

SA-SDR: A novel loss function for separation of meeting style data

Thilo von Neumann, Keisuke Kinoshita, Christoph Boeddeker, Marc Delcroix and Reinhold Haeb-Umbach Paderborn University, Germany NTT Corporation, Japan

Introduction

The averaged Signal-to-Distortion Ratio (A-SDR) is a widely used objective function (maximized) for source separation

- **Problem**: A-SDR is not optimal for meeting scenarios
- Goal: Make the SDR more robust for meeting-like data

Meeting style data

Meeting style data is more challenging than conventional fully overlapped mixtures:

- Many active speakers
- Varying speaking patterns

Conventional: Averaged SDR (A-SDR)

Conventional objective used in many works, e.g., TasNet:

A-SDR =
$$\frac{10}{K} \sum_{k=1}^{K} \log_{10} \frac{\|\mathbf{s}_{k}\|^{2}}{\|\mathbf{s}_{k} - \hat{\mathbf{s}}_{k}\|^{2}}$$

s: Reference signal, \hat{s} : Estimated signal, k: speaker index

(At least one) silent reference signal

$$A-SDR = \frac{10}{K} \sum_{k=1}^{K} \log_{10} \frac{\mathbf{0}}{\|\mathbf{0} - \hat{\mathbf{s}}_k\|^2} \rightarrow -\infty$$

undefined!

Partial overlap / One dominating speaker

The term of the already well separated output dominates

$$\mathsf{A-SDR} \propto \mathsf{log}_{10} \frac{\left\|\mathbf{s}^{(\mathsf{good})}\right\|^2}{\left\|\mathbf{s}^{(\mathsf{good})} - \hat{\mathbf{s}}^{(\mathsf{good})}\right\|^2} + \mathsf{log}_{10} \frac{\left\|\mathbf{s}^{(\mathsf{bad})}\right\|^2}{\left\|\mathbf{s}^{(\mathsf{bad})} - \hat{\mathbf{s}}^{(\mathsf{bad})}\right\|^2}$$

$$\mathsf{dominates} \left(\to \infty\right) \qquad \mathsf{gets overruled}$$

• Also the gradiets focus on the already well separated output $|\nabla_{\hat{\mathbf{s}}^{(\text{good})}} \text{A-SDR}| > |\nabla_{\hat{\mathbf{s}}^{(\text{bad})}} \text{A-SDR}|$

Common 'hacks'

Many distort the loss value and/or heavily depend on hyperparameters Here shown for a single pair of reference \mathbf{s} and estimation $\hat{\mathbf{s}}$

Soft Maximum (ε-thresholded SDR)

$$\frac{\varepsilon\text{-tSDR} = 10\log_{10}\frac{\|\mathbf{s}\|^2 + \varepsilon}{\|\mathbf{s} - \hat{\mathbf{s}}\|^2 + \tau(\|\mathbf{s}\|^2 + \varepsilon)}$$
 Prevents (to some degree) the overruling issue

Skewed SDR

$$\mathsf{skewed}\ \mathsf{SDR} = 10 \log_{10} \frac{\left\|\mathbf{s}\right\|^2}{\left\|\mathbf{s} - \hat{\mathbf{s}}\right\|^2 + \nu \left\|\hat{\mathbf{s}}\right\|^2}$$

log-MSE

$$log1p-MSE = -log_{10}(||\mathbf{s} - \hat{\mathbf{s}}||^2 + 1)$$

Works for silent targets

Switch objective function for silent references

$$\mathcal{L}_0 = -10\log_{10}(\|\hat{\mathbf{s}}\|^2 + au\|\mathbf{y}\|^2)$$

Loss has to be switched when a target is silent

Source-Aggregated SDR (SA-SDR)

Aggregate energies at source level instead of losses:

$$\mathsf{SA}\text{-}\mathsf{SDR} = 10 \log_{10} rac{\sum_{k=1}^{K} \|\mathbf{s}_{k}\|^{2}}{\sum_{k=1}^{K} \|\mathbf{s}_{k} - \hat{\mathbf{s}}_{k}\|^{2}}.$$

s: Reference signal, \hat{s} : Estimated signal, k: speaker index

Silent reference signals

$$\mathsf{SA-SDR} = 10 \log_{10} rac{\left\| \mathbf{s}_1
ight\|^2 + \mathbf{0}}{\left\| \mathbf{s}_1 - \hat{\mathbf{s}}_1
ight\|^2 + \left\| \mathbf{0} - \hat{\mathbf{s}}_2
ight\|^2}$$

Stalbe when at least one reference signal is not silent

Partial Overlap / One dominating speaker

The distortions of the well separated output disappear

$$\mathsf{SA-SDR} \propto \mathsf{log}_{10} \frac{\left\|\mathbf{s}^{(\mathsf{good})}\right\|^2 + \left\|\mathbf{s}^{(\mathsf{bad})}\right\|^2}{\left\|\mathbf{s}^{(\mathsf{good})} - \hat{\mathbf{s}}^{(\mathsf{good})}\right\|^2 + \left\|\mathbf{s}^{(\mathsf{bad})} - \hat{\mathbf{s}}^{(\mathsf{bad})}\right\|^2}$$

The gradients focus on the not-so-well-separated output(s)

$$|
abla_{\hat{\mathbf{s}}^{(\mathrm{good})}}\mathsf{SA} ext{-}\mathsf{SDR}| < |
abla_{\hat{\mathbf{s}}^{(\mathrm{bad})}}\mathsf{SA} ext{-}\mathsf{SDR}|$$

Experiments: WSJ0-mix

Loss	BSSEval SDR	A-SDR	SA-SDR
no separation	0.2	0.0	0.0
A-SDR	17.8	17.5	17.8
A-tSDR	17.8	17.5	17.8
SA-SDR	18.0	17.7	18.0
SA-tSDR	17.7	17.5	17.8

 A-SDR and SA-SDR have a comparable performance on fully overlapped data

Experiments: Meeting style data

Loss	#spk	Metrics					
	train	WER	atten.	BSSEval	VAER	SA-	
		VVLIX	ratio	SDR	VALI	SDR	
no separation		48.1	0.0	7.3	65.6	0.0	
A-SDR	2	13.5	25.5	19.1	12.6	13.8	
A-log-MSE	2	13.1	18.3	19.5	13.2	14.8	
A-log1p-MSE	1 + 2	13.5	25.3	19.6	9.9	16.8	
A-skewed- SDR	2	15.6	24.7	18.7	12.5	10.1	
A-tSDR	2	13.6	21.1	18.8	14.0	13.3	
$A-\varepsilon$ -tSDR	1 + 2	12.8	25.9	19.6	11.8	15.5	
$A\text{-}log\text{-}tMSE + \mathcal{L}_0$	1 + 2	12.8	26.4	19.6	10.7	14.5	
SA-SDR	1+2	12.5	30.3	19.8	9.7	16.1	
SA-log-MSE	1 + 2	13.3	31.5	19.3	11.6	14.7	
SA-log1p-MSE	1 + 2	15.1	25.1	18.7	11.4	15.7	
SA-skewed-SDR	1 + 2	15.1	28.9	18.6	12.6	10.6	
SA-tSDR	1 + 2	12.2	30.8	19.9	8.2	17.9	
$SA-\varepsilon$ -t SDR	1+2	12.8	27.5	19.6	9.1	16.3	
CACDD		• 1		1 A CDI	· /·		

- SA-SDR can reconstruct silence better than A-SDR (improvement in attenuation ratio, VAER and SA-SDR)
- Separation in overlapping regions is often comparable and sometimes better (similar WER)

Conclusions

- Stabilizing the loss often improves performance
- SA-SDR elegantly stabilizes the SDR for meeting style data without hyperparameters

