
SA-SDR: A NOVEL LOSS FUNCTION FOR SEPARATION OF MEETING STYLE DATA

Thilo von Neumann1, Keisuke Kinoshita2, Christoph Boeddeker1, Marc Delcroix2,
Reinhold Haeb-Umbach1

1Paderborn University, Germany 2NTT Corporation, Japan

ABSTRACT

Many state-of-the-art neural network-based source separation sys-
tems use the averaged Signal-to-Distortion Ratio (SDR) as a train-
ing objective function. The basic SDR is, however, undefined if the
network reconstructs the reference signal perfectly or if the reference
signal contains silence, e.g., when a two-output separator processes a
single-speaker recording. Many modifications to the plain SDR have
been proposed that trade-off between making the loss more robust
and distorting its value. We propose to switch from a mean over the
SDRs of each individual output channel to a global SDR over all out-
put channels at the same time, which we call source-aggregated SDR
(SA-SDR). This makes the loss robust against silence and perfect re-
construction as long as at least one reference signal is not silent.
We experimentally show that our proposed SA-SDR is more stable
and preferable over other well-known modifications when process-
ing meeting-style data that typically contains many silent or single-
speaker regions.

Index Terms — Source Separation, Permutation Invariant
Training, Signal-to-Distortion Ratio, Loss Function

1. INTRODUCTION

Source separation is an important pre-processing step for many other
systems, such as speech recognition or diarization, that often cannot
handle recordings of overlapping speech. Advances in the past years
using neural network-based source separators have led to impressive
results on fully overlapped clean anechoic recordings [1–4]. More
realistic and challenging scenarios like meeting-style data recently
gained research interest [5–11], where speakers do not fully overlap
and a separation system has to handle a varying number of speakers
including silence.

Many state-of-the-art separation systems, like the Time-domain
Audio Separation Network (TasNet) [1, 2], maximize the Signal-to-
Distortion Ratio (SDR) as the objective during training. However,
the standard SDR becomes problematic (1) when the system is asked
to reconstruct silence, as it is often required in realistic meeting-style
conversations when one speaker listens while another utters, and (2)
when it reconstructs one reference signal very well. In both cases,
the value of the SDR explodes.

Many works address this problem by modifying the SDR for
each estimated separated signal [12–17]. To address the instabilities
for perfect reconstruction, one can limit the value range of the SDR
by introducing a soft maximum [12] or by skewing its curve [16].
Instabilities due to silent targets can be addressed by switching to a
log-Mean Squared Error (MSE) variant [17, 15] or by adding small
values to the fraction in the SDR [13]. All of these modifications
distort the loss value for each separated speech signal.

We propose not to modify the SDR definition for each output
channel, but the way it is aggregated across outputs. The common

way of aggregation is a simple arithmetic mean over the individual
SDRs of each output, — the averaged SDR (A-SDR), e.g., [3, 1, 4].
We propose to transition from these “local” SDRs to a “global” SDR
that combines all outputs to one long signal before computing the
SDR. This is done by summing the energies of all targets and all
error terms — the source-aggregated SDR (SA-SDR).

We found experimentally that the proposed SA-SDR achieves
one of the best performances among the presented losses, measured
with various metrics, and comes without any hyperparameters to
tune. Making the loss robust against silence is important for training
on realistic meeting-style data where such a case frequently occurs
so that more training data can be used. Limiting the value range of
the SDR in general improves the performance of the trained models.
We additionally propose to use SA-SDR as a signal-level evaluation
metric for meting-style data where the classical SDR cannot be com-
puted. The SA-SDR measures in one metric both how well active
and silent sources are estimated.

2. CONVENTIONAL LOSS FUNCTIONS: SDR AND ITS
VARIANTS

We consider speech mixtures y ∈ RT of K speakers. A mixture
signal y =

∑K
k=1 sk + n is the sum of the speech of individual

speakers sk ∈ RT and noise n ∈ RT . All signals are represented as
vectors of samples with a time length of T .

The process of obtaining estimates ŝk for the clean reference sig-
nals sk from the mixture y is called source separation. The estimates
ŝk should reconstruct the clean signals sk as closely as possible up
to a permutation between estimates and references.

The Signal-to-Distortion Ratio (SDR) – and variations of it – is
a commonly used training objective and evaluation metric for such
source separation models. In its basic form, it is defined for a pair of
an estimated signal ŝ and a corresponding reference signal s:

SDR(ŝ, s) = 10 log10
∥s∥2

∥ŝ− s∥2
. (1)

The estimation error ŝ−s is to be minimized at the output of a source
separator, so the objective to be minimized becomes the negative
SDR, L(SDR) = −SDR, for each output channel.

We only consider scale-dependent SDRs here, but the same con-
clusions could be made with scale-invariant losses by re-scaling the
target as s(re-scaled) = s sT ŝ

∥s∥2 .
The plain SDR is undefined if the target signal is silent (s =

0), when, e.g., a two-output separator is trained to process a single-
speaker utterance, or if the reconstruction is perfect (ŝ = s). Even
if these edge-cases are not hit, the SDR explodes if the reference
is close to 0 or the estimation is almost perfect. It is often desired
to train with silent references, especially with realistic training data,
and perfect reconstruction should never be a problem.



The remainder of this section discusses different modifications
to the plain SDR that make it robust. Just preventing the loss value
from exploding for silent references often just moves the problem
to a later point in training. Since a network can trivially estimate
silence, it can easily learn to reconstruct silence (almost) perfectly,
so the loss additionally needs to counter perfect reconstruction.

2.1. Soft Maximum

One way to make the SDR robust against perfect reconstruction is to
impose a soft maximum with the thresholded SDR (tSDR) [12]:

L(tSDR) = −10 log10
∥s∥2

∥s− ŝ∥2 + τ∥s∥2
, (2)

where τ = 10−SDRmax/10. It can be made robust against silence by
adding a small constant ε > 0 to the reference signal [13]:

L(ε-tSDR) = −10 log10
∥s∥2 + ε

∥s− ŝ∥2 + τ(∥s∥2 + ε)
. (3)

Note that both τ and ε do not influence the direction of the gradient
of L(ε-tSDR) but only its scaling and the ratio between different out-
put channels. The ε-tSDR thus gives a smaller weight to the output
channels and examples that are well separated.

2.2. Skewing the SDR

Another variation of SDR that tries to combat the numerical insta-
bilities for perfect reconstruction is the skewed SDR [16]. It is orig-
inally formulated in a scale-invariant way, but we only consider the
scale-dependent variant:

L(skewed SDR) = −10 log10
∥s∥2

∥s− ŝ∥2 + ν∥ŝ∥2
(4)

The skewing factor ν > 0 controls how much the loss value is
skewed for small reconstruction errors. The additional term ν∥ŝ∥2
pushes the estimation towards 0 in the scale-dependent variant.1 It
is unclear if it is well-suited for source separation.

2.3. log-MSE

A simple way to avoid the instability for silent targets is to ignore
the numerator ∥s∥2. This leads to the log-MSE loss [17]:

L(log-MSE) = log10 ∥s− ŝ∥2. (5)

It has the same gradients as L(SDR) but scaled differently. As dis-
cussed earlier, the loss additionally has to be made robust against
perfect reconstruction, e.g., by adding a constant to the argument of
the logarithm [14]:

L(log1p-MSE) = log10(∥s− ŝ∥2 + 1). (6)

The log-MSE loss has the disadvantage that its value depends on
the scaling of the signals and thus varies more and is more diffi-
cult to interpret than the SDR. Especially when the best model is
selected based on the development loss, a sub-optimal model might
be selected. Similar modifications are possible as for the SDR-based
variants, such as adding a soft minimum similar to Eq. (2) [15].

1This effect is not present in the scale-invariant variant, but we only con-
sider scale-dependent losses here.

2.4. Extra Loss for Silence

A different way to handle problematic inputs is to identify them and
use an alternative loss where the SDR is not applicable. One exam-
ple for this is using the mixture signal y instead of the target in a
thresholded loss where the target is silent but the mixture is not [15],
here as a variant of the log-tMSE:

L(log-tMSE)
0 = 10 log10(∥ŝ∥

2 + τ∥y∥2). (7)

This loss is only applied where the target is silent, i.e., s = 0. Ap-
plying different losses to different outputs can create discontinuities
in the gradients. Besides that, the decision which outputs are silent
is not always trivial, e.g., for very short segments of speech.

3. AGGREGATING SDR ACROSS OUTPUTS

The modifications discussed so far all modify the SDR for each in-
dividual output. But, a source separator has multiple outputs and the
losses for different outputs have to be combined. Most source sep-
aration techniques that use an SDR-based loss average the loss over
the output channels, e.g., [1, 2, 5, 12, 13, 17]. For the standard SDR,
this can be written as

L(A-SDR) =
1

10

K∑
k=1

L(sk, ŝk) = −10

K

K∑
k=1

log10
∥sk∥2

∥sk − ŝk∥2
. (8)

Extensions to all other single-channel losses described in Section 2
are straightforward. We call this conventional way of combining the
single-channel SDRs the averaged SDR (A-SDR). It suffers from the
aforementioned problems with the standard SDR: It becomes unsta-
ble if any output channel has perfect reconstruction or a silent refer-
ence signal.

We propose to stabilize the loss by, instead of computing the
arithmetic mean, summing the energies of the targets and distortions:

L(SA-SDR) = −10 log10

∑K
k=1 ∥sk∥

2∑K
k=1 ∥sk − ŝk∥2

. (9)

This is equivalent to concatenating all output channels to compute a
global SDR and we call it source-aggregated SDR (SA-SDR). It is
stable as long as at least one reference is not perfectly reconstructed
and at least one is not completely silent. The case of complete si-
lence, i.e., all reference signals are zero, is not considered here since
separation is trivial in that case and silence can easily be detected.

Both A-SDR and SA-SDR are aggregations over the SDRs of
the individual output channels and thus bounded by them, i.e.,

min
k

SDR(ŝk, sk) ≤ A-SDR ≤ max
k

SDR(ŝk, sk), (10)

min
k

SDR(ŝk, sk) ≤ SA-SDR ≤ max
k

SDR(ŝk, sk). (11)

From this follows that for a special case where the SDRs of all in-
dividual output channels are equal (SDR(ŝ1, s1) = SDR(ŝ2, s2) =
...), A-SDR and SA-SDR are also equal.

3.1. Energy of the Reference Signals

The A-SDR weights each output channel equally, independent of
its energy level. This is often not desired: When a reference sig-
nal contains only a short segment of speech (i.e., low energy), it
gets weighted the same as a longer speech signal in another output
channel. This gives the samples in the short speech fragment an ex-
traordinarily large weight. The SA-SDR is less sensitive to these
outliers as it implicitly weights the output channels by their energy
and focuses less on low-energy signals.



3.2. Energy of the Distortions

Having a single well-separated output signal ŝl is enough to push the
A-SDR to extremely good values even if other outputs are separated
poorly. The A-SDR thus focuses the already well separated outputs
while the SA-SDR minimizes the total distortions by focusing the
poorly separated outputs. This can be seen from the gradients.

The gradient of the l-th output ŝl of A-SDR depends only on the
l-th output signal

∇ŝlL
(A-SDR) =

20

K ln 10

ŝl − sl

∥ŝl − sl∥2
, (12)

while the gradients of SA-SDR depend on all output signals:

∇ŝlL
(SA-SDR) =

20

ln 10

ŝl − sl∑
k ∥ŝk − sk∥2

. (13)

One would expect the gradients of the output with worse quality to
be larger, i.e.,

∥∥∇ŝkL
(A-SDR)

∥∥ >
∥∥∇ŝlL

(A-SDR)
∥∥ if ∥ŝk − sk∥2 >

∥ŝl − sl∥2. But the opposite is true for A-SDR:∥∥∇ŝkL
(A-SDR)

∥∥
∥∇ŝlL(A-SDR)∥ =

∥ŝl − sl∥
∥ŝk − sk∥

< 1 if l is better separated. (14)

The SA-SDR has the expected behavior:∥∥∇ŝkL
(SA-SDR)

∥∥
∥∇ŝlL(SA-SDR)∥ =

∥ŝk − sk∥
∥ŝl − sl∥

> 1 if l is better separated. (15)

The SA-SDR is not only an elegant way to make the SDR robust
against silent targets and perfect reconstruction in common use-cases
where some speakers make a pause, it also leads to a better balance
between the output channels.

4. EXPERIMENTS

4.1. Data

We evaluate the different loss functions on fully overlapped mix-
tures from the WSJ0-2mix database [18] and on artificially gener-
ated meetings [13] based on WSJ [19]. Each meeting is about 120 s
long, contains 5-8 speakers, an overlap ratio between 0.2 and 0.4
and is corrupted by white microphone noise of 20 dB to 30 dB. Fol-
lowing the ideas of Continuous Speech Separation (CSS) [5], there
are never more than two speakers overlapping at the same time.

We randomly cut 2 s long segments from the meetings for train-
ing. This segment size was shown to work well on this data in [13].

4.2. Model Training

We use a Dual-Path Recurrent Neural Network (DPRNN) [2] with
two outputs and the default configuration from [2] for experiments
on fully overlapped data, i.e., six blocks, a feature size of 64 and a
window size and shift of 100 and 50, respectively. To speed up our
experiments on meeting-style data, we use a shallower model with
only three blocks. We train all models with Permutation Invariant
Training (PIT) for the same number of iterations with the same batch
size. We pick the best checkpoint for evaluation based on the loss on
the development set.

We use a stitching approach [5,13] to evaluate our model on the
120 s long meetings. The input signal is segmented into overlapping
segments of 2.4 s length, each segment is processed by the separator,
and the separated signals from adjacent segments are aligned to min-
imize the mean squared error between the overlapping signal parts.
The stitcher uses a future and history context of 1 s each.

We choose ν = 0.3 for the skewed losses, and set SDRmax =
30 dB and ε = 10−6 for the thresholded losses (prefixed with “t”).

4.3. Metrics

4.3.1. Word Error Rate (WER)

To obtain a Word Error Rate (WER), we use a speech recognizer
from the ESPnet toolkit [20] trained on clean WSJ data. It achieves
a WER of 5.6 % on the clean eval92 set of WSJ.

We do not compute the WER for the full meetings because of
two reasons: The speech recognizer poorly generalizes to long sig-
nals and the alignment of estimated transcriptions with the ground
truth is difficult. We therefore cut the separated signals at the ground
truth utterance boundaries and compute the average WER over these
utterances, choosing the output channel with the lower WER. This
explicitly ignores regions in the output that should be silent.

4.3.2. Signal-to-distortion Ratio (SDR)

As a signal-level metric, we compute the BSSEval-SDR [21, 22].
Similar to WER, it is not meaningful to compute the BSSEval-SDR
over a whole output signal for meeting-style data because each out-
put channel can contain more than one utterance and processing one
output channel would follow the source-aggregated idea while the
channels are averaged, i.e., the aggregation would be a mixture of
source-aggregation and averaging. BSSEval-SDR usually uses av-
eraging, hence we use the same processing as for WER: We cut ut-
terances from the separated signals and compute the BSSEval-SDR
for each utterance independently. For WSJ0-2mix, we compute the
BSSEval-SDR over the full signals using the min sub-set.

4.3.3. Attenuation Ratio for Silence

To judge how well the systems can suppress speech where the output
should be silent, we compute an attenuation ratio

attenuation-ratio = 10 log10

∥∥y(sil)
∥∥2∥∥ŝ(sil)
∥∥2 , (16)

where y(sil) and ŝ(sil) are the signal parts that should be silent in the
mixture and separated streams, respectively. When the evaluated
system favors a suppression, e.g. as the skewed SDR, the value may
be overoptimistic for those systems.

4.3.4. Voice Activity Error Rate (VAER)

We use webrtcvad2 to obtain hypotheses for speech activity from the
separated signals. From these, we compute a Voice Activity Error
Rate (VAER) by comparing the estimated speech activity with the
ground truth overlap-free voice activity labels using pyannote [23].
This metric has the advantage compared to the WER, SDR and at-
tenuation ratio that it judges the quality of the full output streams
including silence. It, however, only judges how well the system can
discriminate where speakers are active and not the separation quality
in general.

4.3.5. SA-SDR with Graph-PIT

As a signal-level metric that measures the overall quality of a sys-
tem output, we propose to use the SA-SDR. We use the ideas from
Graph-PIT3 [13, 24] to construct reference signals for the output
streams for meeting-style data from the reference utterance signals
because the placement of utterances on output channels is irrelevant.
A-SDR is not well applicable here for the same reasons as BSSEval-
SDR while SA-SDR does not depend on the placement of utterances.
The optimal assignment of utterances to output channels for the ref-
erence signal is much more efficient to compute for SA-SDR than
for A-SDR [24].

2https://github.com/wiseman/py-webrtcvad
3https://github.com/fgnt/graph_pit

https://github.com/wiseman/py-webrtcvad
https://github.com/fgnt/graph_pit


Table 1. Comparison of the separation performance of A-SDR and
SA-SDR on WSJ0-2mix. Separation performance is evaluated with
BSS-eval SDR [22].

Loss BSSEval
SDR A-SDR SA-SDR

no separation 0.2 0.0 0.0

A-SDR [1, 2] 17.8 17.5 17.8
A-tSDR [12] 17.8 17.5 17.8
SA-SDR 18.0 17.7 18.0
SA-tSDR 17.7 17.5 17.8

Table 2. Comparison of the separation performance of SDR variants
on meeting-style data. Averaged losses are prefixed with “A-” and
source-aggregated losses with “SA-”. Best numbers are bold and
best numbers among conventional averaged SDRs are underlined.

Loss #spk
train

Metrics

WER atten.
ratio

BSSEval
SDR VAER SA-

SDR

no separation — 48.1 0.0 7.3 65.6 0.0

A-SDR [1] 2 13.5 25.5 19.1 12.6 13.8
A-log-MSE [17] 2 13.1 18.3 19.5 13.2 14.8
A-log1p-MSE [14] 1+2 13.5 25.3 19.6 9.9 16.8
A-skewed-SDR [16] 2 15.6 24.7 18.7 12.5 10.1
A-tSDR [12] 2 13.6 21.1 18.8 14.0 13.3
A-ε-tSDR [13] 1+2 12.8 25.9 19.6 11.8 15.5
A-log-tMSE+L0 [15] 1+2 12.8 26.4 19.6 10.7 14.5

SA-SDR 1+2 12.5 30.3 19.8 9.7 16.1
SA-log-MSE 1+2 13.3 31.5 19.3 11.6 14.7
SA-log1p-MSE 1+2 15.1 25.1 18.7 11.4 15.7
SA-skewed-SDR 1+2 15.1 28.9 18.6 12.6 10.6
SA-tSDR 1+2 12.2 30.8 19.9 8.2 17.9
SA-ε-tSDR 1+2 12.8 27.5 19.6 9.1 16.3

4.4. A-SDR and SA-SDR on Fully Overlapped Data

To show that the SA-SDR is well suited for general source sepa-
ration purposes, we first compare it with the conventional A-SDR
on the common task to separate fully overlapped speech from the
WSJ0-2mix database in Table 1. The model trained with SA-SDR
performs slightly better than the model trained with A-SDR, while
the variants with a threshold, A-tSDR and SA-tSDR, show a com-
parable performance. The value of SA-SDR as a metric is close to
BSSEval-SDR and A-SDR for this data. It is hence an alternative
metric for source separation in clean anechoic scenarios.

4.5. A-SDR and SA-SDR on Meeting-Style data

We compare the performance of models trained with different loss
variants for meeting-like data in Table 2. Training is performed on
2 s long segments randomly cut from the meeting-style data. These
segments can contain any number of speakers so we discard any
segments with more than two speakers (that our two-output sepa-
rator cannot handle) and less than one speaker. Some losses cannot
handle single-speaker segments, i.e., when one reference signal is
silent. For these losses, we additionally discard all single-speaker
segments during training (roughly 50 %). The number of speakers
seen during training is indicated by the “#spk train” column in Ta-
ble 2. Two-speaker segments always contain some speech in each
reference signal but are not necessarily fully overlapped.

4.5.1. Averaged SDR Losses

The upper half of Table 2 compares the different conventional aver-
aged losses (prefixed with “A-”). The A-log-MSE and A-SDR, as
expected, show similar numbers where the A-log-MSE is slightly
worse, probably due to model selection discussed in Section 2.3.
Modifying the log-MSE so that it can handle single-speaker train-
ing segments improves the VAER significantly while the WER and
BSSEval SDR are unchanged. This is expected as additional single-
speaker training segments likely improve the silence estimation that
is judged by VAER and SA-SDR while WER and BSSEval-SDR
only judge speech regions. A similar effect can be observed when
switching from A-tSDR to A-ε-tSDR. A-ε-tSDR and log-tMSE+L0

achieve the best performance in speech regions where A-ε-tSDR is
preferable because it does not require switching the loss function
depending on the energy of the reference signals. The best over-
all performance among the averaged loss variants, including silence
evaluation, can be achieved with A-log1p-MSE.

The scale-dependent skewed SDR does not seem to be well-
suited for training a source separation system. We can observe that
the loss pushes the outputs towards silence: The attenuation ratio
and VAER are relatively good while all other metrics show a poor
performance.

4.5.2. Source-Aggregated SDR Losses

Comparing the averaged losses with the source-aggregated losses,
we can observe a consistent improvement for most loss variants.
Many modifications of the standard SDR from the upper half of Ta-
ble 2 improve the performance when averaged because they allow
training on single-speaker segments. They, however, distort the loss
values, trading-off between more realistic data and an undistorted
loss. For the source-aggregated losses that always allow single-
speaker segments, they lose the benefit of better training data and
most of them degrade the performance (compare “log-1p” and “ε-
tSDR” losses). The SA-log1p-MSE variant, for example, is now
slightly worse than the SA-log-MSE because of the constant 1.

The overall best performance on meeting-style data can be
achieved with the SA-tSDR. It is more elegant and easier to use than
the A-ε-tSDR or the A-log-tMSE+L0 because it has fewer hyper-
parameters to tune. Very close performance can be achieved in all
metrics by the SA-SDR loss that has no hyperparameters.

We observed that the averaged loss variants often become unsta-
ble late in training, probably because they focus the best separated
outputs. The source-aggregated loss variants that better balance dif-
ferent outputs did not become unstable in our experiments.

5. CONCLUSIONS

We compared different SDR-based objective functions for source
separation that allow training a neural-network-based separator on
more realistic data, including silent reference signals for single out-
puts. We found that stabilizing losses for perfect reconstruction and
allowing silent targets, which result in training data closer to the
evaluation data, often improves the performance. We proposed a
novel way of combining the SDRs computed on individual output
channels that elegantly addresses the problems of conventional SDR-
based losses and improves the performance of trained models.
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