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Abstract—Jupyter notebooks enable developers to interleave
code snippets with rich-text and in-line visualizations. Data
scientists use Jupyter notebook as the de-facto standard for
creating and sharing machine-learning based solutions, primarily
written in Python. Recent studies have demonstrated, however,
that a large portion of Jupyter notebooks available on public
platforms are undocumented and lacks a narrative structure.
This reduces the readability of these notebooks. To address
this shortcoming, this paper presents HeaderGen, a novel tool-
based approach that automatically annotates code cells with
categorical markdown headers based on a taxonomy of machine-
learning operations, and classifies and displays function calls
according to this taxonomy. For this functionality to be realized,
HeaderGen enhances an existing call graph analysis in PyCG.
To improve precision, HeaderGen extends PyCG’s analysis with
support for handling external library code and flow-sensitivity.
The former is realized by facilitating the resolution of function
return-types. Furthermore, HeaderGen uses type information to
perform pattern matching on code syntax to annotate code cells.

The evaluation on 15 real-world Jupyter notebooks from
Kaggle shows that HeaderGen’s underlying call graph analysis
yields high accuracy (96.4% precision and 95.9% recall). This is
because HeaderGen can resolve return-types of external libraries
where existing type inference tools such as pytype (by Google),
pyright (by Microsoft), and Jedi fall short. The header generation
has a precision of 82.2% and a recall rate of 96.8% with regard to
headers created manually by experts. In a user study, HeaderGen
helps participants finish comprehension and navigation tasks
faster. All participants clearly perceive HeaderGen as useful to
their task.

Index Terms—static analysis, python, code comprehension,
annotation, literate programming, jupyter notebook

I. INTRODUCTION

Machine learning (ML) and data-science are evolving as
a multi-disciplinary field, comprising of software engineering
on one end and domain-specific knowledge on the other. The
ML community has largely adopted Jupyter notebooks as the
de-facto standard for developing ML solutions. Notebooks
are based on the principle of literate programming [1] that
advocates the combination of code, documentation and visu-
alization as a single document. The central idea of literate
programming is to enhance comprehension and sharing of so-
lutions to complex problems. This can be achieved by follow-

ing literate programming principles such as: (1) enriching code
with rich descriptive texts and figures, (2) creating a narrative
structure in the program by adding headers to code snippets,
and (3) logically dividing and labeling reusable sections of
the program. In notebooks, executable code is written in code
cells and documentation is written in markdown cells. An
example notebook showing Python code and markdown cells
can be seen in Figure 2. Note that the most used language for
developing ML-based solutions in notebooks is Python [2].

Enriching code snippets with explanatory text enhances the
overall comprehensibility of notebooks and further promotes
collaboration [3]. Furthermore, Wagemann et al. [3] suggests
that a markdown/code cell ratio of 2, i.e., twice the number
of markdown cells compared to code cells, is an indication
of good literate programming practice. In addition, Samuel
and Mietchen [4] also report that notebooks with higher
markdown/code cell ratio are expected to have better repro-
ducibility, which is a critical indicator in scientific studies.

While Jupyter notebooks enable the easy creation of com-
putational narratives according to literate programming prin-
ciples, this is often not practiced in real-world notebooks [5].
Instead, studies have shown that code-smells and bad practices
are common in publicly available notebooks [6]. According to
a study by Rule et al. [2], interviewees defined their notebooks
as personal scratch-pads and “messy”, in other words, that
their notebooks lack a narrative structure. The authors also
highlighted that data scientists often do not annotate their
notebooks, citing either lack of time or being “too lazy”.
In a later study, Pimentel et al. [7] found that 30.93% of
the 1.4 million real-world notebooks they studied had no
markdown cells. This finding is consistent with the latest
study by Quaranta et al. [8]. On assessing the extent to which
data scientists are familiar with, and follow best practices,
the authors note that there is lack of effort in annotating
notebooks with markdown cells. Yet, striving to adhere to
literate programming principles becomes crucial in educational
and sharing communities, for instance, in platforms such as
Kaggle [9], as bad coding practices can lead to mistakes being
carried on to the next generation of developers. Therefore, we
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argue that there is a strong need for the software engineering
research community to develop tools for notebook users.

To this end, this paper proposes HeaderGen, a tool-based
approach to enhance the comprehension and navigation of un-
documented Python based Jupyter notebooks by automatically
creating a narrative structure in the notebook.

Figure 1 shows a taxonomy of ML operations inspired
by the work of Wang et al. [10]. Data scientists build an
ML-based solution notebook by first preparing the data, then
extracting key features, and then creating and training the
model. HeaderGen leverages this implicit narrative structure
of an ML notebook to add structural headers as annotations to
the notebook. HeaderGen works by precisely detecting every
function call in the notebook, classifying it according to the
ML operations taxonomy, and then uses this classification
information to create a structural map of the notebook. This
map is displayed as an “index of ML operations” at the top
of the notebook, giving the notebook a narrative structure.
Additionally, each code cell is annotated with a markdown
header indicating the ML operations being performed. (see
example in page 6)

To yield useful results, HeaderGen requires a fast and accu-
rate program analysis that can precisely identify all function
calls in the notebook. However, we found that none of the
existing techniques were able to statically identify all function
calls in a notebook with acceptable precision, recall and, run
time. This is attributed to the complex features of Python, such
as duck typing, dynamic code execution, reflection, etc, that
are challenging to static analyzers [11], [12]. Moreover, unlike
other programming languages like Java, Python lacks a lot of
tool-support for state-of-the-art static analysis (SA) techniques.
Instead, most tools available for Python today are based on a
makeshift analysis of abstract syntax trees (AST) of Python
source code [13]. Furthermore, due to the dynamically typed
nature of Python, concrete static type-inference of variables
is required for precise static analysis. A recently published
call-graph generation technique called PyCG [11] is based on
an intermediate representation of the AST and handles several
complex Python features. Yet, PyCG fails to analyze function
calls to external libraries and its analysis is flow-insensitive,
making it impossible to precisely identify function calls in
real-world programs. HeaderGen rectifies these limitations.

To summarize, the challenge that HeaderGen addresses is
two-fold: (1) Inaccurate static analysis: the absence of a static
program analysis technique that can precisely identify function
calls in a Python program. To mitigate this, HeaderGen extends
the call-graph analysis in PyCG with the ability to resolve
function calls to external libraries and adds flow-sensitivity.
(2) Undocumented notebooks: many publicly available note-
books are undocumented, which hampers comprehension and
goes against the principle of literate programming. HeaderGen
uses precise SA to automatically annotate the notebook with
structural headers and creates a narrative structure to aid
comprehension of undocumented notebooks.

To assess HeaderGen’s static function-call analyzer, we
use an extended version of PyCG’s micro-benchmark, and

Generic Operations
Library Loading
Visualization

Data Preparation and Exploration
Data Loading
Exploratory Data Analysis
Data Cleaning Filtering
Data Sub-sampling and Train-test Splitting

Feature Engineering
Feature Transformation
Feature Selection

Model Building and Training
Model Training
Model Parameter Tuning
Model Validation and Assembling

Fig. 1. Taxonomy of machine learning operations based on [10].

in addition, a real-world benchmark with 15 notebooks from
Kaggle. On the real-world benchmark, HeaderGen achieved
96.4% precision and 95.9% recall, outperforming PyCG and
other function call analyzers based on off-the-shelf tools such
as pyright [14] and Jedi [15]. On the same benchmark we
also evaluated HeaderGen for header annotation and achieved
82.2% precision and 96.8% recall. Furthermore, we conducted
a user-study with eight data-science practitioners and found
clear evidence that HeaderGen improves the speed of naviga-
tion and comprehension. The contributions of this work are
summarized as follows:

• We propose a novel static analysis based approach for
Python Jupyter notebooks that can automatically annotate
them with structural, commentary, and navigational text,
aiming to facilitate the literal programming practice.

• We implement a static function call extraction technique
for Python with 96.4% precision and 95.9% recall on our
real-world benchmark.

• We give an evaluation of our approach based on extensive
experimental results.

• We implement the prototype named HeaderGen and make
it publicly available for our community to reuse.

The remainder of this paper is organized as follows: we
present challenges in supporting computational notebooks with
static header generation in the Section II followed by detailing
our design in Section III. We then present the evaluation from
Section IV to Section VIII, and discuss existing research in
Section IX. The limitations of HeaderGen is discussed in
Section X and finally the paper is concluded in Section XI.

Availability. HeaderGen is published on GitHub as open-
source software under Apache 2.0 license: https://github.com/
ashwinprasadme/headergen

II. MOTIVATING EXAMPLE

As a motivating example, consider the notebook in Figure 2.
It consists of one markdown cell which is rendered as an

https://github.com/ashwinprasadme/headergen
https://github.com/ashwinprasadme/headergen


Fig. 2. Machine learning Jupyter notebook example.

HTML header, and five code cells that can be identified by
the comments in the first line of each code cell. The example
notebook in Figure 2 is a concise version of a real-world
notebook containing a machine learning (ML) based solution.

In cell 1, various ML libraries are imported. In cell 2,
a sample dataset called “iris” from the seaborn library is
loaded, and further feature selection operations are performed
to retain only the essential columns from the dataset. Values
are type-cast to numpy based float64 type. Finally, the dataset
is checked for null values. In cell 3, the dataset is split into
training and test datasets. In cells 4 and 5, with the processed
dataset, two different ML models are defined, trained, and their
accuracies are reported. In cell 4, a basic linear model based
on logistic regression is used. In cell 5, a deep learning based
sequential model is used.

Note that this notebook is undocumented and does not
contain any explanatory text or structural headers as markdown
cells, violating the literate programming principle. One in three
notebooks found in the wild does not contain any markdown
cells [7]. In absence of explanatory text or structural headers,
ML practitioners, especially beginners, must spend more time
to navigate and comprehend different aspects of the notebook.
Particularly considering that nearly a third of all notebooks in
the real-world contain at least 50 cells [7].

On the other hand, the example notebook poses several
challenges to SA, including:
• Import aliasing: different ways of importing libraries, and

importing libraries with aliases.
• Dynamic typing: in cell 2, the type of the variable

iris_dataset is not known statically, i.e., the return-type
of the function load_dataset() is not known statically.
As a result, subsequent statements that involve the variable
iris_dataset cannot be resolved, i.e., in cell 2 lines 4–7.

• Chained function calls: consider the function call in cell 2
line 4, iris_dataset.values[].astype(), here, the
variable iris_dataset is of type Dataframe from the
Pandas library. iris_dataset.values refers to an at-
tribute of the class Dataframe, which is in-turn defined as a
Numpy array. Furthermore, astype() refers to a function
from the Numpy library. Existing SA tools fail to resolve all
this information statically.

• Variable reuse: the same variable model is reused in cells
4 and 5, for different model objects, i.e., Sequential and
LogisticRegressionCV objects. Reuses of the same
variable names are common in notebooks. Therefore, for
precise annotation of code cells, the analyzer should know
the type of an object at a specific location in the notebook.
In other words, the analysis should be flow-sensitive.
In summary, for HeaderGen to accurately classify code cells

based on function calls, the static analyzer needs to: (1) handle
complex Python features, (2) statically resolve return-types of
external library calls, and (3) be flow-sensitive.

III. APPROACH

Figure 3 gives a high-level overview of HeaderGen. First,
it converts a notebook into a native Python script for analysis.
This strips metadata from the notebook that are irrelevant for
analysis. HeaderGen then analyzes the Python script to create
an extended assignment graph (EAG). Further, HeaderGen
extracts flow-sensitive callsite information based on the EAG,
and finally annotates the notebook with headers based on the
identified callsites and adds the index of ML operations based
on the library-to-taxonomy mapping database.

We discuss the details of constructing an EAG and ex-
tracting flow-sensitive callsite information in Sections III-A
and III-B. Then, in Section III-C, we discuss the process of
annotating the notebook based on the output of the analyzer.

A. Extended Assignment Graph

To extract all possible callsites in the program, we add
flow-sensitivity and the ability to analyze external libraries
to the existing state-of-the-art context-insensitive and inter-
procedural call-graph (CG) generation technique, PyCG [11].
PyCG works on a custom intermediate representation of a
Python AST and generates an assignment graph (AG) that
represents assignment relations between program identifiers.
The CG is then generated based on the AG by resolving
all function calls that a program variable might point-to.
Figure 4a shows the AG generated by PyCG for the variable
model in our motivating example. Since PyCG cannot ana-
lyze calls to external libraries, it does not add any edges to the
model node. However, callsite information from real-world
notebooks cannot be extracted with high accuracy without
analyzing external library functions. To wit, in our motivating
example, without analyzing the function load_dataset()



Fig. 3. High-level overview of HeaderGen.

from the seaborn library, further references to the variable
iris_dataset cannot be resolved. Moreover, PyCG’s anal-
ysis is flow-insensitive, therefore the generated AG fails to
distinguish between different assignments to the same variable.
For instance, in our motivating example, model is redefined
in cell 5 (cf. Figure 2), however, the generated AG shown
in Figure 4a maintains only a single node for the model
variable. PyCG over-approximates model with weak-updates
to the AG, thereby, compromising on precision.

Therefore, we extend PyCG’s AG by an extended assign-
ment graph (EAG) based on an additional helper analysis
to enable flow-sensitive callsite recognition and further add
a return-type approximation technique to resolve calls to
external libraries.

Definition-use Chain for Flow-sensitivity. A definition-
use chain [16] (DUC) is a data structure that represents a
definition, or assignment, of a program variable and all the
subsequent uses without any re-definitions in between. DUCs
are generated by analyzing all assignment statements in the
program with consideration of variable scopes.

We use an existing tool, Beniget [17], a DUC generation
tool that works by analyzing the AST of Python programs.
While a tool exists for Python to compute the DUC, no
existing implementation makes use of DUC to construct flow-
sensitive call-graphs for Python. HeaderGen first uses the
DUC generated by Beniget to create a location map that
gives information about what variables are used at particular
locations of a notebook. Then, this map is used to create the
EAG that can differentiate variables based on the location of its
definition. For instance, the EAG shown in Figure 4b captures
multiple definitions of the model variable separately.

Return-type Resolution of Machine Learning Libraries.
Consider the variable iris_dataset assigned to the return
of function load_dataset() at location cell 2 line 2,
represented as (C2,2) in the motivating example (Figure 2).
Within the seaborn library, the call to load_dataset()
is resolved to seaborn.utils.load_dataset, which
returns an object of type pandas.Dataframe. For Header-
Gen, this type information is crucial: only if HeaderGen knows
iris_dataset’s type can it statically analyze calls on this
variable. For instance iris_dataset is used at (C2,4),
(C2,5), and (C2,7) all of which cannot be resolved without
knowing iris_dataset is of type pandas.Dataframe.
Yet, Python is a dynamically typed language, return-type
information is not readily available for most library code.
Although a set of Python Enhancement Proposals (PEPs) such
as PEP484 [18] are placed for Python language to support type
annotations directly in source code, recent work has suggested

(a) Assignment Graph

⇒

(b) Extended Assignment Graph

Fig. 4. Generated assignment graphs for the variable “model” in the moti-
vating example, left in PyCG (empty), right in HeaderGen (flow-sensitive).

that such user-demanding knowledge is still missing [19].
Though it still remains an open challenge, researchers have

given type inference for Python a lot of attention. While
leading tech giants like Google, Meta, and Microsoft rely
on static tools (e.g. pytype [20]) to ensure the quality of
their codebase, the majority of current efforts employ the
deep learning technique. Unfortunately, none of the available
tools can accomplish what we need. This is mainly because
external function calls frequently create dataflow disruptions in
notebook programs. Existing learning-based approaches such
as Typilus [21] often only leverage the source code’s contex-
tual information to generate the probabilistic type candidates.
Static tools such as pytype and pyre often ship with tailored
type stubs, providing no support for user type stubs. The two
tools also do not infer types for local variables, leaving class
method calls hard to obtain. pyright [14], a type checking
tool, enables support for using custom type stubs of external
libraries, but, does not model library specific behavior leading
to loss of recall. Moreover, pyright needs to be further re-
engineered to obtain inferred type hints as it is designed for
type checking [22]. Furthermore, the well-known open-source
project Jedi [15] cannot analyze complex Python features, and
suffers from performance issues.

PyCG is of no help here: it does not analyze calls to
external libraries, instead ignores them. We attempted to force
PyCG to analyze ML libraries such as Numpy and Pandas.
Yet, we failed to obtain results due to crashes and out-of-
memory exceptions. External libraries, especially ML libraries,
can contain millions of lines of code and PyCG’s fixed-
point algorithm does not terminate within reasonable time
and memory. Even after (unsoundly) limiting the number of
iterations of PyCG’s fixed-point algorithm, the resulting AG
was unsuitable for real-world application because of the low
precision and recall. An analysis of the ML libraries’ code thus
seems out of reach with current tooling. We further explore
these limitations with a quantitative comparison of PyCG, Jedi,
and pyright with HeaderGen in the evaluation Section VIII.

We thus instead designed a tool-assisted approximative
technique for resolving return-types of function calls to ex-
ternal libraries. Figure 5 shows HeaderGen’s approach for
return-type approximation. First, we created a database of
stub files for popular ML libraries such as Keras, Numpy,
Pandas, etc. Stub files contain type hints defined relative to
the original Python source code and stored as .pyi file. To



Fig. 5. Workflow of imported library function return-type resolution.

build the database, we first created scaffolding .pyi files for
all ML libraries we selected. This was followed by a manual
inspection of function documentation and in some instances,
confirmation by manual function execution to create type
annotations for individual function calls. We note that this
is still a work in progress and does not yet cover the entire
source code of all the ML libraries that we selected. We intend
to fully automate type-stub generation in the future utilizing
type-inference systems such as pytype [20] which are currently
under development. However, no accurate and maintained
type-inference implementations for Python currently exists.

As shown on the bottom left of Figure 5, additional steps
are required to make return-type resolution work for Python.
We took for granted that sns.load_dataset() resolves
to seaborn.utils.load_dataset. But looking at the
example in Figure 2 at (C2,2), this fully qualified function
name is not at all apparent. HeaderGen thus must implement
two additional steps that resolve application-side function calls
to their fully qualified names. First, the external function
call in the notebook is resolved based on the import infor-
mation and EAG. For instance, consider location (C1,2) in
our motivating example. Here, seaborn is imported with
alias sns and therefore the function call is resolved as
seaborn.load_dataset, as shown in in red text at the
bottom left of Figure 5. But in Python, top-level modules
can access function definitions in submodules by transitive
imports, mapping full path API names to shorter names.
For instance, seaborn exports functions from submodules
(utils.py here) that actually implement the function. Fortu-
nately, given the fact, that the module seaborn has now
been determined, HeaderGen can next perform a dynamic
fully qualified name resolution using the builtin Python re-
flection mechanism inspect, and dynamic execution using
the function eval on that module. During startup time,
HeaderGen imports a selected set of popular ML libraries
into memory. Then, during analysis, the eval function is
used to dynamically evaluate strings as Python expressions. In
our motivating example, a reference to the function returned
by: eval(‘seaborn.load_dataset’) is evaluated and
stored. Note that the function load_dataset is not called—
only a reference to the function is dynamically created. Fur-
ther, this reference is examined using the builtin inspect
module, which can retrieve information about live Python ob-
jects. HeaderGen uses it to fetch the location of the function’s
definition in the source code, i.e., the fully qualified name.

B. Flow-sensitive Callsite Extraction

The EAG generated in the previous step is used to construct
a flow-sensitive CG using PyCG’s CG construction algorithm.
Wherein, the intermediate representation of the program is
iterated while looking for callable objects based on the EAG
and adding it to the CG. Then, the callsites are mapped
according to the location of their definition in the notebook.
This is achieved by mapping the line numbers of the Python
script with the notebook during conversion.

In addition, note that when a user-defined function that is
defined elsewhere in the notebook, say x(), is called from
a code cell, any other function called from inside x() is
also added as originating from that particular location in the
notebook, i.e., the transitive closure of the CG. This step is
needed to ensure that HeaderGen can annotate code cells that
are only calling functions defined in some other code cell.

C. Jupyter Notebook Annotation

The goal of HeaderGen is to aid data scientists in easily
navigating and comprehending undocumented notebooks. To
this end, the callsite information output by HeaderGen’s ana-
lyzer is used to add helpful information to the notebook. First,
function calls found by the analysis are classified based on
the ML operations in Figure 1. The classification is based on
a manually curated database that maps individual API calls
of popular ML libraries to ML operations. The ML operation
mapping was created by manually inspecting the official func-
tion documentation and cross-referencing usages in the real-
world. Some functions can be easily mapped to one of the op-
eration categories. For instance, pyplot.plot is classified
as Visualization. However, calls such as numpy.reshape
can belong to both Data Cleaning Filtering and Feature
Transformation, and therefore classified into both categories.

Pattern Matching. Notebooks can contain code cells
that perform ML operations without explicit function calls,
but rather, use other Python constructs that alter ob-
jects. For instance, consider the first pattern in Ta-
ble I that represents a Feature Engineering operation, i.e.,
df[‘xy’] = df.x * df.y. Here, a new column xy is
being created in the Dataframe object df by multiplying
columns x and y. In absence of a function call, HeaderGen
resorts to AST based pattern matching to identify ML op-
erations. In this specific case, HeaderGen first consults the
EAG to infer that the type of the variable df is a Dataframe.
Then, both sides of the binary operator ‘∗’, i.e., df.x and
df.y, are checked if they are indeed Dataframe accesses.
From this, HeaderGen concludes that this statement is a
Feature Engineering operation. Table I further lists some of the
Dataframe access patterns that HeaderGen currently supports.

Text Annotation Generation. Based on this classification
and pattern matching, the following annotations are added
to the notebook: (1) Index of ML Operations, (2) Code cell
headers, and (3) Table of contents.

1) Index of ML Operations: The index provides a clickable
and nested list of all function calls in the notebook classi-
fied according to the taxonomy of ML operations shown in



TABLE I
DATAFRAME USAGE PATTERN MAPPED TO ML OPERATIONS

ID Pattern ML Operation
1 df[‘xy’] = df.x * df.y Feature Engineering

2 df.x = 1
Feature Transformation
Data Preparation

3 df.x[df.x == 1] = 1
Feature Transformation
Data Preparation

4 x = df.x[[‘f1’, ‘f2’]] Feature Selection
5 print(df[0:20]) Exploratory Data Analysis

Figure 1. Figure III-C shows the index of ML operations
generated for our motivating example. The index is displayed
on top of the notebook using HeaderGen’s notebook plugin. If
no functions are found for a particular ML operation category,
the category is displayed struck out. Each ML operation
category and cell list can be expanded or collapsed as required.
Function calls are organized based on the library as seen in
the figure. Additionally, different areas of the notebook are
hyperlinked, this makes it easy for the user to explore the
notebook back-and-forth. For instance, cell 5 can be quickly
visited by pressing “goto cell # 5” and back to the index again
by pressing “back to top”.

2) Code cell headers: High-level ML operation categories
from the taxonomy are added as headers for individual code
cells. Note that when code cells contain ML operations from
more than one category, all of these are added to the header.
The headers can be further extended to see all the functions
used in the following code cell, along with the docstrings that
were fetched during analysis time from the source code.

3) Table of contents: Code cell headers are attached with
anchors that allow in-page navigation. Using this information,
the table of contents combines the headers of all code cells
and adds an anchor-link to each entry. This simplifies access
to relevant sections of the notebook based on the taxonomy.

IV. EVALUATION

We evaluated HeaderGen to answer the following four
research questions:
RQ1: Does HeaderGen improve comprehension and naviga-

tion of undocumented Jupyter Notebooks?

RQ2: How accurate is HeaderGen’s callsite recognition?

RQ3: How accurately can HeaderGen classify code cells
using callsites?

RQ4: How does HeaderGen compare to other tools?
We first describe the benchmarks we developed for evalu-

ating HeaderGen, and then examine the research questions.

A. Benchmarks

We evaluate HeaderGen by building two benchmarks: (1)
a micro-benchmark containing 121 notebooks, and (2) a real-
world benchmark containing 15 notebooks from Kaggle.

Jupyter Notebook Micro-benchmark. We evaluate
HeaderGen by adopting the benchmark created by

Fig. 6. Index of ML operations for our motivational example. 1© ML
operation category “Model Training” is expanded to view all code cells that
are performing model training operations. 2© Cell # 5 is expanded to view
all function calls in the cell. 3© Fully qualified function names are displayed.
4© Expanded view showing the arguments used and its docstring.

Salis et. al [11] as part of PyCG. PyCG’s benchmark
does not have specific challenges targeting flow-sensitive
analysis, and the benchmark contains ground truth only for
flow-insensitive call-graphs. Yet, to evaluate HeaderGen’s
analysis, flow-sensitive callsite information is required, i.e.,
information about function calls associated with line numbers.
To address this, we first converted Python scripts from PyCG’s
benchmark into notebooks, and then created ground truth by
manually mapping callsites to line numbers. Furthermore, we
created eight new test cases that have specific challenges to
flow-sensitivity.

Real-world Benchmark. To assess HeaderGen in real-
world scenarios, we tested for precision and recall on 15 note-
books from Kaggle, a community where data-science practi-
tioners come together to create and share ML based solutions
written in notebooks. The platform hosts open competitions
where data scientists around the world compete against each
other to build the best solution. Kaggle encourages beginners
to learn from experts in the field by making their submissions
public. However, these notebooks often lack documentation.
We found that 99 of the top 500 notebooks submitted to the
most popular competition on Kaggle contained no markdown
cell. Therefore, we base our real-world benchmark on these
undocumented notebooks which are still being viewed.

We selected notebooks from three different and most
popular competitions on Kaggle based on the number of



TABLE II
EVALUATION OF HEADERGEN ON OUR REAL-WORLD BENCHMARK FOR CALLSITE RECOGNITION AND HEADER ANNOTATION

Competition Name Votes Views Callsite Recognition Header Annotation
Precision Recall Precision Recall

Titanic -
Machine Learning

from Disaster

bulentsiyah/keras-deep-learning-to-solve-titanic 65 1,926 100 90 71.4 100
hongdnghuy/relu-sigmoid 13 693 100 100 80 100
vaidicjain/titanic-easy-deeplearning-acc-78 9 449 95.8 95.8 100 87.5
tanvikurade/complete-analysis-of-titanic 18 277 100 100 72.7 98
alexanderbader/mytitanic 10 97 94.7 93.5 83.3 90.9

Predict Future Sales

econdata/predicting-future-sales-with-lstm 7 2,935 88.4 100 100 100
lhavanya/predict-future-sales 3 457 94.3 91.7 85 100
elvinagammed/stacked-lstm-top-5-4-mae 9 419 100 100 91.3 100
ashishkapasiya/prediction-future-sales-with-keras 3 494 90.9 97.2 80.9 100
the0electronic0guy/keras-begineer-friendly 12 264 100 100 82.2 98.7

Santander Customer
Transaction Prediction

higepon/starter-keras-simple-nn-kfold-cv 20 4,145 100 87.5 61.1 100
vishesh17/keras-nn-with-scaling-and-regularization 32 3,052 100 100 85.7 94.7
christofhenkel/nn-with-magic-augmentation 19 1,408 94.2 94.3 100 100
naivelamb/multibranch-nn-baseline-magic 10 569 96.6 94.6 64.5 87
miklgr500/nn-embedding 10 502 91.2 93.9 74.2 95.8

240 17,687 96.4 95.9 82.2 96.8
Total Average Average

submissions to encourage variation in the benchmark: (1)
Titanic - Machine Learning from Disaster, (2) Predict Future
Sales, and (3) Santander Customer Transaction Prediction. We
downloaded the top 30 notebooks according to votes for each
competition with the search term “Keras”. Since Keras [23] is
a popular ML library among novices. We used the Kaggle
API to search and download notebooks. All 30 notebooks
from each competition were further filtered to target those
without any markdown cells. Finally, we selected the top five
most viewed notebooks from each competition. The selected
notebooks in our benchmark are listed in Table II. These
notebooks have a median of 20 code cells, compared to 13
cells that are found in real-world notebooks as reported by
Pimentel et al. [7]. Note that these undocumented notebooks
still have 240 upvotes and 17,687 views as of Octorber 2022.

The ground truth is then created manually by inspecting
code cells in each notebook, and listing the fully qualified
names of all function calls. Notebooks were executed cell-
by-cell and dynamically analyzed using Python’s reflection
module inspect to gather the fully qualified names. Multiple
iterations were carried out to avoid errors in the ground truth.

V. RQ1: COMPREHENSION AND NAVIGATION STUDY

The goal of HeaderGen is to increase comprehension and
navigation in undocumented notebooks. We therefore con-
ducted a user-study to quantitatively measure the improve-
ments of HeaderGen over undocumented notebooks.

A. Study Design

The study is aimed at recreating the exploration of note-
books that data scientists routinely do. The study is designed
as a within-subject study where the participants were given
two notebooks from our real-world benchmark and asked to
complete five comprehension tasks on each notebook one
after the other. To minimize learning effects, we chose a

latin-square design: participants were divided into two groups.
While participants in group-1 were given the undocumented
notebook first, followed by the HeaderGen annotated version,
participants in group-2 saw the annotated notebook first. Each
study was conducted in a one-on-one online session lasting
about one hour using a video-conferencing tool. First, an
overview of the study-protocol was presented to the participant
including a walk-through of HeaderGen. Next, participants
were provided access to the remote Jupyter instance along
with a questionnaire containing step-wise instructions on how
to proceed. Before proceeding to the study, participants were
instructed to examine an example notebook annotated with
HeaderGen in order to get them comfortable with the fea-
tures. The entire session was recorded with the consent of
the participant for further analysis. Upon completion of the
comprehension tasks, participants were asked to fill a likert-
scale questionnaire to understand the participant’s perception
of improvements provided by HeaderGen. Finally, participants
were asked if they had any general comments about the tool.

Comprehension Tasks. We created a set of tasks to
simulate typical questions that arise when a data scientist
is exploring an unseen notebook. The tasks were finalized
after discussions with a data-science expert. For each task,
participants were expected to select the right answers from all
the choices given to them. Overall, six comprehension tasks
were created, as listed in Table III. For each notebook given
to the participant, five tasks from the table were assigned to
them based on the relevance to the notebook.

Likert-scale Questionnaire. Following the completion of
the session, participants were asked to rate the level of
agreement to statements about the usefulness of HeaderGen.
The level of agreement was based on a 5-point Likert scale,
where “1” is Strongly disagree and “5” is Strongly agree. The
statements given to the participants are listed in Table IV.



TABLE III
COMPREHENSION TASKS

Id Question
Q1 What are the deep learning layers used in the model?
Q2 What are the different data cleaning & data preparation operations?

Q3
Which of the following cells are used for model building
and model training?

Q4 Select ML and visualization libraries that are used in the notebook
Q5 What are the different visualizations used in the notebook?
Q6 How is the dataset split into test and train subsets?

TABLE IV
STATEMENTS ABOUT PERCEPTION OF USEFULNESS

Id Statement

S1
The classification of cells according to ML phases and headers
helped me navigate the undocumented notebook.

S2
The generated list of functions used in the notebook
helped me understand the notebook better.

S3
The header annotations added to the notebook is rather
hindering the understanding of the notebook.

S4 I would install HeaderGen if it is made available as a plugin.

B. Participants

The study comprised of eight participants. Three of them
were master students from the computer science department,
three of them were full-time employees working in the data-
science domain, and two of them were computer science
researchers. Students were recruited by contacting the group
leaders in the data-science research department. Professional
employees were contacted using Linkedin [24] based on their
job titles. The researchers were contacted based on their pub-
lications in common research topics. Due to privacy concerns,
information of the participants are omitted. Participation was
voluntary and did not involve monetary incentives.

C. Metrics

(1) Time: Time taken to complete all five tasks per notebook.
(2) Accuracy: Inspired by a similar comprehension study by

Adeli et. al. [25], the accuracy is measured using F1-score
that takes into account both precision and recall.

(3) Navigability: The perceived navigability based on re-
sponses to Likert scale questions.

(4) Usefulness: The perceived usefulness based on responses
to Likert scale questions.

D. Results

The study resulted in 80 (8 ∗ 5 ∗ 2) measurements for
accuracy, from eight participants performing five tasks on
two treatments (undocumented and annotated), and 16 (8 ∗ 2)
measurements for time, from two treatments. We compare
accuracy and time measurements between treatments using the
non-parametric two-sided Wilcoxon Signed Rank (WSR) test
as the measurements between treatments are paired and the
sample size is small. In addition, all measurements are ana-
lyzed based on descriptive statistics. Figure 7 shows the box-

plot of accuracy scores, time measurements, and perception
ratings.

Time. Both mean and median values of time taken for
the annotated treatment (mean=336.6s, median=328.5s) are
lower than the undocumented variants (mean=486.4s, me-
dian=464.5s). Moreover, WSR test on time measurements
showed statistical significance (p-value=0.025, statistic=34.0).
The large difference in completion time for the undocumented
variant is associated with the back-and-forth navigation in the
notebook trying to find relevant areas. This shows that partici-
pants took significantly more time to complete comprehension
tasks when given an undocumented notebook.

Accuracy. The mean accuracy of all comprehension tasks
was greater for the annotated treatment, except for task T6,
where it was equal. The variance of accuracy across the
tasks was three times higher for the undocumented treatment,
showing that it is more likely to yield better accuracy with
annotated notebooks. However, the median is greater for the
annotated treatment only in T4 and T5. In addition, WSR test
showed that the accuracy scores from the study are not sta-
tistically significant between two treatments (p-value=0.106,
statistic=55.0). Nonetheless, note that the study was not time-
boxed. Participants thus took significantly longer to solve the
tasks correctly for undocumented notebooks.

Navigability and Usefulness. The perceived ratings for
statements in Table IV showed that the participants find
HeaderGen considerably helpful in completing the tasks. None
of the participants disagreed to statements S1, S2 and S4, and
none of them agreed to statement S3. All participants showed
interest in actually installing the tool when it is published.

Qualitative Results. Participants noted that HeaderGen
would be especially useful when dealing with very large
undocumented notebooks as it provides a “map” of the note-
book. Participants also found the function documentation to be
useful, given that the libraries are continuously evolving and
that they would often come across methods that they have not
seen before. Furthermore, minor recommendations to improve
the taxonomy categories were noted and added to the final
version. Recommendations to change the layout of the plugin
were also noted and will be considered in future versions.

Threats to Validity. The study we conducted is prone to
some common limitations of conducting user studies. Due to
the small number of participants, it may not be representative
of a larger population. However, participants were selected
from all fields: students, professionals, and academics to get
inputs from different perspectives. Furthermore, since the
study follows a within-subject design, the order of tasks and
treatments can have an effect on the outcome. Therefore,
to limit the learning effect, we use latin-square design to
randomize the order of treatments, tasks, and multiple choices.
However, using notebooks that only use the Keras API might
have had a learning effect as the study progressed. Although
the participants were experienced working with the default
notebook environment, HeaderGen adds additional interfaces
that might seem confusing at first. As a result, some partici-
pants did not make full use of HeaderGen’s capabilities.



Fig. 7. Left: Box plots of accuracy for participant responses grouped by treatment. Center: Box plots of time measurements for two treatments. Right: Box
plots of responses to likert-questions about perception.

VI. RQ2: ACCURACY OF CALLSITE RECOGNITION

Micro-benchmark Results. We evaluate HeaderGen for
complete and sound recognition of callsites. The analysis is
complete when there are no false positives, and sound when
there are no false negatives. In total, the analysis is sound
in 113 of 121 cases, and complete in 113 of 121 test cases.
Lack of soundness in eight of 121 test cases are due to
the lack of implementation for analyzing challenging Python
features such as decorators. On the other hand, out of the
eight test cases that are incomplete, only three of them are
due to missing implementation of challenging features. The
remaining five test cases are not complete because our analysis
is context-insensitive. As a result, it over-approximates the
solution in certain scenarios.

Note that we do not perform a direct comparison of
HeaderGen with PyCG because the micro-benchmark does not
pose specific challenges to flow-sensitivity, except for the new
flow sensitive category with eight test cases that we added.
When compared to PyCG for this category, as expected, PyCG
is incomplete for all eight test cases. Furthermore, note that
this micro-benchmark contains no challenges associated with
handling external library function calls.

Real-world Benchmark Results. Table II lists the precision
and recall values of HeaderGen for real-world notebooks.

HeaderGen achieves an average of 96.4% precision and
95.9% recall. Note that in four instances, the analysis achieves
100% precision and recall.

The precision loss is due to our type-stub database’s
over-approximation of return-types. For instance, a
call x.isnull() can be either Series.isnull or
DataFrame.isnull, depending on whether x is a Series
or Dataframe, which is determined based on the underlying
structure of the data. However, this is not straight forward to
infer and needs advanced data-flow analysis.

Where recall is lost, it is because our analysis lacks supports
for some complex Python features.

VII. RQ3: ACCURACY OF GENERATED HEADERS

HeaderGen uses identified function calls in code cells to
automatically add relevant headers based on the taxonomy
of ML operations. We evaluated the headers generated by
HeaderGen for precision and recall against manually annotated
headers. Again, we use our real-world benchmark as a basis.
15 notebooks from the benchmark were divided and assigned
to four data scientists working in the industry for manual

TABLE V
COMPARISON WITH EXISTING TOOLS ON OUR REAL-WORLD BENCHMARK

Tool Callsite Recognition Header Annotation
Precision Recall Precision Recall

HeaderGen 96.4 95.9 82.2 96.8
Pyright 96.7 87.2 83.8 82.7

Jedi 84.6 65.8 85.1 69.8
PyCG 41.7 23.3 84.6 26.2

annotation of each code cell. Notebooks were distributed such
that each notebook was seen by at least two reviewers. Based
on the taxonomy of ML operations, each annotator inspected
and classified each code cell into relevant categories. The inter-
rater reliability score, as measured by Cohen’s kappa coeffi-
cient [26], was improved by conducting follow-up interviews
with all four reviewers. Finally, a score of 0.89 was achieved,
which signals an almost perfect agreement.

Results. The resulting precision and recall are listed on
the right side of Table II. The headers that are generated by
HeaderGen are matched on the high-level categories of the
taxonomy listed in Figure 1. HeaderGen achieves a precision
of 82.2% and recall of 96.8%. Precision is lost because some
functions can be mapped to more than one ML operation.

VIII. RQ4: COMPARISON WITH EXISTING TOOLS

We compare HeaderGen in terms of callsite recognition and
header annotation with PyCG, pyright, and Jedi using our real-
world benchmark. Since both pyright and Jedi are designed for
type checking and auto-completion, we added helper functions
to output type information and callsite information as required
by HeaderGen. Furthermore, note that our type-stub database
of ML libraries was provided to pyright and Jedi for analysis.

Results. The precision and recall values are listed in Ta-
ble V. Since header annotation is based on identified callsites,
it is evident that higher recall of callsite recognition leads to
higher recall in header annotation. HeaderGen achieves the
highest recall of 95.9% which leads to a 96.8% recall in header
annotation of code cells. However, pyright is the closest with
87.2% recall for callsite recognition which leads to 82.7%
recall for header annotation. Note that without our type-stub
database, these tools would perform even worse.

The loss of precision is attributed to the over-approximation
of return-types in our type-stub database as discussed earlier.

Modeling of Pandas Behavior. Listing 1 shows simplified
data manipulation methods of the Pandas library based on our
real-world benchmark. Furthermore, Table VI lists the type



of each variable used in Listing 1 as inferred by the tools
being compared. It can be seen that both pyright and Jedi
fail to infer return-types of variables x1 through x6. This
is because HeaderGen can model complex pandas accesses
while the other two tools fail. For instance, in line 6, a
dot notation access df.a is ignored by other tools while
HeaderGen models it as a Series.

1 import pandas as pd
2

3 df = pd.read_csv("./input.csv")
4 x1 = df["a"].map(lambda x: x + 1.0)
5 x2 = df.iloc[[False]].reset_index().copy()
6 x3 = df.a.fillna(0)
7 x4 = df.groupby(["a"])[["b"]].agg({"b": ["min"]})
8 x5 = df[["b", "c"]]
9 x6 = df.c.values.astype(int)

Listing 1. Common uses of Pandas DataFrame that existing tools fail to infer.

TABLE VI
COMPARISON OF TYPE INFERENCE BY EXISTING TOOLS FOR LISTING 1

Var Actual HeaderGen Pyright Jedi
df DataFrame DataFrame DataFrame DataFrame
x1 Series Series Any Any
x2 DataFrame DataFrame Any Any
x3 Series Series Any Any
x4 DataFrame DataFrame Any Any
x5 DataFrame DataFrame Any Any
x6 Ndarray Ndarray Any Any

IX. RELATED WORK

Tool-support for Jupyter Notebooks. In recent years,
many publications [2], [5]–[8], [27], [28] have experimentally
analyzed notebooks to gather insights on coding patterns and
highlight that notebook quality is poor and needs attention
from the software engineering community. However, there has
been little research into developing tools to help with the high-
lighted issues. To this end, Wang et al. [10] propose Themisto,
a tool that encourages data scientists to write documentation
for code cells by first applying a deep learning based approach
to automatically generate documentation in natural language
and then recommending to the user whether to adopt it or
use it directly. Themisto directly uses AST of the Python
code to train its model and does not explore using SA based
approaches to extract contextual information from source code.
To this end, we expect that analysis results from HeaderGen
can aid deep learning based approaches to achieve better
results. In another study, Pimentel et al. [7] studied 1.4 million
notebooks for features that affect reproducibility and suggested
a set of best practices. Following this, Wang et al. [29] propose
Osiris, a tool-based approach to restore reproducibility in
notebooks by using AST parsing for data-flow analysis to find
dependencies of variables between code cells. Furthermore,
Yang et al. [22] design a SA approach to detect data leakage
in notebooks. Our work automatically annotates code cells and
provides tool-support for literal programming.

Static Analysis for Python. Although Python is one of
the most popular programming languages, there is still a

shortage of SA infrastructure for Python as noted by Yang
et al’s [13] empirical investigation of Python’s features. Yang
et al. further argue that analysis for Python cannot adopt
algorithms developed over past decades of scientific research
due to its unique language features. Dynamic features such
as duck typing in Python that make it stand out for fast-
prototyping result in difficulties for its analysis. Call graph
construction, which is the foundational technique in SA,
remained an open problem until 2021 when a practical call
graph generation approach named PyCG was offered [11].
However, the call graph generator does not consider flow of
values and has no support for Jupyter notebooks. Moreover,
there is still no general-purpose SA framework for Python
that can provide data flow IRs. The closest one is the Scalpel
project [30]. Nevertheless, Scalpel does not infer return-types
for external function calls and does not take notebook cells
into no consideration. In this work, we supplement existing
SA work for real-world application by offering return-type
resolution of external library API and flow-sensitive function
callsite extraction using def-use relations.

X. LIMITATIONS & FUTURE WORK

To obtain sound function name resolution, our approach
uses the reflection mechanism from Python runtime, which
somewhat reduces the coverage of APIs depending on the
actual library version installed. We will explore static API
mapping techniques to solve transitive imports in Python to
address this. Second, our approach currently relies on manual
classification of library function calls to ML operations. To
address this, we are currently investigating natural language
processing techniques to automatically classify library func-
tions to ML operations based on function docstrings. Lastly,
our analysis is limited to the scope of machine learning appli-
cations. However, the framework we designed is not limited
to a particular scope. HeaderGen can annotate notebooks with
domain-specific return-type stubs and library taxonomy.

Additionally, input from HeaderGen can be used to automat-
ically restructure code cells in notebooks for better readability.
For instance, by splitting up complex code cells performing
multiple ML operations into sequential code cells. Further-
more, fast and precise function call analysis of HeaderGen
can facilitate large-scale mining studies of Python code base.

XI. CONCLUSION

Many notebooks encountered in the wild are undocumented,
making program comprehension and navigation difficult. To
this end, HeaderGen utilizes precise static analysis to auto-
matically annotate notebooks with structural headers based
on a taxonomy of machine learning operations. HeaderGen
achieved high precision and recall on both of our micro and
real-world benchmarks. We further showed that HeaderGen
can annotate headers with adequate precision and high recall
when evaluated against ground truth manually curated by
experts. Finally, we conducted a user-study to demonstrate that
data scientists found HeaderGen to be helpful in improving
program comprehension and navigation.
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