaker’s SCM Ri(k) for i∈{1, . . . , I} as

Ri(k) =
1

|Ĩi|

∑
`∈Ĩi

Y (`, k) · Y H(`, k), (4)

with |Ĩi| denoting the cardinality of the set Ĩi. Further, the time-
varying SCM of the interference Φi(`, k) in (2) are calculated as sum
over the SCMs of the interfering speakers in frame `:

Φi(`, k) =
∑

ν∈A(`)\{i}

Rν(k), (5)
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Fig. 3: Estimation of the speakers’ SCMs from single speaker seg-
ments and their temporal application as interference SCMs per target
speaker.

with A(`) being the set of speaker indices for which an activity is
detected in frame `.

Fig. 3 visualizes the SCM estimation by means of an example
with three target speaker positions (s1 blue, s2 green, s3 yellow),
including the selected SCMs of the interference per frame and speaker
position. Audio segments with more than one active speaker are
marked in orange. For example, the beamformer used to extract the
signal of the speaker at position s1, starts with the interference SCM
Φ1(`, k)=R2(k) and then continues with Φ1(`, k)=R3(k). Note
that this computation assumes that at least one interfering speaker
is always active. Therefore, the previously and subsequently used
interference SCMs are re-utilized in periods in time, in which no
interfering speaker is active (see Φ2 and Φ3 in Fig. 3).

Concerning the computation of the SCM of the target speaker
Φi(`, k) to be used in (2) there are two options. While the obvious
choice is Φi(`, k)=Ri(k), an alternative is to compute it via the outer
product of the steering vector d(ŝi, k) pointing to the target speaker
position si, i.e., Φi(`, k)=d(ŝi, k)d

H(ŝi, k). Assuming anechoic
signal propagation, the steering vector can be computed from the time
differences of flight (TDoFs) calculated from the estimated positions
of the speakers and microphones.

In order to mitigate the effect of wrong decisions of the spatial
diarization an energy-based voice activity detection (VAD) is used
to decide when the target speaker is active. The energy threshold
is calculated based on the target speaker’s energy and the energy of
the interfering speaker that is suppressed worst and thus shows the
highest energy. The energies of the single speakers are estimated
based on the periods in time for which the speaker is solely active
according to the spatial diarization. The resulting activity information
is used in the ASR system to discard periods in time without activity
of the target speaker.

4.3. Blind SCM estimation

In the blind approach the speakers’ SCMs are estimated using a
spatial mixture model. To be specific, the complex Angular Central
Gaussian Mixture Model (cACGMM) [20] is employed with time-
varying instead of frequency-dependent mixture weights [21]:

p(Z(`, k)) =

I∑
i=1

πi(`) · A (Z(`, k);Bi(k)) , (6)

with Z(`, k) = Y (`, k)/‖Y (`, k)‖. Here, A(·) denotes the com-
plex angular central Gaussian distribution [20]. The mixture model’s
parameters are estimated with the Expectation Maximization (EM)
algorithm. It is initialized by drawing the posterior probabilities of
speakers, who are active at time frame ` and frequency bin k, γi(`, k),
from a Dirichlet distribution. First informal experiments have shown
that this initialization tends to be more robust against remaining syn-

chronization errors than the clustering-based initialization from [22],
which leads to better results for perfectly synchronous signals. The
parameter matrix Bi(k) is initialized with the identity matrix.

Once training is completed, the estimated time-varying mixture
weights πi(`) are smoothed over time and thresholded to zero or
one (with a threshold of 0.2), indicating an inactive or active speaker,
respectively.

The time frame index set Ii, where the i-th speaker is active
is now divided into continuous time intervals Ii,ζ , where the i-th
speaker is permanently active, with Ii =∪

ζ
Ii,ζ . For each interval

Ii,ζ , the target speaker SCM is computed as

RB
i,ζ(k) =

1

|Ii,ζ |
∑
`∈Ii,ζ

γi(`, k) · Y (`, k) · Y H(`, k), (7)

while the interferer’s SCM is computed over the same interval, how-
ever summing over all other active speakers, weighted by their poste-
rior probabilities γν(`, k), ν 6= i.

This way of SCM computation, that is adopted from [22], is
further modified to align it with the way it is done in the informed
approach of Sec. 4.2. Therefore, the target SCM is computed on all
frames where the target speaker is active:

RB
i (k) =

1

|Ii|
∑
`∈Ii

γi(`, k) · Y (`, k) · Y H(`, k), (8)

which is similar to (4), except that the set Ii instead of Ĩi is used
and that the outer products are weighted by the posterior probability
of speaker activity. The interferer SCMs are computed as in the
informed approach (see (5)) on a per-frame basis, however again
weighted by the posterior probabilities of speaker activity.

The EM algorithm assumes knowledge of the number of speak-
ers. However, since this information is in general not available, we
proceed as follows: we choose a value Imax in a way that it can be
safely assumed that the true number of speakers is smaller, and start
the EM iterations with the assumption of Imax speakers. During
training the number of mixture components is reduced by merging
classes with similar estimated mixture weights, as is measured by an
Intersection-over-Union ratio above 0.8, following the class fusion
suggested in [22].

5. EXPERIMENTS

For the experiments we use our database from [4] that consists of 100
simulated meetings. It simulates 5min long meetings in a randomly
generated room with speakers sitting around a table. Hereby, a single
speaker is active in 66% of the total meeting duration, while two
speakers are concurrently active in 21% of the total meeting dura-
tion, and in the remaining time no speaker is active. Audio signals
are captured by J=3 independent microphone arrays whose M=4
microphones are arranged in a quadratic layout with edge length of
5 cm. For more details on the database we refer to [4].

We use the concatenated minimum-permutation word error rate
(cpWER) [23] as the performance measure to evaluate the systems,
whereby the ASR results are obtained using the acoustic model con-
figuration from [24]. The model is trained on 16 kHz SMS-WSJ
data [24] to match the sampling frequency used in the systems for
synchronization, geometry calibration and beamforming.

5.1. Comparison of blind and informed beamforming

In Table 1 a comparison of the transcription performances is shown,
which are achieved with the informed and the blind source extraction



Table 1: Comparison of the transcription performance of the in-
formed and blind source extraction system

System WER / %

Clean audio 6.42
W/o enhancement 31.51

Blind beamfoming 9.41
Informed beamforming 7.08

systems, respectively. Both approaches significantly improve the
WER performance compared to the ASR result obtained on a single
microphone input without enhancement. It can also be seen that the
informed system outperforms the blind system. In the following the
informed and blind source extraction systems are separately investi-
gated in order to gain deeper insights into their individual advantages
and disadvantages.

5.2. Ablation study for informed beamforming

Table 2 shows the influence of errors, which are made by the dif-
ferent subsystems of the informed source extraction system, on the
transcription performance. It becomes obvious that a beamformer
using the target speaker’s SCMs (Φi(`, k)=Ri(k)), which is directly
estimated from the microphone signals, is able to outperform a beam-
former, which estimates the target speaker’s SCMs based on a steering
vector calculated from information about the microphones’ and speak-
ers’ positions (Φi(`, k)=d(ŝi, k)d

H(ŝi, k)). We hypothesize that
this results from the fact that the system, which directly estimates
the target speaker’s SCMs from the microphone signals, is less sen-
sitive to the quality of the synchronization and imperfections of the
diarization information than the system based on the steering vector.

A major advantage of estimating the target speaker’s SCMs di-
rectly from the microphone signals compared to the version based on
the steering vector is that the beamformer does not explicitly require
knowledge of the microphone and speaker positions. It uses, though,
the activity information given by the spatial diarization component.
In contrast to that the steering vector based SCM estimation relies on
estimates of the signals’ TDoFs and thus is heavily influenced by er-
rors of the position estimates. The largest disadvantage of the steering
vector based estimation of the SCMs of the target speaker is the accu-
mulation of errors of all subsystems. For example, the accumulated
localization and synchronization errors might significantly deteriorate
the ability of the beamformer to focus on the correct position. How-
ever, the localization-based estimation of the target speaker’s SCMs
via the steering vector might be advantageous if a spatial broad-band
noise source is continuously active. In this case there are no periods
in time in which the target speaker is solely active so that (4) cannot
be used anymore to estimate the SCMs of the target speaker.

Table 2: Ablation study for the informed source extraction system

Target speaker’s Oracle values for WER / %
SCM Activity TDoFs Perf. sync. Est. sync.

d(ŝi, k)d
H(ŝi, k) X X 6.66 7.14

d(ŝi, k)d
H(ŝi, k) X 7.09 8.36

d(ŝi, k)d
H(ŝi, k) X 7.00 7.36

d(ŝi, k)d
H(ŝi, k) 7.63 8.97

Ri(k) X - 6.82 7.00
Ri(k) - 6.96 7.08

Table 3: Ablation study for the blind source extraction system

Known number SCM WER / %
of speakers estimation Perf. sync. Est. sync.

X (7) 8.63 8.49
X (8) 7.52 7.51

(7) 10.02 10.32
(8) 8.95 9.41

5.3. Ablation study for blind beamforming

An ablation study for the blind source extraction system is presented
in Table 3. It can be seen that the proposed estimation of the interfer-
ence SCMs based on the complete meeting via (8) leads to a better
transcription compared to the segment-wise SCM estimation via (7).
A significant performance degradation is observed if the number of
speakers is not known in advance but has to be estimated from the
data. There is clearly room for improvement here by using better esti-
mators, e.g., the infinite mixture model of [25]. Overall, the influence
of the synchronization quality on the blind source extraction system
is rather small.

5.4. Discussion

It is to be mentioned that all presented results are given for a batch
offline processing of the meeting. However, it is straightforward to
adapt the building blocks of the informed source extraction system
to block online processing. Also the blind approach can be made
(block) online by employing a recursive EM algorithm. Moreover, the
informed source extraction system is computationally less demanding
than the spatial mixture model although it consists of more small
building blocks.

The advantage of the spatial mixture model that it provides “nar-
rowband” activity information, i.e., at a time-frequency bin resolution,
appears to play a minor role in the investigated scenario. However,
in settings with permanently active spatial noise sources it could be
beneficial. Given such a noise source the informed system would
integrate it into the interference SCMs and the target SCMs would be
based on the steering vector.

6. CONCLUSIONS

We compared an informed and a blind source extraction system via
beamforming for meeting transcription using an ad-hoc ASN. The
informed source extraction system relies on estimates of the micro-
phones’ and speakers’ positions and information of the speakers’
activities, which is estimated based on the position knowledge. In
contrast to that, the blind source extraction system calculates the
beamformer coefficients based on a spatial mixture model. On simu-
lated meetings it was shown that both approaches achieve a promising
transcription performance. However, the informed approach to source
extraction is able to outperform the blind approach slightly.

Both approaches rely on the assumption of fixed speaker posi-
tions. Thus, future work has to adapt the source extraction systems to
handle temporally moving speakers.
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