
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Segment-less Continuous Speech Separation of
Meetings: Training and Evaluation Criteria

Thilo von Neumann∗, Keisuke Kinoshita†, Christoph Boeddeker∗, Marc Delcroix†, and Reinhold Haeb-Umbach∗
∗Paderborn University, Germany †NTT Corporation, Japan

Abstract—Continuous Speech Separation (CSS) has been pro-
posed to address speech overlaps during the analysis of realistic
meeting-like conversations by eliminating any overlaps before
further processing. CSS separates a recording of arbitrarily many
speakers into a small number of overlap-free output channels,
where each output channel may contain speech of multiple
speakers. This is often done by applying a conventional sepa-
ration model trained with Utterance-level Permutation Invariant
Training (uPIT), which exclusively maps a speaker to an output
channel, in sliding window approach called stitching. Recently,
we introduced an alternative training scheme called Graph-PIT
that teaches the separation network to directly produce output
streams in the required format without stitching. It can handle an
arbitrary number of speakers as long as never more of them over-
lap at the same time than the separator has output channels. In
this contribution, we further investigate the Graph-PIT training
scheme. We show in extended experiments that models trained
with Graph-PIT also work in challenging reverberant conditions.
Models trained in this way are able to perform segment-less CSS,
i.e., without stitching, and achieve comparable and often better
separation quality than the conventional CSS with uPIT and
stitching. We simplify the training schedule for Graph-PIT with
the recently proposed Source Aggregated Signal-to-Distortion
Ratio (SA-SDR) loss. It eliminates unfavorable properties of
the previously used A-SDR loss and thus enables training
with Graph-PIT from scratch. Graph-PIT training relaxes the
constraints w.r.t. the allowed numbers of speakers and speaking
patterns which allows using a larger variety of training data.
Furthermore, we introduce novel signal-level evaluation metrics
for meeting scenarios, namely the source-aggregated scale- and
convolution-invariant Signal-to-Distortion Ratio (SA-SI-SDR and
SA-CI-SDR), which are generalizations of the commonly used
SDR-based metrics for the CSS case.

Index Terms—Continuous Speech Separation, Source Separa-
tion, Graph-PIT, Dynamic Programming, Permutation Invariant
Training

I. INTRODCUTION

The development of a meeting transcription system, en-
riched with meta information about who speaks when, is
currently an active field of research. The development and
evaluation of such systems are equally important problems,
and can be performed with similar algorithms. With meetings,
we denote a conversation among a few, typically unknown
number of people with intermittent speech activity. Meeting-
style conversations are held everyday and speech overlaps are
inevitable in such situations; an overlap of 6 % to 17 % was
reported in formal meetings [1]–[4] while in other daily natural
conversation it can exceed 20 % [4]–[7]. Many widely-used
state-of-the-art diarization and Automatic Speech Recognition
(ASR) systems, however, can only handle a single speaker
speaking at any point in time, and even short overlaps have

a significant impact on their performance [8]–[11]. Therefore,
a “separation first” pipeline has been established. A speech
separation system first creates overlap-free speech signals from
the meeting recording, on which conventional diarization and
ASR can be performed without modification [3], [8], [10].

In recent years, Neural Network (NN)-based separation
has flourished and exceeded the separation performance of
conventional techniques by a large margin. Techniques like
Deep Clustering [12], [13] and Utterance-level Permutation
Invariant Training (uPIT) [14]–[18] have achieved almost
perfect separation of short anechoic single-channel recordings
with small numbers of speakers, with Signal-to-Distortion
Ratios (SDRs) exceeding 20 dB [18], [19]. These techniques
assign a speaker exclusively to one output channel, so each
output channel contains speech of a single speaker only. We
will call this speaker-exclusive assignment. This constraint
limits their usefulness in realistic meeting-style conversations,
where the number of speakers is typically unknown a priori.

Continuous Speech Separation (CSS) has been introduced as
one way to handle more realistic speaking patterns [8]. It was
observed that often only a small number of the participants of
a meeting overlap at any given time. Such a meeting can thus
be separated into fewer overlap-free output channels, where
a speaker is no longer tied to an output channel exclusively.
Instead, multiple speakers can share the same output channel,
and the number of output channels is limited by the number
of simultaneously speaking speakers at any time point in a
meeting. We will call this speaker-shared assignment.1

To achieve such a separation with the conventional speaker-
exclusive techniques, a sliding-window approach has been
proposed [3], [8]; the recordings are cut into short overlapping
segments and passed to a separator, which may output the
separated signals in an arbitrary order. The separated segments
are aligned and concatenated to form continuous output signals
(see Section III-B), a process that has been termed “stitching”.
Here, the assumption is made that the number of speakers
in one segment is not larger than the number of output
channels of the separator, to satisfy the requirements of the
conventional speaker-exclusive assignment. Since the number
of output channels should be small (typically two) [12], [14],
[20], the constraint on the number of speakers in one segment
forces small segment sizes. Short segment sizes increase the
probability for short speech fragments in a segment, which
provide insufficient context for the separator to work properly.

1It was called “speaker-independent” CSS when introduced in [8], but we
avoid this naming due to ambiguity with separation of unknown speakers.
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We proposed an alternative training scheme for the CSS
approach, named “Graph-PIT” [21], that allows a separation
network to directly estimate a solution for the speaker-shared
CSS problem. The reference signals used for training are
constructed by finding the assignment of utterances to output
channels that produces the lowest loss and is overlap-free (see
Fig. 1 for an example of such an assignment). We interpret the
process of finding this assignment as a graph coloring problem,
and present efficient algorithms for finding the optimal as-
signment for training (see Section IV). The constraint of CSS
with uPIT, that the number of speakers active in a segment
must not exceed the number of output channels, is relaxed
to the much less restrictive requirement that the number of
simultaneously active speakers must not exceed the number
of output channels. Graph-PIT training can consequently be
used to enlarge the segments used for stitching, and to even
eliminate the stitching process completely, enabling segment-
less CSS.

As mentioned earlier, when dealing with meeting data,
evaluation of the separation performance is another issue.
Many conventional source separation performance evaluation
metrics cannot directly be applied. To solve this problem, we
propose an extension of the commonly used Scale-Invariant
SDR (SI-SDR) [15], [22] and Convolution Invariant SDR (CI-
SDR) [23], [24] to meeting scenarios (see Section V-B), that
is based on the Source-Aggregated Signal-to-Distortion Ratio
(SA-SDR) [25] and that is well-defined both in single-speaker
and in overlap regions. Further, we evaluate the systems w.r.t.
Word Error Rate (WER) of a downstream speech recognizer,
both with oracle utterance boundaries and in continuous eval-
uation mode with the Optimal Reference Combination Word
Error Rate (ORC WER) [26] (see Section V-A).

This paper is built on the previously published papers [21],
[25], [27], and introduces the following novelties: (1) we pro-
vide a more extensive explanation of the Graph-PIT principles
compared to [21], [27]; (2) we perform new experiments on
reverberated meeting-like data showing that Graph-PIT works
also for such challenging conditions; (3) we show that the
SA-SDR loss presented in [25] allows for simpler and more
efficient training with Graph-PIT from scratch compared to
the Averaged SDR (A-SDR) loss used in [21]; and (4) we
propose new signal-level evaluation metrics for meeting style
scenarios, namely scale- and convolution-invariant SA-SDR
(SA-SI-SDR and SA-CI-SDR), based on the Graph-PIT idea.

II. PROBLEM FORMULATION

A. Continuous Speech Separation

A recording of a meeting conversation consists of multiple
(U ) utterances uttered by multiple (K) different speakers over
the course of minutes or hours. The recording can contain
overlapped speech, overlap-free speech and silence parts. One
way to approach speech separation in such scenarios is with
Continuous Speech Separation (CSS) [28]. CSS, in general,
describes the task of separating a continuous mixture signal
into multiple continuous overlap-free output channels.

There are different approaches to CSS that use different
assignments of utterances to output channels in order to ensure

y =
mixture signal

Separator
separated signals

ŝ1 =
ŝ2 =

K
speakers

C
channels

Fig. 1. Continuous Speech Separation with speaker-shared channel assign-
ment: The overlapping input audio stream of arbitrary length is separated into
multiple overlap-free channels. Different colors represent different speakers.
Individual utterances from the input signal can be placed on any output as
long as utterances do not overlap on any output.

they are overlap-free. One can produce one stream per speaker
(in total K streams), which are by definition overlap-free [29]–
[31] (speaker-exclusive assignment). One can also argue that
the number of speakers K (sim) that overlap at any point in time
is often much smaller than the total number of speakers K in
the meeting and arrange the utterances in C ≥ K (sim) overlap
free streams. This assignment is independent of the actual total
number of speakers K ≥ K (sim) (speaker-shared assignment).

We investigate the latter approach, speaker-shared assign-
ment. An example for such a separation scheme is shown in
Fig. 1, where each box represents an utterance and different
colors represent different speakers. The separator aims to
estimate C continuous output channels from the mixture y,
where no two utterances overlap in any output signal. The
speech of one speaker can be distributed over multiple output
channels, and each output channel can contain speech of
multiple speakers.

CSS with speaker-shared assignment is conventionally per-
formed with a sliding window approach, where sliding win-
dows are separated independently and then stitched back
together to obtain consistent output channels. This approach
is termed “stitching”, and described in detail in Section III-A.
Another approach that we recently proposed is to train a neural
network to directly produce continuous output channels in
the CSS style, with a training method called “Graph-PIT”,
a natural extension of the commonly used uPIT for speaker-
shared assignment [21]. We describe Graph-PIT in detail in
Section IV.

B. Signal model

We assume single-microphone recordings and model the
mixture signal y as a sum of U utterance signals s̃u uttered
by K speakers, and padded to the length T of the recording
su = [0, ..., 0, s̃u, 0, ..., 0]

T ∈ RT . The mixture y ∈ RT is the
sum of these utterance signals and a noise signal n ∈ RT :

y =

U∑
u=1

su + n. (1)

To keep the equations simple, we here assume all signals to
be anechoic. The choice of the actual reference signals for
training and evaluation in the reverbant cases is described in
Sections VII and VIII.
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Fig. 2. Utterance-level separation with Utterance-level Permutation Invariant
Training. The number of speakers that can be separated is limited by the
number of output channels of the separator. Each output channel contains
speech of exactly one speaker.

III. CONVENTIONAL: CONTINUOUS SPEECH SEPARATION
WITH STITCHING AND SEGMENT-LEVEL SEPARATION

The conventional approach to CSS uses a speaker-exclusive
NN-based separator with a sliding window stitching scheme.
We first explain the Utterance-level Permutation Invariant
Training (uPIT) [14] training scheme in Section III-A and
elaborate on how it is applied to CSS in Section III-B.

A. Utterance-level Permutation Invariant Training (uPIT)

The traditional uPIT was designed for separation of short
recordings with a small number of speakers with speaker-
exclusive assignment, i.e., by uniquely mapping each speaker
to an output channel of a separation network. The number of
speakers K must match the number of output channels C of
the separation network (K = C).2 This idea is displayed in
Fig. 2. The permutation problem, which arises during training
from the fact that the separation network can output the
separated signals in an arbitrary order, is solved by finding the
permutation of reference signals that best matches the output
signals. Its original formulation minimizes the average over
the losses of each individual output channel:

L(uPIT) = min
π∈PC

1

C

C∑
c=1

L(s(spk)
π(c), ŝc), (2)

where L is an arbitrary signal-level loss function, π ∈ PC enu-
merates all permutations π : {1, ..., C} → {1, ..., C} of length
C, and s(spk)

c is the sum of all utterance signals uttered by
speaker c. ŝc is the c-th output channel of the separation net-
work. Back-propagation is performed only for the permutation
that minimizes Eq. (2). In Fig. 2, the permutation between
output channels and reference signals is indicated with the
colors of the pinheads on the right of the signals.

Let us write Eq. (2) in a more general formulation to sim-
plify further derivations. Here, L accepts matrices of reference
signals S(spk) = [s(spk)

1 , ..., s(spk)
C ] ∈ RT×C and estimated signals

2When K < C, silent dummy speakers are introduced (i.e., s = 0) so that
the number of estimated outputs matches the number of targets.
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Fig. 3. The stitching approach to Continuous Speech Separation. The input
mixure signal is segmented into overlapping segments, each segment is
separated by a neural network, and the separated signals are aligned to obtain
continuous output channels.

Ŝ = [ŝ1, ..., ŝC ] ∈ RT×C , and the permutation is written with
a permutation matrix P(u) ∈ RC×C :

L(uPIT) = min
P(u)∈P

L(S(spk)P(u), Ŝ). (3)

The matrix P(u) contains exactly one 1 in each row (one-hot
vector) and each column while all other entries are 0, so that
SP(u) permutes the columns of S to construct the channel
reference signals S(chn) = [s(chn)

1 , ..., s(chn)
C ] = S(spk)P(u).3

The optimal permutation that minimizes Eq. (2) or Eq. (3)
can often be computed efficiently with the Hungarian algo-
rithm [32], [33] even for large numbers of speakers.

B. Segmentation and Segment Stitching

A model trained with uPIT can be applied to CSS with a
sliding window approach. It is assumed that, if the windows
are chosen small enough, the number of speakers K (seg) in one
window is small, so that separation with a speaker-exclusive
technique (C ≥ K (seg)) is possible within each windowed
segment.

The stitching procedure is visualized in Fig. 3. The input
mixture signal is cut into overlapping segments of equal
size, where the segmentation process is characterized by three
numbers: the history context Th, the future context Tf and
the current window size Tc. The segments have a length
of Th + Tc + Tf with a total overlap of Th + Tf so that
the current windows of adjacent segments do not overlap.
It is assumed that the number of speakers K (seg) present
in one segment is not larger than the number of channels,
i.e., K (seg) ≤ C. Then, the trained separator is applied to
each segment independently and returns the separated signals
in an arbitrary order. This poses an inter-segment speaker-
permutation problem. Neighboring segments thus have to be
aligned to obtain continuous and consistent output signals.

3The superscript (u) stands for uPIT.
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The signals can be aligned based on a similarity between the
overlapping parts of adjacent segments (Th and Tf ) [3], based
on speaker information extracted from the separated signals
[34], or with an additional tracking network [35]. In this work,
we use similarity-based stitching only.

When the assumption K (seg) ≤ C is violated during in-
ference, the behavior of the separator with speaker-exclusive
channel assignment is unknown in that segment. This in-
evitably leads to a trade-off; with larger the segment size, more
context is available to the system to potentially improve the
separation performance, but this also increases the probability
for the model to face input signals it cannot handle. This
introduces a new hyperparameter to tune, the segment size
(i.e., Th, Tc and Tf ), that highly depends on the style of data
being processed. Often, very short segment sizes below 2.5 s
are chosen, and to avoid alignment errors, the overlap of the
segments is often set to values larger than 50 % [3], [8], [36],
which introduces a computation overhead proportional to the
overlap (Th + Tf)/(Th + Tc + Tf) between the segments.

IV. PROPOSED: CONTINUOUS SPEECH SEPARATION WITH
GRAPH-PIT

Graph-PIT [21] is a natural extension of uPIT for speaker-
shared assignment. It relaxes the constraint of uPIT that the
number of output channels must not be smaller than the
total number of speakers, i.e., C ≥ K, to the more natural
assumption that the number of concurrently speaking speakers
K (sim) never exceeds the number of output channels C of the
system, i.e., C ≥ K (sim).

Analogous to the permutation matrices from uPIT, we
model the assignment of utterances to output channels with
assignment matrices P = [p1, ...,pU ]

T ∈ {0, 1}U×C . Each
row pu ∈ RC in P is a one-hot vector that describes
which output channel the utterance u is assigned to. Not that
compared to uPIT, the columns of the matrix can contain
multiple ones since several utterances can be assigned to
the same channel. The signal matrices now have the shapes
S = [s1, ..., sU ] ∈ RT×U and Ŝ = [ŝ1, ..., ŝC ] ∈ RT×C . With
the set of all valid assignment matrices B (Section IV-A), the
loss function for Graph-PIT roughly resembles Eq. (3):

L(Graph-PIT) = min
P∈B
L(SP, Ŝ). (4)

The channel references signals S(chn) = SP for training here
contain sums of utterance signals instead of a permutation of
speaker signals.

A. Graph-PIT as a graph coloring problem

An assignment matrix P = [p1, ...,pU ]
T is only valid if

it does not map two temporally overlapping utterances to the
same output channel, so the constraint

pu 6= pv if u overlaps with v, ∀u, v ∈ {1, ..., U} (5)

must be true for all assignment matrices.
Eq. (5) is equivalent to a graph coloring problem of the

unweighted and undirected overlap graph G = (V, E). Its

mixture signal
y =

Separator: NN
separated signals
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reference signals
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s̃4 =

s̃5 =

s̃6 =

s̃7 =G

Fig. 4. The Graph-PIT approach to Continuous Speech Separation. The
separation network receives the full input signal and directly produces CSS-
style output streams. The overlap graph G is visualized in the bottom of the
figure. The reference signals of the same speaker are drawn in one line for
better visualization.

vertices V correspond to utterances and its edges E model
overlaps between utterances:

V = {1, ..., U}, (6)
E = {{v, u} if v overlaps with u, ∀v, u ∈ V}. (7)

An edge is inserted between two vertices u and v if and only if
the two utterances should not be mapped to the same output
channel, i.e., if they temporally overlap. An example of an
overlap graph is visualized in the bottom of Fig. 4. Finding
a valid assignment of U utterances to C output channels is
equivalent to finding a proper coloring of G with C colors.

To minimize Eq. (4), the one assignment (coloring) P̂ that
minimizes the loss has to be found from B. This can be done
by first enumerating all possible assignments and selecting
the best one. We will discuss efficient solutions for this
minimization problem in Section IV-C. A possible coloring
of the graph in Fig. 4 is indicated by the colors used to draw
the nodes. The presented coloring will result in the shown
mapping of utterances to output channels.

The notion of an overlap graph allows for more general
definitions of overlap, where not only utterances that overlap
temporally can be constrained onto different output channels,
but any two utterances. As an example, utterances that are only
separated by a short pause can be considered as overlapping,
or a behavior similar to Group-level Permutation Invariant
Training (Group-PIT) [35] is possible (see Section VI).

B. Issues with conventional loss functions for Graph-PIT
training

In [21], the Graph-PIT networks were trained with a variant
of the standard SDR, averaged over the output channels.
Written with the standard SDR, the objective was to maximize

A-SDR(S(chn), Ŝ) =
10

C

C∑
c=1

log10

∥∥s(chn)
c

∥∥2∥∥∥s(chn)
c − ŝc

∥∥∥2 , (8)

where S(chn) = [s(chn)
1 , ..., s(chn)

C ] contains the reference signals
s(chn)
c constructed for the c-th output channel by the Graph-PIT

loss, i.e., S(chn) = SP̂. We call this commonly used definition
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of the SDR the Averaged SDR (A-SDR). We found that the
A-SDR has some unfavorable properties that were mitigated
by pre-training with uPIT in [21], and in this paper by a
modification of the loss function, called SA-SDR.

Firstly, the A-SDR is not defined for a completely silent
output signal because lims→0 log

‖s‖2

‖s−ŝ‖2 = −∞. This never
happens in typical scenarios where uPIT is applied (K = C),
such as WSJ0-2mix [12]. However, it is likely to happen in
meeting situations, especially when the model is trained on
short segments randomly cut from this data.

Secondly, the A-SDR-based training leads the separator to
focus its performance more on the already better separated
output channel, especially when their energies differ heavily.
This can be seen intuitively when looking at the value range
when a reference signal is reconstructed (almost) perfectly:
limŝ→s log

‖s‖2

‖s−ŝ‖2 = +∞. The loss of a well separated output
channel dominates the full sum. An analysis of the gradients
of A-SDR can be found in [25].

Because Graph-PIT has more freedom for placement of
utterances on output channels, it favors putting many ut-
terances on a single output channel and putting as much
silence on the others when trained with A-SDR. For short
training segments, which tend to contain fewer speakers and
overlapping utterances, it is often possible to get a perfect
reconstruction on one output channel by setting that channel
to zero. The Graph-PIT models in [21] thus were taught to
use both output channels by pre-training with uPIT.

Both of these problems can elegantly be mitigated by
switching to the SA-SDR

SA-SDR(S(chn), Ŝ) = 10 log10

∑C
c=1

∥∥s(chn)
c

∥∥2∑C
c=1

∥∥∥s(chn)
c − ŝc

∥∥∥2 (9)

that was proposed in [25] for training with fully overlapped
speech and meeting scenarios. When we write the squared
norm of a vector as a matrix operation,

∑
c ‖s‖

2
= Tr(STS),

it can be rewritten in a way compatible to Eqs. (3) and (4) as:

SA-SDR(S(chn), Ŝ) = 10 log10
Tr(S(chn)TS(chn))

Tr((S(chn) − Ŝ)T(S(chn) − Ŝ))
.

(10)

The SA-SDR is stable for a silent target signal, the gradients
favor the worse output channel and its value is independent
of the placement of utterances on output channels, given the
separation quality is constant. A detailed discussion of the
advantages of SA-SDR over A-SDR can be found in [25].
Using the SA-SDR loss allows easier training of a Graph-PIT
model from scratch without pre-training with uPIT, which is
shown in Section VII.

C. Efficient solutions for the Graph-PIT coloring problem

Naively searching for the best solution by brute-force testing
all assignments in Eq. (4) is inefficient because of two reasons:
The loss function has to be evaluated fully for each assignment
and the graph coloring problem, i.e., finding one coloring for
a graph given a maximum number of colors, is in general NP-
hard [37]. The Graph-PIT problem is even more demanding; it

is required to find not only an arbitrary coloring but the single
best coloring P̂ that minimizes the loss in Eq. (4).

1) Decomposing the loss function: The first issue can be
addressed by elegantly decomposing the loss function. If the
Graph-PIT loss in Eq. (4) can be written as

L(Graph-PIT) = f(min
P∈B

Tr(MP),S, Ŝ), (11)

then we can find the best coloring based on sums of values
of the matrix M ∈ RC×U . The matrix M is a score matrix
computed from S and Ŝ, and f : R×RT×U×RT×C → R is a
function strictly monotonically increasing in its first argument.
The function f and the calculation of S depend on the actual
loss function L used in Eq. (4). The number of times that the
often expensive loss function has to be computed is reduced
from O(UC) to O(CU) to compute M.

Two examples for decomposable loss functions are the
Mean Squared Error (MSE) loss and the SA-SDR loss (see
Section IV-B). The A-SDR is an example of a function that
is not decomposable in this way. By using Eq. (10) as a loss
function for Eq. (4), the Graph-PIT loss for SA-SDR can be
rewritten as

L(SA-SDR) = min
P∈B
−10 log10

Tr(PTSTSP)

Tr((PS− Ŝ)T(PS− Ŝ))
(12)

= −10 log10
Tr(STS)

Tr(STS+ ŜTŜ) + 2min
P∈B

Tr(−ŜTSP)
.

(13)

The assignment matrix can be dropped in Tr(PTSTSP) =
Tr(STS) because the valid assignments P only map non-
overlapping targets to the same output channel. Comparing
with Eq. (11), we can find the decomposition

M(SA-SDR) = −ŜTS, (14)

f (SA-SDR)(x,S, Ŝ) = −10 log10
Tr(STS)

Tr(STS+ ŜTŜ) + 2x
. (15)

We use this variant of the loss function with an added soft
minimum in our experiments.

2) Efficient assignment algorithms: The decomposition in
Eq. (11) additionally opens up new possibilities for efficiently
finding the best coloring. The scores in M are additive so that
scores for partial assignments can be combined by summing
them, similar to what is done for uPIT with the Hungarian
algorithm [32], [33]. Different algorithms to leverage this are
presented in [27]. We here provide a more detailed explanation
of the algorithm we employ in this paper, which is the fastest
one among those presented in [27].4 It takes advantage of the
structure of the overlap graph G to solve the coloring problem
with dynamic programming.

Let us assume the nodes of the graph G are sorted in tempo-
ral order, based on the position of s̃u in su (see Section II-B).
The graph G is a strongly chordal graph where the temporal
ordering is an inverse strong perfect elimination ordering. A
strongly chordal graph does not contain any induced cycles
larger than 3, and the strong perfect elimination ordering

4The source code is available at https://github.com/fgnt/graph pit

https://github.com/fgnt/graph_pit
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can be characterized as follows. Let Nu be the set of the
utterance u and all utterances that have an earlier starting
point than u. Let N+

u ⊆ Nu be the set of utterances that
also temporally overlap with u. The vertices in N+

u form a
clique, i.e., a complete sub-graph, of at most size |N+

u | ≤ C
in G, and the nodes in N+

u appear continuous in the ordering,
i.e., !∃ v ∈ V : min(N+

u ) < v < u ∧ {u, v} /∈ E . Let us
further define Bu and B+u as the sets of all proper colorings
given G of Nu and N+

u , respectively. The number of proper
colorings of |N+

u | given G is |B+u | = C!
(C−|N+

u |)!
≤ C! because

it follows from the strong chordal property of G that the
subgraph induced by N+

u is complete.
Let P = [p0, ...,pU ]

T ∈ RU×C be a proper coloring matrix
(see Eq. (5)) of graph G, whose elements pu ∈ RC are one-hot
vectors that each represent one of the C colors. Let Pu ∈ Bu
be a coloring matrix of Nu. Let us define that a coloring P1

of nodes N1 and a coloring P2 of nodes N2 are compatible
if they color common nodes with the same colors, i.e., if
p1,v = p2,v ∀v ∈ N1 ∩N2. Then, we can denote the score
of a partial coloring Pu ∈ Bu by

c(Pu) =

u∑
v=1

mT
vpv = c(Pu−1) +mT

upu, (16)

where Pu−1 is the one coloring in Bu−1 that is compatible to
Pu and mu is the u-th column of the score matrix M.

Because G is a strongly chordal graph with a maximum
clique size of C, no vertex u has a neighbor that appears
earlier in the ordering than the vertices in N+

u . To find the best
coloring, it is thus enough to traverse the graph in temporal
order and to only keep track of the best compatible coloring
Pu ∈ Bu for each of the colorings of N+

u . We denote as
Popt
u (P+

u ) ∈ Bu the coloring of Nu compatible to P+
u ∈ B+u

that minimizes the cost:

Popt
u (P+

u ) = argmin
Pu∈Bu compatible to P+

u

c(Pu), (17)

and

copt(P+
u ) = c(Popt

u (P+
u )). (18)

The optimal colorings for N+
u can be computed from the opti-

mal colorings of N+
u−1, resulting in a Dynamic Programming

(DP) approach:

copt(P+
u ) = mT

up
+
u + min

P+
u−1∈B

+
u−1 compatible to P+

u

copt(P+
u−1)

(19)

The overall cost is then copt(P(opt)) = minP+
U∈B

+
U
copt(P+

U ).
The complexity of this algorithm is mainly given by the

number of comparisons required in the min operation in
Eq. (19), in addition to the number of steps U to color the full
graph. It turns out that, due to the compatibility constraint,
each coloring in B+u−1 only appears in one update, so that
overall only |B+u−1| ≤ C! comparisons are required in every
iteration. An upper bound on the complexity can thus be given
with O(UC!),5 which is linear in the number of utterances U

5This upper bound is more accurate and smaller than the bound shown in
[27].

and factorial in the number of output channels C. C is often
very small, e.g., C ∈ {2, 3}.

D. Comparison of Graph-PIT with uPIT

When the overlap graph is complete, i.e., every vertex from
V is connected to every other vertex, or, every utterance
overlaps with every other utterance in an example, uPIT is
equal to Graph-PIT. This is the case for the first connected
component (set of connected vertices in a graph) in Fig. 4.

uPIT binds an output channel to a speaker exclusively, so
the number of speakers the model can handle in a segment
is limited by the number of output channels C. Using Graph-
PIT, on the other hand, allows multiple speakers on the same
channel, so the number of speakers it can handle is unlimited.
It only has the much less restrictive and more natural constraint
that the number of speakers that are active at the same time
must not be larger than the number of output channels. The
weaker constraint allows us to increase the segment size up
to the point where stitching is not required to process a
whole meeting. This increases the context the model sees
for separation, which can be beneficial for the separation
performance. As a side effect, it reduces the computational
cost at test time because we can reduce or even avoid the
overlapped processing required for stitching. Consequently,
low-latency real-time processing without stitching is possible
with Graph-PIT, as demonstrated in [38] using a causal LSTM-
based network architecture.

Besides, when the training data consists of meeting-like
data, Graph-PIT can be trained with more training samples
than uPIT. Indeed, we have to exclude training samples for
uPIT that do not meet the constraint K ≤ C, whereas Graph-
PIT’s weaker constraint allows it to be trained with all training
samples where K (sim) ≤ C. In other words, Graph-PIT allows
an NN separator to model a whole meeting with an arbitrary
number of speakers.

V. EVALUATION METRICS FOR SEPARATION IN MEETING
SCENARIOS

Development of CSS systems has been addressed in the
preceeding sections. This section will introduce techniques for
evaluation of separation systems for meeting scenarios.

Speech separation systems are conventionally evaluated
with signal-level metrics, such as (SI-)SDR, STOI [39], PESQ
[40], or a follow-up speech recognizer and the resulting WER.
These metrics require a reference signal or transcription to
compare to the estimated signal or transcription. In conven-
tional speaker-dependent cases, the references can easily be
obtained by finding the best matching permutation of speaker
signals or transcriptions. On the other hand, for CSS with
speaker-shared channel assignment, the separation system has
more freedom for assigning utterances to outputs, so that a
simple permutation is not sufficient to find good references.

Other works on CSS use utterance-wise evaluation schemes
[3], [8], [21], or they use complex alignment algorithms to
obtain a metric for a full recording [8], also called continuous
evaluation.
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Utterance-wise evaluation employs the oracle utterance
boundaries, known from annotations of the evaluation data,
to cut segments that match the reference utterance signals
from the mixture or the estimated separated signals. A con-
ventional metric can be applied on these segments, and finding
a reference is reduced to a simple selection problem. By
using the oracle information, this evaluation scheme explicitly
ignores regions where no matching oracle reference is found,
e.g., when speech of a single utterance is wrongly output on
multiple output channels. In this work, we cut the segments
from the separated signals for utterance-wise evaluation.

Continuous evaluation, on the other hand, does not use
such oracle utterance boundary information. Instead, it directly
evaluates the full separated continuous streams without arti-
ficial segmentation. In this case, many conventional metrics
cannot be directly applied because they cannot handle multiple
speakers on the same output channel, or it is unclear how the
references are to be constructed. In the following subsections,
we discuss issues of continuous evaluation of separation
systems in terms of ASR and signal-level metrics, and propose
a set of appropriate metrics for them, which we believe is very
important to develop separation algorithms for meeting data.
We will use the discussed metrics in our experiments.

A. Continuous Evaluation with Word Error Rate (WER)

Many works use the WER for evaluation, e.g., [3], [8], [10].
It is often argued that separation systems are the front-end
for further applications and that the WER reflects separation
quality with respect to these follow-up systems. An existing
ASR system is applied to the separated signals to obtain tran-
scriptions. These are compared to the reference transcriptions.
The WER is then the word-level Levenshtein distance between
the reference (r) and estimated (e) transcriptions divided by
the number of words in the reference transcriptions.

ASR systems are often built to work in batch mode on
individual sentences rather than streaming mode on arbitrarily
long input [9], [11]. To apply them to continuous evaluation,
the continuous streams thus first have to be segmented using
a Voice Activity Detection (VAD), and transcriptions are only
estimated for speech parts. It is not guaranteed, and in fact
often not satisfied, that the segments produced by the VAD
correspond to ground-truth utterances or even contain speech
of a single speaker only. Thus, to compute a WER, the ground
truth reference transcriptions have to be aligned with the
estimated transcriptions.

One way to find such an alignment is the ORC WER
[26]. It computes a WER over the complete output channels,
i.e., transcriptions obtained by concatenating transcriptions
of speech segments detected with a VAD. The reference
transcription for a channel is chosen as the one that minimizes
the WER among the UC possible assignments (combinations)
of reference utterance transcriptions to output channels, sorted
by their temporal mid-points and concatenated.

Evaluation with ASR systems has the general drawback that
the reported WER depends on the used speech recognizer, and
the data and details used for its training. This makes WERs
only hardly comparable across different works, especially

when the evaluation is performed in different environments.
This calls for other metrics in addition to the WER that solely
rely on the signal quality, like the SDR, described in the next
section.

B. Continuous Evaluation with Signal-level SDR-based met-
rics

SDR-based metrics are often used to evaluate source separa-
tion systems, e.g., [12], [15], [18], [21]. Its standard definition
in Eq. (8) cannot be applied to continuous evaluation directly
because they assume speaker-exclusive channels, and CSS
system scatter speakers across output channels. We propose
to use SA-SDR (Eq. (9)) with Graph-PIT assignment also
for evaluation because it can be computed for systems with
speaker-shared channel assignment. Furthermore, the value of
the standard SDR changes with the assignment of utterances
to output channels even if the estimated utterance signals are
identical. The SA-SDR produces consistent values in this case.
In the extreme case of two utterances and two output channels,
for example, A-SDR grows to ∞ when both utterances are
placed on the same output channel, while for SA-SDR all
possible assignments produce the same (finite) value. The SA-
SDR, as we defined it for training in Eq. (9), can only be used
as an evaluation metric in clean anechoic environments and
separation systems that do not alter the scaling of the signals.
We therefore present two variations of the SA-SDR in the
remainder of this section.

1) SA-SI-SDR: For evaluation in anechoic environments,
often a scale-invariant version of the SDR (SI-SDR)6 is used.
This is motivated by the fact that the signal quality should be
judged independently of the volume of the output signal. The
SI-SDR is defined for a single pair of estimation and reference
as [15], [16], [18]

SI-SDR = 10 log10
‖αs‖2

‖αs− ŝ‖2
, (20)

where the scaling factor α = argminα̃ ‖α̃s− ŝ‖2 = sTŝ
sTs

scales
the reference signal to match the estimation. Conventionally,
the permutation problem has to be solved during evaluation to
find the references.

For continuous evaluation, we propose to incorporate the
scaling correction into the SA-SDR, and obtain the Source-
Aggregated Scale-Invariant SDR (SA-SI-SDR). We assume
that the scaling factor is constant for one utterance, but
can change between output channels and utterances, e.g.,
due to speaker movement or limited memory of the sepa-
ration system. We thus have to estimate the scaling factor
αuc = (sTuŝc)/(s

T
usu) for each pair of utterance u and output

channel c. To simplify the equations, we now write out
Tr(PTSTSP) =

∑
c

∥∥∑
u pucsu

∥∥2 and define the SA-SI-SDR
with Graph-PIT assignment as (compare Eq. (9) and Eq. (4))

SA-SI-SDR = max
P∈B

10 log10

∑
c

∥∥∑
u pucαucsu

∥∥2∑
c

∥∥∑
u pucαucsu − ŝc

∥∥2 .
(21)

6Sometimes called Scale-invariant Source-to-Noise Ratio (SI-SNR)
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A decomposition as Eq. (11) can be found (see Appendix A)
as

SA-SI-SDR = −10 log10

 Tr(ŜTŜ)

max
P∈B

Tr(MP)
− 1

 , (22)

[M]uc = αucs
T
uŝc, (23)

so that the efficient assignment algorithms from Section IV-C
can be used to find the best matching assignment under the
overlap constraints.

Our generalization re-scales the reference signal while the
conventional SI-SDR definition [22] applies the scaling cor-
rection to the estimated signal. Our approach has the drawback
that the scaling of an utterance influences its contribution to
the overall SDR value, e.g., setting ŝc = 0 removes the c-th
utterance from the evaluation. The SA-SI-SDR can thus not be
used for training. This effect is, however, negligible when the
separation system produces a roughly constant scaling, which
is here achieved by the training loss function. Still, it should
not be used as the sole evaluation metric.

2) SA-CI-SDR: For the reverberant case, the SI-SDR is
extended to a Convolution Invariant SDR (CI-SDR) to allow
not only scaling differences, but any distortions caused by a
linear filter, similar to the SDR from the BSSEval [23], [24]
toolbox. Instead of a scalar scaling factor α, now a convolution
with a filter a ∈ RL of length L is used in the CI-SDR, for a
single pair of estimation and reference:

CI-SDR = 10 log10
‖a ∗ s‖2

‖a ∗ s− ŝ‖2
, (24)

where ∗ denotes discrete convolution and the filter is
a = argminã ‖ã ∗ s− ŝ‖2. For continuous evaluation, we
propose the Source-Aggregated Convolution Invariant SDR
(SA-CI-SDR):

SA-CI-SDR = max
P∈B

10 log10

∑
c

∥∥∑
u pucauc ∗ su

∥∥2∑
c

∥∥∑
u pucauc ∗ su − ŝc

∥∥2
(25)

with the decomposition (see Appendix A):

SA-CI-SDR = −10 log10

 Tr(ŜTŜ)

max
P∈B

Tr(MP)
− 1

 , (26)

[M]uc = (auc ∗ su)Tŝc. (27)

VI. RELATED WORK

[35] proposes a simple way to implement a sub-set of
Graph-PIT for C = 2, called Group-level Permutation Invari-
ant Training (Group-PIT). They only train on groups of con-
secutive overlapping utterances, called “Utterance Groups”,
defined by a preceding and following silence of all speakers.
Such an utterance group has the property that for C = 2 all
proper colorings of the overlap graph only differ by a per-
mutation across the output channels. Thus, only C! different
colorings exist so that training with the conventional uPIT
is possible, where then every reference signal can contain
speech of more than one speaker. An Utterance Group is

equivalent to a connected component in the overlap graph
G (see Section IV-A), and Graph-PIT and Group-PIT are
identical for connected graphs with C = 2. When more utter-
ance groups are present, Group-PIT cannot be applied without
modification, and Graph-PIT gives more flexible results. An
example for such a graph is the second connected component
of G in Fig. 4.

The basic idea that multiple speakers can be put onto the
same output stream was also used in [26] to realize a multi-
speaker speech recognizer that directly outputs transcriptions
in a way similar to CSS. The authors of [26] eliminated the
assignment problem during training by arranging the target
transcriptions on a small number of outputs in a way they
term “overlap-based target arrangement”: The transcription
of the first utterance is put on the first output channel.
Following transcriptions are concatenated on the same output
channel if there is no overlap between them. The channel
is switched when two consecutive utterances overlap. This
assignment is one possible solution to the Graph-PIT problem.
For evaluation, they introduce the ORC WER, which is used
for evaluation in this work as well.

VII. EVALUATION: ANECHOIC MEETING-LIKE DATA

We first perform a proof-of-concept experiment with ane-
choic meeting-like mixtures. With these experiments, we also
show that SA-SDR-based metrics can be used for evaluation
in meeting scenarios. We compare the performance of Graph-
PIT-based and uPIT-based separators to show the advantage
of Graph-PIT.

A. Data

Meeting-like data is generated based on utterance recordings
taken from the WSJ database [41] with the goal to have
five to eight speakers in each meeting, a total length of
roughly 120 s per meeting and an overlap ratio between 20 %
and 40 %. For each meeting, first the number of speakers
is sampled uniformly between five and eight and the target
amount of overlap is sampled uniformly between 20 % to
40 %. Utterances are sampled uniformly and start times are
sampled so that the target overlap ratio is roughly fulfilled and
all speakers are active for roughly the same amount of time.
We generated in total 36 hours of training data based on the
train si284 subset of WSJ, and each 1 hour of development
and test data based on the cv dev93 and test eval92 subsets,
respectively. We use a sample rate of 8 kHz for all experiments.

B. Model Architecture and Training Procedure

We use a Dual-Path Recurrent Neural Network (DPRNN)-
TasNet separation architecture [18] with the same parameters
as [18] except for the number of blocks. We use three stacked
DPRNN blocks instead of six to reduce the memory footprint,
each of which use two Bidirectional Long-Short-Term Net-
works (BLSTMs) with 128 hidden units. The number of filters
in the encoder and decoder are set to 64 with a chunk length
of 100 frames for the segmentation. This model achieves an
SDR gain of 15.0 dB on the WSJ0-2mix benchmark database
[12]. Our separator has C = 2 output channels.
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We explicitly chose an RNN-based architecture because it
has an infinitely long receptive field while the amount of
information being kept is limited. The infinitely long receptive
field is required to solve the assignment problem for arbitrary
input data, so an architectur with a limited receptive field, such
as a Convolutional Neural Network (CNN), is not well suited.
The information that has to be carried between steps, though,
is rather small. Only the assignment of at maximum the past
few utterances has to be kept in memory.

We train the separation models with the SA-tSDR loss
proposed in [25], which is the SA-SDR loss with an added
soft maximum at SDRmax = 30 [42]. Training is performed
with the clean utterance signals as reference. The training data
are segments of the meeting-like WSJ data with a length TTr
between 2 s to 64 s. If training with uPIT, parts of the training
data have to be discarded that do not adhere to the number-
of-speaker constraint of uPIT, i.e., in case of C < K (seg). The
amount of data that is discarded increases with larger training
segment size TTr, but stays below 80 % up to TTr = 16 s and
is indicated by the red line in the bottom of Fig. 5. The batch
size is chosen so that each batch contains a total of 64 s of
speech data for all configurations. We train all models with
an Adam optimizer with a learning rate of 0.001 for 600000
iterations and use the checkpoint with the lowest validation
loss for evaluation.

To evaluate models on full meetings of 120 s length we use a
stitching approach with similarity-based alignment in the time
domain [21]. We keep Th = Tf = 1 s constant and only vary
Tc between 0.4 and 14 s. In addition, to show that Graph-
PIT can allow segment-less, i.e., stitcher-less, separation of
meeting data by modeling a whole meeting, we also run
experiments with no stitcher.

C. Evaluation Metrics

We perform both utterance-wise and continuous evalua-
tion. For utterance-wise evaluation, we use the utterance-
wise WER, i.e. the conventional way to calculate the WER
[8]. For continuous evaluation, we use the ORC WER and
the three SA-SDR-based metrics presented in Section V. As
an ASR backend we use a factorized time-delayed neural
network (TDNN-F) from the Kaldi framework [9] with the
same configuration presented in [43]. It was trained on noisy
WSJ data and achieves a WER of 6.8 % on clean WSJ. We use
an energy-based VAD so that the backend only sees speech
signals. Voice activity is detected by computing the energy
within a sliding window of length 100 ms and shift of 1
sample. If the energy is larger than 20 % of the average energy
of the full signal, the sample is considered to contain speech.
The end result is smoothed by a moving window of length
300 ms, where a window is considered active if at least 100 ms
of speech is found in that window.

To compute the SA-CI-SDR, we use a filter with length
L = 512, which is equal to the default value in the BSSEval
toolbox [23]. The reference signals for all SDR-based evalua-
tion metrics are always the clean source signals.

D. Results
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Fig. 5. Top: WER plotted over the segment size for stitching. Lower is better.
Bottom: Distribution of the number of speakers in a segment. The red line
represents the amount of segments that fulfill the constraints of uPIT, i.e.,
K(seg) ≤ C.

1) Influence of stitcher segment size: The influence of
the stitcher segment size on the separation performance is
shown in Fig. 5. The top part of Fig. 5 displays the ORC
WER over the stitcher segment size for uPIT and Graph-PIT
models, trained with an SA-tSDR loss with different training
segment sizes TTr. The bottom part shows the distribution of
the numbers of speakers in the test segments obtained with
each stitcher segment size. The red line indicates the number
of segments with K (seg) > C = 2 where models trained
with uPIT have an unknown behavior. It can be seen that
the performance of all uPIT models decreases with increasing
numbers of speakers in the stitcher segments, and none of
the models generalizes to the case where no stitcher is used.
The average performance, however, increases with larger TTr
up to the point where too many training examples have to
be discarded, which indicates that larger contexts can be
beneficial for separation.

The Graph-PIT models show a different behavior. For small
stitcher segment sizes, where the number of examples with
K (sim) > C is small, they perform similarly to uPIT. The same
is true for a small training segment size of TTr = 2 s, where
the behavior of uPIT and Graph-PIT is almost identical. On
the other hand, with larger training segment sizes, the Graph-
PIT models outperform uPIT for larger stitcher segment sizes,
where the best stitcher segment size is close to the training
segment size. The same trend, i.e., Graph-PIT outperforming
uPIT, was also observed in experiments where uPIT was
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TABLE I
SEPARATION PERFORMANCE OF MODELS TRAINED WITH UPIT COMPARED TO GRAPH-PIT, EVALUATED WITH DIFFERENT METRICS ON ANECHOIC

MEETING-LIKE MIXTURES. BEST NUMBERS PER COLUMN ARE SET IN BOLD, AND BEST NUMBERS WITHOUT STITCHING ARE UNDERLINED.
↑: HIGHER IS BETTER, ↓: LOWER IS BETTER

Training Scheme TTr
[s]

Stitcher
Th + Tc + Tf

[s]

SA-SDR
[dB]↑

SA-SI-SDR
[dB]↑

SA-CI-SDR
[dB]↑

utterance-wise
WER
[%]↓

ORC
WER
[%]↓

no separation — — 0.0 0.0 0.0 38.1 77.7

uPIT 8 — 7.2 8.2 8.3 22.6 23.2
1+2+1 16.7 16.9 17.2 14.9 13.9

16 — 7.4 8.3 8.5 22.3 22.1
1+14+1 8.0 9.0 9.2 20.0 20.0

Graph-PIT 16 — 18.2 18.3 18.6 14.0 13.0
1+14+1 18.2 18.4 18.7 14.2 13.0

32 — 17.7 17.8 18.0 14.3 13.9
1+14+1 18.1 18.2 18.5 13.6 12.9

trained on data containing only two speakers so that no data
had to be discarded. With large enough training segment
sizes, models trained with Graph-PIT generalize to processing
without a stitcher. The computational overhead introduced by
the overlapping windows in the stitcher is removed, resulting
in a reduction of required computational effort, which only
depends on the ratio of Tf + Th to Tf + Tc + Th, by 50 %.

2) Metrics Comparison: In Table I we show the perfor-
mance of a few selected experiments with a few more metrics
for deeper analysis. Let us first look at the proposed SDR met-
rics. We can see that SA-CI-SDR > SA-SI-SDR > SA-SDR
for all experiments, which corresponds to the motivation that
SA-CI-SDR allows more convolutional distortions than SA-
SI-SDR and SA-SI-SDR allows scaling errors which SA-SDR
does not. The SDR-based metrics roughly correlate with the
WER, so we can conclude that they are reasonable metrics to
evaluate separation in meeting scenarios.

Looking at the WERs, we can see that utterance-wise WER
and ORC WER are often close, and sometimes the ORC WER
is lower than the utterance-wise WER. It seems odd at first
that the utterance-wise WER that uses oracle information is
not always the lowest. But the utterance-wise WER treats
every utterance independently so that some errors are seen
twice (in two cut utterances) while the ORC WER only
evaluates the full stream once. The ORC WER can additionally
align transcriptions across utterance boundaries, which may
sometimes produce lower and slightly over-optimistic WERs.

The signal-level metrics show a similar behavior to what
we observed in Fig. 5. The uPIT models do not generalize to
processing without a stitcher while models trained with Graph-
PIT do. Larger training segment sizes improve the overall
performance of the models.

3) SA-SDR loss: To show the benefits of the SA-SDR loss
compared to the previously used A-SDR loss, we compare
their behavior in Table II. For training with A-SDR we use the
A-ε-tSDR which was also used in [21]. The results show that
the SA-tSDR models surpass the performance of the A-tSDR
models, especially for short segment sizes where often no
overlaps are present in a training segment. For longer segment
sizes, where the segments contain more overlapped utterances,
the allowed outputs become more balanced so that the negative

TABLE II
COMPARISON OF SA-SDR WITH A-SDR AS A TRAINING LOSS FUNCTION

WITH GRAPH-PIT

Loss TTr
[s]

Stitcher
Th + Tc + Tf

[s]

SA-CI-SDR
[dB]

ORC
WER
[%]

A-tSDR 4 — 12.1 25.9
1+2+1 17.7 14.9

8 — 17.9 14.9
1+6+1 18.1 13.3

16 — 18.1 13.9
1+14+1 18.1 13.3

SA-tSDR 4 — 13.8 21.1
1+6+1 17.4 14.3

8 — 17.8 13.5
1+6+1 17.8 13.0

16 — 18.6 13.0
1+14+1 18.7 13.0

effect of the A-tSDR, focusing the already better separated
output channel, becomes less severe. However, as discussed in
Section IV-C, the SA-tSDR loss has advantages also for longer
segments as it allows using the efficient Graph-PIT assignment
algorithms, which A-tSDR does not. This speedup becomes
larger with larger numbers of utterances, i.e., larger segment
sizes. We observed a speedup of roughly 10 % during training
when switching from A-tSDR to SA-tSDR for TTr = 16 s.
Additionally, the models trained with SA-tSDR consequently
show a better generalization to processing without stitching.
The gap between the performance with stitching and without
stitching is always smaller for SA-tSDR than it is for A-tSDR.

4) Training from scratch compared to Pre-Training: The
performance of models pre-trained with uPIT and fine-tuned
with Graph-PIT (labelled with “uPIT+Graph-PIT”) is com-
pared with models trained with only uPIT or Graph-PIT from
scratch in Table III, using the SA-tSDR loss. Only models
trained with TTr = 8 s are shown because the “uPIT+Graph-
PIT” model achieved its best performance with this training
segment size. The models were pre-trained with uPIT for
600000 iterations and fine-tuned for another 600000 iterations,
resulting in twice the training time of the individual models
trained from scratch. Only the best configuration is shown for
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TABLE III
COMPARISON OF DIFFERENT TRAINING SCHEMES FOR TTR = 8 s

Training Scheme
Stitcher

Th + Tc + Tf

[s]

SA-CI-SDR
[dB]

ORC
WER
[%]

uPIT — 8.3 23.2
1+2+1 17.2 13.9

uPIT + Graph-PIT — 11.2 20.5
1+6+1 17.9 14.6

Graph-PIT — 17.8 13.5
1+6+1 17.8 13.0

each training scheme. The performance of the “uPIT+Graph-
PIT” models lies between the separation performance of the
uPIT-only and Graph-PIT-only models for separation without a
stitcher. The models seem to have learned the uPIT behavior
in the beginning of the training and were not able to learn
the Graph-PIT generalization sufficiently well during the fine-
tuning process. Training with Graph-PIT directly from scratch
yields the best performance and training is much simpler and
faster than when pre-training with uPIT.

VIII. EVALUATION: REVERBERATED MEETING-LIKE DATA

Next, we evaluate the Graph-PIT training scheme on more
challenging reverberated data.

A. Data

We use the same meeting-like data as before (Section VII-A)
with added reverberation. Speaker positions were assumed to
be constant over one meeting and were sampled randomly
without constraints on minimum angular distances. The room
impulse responses were simulated with the image method [44],
with room dimensions between 7.6 m by 5.6 m and 8.4 m by
6.4 m and a sound decay time (T60) of 200 ms to 500 ms.
During training, we randomly discarded 90 % of the single-
speaker training segments because it turned out that training
on reverberated data requires larger amounts of overlap.

B. Model Architecture and Training Procedure

For reverberant data, we switch to a simpler Short-Time
Fourier Transform (STFT)-masking-based model architecture
that has shown to be more effective in these scenarios [45]. We
use a BLSTM with three layers with 600 units in each direc-
tion, followed by a linear layer to map back to the STFT size.
We train the model with the same time-domain thresholded
SA-tSDR loss as the clean model. As reference signals for
the loss computation, we convolve the clean reference signals
with the first 50 ms of the room impulse response, to eliminate
the barely audible but hard to reconstruct reverberation tail.

C. Results

The separation performance of the reverberant models is
tabulated in Table IV. We do not apply SA-SDR or SA-SI-
SDR in this case because they are not designed for rever-
beration, and their behavior heavily depends on the choice

TABLE IV
SEPARATION PERFORMANCE FOR REVERBERATED MEETING-LIKE DATA.

Training Scheme
Stitcher

Th + Tc + Tf

[s]

SA-CI-SDR
[dB]

ORC
WER
[%]

no separation — −0.4 74.9

uPIT — 5.3 35.6
1+1+1 9.5 28.9

Graph-PIT — 8.2 29.9
1+6+1 9.8 27.7

of the reference signals in such cases [43]. We show the
performance of the best model with TTr = 4 s, for the sake of
simplicity. While the overall performance is degraded due to
the more challing data, the same tendencies are visible as in the
anechoic case. The Graph-PIT model generalizes to segment-
less processing while the uPIT models do not. Training with
Graph-PIT becomes more challenging in the reverberant case
because the reverberation tail blurs the utterance boundaries
which makes it harder for the model to detect them. The
overall best performance can still be achieved with a Graph-
PIT model.

Training models on reverberated data appeared to be more
challenging than training models for anechoic data, for both
uPIT and Graph-PIT, as it was recently also observed in other
works [45]. We found that more overlap is required when
training for reverberated data than for anechoic data. Further
tuning the model architecture may improve the separation
quality for all models.

IX. CONCLUSIONS

In this paper, we introduced a generalization of Utterance-
level Permutation Invariant Training (uPIT) called Graph-
PIT as an alternative to stitching-based CSS with uPIT.
We showed that models trained with Graph-PIT generalize
to segment-less processing of long meeting-like data, and
improve performance over conventional uPIT-based separation
systems in both anechoic and reverberant conditions. The SA-
SDR was introduced as a loss function for training Graph-
PIT models from scratch, and its effectiveness was shown
in terms of improvements in separation performance and
training speed. We introduced new signal-level metrics, SA-
SDR, SA-SI-SDR and SA-CI-SDR, for signal-level evaluation
of separation systems in meeting-like scenarios. We provide
source code for the Graph-PIT training criterion7 and hope
that our findings inspire further research in the separation of
meeting-like conversations.

7https://github.com/fgnt/graph pit

https://github.com/fgnt/graph_pit
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APPENDIX
DERIVATIONS OF SA-SDR-BASED EVALUATION METRICS

SA-SI-SDR

The SA-SI-SDR is defined as (compare Eq. (21))

SA-SI-SDR = max
P∈B

10 log10

∑
c

∥∥∑
u pucαucsu

∥∥2∑
c

∥∥∑
u pucαucsu − ŝc

∥∥2 .
(28)

with α = argminα̃ ‖α̃s− ŝ‖2 = sTŝ
sTs

.
The numerator can be simplified by writing out the squared

norm∑
c

∥∥∥∥∥∑
u

pucαucsu

∥∥∥∥∥
2

=
∑
c,u,u′

pucpu′cαucαu′cs
T
usu′ (29)

Using the knowledge that sTusu′ = 0 if the utterances u and
u′ do not overlap and that two overlapping utterances can
never be mapped to the same output channel (due to the graph
constraints), so pucpu′c = 0 for overlapping utterances, we
can see that pucpu′cαucαu′csTusu′ = 0 if u 6= u′. From this
we have ∑

c

∥∥∥∥∥∑
u

pucαucsu

∥∥∥∥∥
2

=
∑
c,u

pucα
2
ucs

T
usu. (30)

Writing out the squared norm also for the denomina-
tor, plugging in αucs

T
usu = sTuŝc and using log

(
a/b
)

=
− log

(
b/a
)

gives

SA-SI-SDR = −10min
P∈B

log10

( ∑
c ŝ

T
c ŝc∑

c

∑
u pucαucs

T
uŝc
− 1

)
.

(31)

Using M =
[
αucs

T
uŝc
]
uc

as the score matrix, we can find

SA-SI-SDR = −10 log10

 Tr(ŜTŜ)

max
P∈B

Tr(MP)
− 1

 . (32)

SA-CI-SDR

The SA-CI-SDR is defined as (compare Eq. (25))

SA-CI-SDR = max
P∈B

10 log10

∑
c

∥∥∑
u pucauc ∗ su

∥∥2∑
c

∥∥∑
u pucauc ∗ su − ŝc

∥∥2 ,
(33)

with auc = argminã ‖ã ∗ su − ŝc‖2. The signal parts in ŝc
that lie outside of the boundaries of utterance u are constant
and thus have no effect on the optimization.

We can write a ∗ s as S̃a with S̃ = toeplitz(s), where
toeplitz(s) creates a padded toeplitz matrix from s. The
minimization then becomes

a = argmin
a

∥∥∥S̃a− ŝ
∥∥∥2 (34)

d
∥∥∥S̃a− ŝ

∥∥∥2
da

= 2S̃TS̃a− 2S̃Tŝ
!
= 0 (35)

⇒ S̃TS̃a = S̃Tŝ. (36)

Plugging Eq. (36) into Eq. (25) yields a solution very similar
to the SA-SI-SDR in Eq. (31), analogous to the SA-SI-SDR:

SA-CI-SDR = max
P∈B

10 log10

∑
c

∥∥∥∑u pucS̃uauc

∥∥∥2∑
c

∥∥∥∑u pucS̃uauc − ŝc

∥∥∥2
(37)

= −10 log10


∑
c ŝ

T
c ŝc

max
P∈B

∑
uc

puca
T
ucS̃

T
uŝc
− 1


(38)

= −10 log10


∑
c ŝ

T
c ŝc

max
P∈B

∑
uc

puc(auc ∗ su)Tŝc
− 1


(39)

A decomposition can be found by using Eq. (32) with M =
[(auc ∗ su)Tŝc]uc.
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