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DeepCoMP: Coordinated Multipoint Using
Multi-Agent Deep Reinforcement Learning

Stefan Schneider , Holger Karl , Ramin Khalili , and Artur Hecker

Abstract—Macrodiversity is a key technique to increase the
capacity of mobile networks. It can be realized using coordinated
multipoint (CoMP), simultaneously connecting users to multiple
overlapping cells. Selecting which users to serve by how many
and which cells is NP-hard but needs to happen continuously
in real time as users move and channel state changes. Existing
approaches often require strict assumptions about or perfect
knowledge of the underlying radio system, its resource allocation
scheme, or user movements, none of which is readily available
in practice.

Instead, we propose three novel self-learning and self-adapting
approaches using model-free deep reinforcement learning (DRL):
DeepCoMP, DD-CoMP, and D3-CoMP. DeepCoMP leverages
central observations and control of all users to select cells almost
optimally. DD-CoMP and D3-CoMP use multi-agent DRL, which
allows distributed, robust, and highly scalable coordination.
All three approaches learn from experience and self-adapt to
varying scenarios, reaching 2x higher Quality of Experience
than other approaches. They have very few built-in assumptions
and do not need prior system knowledge, making them more
robust to change and better applicable in practice than existing
approaches.

Index Terms—Mobility Management, Coordinated Multipoint,
CoMP, Cell Selection, Resource Management, Reinforcement
Learning, Multi Agent, Self-Learning, Self-Adaptation, QoE

I. INTRODUCTION

Modern cellular networks coordinate resources across multi-
ple terminals, base stations, cells, and access network entities.
An example is coordinated multipoint (CoMP), a kind of
cooperative MIMO that leverages macrodiversity by allowing
user equipment (UE) to connect to and receive data from
multiple cells simultaneously. CoMP was introduced in 3GPP
LTE rel. 11 [1] but will play an even more important role in 5G
and 6G with many small and partially overlapping cells [2].

We see CoMP as an interesting and relevant real-world
use case to study coordinated resource management. In the
considered scenario, UEs move around such that their channel
state continuously changes due to path loss, shadowing, reflec-
tions, etc. Especially UEs at the cell edge experience strong
path loss and benefit from connecting to multiple cells. At
the same time, connections must be balanced across different
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cells as all UEs served by a cell compete for limited resources,
e.g., physical resource blocks (PRBs) in LTE. With more UEs
connected to a cell, its available PRBs per UE decrease. Hence,
a UE may connect to more cells to increase its effective data
rate but thereby increases competition at these additional cells,
possibly reducing the available PRBs and consequently the
data rate of other connected UEs. To navigate this trade-off
and adapt to UE movement, changing load, and channel state,
it is crucial to dynamically select how many and which cells
should serve which UEs.

We focus on dynamic multi-cell selection in downlink
CoMP with joint transmission and coordinated scheduling [1].
Instead of maximizing mere data rate, our goal is to also
support maximizing Quality of Experience (QoE) for all
UEs. QoE depends on the considered scenario and may, for
example, require reaching a certain data rate threshold or show
diminishing returns with increasing data rate [3], [4]. Multi-
cell selection is significantly more complex than single-cell
selection and the resulting problem is NP-hard and cannot be
reasonably approximated [5]. Despite this complexity, it must
happen quickly online as user movement affects channel state
and achievable data rates.

Existing approaches for multi-cell selection typically use
heuristic algorithms or solve mixed-integer linear programs
(Sec. II). Often, these approaches build on rigid models or
rely on perfect knowledge of the underlying system, including
radio model, resource allocation scheme (i.e., intra-cell alloca-
tion of PRBs to connected UEs), or even user movement [5]–
[7]. Such detailed knowledge may only be approximated
or even be completely unavailable in practice (e.g., vendor-
specific, unknown PRB allocation), limiting applicability of
these approaches. Simpler approaches based on channel mea-
surements and simple rules, e.g., [7], [8], may require different
manual configurations for different scenarios and often lead to
suboptimal results (Sec. VII).

Instead, we propose three novel self-learning and self-
adaptive approaches, DeepCoMP, DD-CoMP, and D3-CoMP,
using model-free deep reinforcement learning (DRL). DRL ex-
cels at sequential decisions to optimize long-term rewards [9]
and is thus particularly useful here, where we want to optimize
UEs’ long-term QoE over multiple sequential cell assignments.
Moreover, our model-free approaches require very few built-in
assumptions or system knowledge and learn from experience
of previous actions. They do not need explicit and detailed sys-
tem information but adapt to scenarios with varying and even
heterogeneous resource allocation schemes and cell density.
Unlike existing work [10]–[12], they support multiple moving
UEs and autonomously adapt to varying UE numbers and
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movement. Our approaches can continuously adapt to ongoing
changes in the scenario through online transfer learning. Sim-
ilarly, they support transfer learning for fine-tuning pretrained
models to new, unseen situations without requiring expensive
retraining from scratch (cf. Google AutoML [13]). Overall,
our DRL approaches are not explicitly aware of the underlying
wireless system details, which they abstract away, and instead
self-adapt to any given scenario through indirect feedback.
Hence, we expect the proposed techniques to also carry over to
other tasks in network and service management, relying only
on available observations to learn which management actions
optimize the desired goal.

In more detail, DeepCoMP (Sec. IV) is a centralized
DRL approach that jointly coordinates all UEs. By central
observation and control, DeepCoMP achieves close-to-optimal
solutions but requires more training for larger scenarios with
more UEs. To address scenarios without global observations
or with many UEs, we propose two variants: DD-CoMP and
D3-CoMP (Sec. V). Both are multi-agent DRL approaches
that observe and control UEs individually, in a distributed
fashion. DD-CoMP trains a single neural network that is later
replicated for distributed inference. D3-CoMP distributedly
trains separate neural networks. While the proposed DRL
approaches learn without human intervention, designing the
underlying Markov decision process (MDP) is known to be
challenging for practical problems [9], [14], [15], which we
solved by applying domain knowledge to the MDP design. For
example, we carefully design DD-CoMP’s and D3-CoMP’s
observation and action spaces to be invariant in the number
of UEs, allowing fast training even in large scenarios. For
the observations and reward of each agent, we also take
locally available information of surrounding UEs into account
to encourage cooperative behavior, which is an open challenge
in multi-agent DRL [16], [17]. Overall, our contributions are:
• In Sec. IV, we propose DeepCoMP as a centralized DRL

approach, jointly selecting multiple cells for all UEs.
• In Sec. V, we propose DD-CoMP and D3-CoMP as dis-

tributed multi-agent DRL approaches that coordinate UEs
individually and converge more quickly.

• In Sec. VI, we discuss architecture and options for real-
world deployment of DeepCoMP, DD-CoMP, and D3-
CoMP, leveraging domain knowledge for designing practical
observations, actions, and reward.

• In Sec. VII, we evaluate adaptability, robustness, and scala-
bility of our three DRL approaches and show that they con-
sistently and significantly outperform existing approaches
(2x higher QoE).

• Our code is publicly available [18] to encourage reproduc-
tion and extension of our work.

II. RELATED WORK

A. Conventional Approaches without DRL

Xenakis et al. [19] and Giust et al. [20] survey approaches
for mobility management and dynamic cell selection, which
are often addressed together with problems like resource
allocation or power control. While many authors consider
selection of a single cell [21]–[23], we focus on approaches

that select multiple serving cells for CoMP. Qamar et al. [24]
review different CoMP modes and survey corresponding liter-
ature. One of their identified open research issues is fairness
in CoMP, which we encourage by optimizing a logarithmic
utility function (representing QoE) [25]. We focus on CoMP
joint transmission (CoMP-JT) with coordinated scheduling
(CoMP-CS) but believe that our approaches could also learn
to effectively select cells for other CoMP modes (e.g., CoMP-
CB) if trained in a corresponding environment.

Marsch and Fettweis [7] statically cluster cells into fixed
groups of given size, optimizing CoMP for a priori known
UE positions. Vijayarani and Nithyanandan [6] dynamically
optimize the number of serving cells for each UE without
selecting the cells as such, but evaluating the expected through-
put for all possible numbers of cooperating cells. All these
examples require detailed knowledge of the underlying system
and environment dynamics (e.g., UE positions, data rates,
resource allocation). Our approaches, without such knowledge,
dynamically decide both how many and which cells to select
and consistently outperform algorithms with a fixed number
of cells (Sec. VII).

Similar to our approach, Amzallag et al. [5] optimize how
many and which cells to select for CoMP and also consider
fairness. They use an offline approach that requires a priori
knowledge of UEs, cells, and system details over all time steps.
You and Yuan [11] also dynamically select multiple cells for
CoMP and additionally optimize resource allocation. While
their problem is very similar to ours, our approaches neither
require detailed, possibly unavailable system knowledge nor
are they tied to any specific resource allocation scheme.

Beylerian and Ohtsuki [8] propose a simpler, rule-based
approach for multi-cell selection where users connect to all
cells above a signal-to-interference-and-noise ratio (SINR)
threshold. As we show in Sec. VII, the threshold parameter
strongly influences performance and the best value varies
between scenarios, again requiring human expertise for proper
configuration. In contrast, our proposed DRL approaches adapt
to different and even heterogeneous schemes without explicit
knowledge of these schemes through self-learning and consis-
tently outperform this approach.

B. Self-Learning DRL Approaches

Self-learning approaches, particularly reinforcement learn-
ing [26], have become popular as they can be applied without
detailed system knowledge and should adapt to different
scenarios. Nasir and Guo [27] propose multi-agent DRL
for dynamic power control. Their approach is comparable
to our DD-CoMP as it also relies on local observations to
make distributed decisions after centralized training. We also
propose D3-CoMP, which supports distributed training. They
assume each UE to be connected to a single fixed cell and
then control transmission power. We do not consider power
control but focus on cell selection. Our approaches are hence
complementary. Similarly, Ozturk et al. [28] use supervised
learning to predict UE movement, which could be combined
with our approach to focus training on expected UE positions
and movement. Ayala-Romero et al. [29] jointly allocate radio
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and compute resources using autoencoders and DRL without
requiring a priori system knowledge but adapting to different
and even heterogeneous systems. Our approaches could be
combined for self-adaptive multi-cell selection and resource
allocation.

More related to our problem, Chen et al. [10] use DRL to
select base stations for multi-access edge computing (MEC)
but only consider a single UE and connections to a single cell.
Elsayed et al. [30] use tabular Q-learning for cell selection and
interference mitigation in 5G by connecting UEs to a single
cell, ignoring CoMP. Furthermore, tabular Q-learning does not
scale to large or continuous observations and is limited to very
small and simple threshold-based observations, possibly lead-
ing to suboptimal results and restricting applicability to small
scenarios. Niyato and Hossain [31] dynamically select a single
network in HetNets (comparable to single-cell selection), rely
on tabular Q-learning, and do not consider user mobility.

The work by Zhou et al. [12] is most related to ours. We
both consider self-learning approaches for dynamic cell selec-
tion with UEs moving across many small, partially overlapping
cells. Zhou et al. address the non-stationary nature of the
problem by proposing a piece-wise stationary approach using
bandits for regret minimization. To this end, they assume that
UEs only move abruptly for short durations and otherwise
stand still. In contrast, we support constantly moving UEs,
making a piecewise stationary approach inapplicable. Our
proposed on-policy DRL approaches can learn continuously
online and adjust to changes in the environment (unlike typical
off-policy approaches [32]). Moreover, the authors focus on a
single UE, only consider connections to one cell at a time, and
maximize throughput directly. We support multiple moving
UEs and simultaneous connections using CoMP. Rather than
optimizing throughput, we derive and optimize UEs’ QoE.

In general, we go beyond existing work by proposing three
different DRL approaches geared towards different, realistic
scenarios (number of UEs, available training time, etc.). In
particular, we are among the first in the area to successfully
apply cooperative multi-agent DRL, which is known to be
challenging [17], as well as online transfer learning. We
make fewer limiting assumptions, e.g., about the number or
movement of UEs, and optimize a more complex utility (QoE
instead of throughput), which we believe makes our approach
more meaningful and generally applicable.

III. PROBLEM STATEMENT

Our self-learning DRL approaches require very few assump-
tions and only readily available information about UEs and
cells in the area (current connections, SINR, and QoE per UE
as detailed in Sec. IV-A1 and V-B1). We intentionally omit a
formalization of radio models or other system details that are
irrelevant for our DRL approaches. We describe the example
model we use for evaluation in Sec. VII-B.

A. Parameters

We consider 𝑀 UEs 𝑢 𝑗 ∈ 𝑈 and 𝑁 cells 𝑐𝑖 ∈ 𝐶, transmitting
in discrete time steps 𝑡 = 1, 2, ..., 𝑇 , synchronized among cells.
We focus on the downlink and assume each cell 𝑐𝑖 ∈ 𝐶

to schedule its PRBs (or other units of radio resources) to
connected UEs autonomously and transparently using CoMP
coordinated scheduling (CoMP-CS) [33]. Inside one cell, a
PRB is assigned to at most one UE, but one UE can be
assigned multiple PRBs from one or several cells. We make no
other assumptions about cells’ resource allocation scheme, i.e.,
how or how many PRBs they assign to each connected UE.
Considering multi-cell selection for uplink communication
(using CoMP joint processing [34]) is interesting future work;
we expect similar problems and solutions as described here
for downlink.

UEs 𝑢 𝑗 ∈ 𝑈 move around freely with varying direction and
velocity, unknown to the system. Movement affects channels
between UEs and connected cells, fluctuating the measured
SINR over time. Here, in the context of cell selection, we focus
on fluctuations on the order of seconds and assume that fast-
fading effects on the order of sub-milliseconds are handled and
averaged out in the physical layer. We denote by SINR𝑖, 𝑗 (𝑡)
the measured SINR from cell 𝑐𝑖 to UE 𝑢 𝑗 at time 𝑡. UE 𝑢 𝑗

can only connect to and receive data from cell 𝑐𝑖 if the SINR
is above a given threshold 𝛾SINR. Assuming it can connect,
the effective downlink data rate 𝑟𝑖, 𝑗 (𝑡) from cell 𝑐𝑖 to UE 𝑢 𝑗

at time 𝑡 depends on cell-internal resource allocation (e.g.,
power, PRBs, antennas) [35]. Our DRL approaches are neither
explicitly aware of 𝑟𝑖, 𝑗 (𝑡) nor of the cells’ resource allocation
but learn to adapt to a given scenario through feedback of
UEs’ QoE.

B. Decision Variables

We express cell selection by binary decision vari-
able 𝑥𝑖, 𝑗 (𝑡) ∈ {0, 1}, indicating whether cell 𝑐𝑖 serves UE 𝑢 𝑗

at time 𝑡. To allow 𝑥𝑖, 𝑗 (𝑡) = 1, the corresponding SINR
must be above threshold 𝛾SINR. A UE’s total rate is sim-
ply the sum of its cell rates (considering CoMP-CS [35]):
𝑟 𝑗 (𝑡) =

∑𝑁
𝑖=1 𝑥𝑖, 𝑗 (𝑡)𝑟𝑖, 𝑗 (𝑡). Deciding which cells serve which

UEs may be driven completely by the network or UEs may
trigger or assist cell connections themselves (Sec. VI). To
limit signaling overhead, we restrict UEs to connecting to or
disconnecting from at most one cell per time step. Frequent
connection changes are still possible as time steps are typically
quite short, depending on the acceptable signaling overhead in
a given scenario.

C. Objective: Maximize QoE

Rather than simply maximizing the data rate per UE,
as commonly done in related work [6], [12], [30], we are
interested in optimizing UEs’ QoE, which better reflects
users’ satisfaction and determines, e.g., operators’ financial
success [36]. UEs’ QoE typically increases roughly loga-
rithmically with increasing data rate, i.e., with diminishing
returns [3], [4]. We quantify QoE of UE 𝑢 𝑗 by its utility 𝑈 𝑗 (𝑡).
Using a logarithmic function as example, 𝑈 𝑗 (𝑡) could be
formalized as

𝑈 𝑗 (𝑡) = min
{
𝑈max

𝑗 ,max
{
𝑈min

𝑗 , 𝑤1𝑙𝑜𝑔𝑤2 (𝑤3 + 𝑟 𝑗 (𝑡))
}}

(1)

where 𝑤1, 𝑤2, 𝑤3 are configurable weights and limits 𝑈min
𝑗

,
𝑈max

𝑗
ensure that the utility is finite and well defined. An
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advantage of using logarithmic utility is that maximizing the
sum of logarithms is equivalent to ensuring a natural concept
of fairness, namely proportional fairness [25].

Nonetheless, logarithmic utility is just an example based on
previous studies [3], [4]. Our approaches are not tied to this
particular utility function but also adapt successfully to other
utility functions as we show in Sec. VII-C4. In fact, they do
not even require the utility function to be known. Instead, it
suffices to approximate the instantaneous QoE of each UE
(i.e., their utility), which is possible from the network side
without relying on UEs reporting their QoE truthfully [37].

Our overall goal is, therefore, to maximize long-term QoE,
averaged over all UEs and time steps:

Avg. QoE: max lim
𝑇→∞

1
𝑇

1
𝑀

∑︁
𝑡∈𝑇, 𝑗∈{1,...,𝑀 }

𝑈 𝑗 (𝑡) (2)

Our self-learning DRL approaches approximate and optimize
this long-term utility through typical discounted rewards. We
present the details of our DRL approaches next: DeepCoMP
in Sec. IV, DD-CoMP and D3-CoMP both in Sec. V, and a
discussion of architecture and deployment options in Sec. VI.

IV. DEEPCOMP: CENTRALIZED DRL

DeepCoMP is a centralized DRL approach that simulta-
neously observes and controls all UEs in an area with a
single DRL agent. While this requires centrally collecting
observations of all UEs as well as centralized control, it
enables DeepCoMP to learn close-to-optimal policies. These
observations contain SINR and QoE estimates, but no detailed
system information, which may be unavailable. Sec. IV-A
details DeepCoMP’s observations, actions, and reward and
Sec. IV-B presents the overall algorithm. In Sec. VI, we
discuss how DeepCoMP could be deployed in practice.

A. Markov Decision Process

Due to the complexity of the mobile scenario, it is unre-
alistic to capture the complete environment state, even for a
centralized agent. Instead, we focus on partial observations that
could be available in practice. The partially observable Markov
decision process (POMDP) consists of tuple (O,A,P,R) with
observations O, actions A, unknown environment dynam-
ics P, and reward function R, defined next. Fig. 1 shows an
example of DeepCoMP’s observations, actions, and reward.

1) Observations O: In each time step, DeepCoMP only
observes the UEs’ current connections, their SINR, and their
utility, which are readily available (Sec. VI). Specifically,
the DeepCoMP agent observes 𝑂 = ⟨⟨𝑋 𝑗 , ŜINR 𝑗 , �̂� 𝑗⟩|∀ 𝑗 ∈
{1, ..., 𝑀}⟩ for each cell 𝑐𝑖 and UE 𝑢 𝑗 . Observations are
grouped into vectors 𝑋 𝑗 , ŜINR 𝑗 , and �̂� 𝑗 for each UE 𝑢 𝑗 ,
containing elements for each cell 𝑐𝑖 as detailed below. We
normalize all observations to be in range [−1, 1] (or [0, 1]),
which is important for effective training and generalization
of deep neural networks [38]. Otherwise, stronger observation
signals with a larger range could drown out weaker signals
with a smaller range, making the DRL agent “blind” to such
observations.

DeepCoMP

Fig. 1: Illustration of DeepCoMP’s POMDP.

a) Current Connections: 𝑋 𝑗 = ⟨𝑥𝑖, 𝑗 (𝑡) |∀𝑖 ∈ {1, ..., 𝑁}⟩ ∈
{0, 1}𝑁 indicates to which cells 𝑐𝑖 a UE 𝑢 𝑗 is currently
connected and directly corresponds 𝑥𝑖, 𝑗 (𝑡) (Sec. III-B). UEs
hold their connections unless they are told explicitly to connect
or disconnect or until they move away from a connected cell.

b) SINR: ŜINR 𝑗 = ⟨ SINR𝑖, 𝑗 (𝑡 )
max𝑖′ SINR𝑖′ , 𝑗 (𝑡 ) |∀𝑖 ∈ {1, ..., 𝑁}⟩ ∈

[0, 1]𝑁 is the normalized SINR𝑖, 𝑗 (𝑡) between each cell 𝑐𝑖 and
UE 𝑢 𝑗 . Specifically, SINR𝑖, 𝑗 (𝑡) is normalized by the maximum
SINR of all cells for UE 𝑢 𝑗 at time 𝑡. This maps the observed
SINR of the strongest cell to 1 and highlights the differences
in SINR between the available cells, simplifying cell selection.
In the special case that a UE is far off any cells (with zero
SINR), we set the vector to all zeros to avoid division by zero.

c) Utility: The normalized utility of each UE 𝑢 𝑗 is

�̂� 𝑗 = 2 · 𝑈 𝑗 (𝑡 )−𝑈min
𝑗

𝑈max
𝑗
−𝑈min

𝑗

− 1 ∈ [−1, 1], i.e., 𝑈 𝑗 (𝑡) scaled to

range [−1, 1] based on bounds 𝑈min
𝑗

, 𝑈max
𝑗

(Sec. III-C). If these
bounds are not known explicitly, they can be approximated by
keeping track of the lowest and highest 𝑈 𝑗 (𝑡) over all UEs 𝑗

and time steps 𝑡 so far. Observation �̂� 𝑗 provides valuable
information about each UE’s current QoE, which is affected
by the observed SINR but also by other factors that are not
directly observable, e.g., cells’ resource allocation and UE
movement. Again, note that the current utility 𝑈 𝑗 (𝑡) of each
UE can be approximated locally without relying on UEs to
report their QoE truthfully [37].

2) Actions A: To limit protocol overhead, each UE can
either connect to or disconnect from at most one cell per
time step. This also simplifies and shrinks the action space
considerably compared to alternatives like choice of arbitrary
subsets of cells. We design the corresponding action space
as A = ⟨𝑎 𝑗 |∀ 𝑗 ∈ {1, ..., 𝑀}⟩ ∈ {0, 1, ..., 𝑁}𝑀 . Hence,
DeepCoMP selects for each UE 𝑢 𝑗 either a specific cell 𝑐𝑖 ,
where it toggles the connection status, or a no-op. Action 𝑎 𝑗 =

𝑖 ∈ {1, ..., 𝑁} means that 𝑢 𝑗 ’s connection to cell 𝑐𝑖 should
be toggled, i.e., establishing a connection if 𝑢 𝑗 and 𝑐𝑖 are
not yet connected or disconnecting otherwise. Alternatively,
𝑎 𝑗 = 0 indicates a no-op, where all of 𝑢 𝑗 ’s connections remain
unchanged.

3) Reward R: DeepCoMP’s reward in time step 𝑡 is the
avg. of current utilities over all UEs, using �̂� 𝑗 ∈ [−1, 1] as
defined in Sec. IV-A1c for the reward: R = 1

𝑀

∑
𝑗∈{1,...,𝑀 } �̂� 𝑗 .

This corresponds to our goal of maximizing the avg. QoE over
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Algorithm 1 DeepCoMP

1: initialize 𝜋𝜃 , 𝑉𝜙 , 𝑏

2: for 𝑡 ∈ {1, ..., 𝑇} do
3: for 𝑢 𝑗 ∈ 𝑈 do
4: 𝑜 𝑗 , 𝑟 𝑗 ← get_obs_and_r(𝑢 𝑗 )
5: 𝑜𝑡 ← ⟨𝑜 𝑗 |∀ 𝑗 ∈ {1, ..., 𝑀}⟩ ∪ ⟨0|∀ 𝑗 ∈ {𝑀+1, ...,

𝑀max}⟩
6: 𝑟𝑡 ← 1

𝑀

∑
𝑗∈{1,...,𝑀 } 𝑟 𝑗

7: 𝑏
add←−− (𝑜𝑡−1, 𝑎𝑡−1, 𝑟𝑡 , 𝑜𝑡 )

8: 𝑎𝑡 ← 𝜋𝜃 (𝑜𝑡 )
9: for 𝑎 𝑗 ∈ 𝑎𝑡 with 𝑗 ∈ {1, ..., 𝑀} do

10: 𝑥𝑖, 𝑗 (𝑡) ← set_conn(𝑢 𝑗 , 𝑎 𝑗 )
11: if training and 𝑏 is full then
12: train 𝑉𝜙 using temporal difference updates [9]
13: train 𝜋𝜃 maximizing E[∑𝑖 𝛾

𝑖𝑟 (𝑜𝑡+𝑖 , 𝑎𝑡+𝑖)]

all UEs as defined in Sec. III-C. Internally, the DRL agent
maximizes the sum of discounted rewards to optimize long-
term utility.

4) Varying Number of UEs: Since DeepCoMP observes and
controls all UEs, the size of its observation and action space
depends on the number of active UEs in the area, which may
change over time. Observations and actions, on the other hand,
are used as inputs and outputs of a deep neural network and,
thus, need to be of fixed size. Even if the number 𝑀 of active
UEs in the area varies over time, the size of these observations
and actions must not change. To this end, we define 𝑀max as
the maximum number of supported UEs in the area and set the
size of the observations and actions to 𝑀max. If 𝑀 < 𝑀max,
related observations are padded with zeros to ensure consistent
size of observations and to indicate which UEs are currently
missing. Resulting actions for 𝑗 ∈ {𝑀 + 1, ..., 𝑀max}, i.e., for
non-existing UEs, are simply ignored. Overall, the observation
and action space of DeepCoMP grow linearly with 𝑀max. The
distributed DRL approaches (Sec. V) are invariant in 𝑀max and
therefore suitable for larger scenarios.

B. DeepCoMP Algorithm

We leverage proximal policy optimization (PPO) [39],
which is a state-of-the-art actor-critic DRL algorithm, to train
our DeepCoMP DRL agent. Alg. 1 shows our centralized
training and inference procedure for DeepCoMP. We start
training by initializing stochastic policy 𝜋𝜃 (actor), value
function 𝑉𝜙 (critic), and mini-batch 𝑏 (ln. 1). DeepCoMP
then observes and acts in each time step for all UEs si-
multaneously. First, it collects observations and rewards and
constructs the observation vector and total reward as defined
in Sec. IV-A with function get_obs_and_r(𝑢 𝑗 ) for each
UE 𝑢 𝑗 (ln. 3–6). It then adds the experience (observation,
action, reward, next observation) to mini-batch 𝑏 (ln. 7) and
selects an action 𝑎𝑡 for the observation vector 𝑜𝑡 according
to policy 𝜋𝜃 (ln. 8). Action 𝑎𝑡 is a vector that specifies the
cell selection for all UEs and is applied to the environment
by setting decision variable 𝑥𝑖, 𝑗 (𝑡) accordingly (ln. 9–10).
Function set_conn(𝑢 𝑗 , 𝑎 𝑗 ) applies action 𝑎 𝑗 for UE 𝑢 𝑗 by

TABLE I: Proposed DRL approaches

DRL Approach Training Inference Deployment

DeepCoMP (Sec. IV) Centralized Centralized Core network
DD-CoMP (Sec. V) Centralized Distributed Network or UEs
D3-CoMP (Sec. V) Distributed Distributed Network or UEs

dis-/connecting from/to the selected cell 𝑐 𝑗 if 𝑎 𝑗 > 0 and the
selected cell is in range (𝑎 𝑗 toggles connectivity).

During training, critic 𝑉𝜙’s weights are updated whenever
mini-batch 𝑏 is full (ln. 12). Using standard temporal differ-
ence updates [9], critic 𝑉𝜙 is trained to approximate long-
term value 𝑉𝜙 (𝑜) of receiving an observation 𝑜 and then
following policy 𝜋𝜃 . In turn, 𝑉𝜙 (𝑜) is used to calculate
advantage 𝐴(𝑜, 𝑎), which is the relative value of taking an
action 𝑎 after receiving observation 𝑜 compared to all other
actions. Finally, advantage 𝐴 is used inside the policy update
when training actor 𝜋𝜃 to optimize the long-term discounted
reward (ln. 13), which corresponds to maximizing the avg.
QoE, i.e., our objective (Sec. III-C) [40].

We repeat this procedure over many episodes to train
DeepCoMP offline and then switch to quick online inference
upon training convergence. We also support continuous online
training, which we evaluate in Sec. VII-D. Here, training
(ln. 11–13) happens asynchronously to avoid blocking on-
line inference. With a fixed number of hidden units, time
and space complexity for inference with DeepCoMP is in
𝑂 (𝑀max · 𝑁) based on the size of the observation and action
space (Sec. IV-A1 and IV-A4).

V. DD- & D3-COMP: DISTRIBUTED DRL

DeepCoMP leverages global knowledge and simultaneous
control of all UEs to learn highly optimized policies. In
practice, however, observations from all UEs may not be avail-
able centrally or only with significant overhead, preventing
fast centralized inference. Furthermore, its observation and
action space grows with the (max.) number of active UEs in
the network. We hence propose distributed DeepCoMP (DD-
CoMP), which only requires local observations and control per
UE. DD-CoMP is a multi-agent DRL approach that trains a
logically centralized neural network, which is replicated for
distributed inference. We also propose D3-CoMP, which trains
separate neural networks for each UE. Table I summarizes
these differences in training and inference between the three
DRL approaches as well as deployment options, which we
discuss in Sec. VI.

A. Trade-offs and Design Choices

1) Decisions per Cell vs. per UE: Using multi-agent DRL,
an obvious idea would be to assign one agent per cell,
controlling its connections. However, this leads to the same
complications as discussed in Sec. IV-A4, where the number
of UEs fluctuates but the size of the observation and action
spaces are fixed and thus need to be padded. The alternative
of assigning one agent per UE appears more suitable as the
number of cells is rather fixed. As UEs arrive and depart over
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time, DRL agents can be spawned/terminated on demand. Us-
ing separate agents per UE does not predicate the networking
architecture/location of control (Sec. VI).

Using separate DRL agents for each UE, we can limit
each agent to only observe a single UE instead of all UEs,
where relevant observations are available locally at the UE
(Sec. V-B1). Similarly, the agent’s actions determine the UE’s
cell selection, which can be applied locally without much
communication overhead. In large areas with many cells, the
observation and action space could be reduced by limiting
agents’ observations and actions to each UE’s 𝑘 closest
cells, which are most relevant for cell selection. A remaining
challenge with this approach is that each agent only observes
and controls a single UE. This easily leads to greedy and
unfair behavior and ultimately lower avg. QoE if agents do
not consider or observe other UEs’ utility. To overcome this
challenge, we slightly adjust DeepCoMP’s POMDP for DD-
CoMP and D3-CoMP so that it takes other, nearby UEs into
account (Sec. V-B).

2) DD-CoMP vs. D3-CoMP: DD-CoMP and D3-CoMP
only differ in their training architecture. DD-CoMP trains a
single, logically centralized neural network for actor 𝜋𝜃 and
critic 𝑉𝜙 , respectively. It collects experience from all DRL
agents in joint mini-batches. While DD-CoMP’s training is
logically centralized, it could be implemented in a distributed
fashion with minimal adjustments. For example, each agent
may update its neural network locally and only share the
computed gradient updates to synchronize the neural network
weights across all DRL agents (cf. federated learning [41]).

D3-CoMP trains separate, logically decentralized neural
networks for each agent/UE. D3-CoMP can hence learn in-
dividual cell selection policies per UE, allowing DRL agents
to adapt to heterogeneous UE characteristics that affect QoE
but are not explicitly observed, e.g., UE velocity or movement
patterns. Furthermore, D3-CoMP does not exchange agents’
experiences or gradients during training, lowering overhead.
Training decentralized DRL agents independently easily leads
to greedy or adversarial policies, which we address by cou-
pling the reward of nearby, competing UEs (cf. best response
strategy [42]). However, DD-CoMP’s central neural network
is trained with more diverse data (from all UEs) than each of
D3-CoMP’s distributed DRL agents. Hence, DD-CoMP often
learns more robust policies (Sec. VII).

B. Markov Decision Process

For DD-CoMP and D3-CoMP, we adjust Sec. IV-A’s
POMDP. Instead of observation/action vectors for all UEs,
agents only observe and control cell selection for a single
UE 𝑢 𝑗 . To allow some awareness of nearby UEs and improve
fairness, we extend the observation space and adjust the reward
function.

1) Observations O: 𝑂 = ⟨𝑋 𝑗 , ŜINR 𝑗 , �̂� 𝑗 , �̂�
avg, �̂�⟩ includes

𝑋 𝑗 , ŜINR 𝑗 , �̂� 𝑗 as defined in Sec. IV-A1. Additionally, we
assume that cells collect and broadcast aggregated informa-
tion �̂�avg and �̂� about their connected UEs. Specifically,
cells approximate the instantaneous QoE of their connected
UEs [37] (or rely on QoE reported by the UEs) and calculate
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Fig. 2: Learning curves with different reward.

their corresponding utility �̂� 𝑗 as defined in Sec. IV-A1c. Each
cell 𝑐𝑖 then broadcasts the avg. utility of all connected UEs as
�̂�

avg
𝑖

=

∑
𝑗′ 𝑥𝑖, 𝑗′ (𝑡 ) ·�̂� 𝑗′

𝑀𝑖
, where 𝑀𝑖 =

∑
𝑗 𝑥𝑖, 𝑗 (𝑡) denotes the num-

ber of currently connected UEs at 𝑐𝑖 with 𝑗 , 𝑗 ′ ∈ {1, ..., 𝑀}.
If no UEs are currently connected (𝑀𝑖 = 0), we set �̂�avg

𝑖
to

zero. Similarly, if the observing UE 𝑢 𝑗 is too far away from a
cell 𝑐𝑖 to receive its broadcast (i.e., SINR𝑖, 𝑗 (𝑡) < 𝛾SINR), the
UE assumes 𝑀𝑖 = 0 and �̂�

avg
𝑖

= 0 as observations. Finally,
vector �̂�avg = ⟨�̂�avg

𝑖
|∀𝑖 ∈ {1, ..., 𝑁}⟩ ∈ [−1, 1]𝑁 contains the

observed avg. utility of all cells. Hence, vector �̂�avg can be
observed locally by each DRL agent and helps the agent to
select suitable cells with high �̂�

avg
𝑖

to avoid competing for
radio resources at cells with already low avg. utility.

To give the DRL agent a better sense of the load at different
cells, cells also broadcast the number of currently connected
UEs 𝑀𝑖 as defined above. Based on the received 𝑀𝑖 (if not
received, 𝑀𝑖 = 0), the DRL agent calculates the normalized
load per cell �̂�𝑖 =

𝑀𝑖∑
𝑖′ ∈{1,...,𝑁 } 𝑀𝑖′

, setting �̂�𝑖 = 0 if 𝑀𝑖 = 0.
It then observes vector �̂� = ⟨�̂�𝑖 |∀𝑖 ∈ {1, ..., 𝑁}⟩ ∈ [0, 1]𝑁
containing the normalized amount of connected UEs at each
cell. This helps to avoid congested cells and identify free
cells without any UEs, i.e., without competition for radio
resources. The signaling overhead for �̂�avg and �̂� is small
and constant (Sec. VI-B). Centralized DeepCoMP does not
require additional observations �̂�avg and �̂� as it observes all
UEs’ connections and their QoE individually.

2) Actions A: Actions of DD-CoMP and D3-CoMP are
similar to DeepCoMP but refer to a single UE. Particularly,
each DRL agent makes an action A = 𝑎 ∈ {0, 1, ..., 𝑁}, con-
trolling cell selection for its UE 𝑢 𝑗 as defined in Sec. IV-A2.

3) Reward R: An obvious choice for the reward function
of a DRL agent controlling UE 𝑢 𝑗 would be R = �̂� 𝑗 , i.e.,
rewarding high utility of the corresponding UE. However, this
reward would encourage agents to greedily optimize their UE’s
utility: Agents would tend to increase their UE’s data rate even
if it only marginally increases their utility. As a consequence,
this could significantly harm other UEs’ utilities and overall
avg. utility, which is our main objective (Sec. III-C).

Instead, we define R =
∑

𝑖∈{1,...,𝑁 } �̂�
avg
𝑖
·�̂�𝑖 ∈ [−1, 1] as the

avg. utility at all cells in range (i.e., with received broadcasts),
weighted by their normalized amount of connected UEs �̂�𝑖 .
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Algorithm 2 DD-CoMP

1: initialize 𝜋𝜃 , 𝑉𝜙 , 𝑏 ⊲ Training
2: for 𝑡 ∈ {1, ..., 𝑇} do
3: for 𝑢 𝑗 ∈ 𝑈 in parallel do
4: 𝑜𝑡

𝑗
, 𝑟 𝑡

𝑗
← get_obs_and_r(𝑢 𝑗 )

5: 𝑏
add←−− (𝑜𝑡−1

𝑗
, 𝑎𝑡−1

𝑗
, 𝑟 𝑡

𝑗
, 𝑜𝑡

𝑗
)

6: 𝑎𝑡
𝑗
← 𝜋𝜃 (𝑜𝑡𝑗 )

7: 𝑥𝑖, 𝑗 (𝑡) ← set_conn(𝑢 𝑗 , 𝑎
𝑡
𝑗
)

8: if 𝑏 is full then
9: train 𝑉𝜙 using temporal difference updates [9]

10: train 𝜋𝜃 maximizing E[∑ 𝑗 ,𝑘 𝛾
𝑘𝑟 (𝑜𝑡+𝑘

𝑗
, 𝑎𝑡+𝑘

𝑗
)]

11: Deploy a copy 𝜋𝜃 𝑗
of 𝜋𝜃 for each UE 𝑢 𝑗 ∈ 𝑈 ⊲

Inference
12: for 𝑡 ∈ {1, ..., 𝑇} do
13: for 𝑢 𝑗 ∈ 𝑈 in parallel do
14: 𝑜𝑡

𝑗
, 𝑟 𝑡

𝑗
← get_obs_and_r(𝑢 𝑗 )

15: 𝑎𝑡
𝑗
← 𝜋𝜃 𝑗

(𝑜𝑡
𝑗
)

16: 𝑥𝑖, 𝑗 (𝑡) ← set_conn(𝑢 𝑗 , 𝑎
𝑡
𝑗
)

If UE 𝑢 𝑗 is connected to some cell(s), its utility is already
included in the sum above. Otherwise, if 𝑢 𝑗 is not connected
to any cells, we explicitly include its weighted utility in the
reward and define R =

∑
𝑖∈{1,...,𝑁 } �̂�

avg
𝑖
· �̂�𝑖 +

�̂� 𝑗∑
𝑖′ ∈{1,...,𝑁 } 𝑀𝑖′

.
The UE’s own utility is therefore always considered but
does not dominate the reward. Hence, this reward function
encourages DRL agents to maximize the avg. utility over all
UEs and not just the utility of their own UE.

Fig. 2 illustrates the avg. QoE (Sec. III-C) for the two
reward formulations in an example scenario. Using just the
own UE’s QoE as reward leads to greedy behavior, which is
easier to learn and leads to faster yet clearly suboptimal con-
vergence. Our more sophisticated reward based on weighted
avg. QoE at surrounding cells requires negligible signaling
overhead (Sec. VI-B) and still leads to quick convergence and
ultimately to a significantly better policy (20 % higher QoE).

C. DD-CoMP Algorithm

DD-CoMP agents observe and control each UE’s connec-
tions separately in parallel (Alg. 2, ln. 3–7) rather than jointly
for all UEs like DeepCoMP. Still, experiences from all UEs
are added to the same mini-batch 𝑏 and train a central neural
network for actor 𝜋𝜃 and critic 𝑉𝜙 (ln. 8–10). After logically
centralized training, DD-CoMP performs distributed inference
with separate DRL agents, each using a copy of the trained
actor network (ln. 11) for local inference (ln. 12–16).

To support continuous training, all DRL agents need to
continue sending their UEs’ experiences to central batch 𝑏

to train the the logically centralized neural network. Again,
sharing and training happens asynchronously to avoid blocking
inference. For quick inference, the distributed DRL agents
could regularly update their local copies 𝜋𝜃 𝑗

. Assuming a
fixed number of hidden units, space and time complexity of
inference itself is in 𝑂 (𝑁), i.e., it is invariant in the number of
UEs and linear only in the number of cells. If 𝑁 is large, space

Algorithm 3 D3-CoMP

1: initialize 𝜋𝜃 𝑗
, 𝑉𝜙 𝑗

, 𝑏 𝑗 ∀ 𝑗 ∈ {1, ..., 𝑀}
2: for 𝑡 ∈ {1, ..., 𝑇} do
3: for 𝑢 𝑗 ∈ 𝑈 in parallel do
4: 𝑜𝑡

𝑗
, 𝑟 𝑡

𝑗
← get_obs_and_r(𝑢 𝑗 )

5: 𝑏 𝑗

add←−− (𝑜𝑡−1
𝑗

, 𝑎𝑡−1
𝑗

, 𝑟 𝑡
𝑗
, 𝑜𝑡

𝑗
)

6: 𝑎𝑡
𝑗
← 𝜋𝜃 𝑗

(𝑜𝑡
𝑗
)

7: 𝑥𝑖, 𝑗 (𝑡) ← set_conn(𝑢 𝑗 , 𝑎
𝑡
𝑗
)

8: if training and 𝑏 𝑗 is full then
9: train 𝑉𝜙 𝑗

using temporal difference updates [9]
10: train 𝜋𝜃 𝑗

maximizing E[∑𝑘 𝛾
𝑘𝑟 (𝑜𝑡+𝑘

𝑗
, 𝑎𝑡+𝑘

𝑗
)]

and time complexity could further be reduced to be constant
by only considering the 𝑘 closest cells per UE (Sec. V-A1).

If the number of UEs in the area varies over time, the
number of DRL agents is adjusted accordingly. If a new UE
arrives, a new DRL agent is instantiated, and removed again
when the UE leaves the area. All DRL agents access the
logically centralized neural network and thus directly start with
a good policy, benefiting from experience of other UEs. Note
that, while all UEs share the same neural network weights,
their experiences are never shared with each other directly.

D. D3-CoMP Algorithm

Alg. 3 shows the distributed D3-CoMP training and in-
ference procedure. While the main procedure is similar to
DeepCoMP and DD-CoMP, D3-CoMP directly initializes 𝑀

different actor 𝜋𝜃 𝑗
and critic 𝑉𝜙 𝑗

networks for each UE 𝑢 𝑗

(ln. 1). Experiences from different UEs are added to different
mini-batches 𝑏 𝑗 (ln. 5). Consequently, actor and critic of
each DRL agent are trained only on the corresponding UE’s
experiences (ln. 8–10). Similar to DD-CoMP, inference time
and space complexity is in 𝑂 (𝑁).

D3-CoMP also automatically adjusts the number of DRL
agents to the number of UEs in the area, starting new DRL
agents when UEs arrive and terminating them once UEs leave.
As D3-CoMP trains separate policies per UE, it typically ini-
tializes new neural networks for newly spawned DRL agents.
However, trained neural network weights for a UE could be
stored when the UE leaves the network and loaded again (e.g.,
based on a UE identifier) when it returns to avoid retraining
from scratch. New UEs (with a previously unseen ID) could
start with a trained and stored policy of another UE (e.g.,
with similar velocity or movement pattern). A hybrid solution
between DD-CoMP and D3-CoMP is also conceivable, where
a central default policy is trained up front by DD-CoMP and
then used as starting point for new DRL agents in D3-CoMP
when new UEs arrive in the network.

VI. ARCHITECTURE AND DEPLOYMENT OPTIONS

There are different architectural options for deploying Deep-
CoMP, DD-CoMP, and D3-CoMP, summarized in Table I. All
three approaches can be deployed in the network for network-
initiated cell selection. Depending on available resources and
latency requirements, deployment could be in the core, edge,
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1. CQI

2. Derive obs.  
and reward 

3. : (Dis-)connect

(a) Network-based Deployment

2. 

3. Derive obs.  
and reward 

4. : (Dis-)connect

1. CQI

(b) UE-based Deployment

Fig. 3: Architecture and deployment options: a) DRL agents
deployed in the network for network-initiated cell selection.
b) Deployed at each UE for UE-initiated cell selection.

or access network [43]. Alternatively, DD-CoMP and D3-
CoMP also support distributed deployment of DRL agents
directly at the UEs, enabling UE-initiated cell selection. Both
network-controlled and UE-based cell selection are supported
and relevant in 5G [44]. In both cases, the DRL approaches
can leverage already available data with low overhead. In the
following, we detail the two architectural options (Sec. VI-A
and VI-B), which are illustrated in Fig. 3, and discuss training
and inference in practice (Sec. VI-C).

A. Network-based Deployment

The centralized DeepCoMP approach is designed to be
deployed on the network side for network-initiated cell se-
lection. Here, the agent collects available data and exchanges
control messages between cells for centralized observations
and actions.

The entire network could be split into different areas (e.g.,
based on cell coverage or business aspects) that are controlled
independently by separate DeepCoMP agents. Within each
area, a single DeepCoMP agent is deployed, which should
be pretrained (e.g., in simulation) as further discussed in
Sec. VI-C. Inside an area, the responsible DeepCoMP agent
observes and controls all active UEs.

For the agent’s observations, the network could keep track
of each UE’s current connections and collect the UEs’ SINR
and QoE (step 1 in Fig. 3a). We emphasize, again, that
our approach does not assume any predefined, known util-
ity function (e.g., a logarithmic function) but only requires
instantaneous approximations of UEs’ QoE. To do so, UEs
could either report their SINR and QoE directly or cells could
use already available information, e.g., UEs’ channel quality
indicators (CQI) and QoS measurements, to approximate SINR
and QoE locally [37], [45]. In doing so, cells can locally
process available data to derive the necessary observations
(Sec. IV-A1) and reward (Sec. IV-A3) in step 2. In step 3,
the processed observations are passed through DeepCoMP’s
actor neural network to obtain the next action, which selects
suitable cells for all UEs and triggers necessary connections
or disconnections.

DD-CoMP and D3-CoMP can also be deployed in the net-
work for network-initiated cell selection. This works similarly

as with DeepCoMP but, here, with multiple DRL agents being
deployed for the different active UEs in the area, spawning and
terminating DRL agents on demand (as discussed in Sec. V-C
and Sec. V-D). These agents could be deployed at different
cells, where each one only requires observations and reward
based on its corresponding UE rather than data from all UEs. If
DD-CoMP and D3-CoMP agents are deployed in the network,
cells can locally compute and exchange their avg. utility �̂�avg

and load �̂� , which are required as observations and for the
reward (Sec. V-B) and do not need to broadcast them.

B. UE-based Deployment

Alternatively, each DRL agent could be deployed directly at
a UE for user-initiated cell selection. Deploying DeepCoMP
at the UEs is theoretically feasible but impractical since
it requires each UE to collect observations from all other
UEs. Instead, DD-CoMP and D3-CoMP are suitable for UE-
based deployment because they rely on local observations and
control. Each cell 𝑐𝑖 still needs the QoE of its connected
UEs, which the cells can approximate locally based on UEs’
reported CQIs [37], [45] (step 1 in Fig. 3b). In step 2, cells
calculate and broadcast their avg. utility �̂�

avg
𝑖

and number 𝑀𝑖

of connected UEs (from which �̂� can be derived). In step 3,
the DRL agents at each UE derive the current observations
and reward (Sec. V-B) based on the received broadcasts and
locally observed 𝑋 𝑗 , ŜINR 𝑗 , and �̂� 𝑗 . Finally, each DRL agent
uses its actor neural network to choose an action for its UE
and initiates the corresponding connections or disconnections
(step 4).

Cells’ broadcasts of �̂�
avg
𝑖

and 𝑀𝑖 have small, constant
size and could be included in existing system information
broadcasts (SIB) [46] without requiring extra signaling mes-
sages. Also, no communication between UEs is necessary
during inference. Hence, DD-CoMP and D3-CoMP require
negligible signaling overhead; much smaller than existing
approaches that require detailed system knowledge (e.g., [5],
[11]). Furthermore, this approach allows DRL agents to collect
all relevant observations locally at the UEs without requiring
cells to exchange information with each other directly, e.g.,
for scenarios with cells of different operators. While UE-based
cell selection enables UEs to indicate which cells they want to
connect to, the final connection decision can still be controlled
by the network (cf. UEs’ connection requests in 5G [44]).

C. Training and Inference in Practice

In practice, we suggest to train a reasonable policy in
simulations up front and then copy and deploy the trained
neural networks at the network or UE side. The pretrained
neural networks can then be used for fast online inference
with low resource requirements. Our trained neural networks
are lightweight (less than 5 MB in size) and can be further opti-
mized using TensorFlow Lite for efficient inference with min-
imal space, compute, memory, and power consumption [47].

As we show in Sec. VII-D1, it is important to train on
randomized simulation scenarios for learning robust policies.
To further support bridging the gap from simulation to real
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deployment (“sim2real gap” [48]), our DRL approaches sup-
port online transfer learning, where they continuously fine-tune
their pretrained policy in the actual deployment scenario. We
explore and evaluate online transfer learning in Sec. VII-D2.
This online training could happen at edge computing centers
close to the cells as proposed in 5G [43]. To facilitate online
learning in practice, the reward signal for DeepCoMP, DD-
CoMP, and D3-CoMP can be directly and locally derived
from the collected observations without requiring additional
information or overhead (Sec. IV-A3 and V-B3). During
training, DD-CoMP agents periodically share their experiences
and update their copy of the joint neural network, but D3-
CoMP agents train locally without extra communication. To
reduce communication overhead for DD-CoMP during train-
ing, agents could locally calculate their gradient updates and
only share those using federated learning [41]. The computed
gradients are smaller and therefore require less communication
overhead than sharing the agents’ full experiences, including
observations, actions, and reward. Federated learning is prac-
tically feasible on mobile devices and already being used for
commercial applications (cf. Google Gboard [49]).

VII. PERFORMANCE EVALUATION

A. Prototype Implementation

We implemented prototypes of DeepCoMP, DD-CoMP, and
D3-CoMP using Python 3.8, TensorFlow 2, and RLlib [50]. To
encourage reproduction and reuse, our source code is publicly
available [18]. It also contains the light-weight simulation
environment we used for training and evaluation, which others
can use to study and improve their approaches, too.

B. Evaluation Setup

We evaluate DeepCoMP, DD-CoMP, and D3-CoMP in
different scenarios, comparing their avg. QoE over 𝑇 = 100
time steps (Sec. III-C). In Sec. VII-C, we train our approaches
from scratch in different mobile scenarios and evaluate how
well they adapt to each scenario through self-learning without
changing their hyperparameters or making any manual adjust-
ments. In Sec. VII-D, we investigate how well our pretrained
DRL approaches generalize to new scenarios without any fur-
ther training and how continuous online transfer learning can
boost performance and training efficiency. Finally, Sec. VII-E
compares the scalability of the different approaches.

1) Base Scenario: We vary a base scenario with three
partially overlapping cells and three moving UEs, using typical
LTE parameters [51] and the Okumura-Hata model [52] for
path loss in urban areas with carrier frequency 2.5 GHz,
bandwidth 𝐻 = 9 MHz, thermal noise density −90 dBm/Hz,
transmit power 𝑝𝑖 = 30 dBm, SINR threshold 𝛾SINR = −77 dB,
cell tower height 50 m, cell-to-cell distance 100 m, and UE
height 1.5 m. Since we focus on downlink, there is no intra-
cell interference. Our approaches control cell selection but not
resource allocation (e.g., scheduling of PRBs), which the cells
coordinate transparently themselves using CoMP coordinated
scheduling, avoiding inter-cell interference [24], [33].

UEs move according to the improved random waypoint
model [53] with uniformly distributed velocity of 1 m/s–3 m/s

and pause 2 time steps at waypoints. Each UE 𝑢 𝑗 has utility
𝑈 𝑗 (𝑡) = 10 log10 (𝑟 𝑗 (𝑡)) with 𝑈min

𝑗
= −10 and 𝑈max

𝑗
= 10,

quantifying its QoE [3], [4]. As evaluation metric, we consider
the avg. QoE over all time steps and UEs as defined in
Sec. III-C, where positive values close to 𝑈max

𝑗
= 10 indicate

excellent QoE, values around 0 indicate satisfactory QoE, and
negative values close to 𝑈min

𝑗
= −10 indicate bad QoE. The

chosen utility function and limits are examples and could also
be chosen differently. In Sec. VII-C4, we show that our DRL
approaches also adapt to other objectives and utility functions.

2) DRL Hyperparameters: To avoid time and resource-
intensive hyperparameter tuning, we used the PPO default
settings [50]: 1) Fully connected neural networks with two
hidden layers (256 nodes, tanh activation). 2) Discount fac-
tor 𝛾 = 0.99. 3) Learning rate 𝛼 = 5 · 10−5. 4) Mini-batch
size |𝑏 | = 4000 with 30 training epochs per mini-batch.
5) PPO clipping parameter of 0.3. 6) Kullback-Leibler (KL)
coefficient initialization of 0.2 and target of 0.01. 7) General-
ized advantage estimation (GAE) parameter 𝜆 = 1. 8) Value
function parameter 1 and entropy coefficient 0. These settings
are largely in line with general recommendations for practical
DRL [54]. Tuning hyperparameters automatically for each
scenario could further improve performance.

3) Baseline Solutions: We compare DeepCoMP, DD-
CoMP, and D3-CoMP against three other approaches:
• Dyn.: A dynamic UE-centric multi-cell selection heuristic by

Beylerian and Ohtsuki [8], which connects a UE 𝑢 𝑗 to all
cells 𝑐𝑖 with SINR𝑖, 𝑗 (𝑡) ≥ 𝜖 ·SINRmax

𝑗 (𝑡), where SINRmax
𝑗 (𝑡)

is the SINR of the strongest cell. We evaluate 𝜖 ∈ {0, 0.5, 1}.
With 𝜖 = 1, the heuristic only connects to the strongest cell,
similar to common 3GPP-based approaches for single-cell
selection [12].

• Static: A static clustering approach similar to [7]. It groups
all cells into fixed clusters of size 𝐶 and then connects UEs
to all cells of the strongest cluster. We consider 𝐶 ∈ {1, 2, 3}.

• Per-Step Opt.: A brute-force approach that has full knowl-
edge and checks all actions to select the best one in each
time step. The selected action is optimal per step but
not necessarily in the long term. This approach is clearly
impractical and only serves as a comparison.

All approaches have the same action space, but only our DRL
approaches learn through feedback from their actions.

4) Execution and Plots: We repeated all experiments with
10 different seeds for training and testing, running on machines
with 20 core Intel Xeon W-2145 CPUs and 100 GB RAM.
Figures show the mean and 90 % confidence interval of the
avg. QoE as defined in Sec. III-C.

C. Self-Adaption to Varying Scenarios

1) Varying Resource Allocation: We first consider the
base scenario (Sec. VII-B1) with varying resource alloca-
tion schemes applied by the cells to allocate their available
PRBs to connected UEs. In particular, we use the following
schemes: 1) Resource-fair: All cells allocate their available
PRBs equally among connected UEs [55]. 2) Rate-fair: Each
cell ensures the same downlink data rate for its connected
UEs by assigning more PRBs to UEs that are farther away.
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(d) Heterogeneous

Fig. 4: Our DRL approaches adapt to varying resource allocation schemes and outperform other algorithms.

3) Proportional-fair: Cells allocate PRBs in a proportional-
fair way, based on UEs’ instantaneous and historical data
rates [56]. In addition, we also consider a heterogeneous
scenario with all three schemes used in parallel, each by one
of the three cells.

Fig. 4 shows the resulting avg. QoE under the different
schemes. While the avg. QoE is mostly satisfactory (around
0 or above) in these scenarios, there are significant differ-
ences between the algorithms. DeepCoMP’s results are almost
identical to the brute-force approach (within 0.4 % on avg.)
and clearly outperform all other approaches (on avg. 2x better
than the dynamic and 2.3x better than the static heuristic over
all parameter settings). In fact, DeepCoMP is even slightly
better (2.5 %) than the brute-force approach for the rate-fair
scheme. Recall that brute force is only per step optimal but not
necessarily long-term. Particularly, DeepCoMP learns to favor
actions that may be suboptimal in short-term (e.g., connecting
to a far-away cell) but pay off in long-term QoE. In contrast,
the brute-force approach may get stuck at myopic optima
since we only allow one connection or disconnection per
UE and time step to limit overhead (Sec. III-B). With rate-
fair allocation, switching to a far-away cell is very resource-
expensive but may pay off when reducing competition at a
closer cell.

DD-CoMP and D3-CoMP only have local observations
and control for each UE and are thus slightly worse than
DeepCoMP but still much better than the dynamic and static
heuristics. DD-CoMP is on avg. 87 % better than the dynamic
heuristic and 107 % better than the static heuristic. D3-CoMP
is comparable to DD-CoMP but learns slightly better policies
in some resource-fair scenarios where different UEs benefit
from heterogeneous policies. Note that the performance of
both heuristics strongly varies with their parameter (𝜖 and 𝐶)
and that the best parameter depends on the specific resource
allocation scheme. For example, the dynamic heuristic works
best with 𝜖 = 1 in the rate-fair case, with 𝜖 = 0 in the
proportional-fair case, and with 𝜖 = 0.5 in the other two cases.
Similarly, the static heuristic works best with different pa-
rameter settings in different scenarios. Hence, for best results,
these heuristics require knowledge of the resource allocation
schemes and corresponding (possibly manual) configuration.
In contrast, our three self-learning approaches autonomously
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Fig. 5: DRL adapts to varying number of UEs.

adapt to the different resource allocation schemes and even
the heterogeneous mix of schemes successfully from training
experience. We emphasize again that the agents have no
explicit knowledge about which resource allocation scheme
is employed inside the cells!

2) Varying Number of UEs: We again consider the base
scenario (Sec. VII-B1) with heterogeneous resource allocation
and now vary the number of active UEs. Fig. 5 shows the avg.
QoE for five different scenarios with 1–5 UEs, respectively.
With few UEs (1 or 2), there is little competition for radio
resources. Here, the static heuristic with 𝐶 = 3 works well as
it connects UEs to many cells and uses resources effectively.
Conversely, selecting fewer cells (𝐶 = 1) leads to better results
in scenarios with higher load (4 and 5 UEs) as it reduces
competition among UEs by limiting a UE to a single cell.
Overall, avg. QoE decreases with more UEs as competition
increases. The dynamic heuristic works best with 𝜖 = 0.5
across all scenarios (except for 1 UE) but is still clearly worse
than our DRL approaches (e.g., DeepCoMP is 35 % better on
avg.). Our three DRL approaches self-adapt to the number of
UEs and learn cell selection policies that are very close to the
per-step optimal brute-force approach. They consistently and
considerably outperform both heuristics—in low-load as well
as high-load scenarios and with any parameter setting.

3) Varying Cell Density: We now vary the cell-to-cell
distance (80 m–120 m) in the base scenario (three UEs, het-
erogeneous resource allocation), where cell size is generally
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(b) Hard Data Rate Requirements

Fig. 7: DRL adapts to varying objectives and utility functions.

small due to strong path loss in the considered urban scenario
(Sec. VII-B1). While the avg. QoE naturally decreases with
sparser cells (from very good to satisfactory), Fig. 6 shows
that varying cell density affects the heuristics with different
parameters differently: The static heuristic works best with
𝐶 = 1 in denser cells (80 m), where a single serving cell can
achieve good QoE, and with 𝐶 = 3 in sparser cells (120 m),
where multiple connections are required for cell-edge UEs.
The dynamic heuristic is also affected by the cell density
(𝜖 = 0 vs. 𝜖 = 1) but works best with 𝜖 = 0.5 across all
scenarios and is comparable to DD-CoMP and D3-CoMP at
80 m. However, our DRL approaches adapt much better to
other cell densities and overall outperform both the dynamic
and the static heuristic by 6 %–73 % on avg., depending on
the parameter setting (𝜖 and 𝐶).

4) Varying Objective and Utility Function: We consider
our base scenario (Sec. VII-B1) with heterogeneous resource
allocation again and investigate the impact of using different
utility functions. Instead of the logarithmic utility function,
we first consider maximizing UEs’ data rate directly rather
than their QoE by setting 𝑈 𝑗 (𝑡) = 𝑟 𝑗 (𝑡) with 𝑈min

𝑗
= 0 and

𝑈max
𝑗

= 1000. We choose 𝑈max
𝑗

= 1000, i.e., capping data
rates above 1000 Mbit/s, as an example for supporting even
upcoming highly demanding and immersive services [57].
Fig. 7a shows UEs’ resulting avg. data rate for each algorithm.
Since UEs’ data rates fluctuate heavily with their movement
and distance to connected cells (due to strong path loss), the
error bars are comparably large here. Still, the results clearly
show that our proposed DRL approaches achieve similar

avg. data rates as the per-step optimal brute force approach
and outperform all other algorithms (by 18 %–49 % on avg.,
depending on 𝜖 and 𝐶). Particularly, they learn to only connect
one UE per cell with the highest channel capacity. While this
is unfair towards other UEs, e.g., at the cell edge, it maximizes
the overall data rate and therefore the avg. utility in this case.
This illustrates why maximizing only data rate, as commonly
done in related work, often does not reflect user satisfaction
and easily leads to undesired behavior.

As another example, in Fig. 7b, we consider the case that
UEs have a hard data rate requirement (here 1 Mbit/s) that
must be met. Hence, the utility follows a step function, where
we set 𝑈 𝑗 (𝑡) = −10 if 𝑟 𝑗 (𝑡) < 1 Mbit/s and 𝑈 𝑗 (𝑡) = 10
otherwise. Fig. 7b shows the resulting avg. percentage of UEs
with satisfied data rate requirement, i.e., with 𝑟 𝑗 (𝑡) ≥ 1 Mbit/s.
Our DRL approaches adapt to this scenario exceptionally
well and outperform all other approaches (26 %–38 % more
satisfied UEs than the dynamic and static heuristic). They learn
to select cells such that UEs’ data rate is just high enough
(≥ 1 Mbit/s) and there are sufficient remaining radio resources
to satisfy the data rate requirements of as many UEs as
possible. Note that our DRL approaches are neither explicitly
aware of UEs’ required data rate nor the utility function
but learn to adapt through feedback from UEs’ instantaneous
utility. The dynamic and static heuristic are also not aware
of the required data rate but, unlike our DRL approaches, do
not learn from experience. Instead, they tend to waste radio
resources by either providing unnecessarily high data rates to
some UEs or connecting cell edge users whose data rate still
remains under the required threshold. Ultimately, this leads to
many UEs with unfulfilled data rate requirements.

Fig. 7b shows that our DRL approaches even outperform the
brute force approach. Again, this is possible because the brute
force approach is only optimal per step but not necessarily in
the long term. Indeed, this leads to suboptimal cell selection
in this setting where one cell uses proportional fair resource
allocation, which depends on UEs’ historic long-term data
rate. While our DRL approaches are not explicitly aware of
the resource allocation schemes at the different cells, they
implicitly learn to select actions with possibly suboptimal
instantaneous utility but that optimize the avg. QoE in the
long term. Overall, our DRL approaches effectively self-adapt
to different objectives and utility functions and outperform all
other algorithms. Again, we used these utility functions merely
as examples in our evaluation. In practice, our approaches do
not require defining a utility function at all and it suffices
to approximate UEs’ instantaneous QoE (e.g., with machine
learning [37]).

D. Generalization and Transfer Learning
1) Generalization: In Sec. VII-C, we train our approaches

from scratch in different scenarios and test how well they adapt
to each scenario, using identical UE positions and movement
during training and testing. Here, we consider pretrained DRL
agents and evaluate their capability to generalize to unseen,
randomized UE movement without further training. Note that
our approaches are only indirectly aware of UEs’ position and
movement via observed SINR and QoE.
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Fig. 8: Generalization to unseen UE movement.
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Fig. 9: DRL learning curves.

When trained on a single UE movement pattern, Fig. 8
(“Fixed”) shows that DeepCoMP and D3-CoMP generalize
poorly to new UE movement patterns (bad avg. QoE indicated
by negative values) while DD-CoMP generalizes much better.
This is because DeepCoMP and D3-CoMP learn cell selection
separately for each UE, whereas DD-CoMP combines UEs’
experiences and learns a joint policy for all UEs. Based on
the diverse experience from these UEs, the joint policy is
naturally more robust to different UE locations and movement.
Accordingly, Fig. 8 (“Random”) shows that training on ran-
domly varying UE movement greatly improves generalization
for DeepCoMP and D3-CoMP but also for DD-CoMP.

A challenge when training with randomized UE movement
is the resulting high variance of experience collected during
training, which is known to negatively affect performance
of DRL approaches [58]. While randomized UE movement
during training helps generalization, a simple option to reduce
variance is to increase discounting of rewards by smaller 𝛾

(cf. Alg. 1, ln. 13). This decreases the weight of subsequent
rewards and, thus, also reduces impact of variance in later time
steps. Fig. 8 (“Discounted”) shows that stronger discounting
with 𝛾 = 0.5 (instead of 0.99) increases avg. QoE when
training our DRL approaches on randomized UE movement,
significantly outperforming the two heuristics by 40 %–143 %
on avg. (“Baselines”).

2) Online Transfer Learning: As UE movement patterns
may change over time, our pretrained DRL approaches can
adapt online to the current pattern using transfer learning. In
fact, fine-tuning a pretrained policy to new UE movement with
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Fig. 10: DRL adapts to dynamic arrival of 15 UEs.

transfer learning is much more efficient than training a new
policy from scratch, i.e., starting with a randomly initialized
neural network. For DeepCoMP, Fig. 9a shows that such
fine-tuning helps to quickly converge towards a very good
policy (similar to Per-Step Opt.). Compared to training from
scratch, it requires roughly half the amount of training steps
until convergence—both for policies pretrained on fixed and
randomized UE movement.

In practice, a safe and efficient approach would be to pretain
a robust policy on randomized scenarios and then quickly
and continuously fine-tune it for highly optimized QoE in the
current scenario (comparable to “Fine-tuned Rand.” in Fig. 9a).
This approach quickly reaches and exceeds the quality of the
best heuristic (dynamic with 𝜖 = 0.5) within just 6 training
iterations or 24 k training steps (batch size |𝑏 | = 4000;
Sec. VII-B2). With ongoing transfer learning, the approach
exceeds the best heuristic by ultimately 13 %. DD-CoMP
and D3-CoMP converge even faster than DeepCoMP as we
show in Sec. VII-E. For a production system, the efficiency
of our prototype implementation could be further improved
(e.g., more efficient implementation, hyperparameter tuning),
leading to even faster online transfer learning.

E. Scalability

1) Dynamic UE Arrival: We now explore a scenario similar
to our base scenario (Sec. VII-B1) but with up to 15 UEs
that arrive dynamically over time. Due to the significantly
higher number of UEs and the resulting combinatorial ex-
plosion, the brute-force approach becomes intractable and is
therefore omitted. Overall, the avg. QoE is much lower than
in previous scenarios due to the higher load and increased
competition between UEs (Fig. 10). With dynamically arriving
UEs, DeepCoMP’s observation and action space needs to be
configured for the maximum number of UEs, here 𝑀max = 15
(Sec. IV-A4). In contrast, DD-CoMP and D3-CoMP have
much smaller observation and action spaces that are invariant
in the number of active UEs and can simply spawn new DRL
agents whenever a new UE arrives (Sec. V-C and V-D). Con-
sequently, DD-CoMP and D3-CoMP scale better to many UEs
and converge much faster (investigated further in Sec. VII-E2).
Still, DeepCoMP also learns a good cell selection policy within
the given training steps (here, 1 million). All three DRL
approaches adapt successfully to the dynamically changing
number of active UEs and outperform both heuristics with
all parameter settings by 14 %–67 %.



Prep
rin

t

13

5 10 15 20
Number of UEs

2

1

0

1

2

3

4
Av

g.
 Q

oE

Per-Step Opt.
DeepCoMP
DD-CoMP
D3-CoMP
Dyn. =0.0

Dyn. =0.5
Dyn. =1.0
Static C=1
Static C=2
Static C=3

Fig. 11: Scalability to 7 cells and 5–20 UEs.

2) Large Scenario: We further investigate the scalability
of our DRL approaches in a larger scenario with 7 cells and
up to 20 moving UEs. Fig. 9b shows the learning curves of
our approaches for 20 UEs, trained from scratch. DD-CoMP
and D3-CoMP converge rapidly even in large scenarios since
their observation and action spaces are small and invariant in
the number of UEs. In contrast, DeepCoMP’s observation and
action spaces grow linearly with more UEs, leading to higher
complexity for larger scenarios, and indeed to much slower
training convergence. At 1 million training steps, DeepCoMP
is still significantly worse than DD-CoMP and D3-CoMP but
keeps learning with more training and eventually catches up
with DD-CoMP and D3-CoMP.

Fig. 11 shows the final results of the DRL approaches
trained for 2 million training steps, compared to the other
algorithms. Again, avg. QoE decreases from rather good (> 0)
to rather bad (< 0) with more UEs as competition increases.
Due to the escalating complexity, the optimal brute-force ap-
proach is intractable and omitted for 10 or more UEs. Thanks
to its global view and control of all UEs, DeepCoMP learns
highly optimized cell selection and even exceeds DD-CoMP
and D3-CoMP for 5–15 UEs. As shown in Fig. 9b for 20 UEs,
it reaches comparable performance within 2 million training
steps but is not yet fully converged and would likely further
improve with even more training. In contrast, DD-CoMP and
D3-CoMP converge rapidly and still clearly outperform both
heuristics with all parameter settings. For example, DD-CoMP
is 69 % better on avg. than the best heuristic (Dyn. 𝜖 = 0.5)
at 20 UEs.

VIII. CONCLUSION

We propose three self-learning DRL approaches that ef-
fectively self-adapt to various scenarios and objectives. They
consistently and considerably outperform existing approaches
without requiring detailed system knowledge or human in-
structions. DeepCoMP leverages its global view and control
to learn highly optimized results and is useful for network-
initiated cell selection when long training times are acceptable.
Alternatively, DD-CoMP and D3-CoMP are suitable for either
network-initiated or mobile-initiated cell selection, converge
rapidly, and are particularly useful in practical large-scale
scenarios. DD-CoMP learns a single, robust policy and D3-
CoMP learns separate policies that can adapt to heterogeneous
UEs. Our source code is available online [18] and can be

used as a platform by others to study and evaluate their own
solutions.

In future work, DeepCoMP, DD-CoMP, and D3-CoMP
could be combined into a hybrid solution that dynamically
switches to the most suitable approach. DD-CoMP and D3-
CoMP could be further improved through recent advances in
cooperative multi-agent DRL, e.g., curriculum learning [17].
Overall, we believe that our proposed DRL approaches are
an important step towards self-adaptive, effective CoMP and
higher QoE in practice, leading to happier customers and more
profit for operators. We also expect the proposed techniques
to carry over to other network control tasks, paving the way
to zero-touch network management.
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