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ABSTRACT

Impressive progress in neural network-based single-channel speech
source separation has been made in recent years. But those improve-
ments have been mostly reported on anechoic data, a situation that
is hardly met in practice. Taking the SepFormer as a starting point,
which achieves state-of-the-art performance on anechoic mixtures,
we gradually modify it to optimize its performance on reverberant
mixtures. Although this leads to a word error rate improvement by
7 percentage points compared to the standard SepFormer implemen-
tation, the system ends up with only marginally better performance
than a PIT-BLSTM separation system, that is optimized with rather
straightforward means. This is surprising and at the same time sober-
ing, challenging the practical usefulness of many improvements re-
ported in recent years for monaural source separation on nonrever-
berant data.

Index Terms — speech separation, deep learning, SepFormer,
automatic speech recognition, reverberation

1. INTRODUCTION

Neural network-based single-channel source separation has made
significant advances in the last years. Starting with the seminal pa-
pers on deep clustering [1] and Permutation Invariant Training (PIT)
[2], improvements have been achieved by combining the two in a
multi-objective training criterion [3], or replacing the Short-Time
Fourier Transform (STFT) with a learnable encoder and decoder
[4]. Employing convolutional mask estimation network architec-
tures [5] or accounting for short- and longer-term correlations in
the signal with recurrent network layers [6] and combining them
with a transformer architecture [7] further elevated the performance.
Overall, this has led to an improvement in scale-invariant Signal-to-
Distortion Ratio (SI-SDR) from roughly 10 dB to more than 20 dB
on the standard WSJ0-2mix data set [1], which consists of artificial
mixtures of nonreverberant speech.1

However, an anechoic environment is a rather unrealistic as-
sumption for speech separation as in a real-world scenario, the su-
perposition of the speech of two or more speakers typically occurs
in a distant microphone setting. A distant microphone naturally cap-
tures a reverberated signal. A practically much more relevant setting
is thus the separation of mixtures of reverberated speech.

Source separation of noisy and reverberant mixtures is much
harder. In particular, reverberation has been considered more chal-
lenging than noise [8]. This comes to no surprise because the key
assumptions underlying monaural mask-based source separation,

1https://paperswithcode.com/sota/speech-separation-on-wsj0-2mix

namely the sparsity and orthogonality of speech representations in
the STFT domain, tend to break down under reverberation.

WHAMR! [8] and SMS-WSJ [9] are two widely used data sets
for research on source separation for reverberant mixtures. Both
contain artificially reverberated utterances from the WSJ corpus.
While WHAMR! additionally contains environmental noise, SMS-
WSJ consists of 6-channel microphone array data and allows for
performance comparison w.r.t. Word Error Rate (WER) as it is ac-
companied by a Kaldi recipe [10]. Source separation performance
on WHAMR! is in the range of 2 – 8 dB output SI-SDR 2, while the
performance on SMS-WSJ is in the range of 5 – 6 dB SI-SDR for
single-channel input and single-stage processing [11, 8, 12], which
is much worse than the performance on clean, anechoic mixtures.
In this contribution, we employ SMS-WSJ for our experiments be-
cause we wish to assess the performance of the separation system
not only by the signal-related evaluation metric Signal-to-Distortion
Ratio (SDR) but also by WER, given that the SMS-WSJ Kaldi
recipe allows us to compare the WER performance across different
publications.

This paper is not about suggesting a new algorithm for reverber-
ant source separation. We rather aim to explore, in a systematic way,
which of the recent innovations that proved useful for the separa-
tion of anechoic mixtures are also beneficial in the reverberant case,
in order to propose some guidelines on how to adjust a separation
system to reverberated input.

As our outset, we take the SepFormer architecture, which
achieves state-of-the-art performance both on WSJ0-2mix [7] and
WHAMR! [13], and the traditional PIT-BLSTM source separation
model from [2]. Here, we modify and optimize the PIT-BLSTM
to detect which differences between both models aside from the
separator lead to a better separation performance. Then, we modify
the SepFormer w.r.t. loss function, encoder/decoder architecture
and resolution to mitigate the performance degradation between the
anechoic and reverberant scenario. Indeed, we are able to improve
the performance w.r.t. WER by 7 percentage points compared to the
vanilla SepFormer implementation. Nevertheless, the final result
turns out to be hardly superior to that of the optimized PIT-BLSTM,
calling into question the importance of some of the innovations of
recent years for the realistic case of reverberant speech separation.

The remainder of the paper is structured as follows. In Section 2
the PIT-BLSTM and the SepFormer are briefly introduced as two
realizations of an abstracted pipeline for mask-based source separa-
tion. Section 3 discusses design choices in light of the requirements
of a reverberated input. In Section 4 the SepFormer is optimized for

2Obtained by comparing the reported improvement with the input SI-SDR
of −6dB
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Fig. 1. Block diagram of mask-based source separation

performance on reverberant data and compared to the PIT model in
Section 5. The paper concludes with a short discussion in Section 6.

2. MASK-BASED SOURCE SEPARATION

Mask-based systems for single-channel source separation can be ab-
stracted to the same general processing pipeline that is depicted in
Fig. 1. First, the observed time-domain signal y(ℓ) is transformed
into a latent space (e.g., the STFT domain or a learned representa-
tion). In this latent space, the encoded mixture y(t, f) with time
index t and latent feature index f is used as the input of the neural
separation module, which estimates a mask mk(t, f) for the recon-
struction of each active speaker k in the observation. Then, the es-
timated signal x̂k(t, f) of each speaker is obtained by masking the
mixture with the estimated masks

x̂k(t, f) = y(t, f)mk(t, f). (1)

The reconstructed signals x̂k(t, f) are then transformed back into
the time-domain in the decoder.

Both the PIT-BLSTM approach to monaural source separation
[2] and the SepFormer [7] (the latter providing state-of-the-art results
on WSJ0-2mix) use a mask-based separation. By comparing these
two models, which, in principle, share the same overall structure of
Fig. 1, we investigate if modifications that were found to be useful
in the anechoic scenario can be transferred to the reverberant case.

3. SOURCE SEPARATION UNDER REVERBERATION

Mask-based source separation relies on the sparsity and orthogonal-
ity of the sources in the the domain where the masks are computed.
In case of the STFT domain, this means that a time-frequency bin
(t, f) of a mixture y(t, f) can be approximated by the contribution
of the dominant source i(t, f)

y(t, f) =

K∑
k=1

sk(t, f)hk(t, f)

≈ si(t,f)(t, f)hi(t,f)(t, f) (2)

where sk(t, f) and hk(t, f) are the STFT representations of the k-th
source signal and the Room Impulse Response (RIR) from the k-th
source to the microphone, respectively. Further, i(t, f) ∈ {1, . . .K}
indicates which of the K sources dominates in bin (t, f).

Note that Eq. (2) makes the additional assumption that the con-
volution of the source signal s(ℓ) with the RIR h(ℓ) corresponds to
a multiplication of their respective STFT transforms. This so-called
Multiplicative Transfer Function Approximation (MTFA), however,
only holds true if the temporal extent of h(ℓ) is smaller than the
STFT analysis window [14]. When the window length is decreased,
this assumption becomes more and more questionable, and the Con-
volutive Transfer Function Approximation (CTFA) [15] would be

Table 1. Performance of the baseline models on the (anechoic)
WSJ0-2mix database

Model SDR #Params

SepFormer [7] 20.4 25.7 M
SepFormer (small) 19.3 13.0 M
PIT-BLSTM [2] 9.8 23.5 M

Table 2. SDR of the baseline models on anechoic and reverberant
SMS-WSJ data on the test dataset with matched training data

Model anechoic reverb

SDR WER SDR WER

PIT-BLSTM 10.27 39.81 7.77 52.78
SepFormer (small) 19.13 13.14 8.98 41.43

more appropriate. Obviously, this challenges mask-based source re-
construction according to Eq. (1), and the complications are the more
pronounced the smaller the STFT analysis window is.

When switching from a fixed STFT encoder to a learnable en-
coder, the overall structure of the system, see Figure 1, stays the
same. Therefore, it can be assumed that similar issues arise with the
learnable encoder. In the following we will thus study the influence
of the encoder/decoder and their temporal resolution on the separa-
tion performance.

4. EVALUATION

4.1. Database and Baseline Results

In order to assess which effect a specific component of a separa-
tion module has both on nonreverberant and reverberant data, it is
important to run the experiments on a corpus that differs only in
this respect. We employ the SMS-WSJ data set [9] for our analysis,
which easily allows us to generate both anechoic and reverberant
two-speaker mixtures that are identical aside from that.

For the anechoic scenario, the reverberation time T60 is reduced
from 0.2 – 0.5 s to zero while keeping an otherwise identical data
simulation. Dynamic mixing is employed in training: each exam-
ple during training consists of randomly drawn utterances from WSJ
database and only the RIRs are reused to provide a dramatically
increased number of examples, which has been proven to improve
the system’s performance [12]. To show the competitiveness of the
used models, we also provide baseline results on the WSJ0-2mix [1]
database.

The PIT-BLSTM model consists of 3 BLSTM layers with 600
units each, followed by 2 fully connected layers. The encoder and
decoder are set to the STFT and inverse STFT with a window size of
512, a frame advance of 128 and an embedding dimension (number
of frequency bins) of 257 at 8 kHz sampling rate. The output of
the STFT encoder is the concatenated real and imaginary part of the
spectrum as in [16].

Aside from reducing the number of intra- and inter-Transformer
layers to 4, we use the same SepFormer parameters as proposed in
[7] with a window size of 16, a frame advance of 8 and a latent
dimension of 256 samples.

This modification yields an about 1 dB lower SDR on WSJ0-
2mix, but significantly reduces the number of parameters, see entry
“SepFormer (small)” in Table 1. Thus, for all following experiments
this “small” configuration is employed due to computational limita-
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tions. Note that the memory footprint of the small SepFormer still
is 16 times larger than the PIT-BLSTM, so that a complexity com-
parison purely based on the parameters is not fair. The learnable
encoder is a single CNN layer with 256 channels, i.e. the latent size,
followed by a ReLU, and the decoder has only one CNN layer as in
[5].

Both architectures use the Adam optimizer [17] and the early
reverberated signals as target as proposed in [9]. The SepFormer is
trained with a soft-thresholded time-domain SDR loss [18]

Lth−SDR = 10 log10
1

K

∑
k


∑
ℓ

|x̂k(ℓ)− xk(ℓ)|2∑
ℓ

|xk(ℓ)|2
+ τ

 , (3)

where τ = 10−SDRmax/10 and SDRmax = 20dB. This loss de-
creases the contribution of well separated examples to the gradient,
encouraging the model to focus more on enhancing examples with a
low SDR than those that already show a good separation. The Base-
line PIT-BLSTM [2] is trained with a frequency-domain SDR loss.
The models are evaluated w.r.t. SDR, PESQ [19], and WER. We use
the SDR metric proposed in [20], as it allows an evaluation against
the anechoic speech source. The PESQ values also are given w.r.t.
the speech source, and the WER results on SMS-WSJ are determined
with the acoustic model from [9].

Table 1 and Table 2 display the results of the baseline systems
[2, 7] on WSJ0-2mix and SMS-WSJ, respectively. It can be seen that
both systems degrade under the presence of reverberation. However,
the separation performance of the SepFormer degrades by more than
10 dB in terms of SDR and almost 30 percentage points regarding
the WER. We wish to find out which components of the SepFormer
make it become so sensitive to reverberation.

4.2. PIT-BLSTM optimization

First, we optimized the performance of the PIT-BLSTM on reverber-
ant input data. To do so, we switched the training objective from the
frequency-domain loss to the thesholded time-domain loss described
in Eq. (3). In this way, even though the PIT-BLSTM uses the magni-
tude spectrum for the mask estimation, the phase has an influence on
the computed loss. In addition, we added white Gaussian noise at an
SNR of 25 dB to the separated audio files before they were input to
the speech recognizer. This is to mask artifacts that were introduced
during the source separation. Besides an improved WER we also ob-
served a higher correlation between the signal-level metric SDR and
the WER, rendering the SDR a better predictor of the ASR perfor-
mance. As shown in Table 3, by introducing the latter modifications
the performance of the PIT-BLSTM is significantly improved both
in terms of SDR and WER. Even more so, these modifications work
well both with and without reverberation and lead to a reduction in
WER of more than 20 percentage points for both scenarios.

4.3. SepFormer optimization

The above changes to the PIT-BLSTM system also lead to improve-
ments of the SepFormer, see Table 3. Therefore, the Gaussian noise
is added in all following evaluations. However, it is striking that the
SepFormer is no longer superior to the PIT-BLSTM system for re-
verberant data. Therefore, we gradually exchanged the SepFormer’s
components with those of the PIT-BLSTM system to investigate the
cause of this performance loss and what is the best configuration for
reverberant input.

Table 3. Comparison of the optimzed PIT-BLSTM and the baseline
SepFormer model on SMS-WSJ

Model anechoic reverb

SDR WER SDR WER

PIT-BLSTM 10.27 39.81 7.77 52.78
PIT-BLSTM (th-SDR) 14.13 19.65 10.93 35.70

+ Gaussian noise - 13.19 - 27.47
SepFormer (small) 19.13 13.14 8.98 41.43

+ Gaussian noise - 9.57 - 33.51

4.3.1. Encoder/decoder choice

There is a large mismatch between the window size and the frame
advance of standard PIT-BLSTM and SepFormer systems. To verify
whether the violation of the MTFA caused by the small window size
of the SepFormer contributes to the system deterioration under rever-
beration, we evaluated the SepFormer for multiple encoder/decoder
configurations. As opposed to other works [16], we only increase
the window size while maintaining small shift sizes in order to re-
tain a high temporal resolution. Table 4 shows the expected behavior
for the SepFormer in anechoic conditions: reducing the frame shift
leads to an improvement in SDR and WER. The recommended anal-
ysis window size and shift of 16 and 8 samples (i.e. 2ms and 1ms)
[7], respectively, provides the best results for anechoic data. Further-
more, the learnable encoder proves superior to the STFT encoder.

Conversely, for the reverberant scenario, while the STFT en-
coder in Table 4 is significantly worse than a learnable encoder for
a small window size and shift, it begins to be on par or even outper-
forms the learnable encoder for an increased window size of 32ms.
This validates our assumption that the violation of the MTFA con-
tributes to the poor model performance under reverberation. Inter-
estingly, the overall best results of the SepFormer are achieved with
the STFT.

Our assumptions are further supported by the W-Disjoint Or-
thogonality (WDO) [21] score which measures the orthogonality of
the single-speaker utterances in the latent space. Following on the re-
sults from Table 4 it becomes apparent that the baseline SepFormer
learns a highly orthogonal space for anechoic data. However, by
switching to reverberant data, the WDO decreases by 5 percentage
points. This decrease is mitigated by a larger encoder window size.
The same is true for the STFT encoder, where the regularizing effect
of a larger window size is even more pronounced. This indicates that
the learnable encoder is able to compensate the effects to some de-
gree, but that choosing a large enough window size is mandatory to
stabilize the performance under reverberation.

4.3.2. Data representation for the mask estimator

A significant difference between PIT-BLSTM and SepFormer is that
the PIT model estimates the masks based on the magnitude spectro-
gram only, whereas the SepFormer mask estimator has access to the
complete signal, i.e., both magnitude and phase in case of the STFT
representation.

To compare both networks with the same input representation,
the effect of only using the magnitude as input for the mask estimator
in the SepFormer is evaluated. The SepFormer trained with concate-
nated real and imaginary parts estimates separate masks for the real
and imaginary parts of the observation, respectively. When only us-
ing the magnitude for the mask estimation, the estimated masks are
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Table 4. Separation performance of the SepFormer on SMS-WSJ with a learnable and STFT encoder/decoder and varying encoder shifts/sizes

win.
size

latent
size shift learnable

encoder
anechoic data reverberant data

SDR [dB] WDO [%] PESQ WER [%] SDR [dB] WDO [%] PESQ WER [%]

16 256 8 ✓ 19.13 85.48 3.43 9.57 8.98 79.94 1.83 33.51
256 256 8 ✓ 16.68 82.76 3.11 12.28 10.56 82.89 1.91 31.75
256 256 16 ✓ 15.27 81.89 3.00 13.96 10.23 81.95 1.85 30.66
256 256 64 ✓ 11.86 84.26 2.47 20.54 9.54 85.08 1.83 34.83

16 256 8 ✗ 16.74 73.58 2.84 11.90 7.44 69.95 1.71 45.83
256 256 8 ✗ 15.70 79.24 2.91 11.61 9.97 77.57 1.84 31.38
256 256 16 ✗ 14.47 79.24 2.69 13.52 10.79 77.57 1.90 29.10
256 256 64 ✗ 13.52 79.24 2.66 15.02 10.01 77.57 1.83 31.80

Table 5. Separation performance of the SepFormer for different in-
put representations of the STFT features on reverberant SMS-WSJ

win.
size

latent
size

shift Input data SDR PESQ WER

256 256 16 Real+Imag 10.79 1.90 29.10
256 256 64 Real+Imag 10.01 1.83 31.80
512 256 16 Magnitude 10.48 1.82 29.22
512 256 128 Magnitude 11.00 1.91 26.50

Table 6. Performance comparison of the best anechoic and reverber-
ant system configurations

System anechoic reverb

SDR WER SDR WER

opt. PIT-BLSTM 14.13 13.19 10.93 27.47
opt. SepFormer anechoic 19.13 9.57 8.98 33.51
opt. SepFormer reverb 14.03 14.09 11.00 26.50

applied both on the real and imaginary parts. Table 5 shows that the
availability of the phase information is not helpful for the SepFormer
in the reverberant scenario. Even more so, omitting the phase infor-
mation leads to a better system performance.

There are two possible reasons. Firstly, only using the magni-
tude spectrogram results in a larger window of 512 samples to keep
the size of the separator identical, increasing the temporal context of
each frame even further. Secondly, [22] has shown that the phase be-
comes less informative while the magnitude becomes more informa-
tive for increasing frame sizes. The configurations trained with both
the phase and magnitude information learn a trade-off between phase
and magnitude reconstruction. However, the large window sizes that
were shown to be necessary in Table 4 for the reverberant scenario
result in an uninformative phase representation. Therefore, omitting
this information only slightly deteriorates the system performance
for a small frame shift. However, by further increasing the frame
shift the magnitude spectrogram becomes more informative. There-
fore, using the magnitude allows increasing the frame shift from 16
to 128 samples, reducing the computational effort by almost a factor
of 8 compared to the best configuration in Table 4 while simultane-
ously improving both signal-level metrics and WER.

5. SUMMARY

Table 6 summarizes the performance of the SepFormer on anechoic
and reverberant SMS-WSJ using the best configuration for anechoic

data as reported in [7] and the best configuration for reverberated
input as found here, and compares it with the performance of the op-
timized PIT-BLSTM system. Interestingly, the SepFormer configu-
ration that was found optimal for reverberant input is quite similar
to the PIT-BLSTM: it uses a fixed STFT encoder with the magni-
tude spectrogram at its input and the same window size and frame
shift. Only the network architecture of the separator is different, i.e.,
intra- and inter-transformer layers vs BLSTM layers. However, this
modified SepFormer only shows a marginally better SDR and an im-
provement of 1 percentage point in the WER.

6. CONCLUSIONS

In this paper, we investigated the impact of reverberation on the var-
ious design choices for the SepFormer source separation system that
is considered state-of-the-art for anechoic mixtures. We showed that
it is mandatory to choose a large enough encoder window size for
reverberant data. Also, we demonstrated that the STFT likewise is
a valid choice as encoder and decoder. Here, it becomes apparent
that the phase information no longer is helpful for the separation
and only using the magnitude information provides superior results
while reducing the computational complexity significantly.

Despite several modifications which greatly improved the per-
formance of the SepFormer on reverberated mixtures, it was in
the end hardly superior to a PIT-BLSTM separation system, which
was optimized with only rather straightforward modifications, such
as loss computation in time domain. At least for a single-stage
approach, our experiments indicate that jointly focusing on phase
and magnitude reconstruction leads to subpar results compared to
solely focusing on magnitude reconstruction under reverberation.
This raises the issue of whether the improvements that have been
appraised for the separation of anechoic mixtures, such as learnable
encoder and phase reconstruction, are futile for the more realistic
case of reverberant source separation.

We therefore argue that research on source separation should
primarily focus on the practically more relevant case of reverberant
input, rather than on the anechoic scenario. Since jointly tackling
both reverberation and overlapped speech appears to be a challeng-
ing task, an alternative solution is to apply an explicit dereverbera-
tion component and/or employ multi-stage processing, as in [23].
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