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Abstract: Oblique propagation of semi-guided waves across slab waveguide structures with
bent corners is investigated. A critical angle can be defined beyond which all radiation losses are
suppressed. Additionally an increase of the curvature radius of the bends also leads to low-loss
configurations for incidence angles below that critical angle. A combination of two bent corner
systems represents a step-like structure, behaving like a Fabry-Perot interferometer, with two
partial reflectors separated by the vertical height between the horizontal slabs. We numerically
analyse typical high-index-contrast Si/SiO2 structures for their reflectance and transmittance
properties. When increasing the curvature radius the resonant effect becomes less relevant such
that full transmittance is reached with less critical conditions on the vertical distance or the
incidence angle. For practical interest 3-D problems are considered, where the structures are
excited by the fundamental mode of a wide, shallow rib waveguide. High transmittance levels
can be observed also for these 3-D configurations depending on the width of the rib.
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1. Introduction

Silicon has been one of the pre-eminent materials in the field of integrated optical circuits over
the recent decades, because of its compatibility with complementary metal oxide semiconductor
(CMOS) technology [1] and the convenient possibility to combine electronic and photonic
devices on the same chip [2]. Furthermore new ideas for 3-D integrated platforms with compact,
high-index-contrast dielectric optical waveguides at different levels of photonic chips have been
introduced [3–5]. Ideally these concepts should work for arbitrary vertical distances with minimal
or no power losses. So the question arises which configurations meet the desirable characteristics
of a lossless level transfering coupler.
Acceptable results are given by vertically stacked integrated couplers, but these typically

require quite large dimensions [6]. A reduction of the height seems feasible only for very low
vertical distances [7]. Other concepts make use of coupling through vertically overlapping tapered
cores [8, 9], radiative transfer through grating couplers [10] or resonant interaction between
vertically stacked microrings [11] to shift power on different levels. But to the best of our
knowledge all these structures are either comparably big or suffer from substantial power losses.

Alternatively, in [12, 13] a direct connection between two planar waveguides at different levels
by a third vertical waveguide segment was introduced. These structures consist of 90◦ corners
and require comparatively less space. Furthermore it was discovered that for oblique propagation
of light and specific vertical distances full transmittance can be achieved by means of exploiting
a resonance effect, but the results depend sensitively on the angle and height.

In this paper we want to replace those sharp kinks by slight curvatures, so step-like structures
with bent corners like in Fig. 1(b) are investigated for incoming plane waves and oblique angles
of incidence. To that end we will consider the configuration from Fig. 1(a) consisting of two
vertically connected dielectric slab waveguides with rounded edges, the bent corner structure, at
first. Then a corresponding bent step structure like in Fig. 1(b) can be defined as a combination
of two of these bent corners and is analysed as well.
Section 2 introduces the theoretical background. A variant of Snell’s law applies to those

structures and one defines critical angles where radiation losses are suppressed or only a single
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(a) (b)

Fig. 1. Bent corner (a) and bent step (b) configuration; oblique wave propagation with
incidence angle ϕ. Images show incoming, reflected (R) and transmitted (T) waves.

polarisation occurs [14–17]. With the help of the numerical finite element program COMSOL [18]
the settings from Fig. 1 are analysed for different incidence angles, curvature radii and vertical
step heights. At first the whole structure is assumed to be constant in z-direction, which leads to
an effective 2-D problem (in the x-y-plane, with infinite extent in z-direction). Afterwards a range
of these 2-D solutions is used in Section 3 to assemble 3-D solutions for incoming semi-guided
laterally limited wave bundles as can be excited through shallow rib waveguides.

Corner and step structures with sharp edges were analysed with semi-analytical methods in [12]
with the same high-index-contrast waveguide parameters as used in this paper, such that the
previous models can be compared directly to the present numerical results. We could numerically
verify the formal semi-analytical prediction [19]. The investigation of curved structures is also of
great interest for the realization of these concepts, because inaccuracies during the fabrication
may lead to rounding of the critical edges. We shall see that the present structure with rounded
edges can actually be advantageous, e.g. what concerns fabrication tolerances, through weakening
the conditions on the aforementioned resonance effect.

2. Oblique wave propagation along bent slab waveguide corners

At first we consider a quasi-2-D setting, meaning all structures are infinitely extended in ±z-
direction, starting with the bent corner configuration from Fig. 2(a). Here, two half-infinite
dielectric slab waveguides with the same core thickness d are connected vertically by a rounded
edge with outer curvature radius r. The slab waveguide parallel to the x-axis is leading the
incoming wave and possible reflected waves in -x-direction. The second slab waveguide, parallel
to the y-axis, guides the transmitted waves that have passed the curved segment.

Alternative curvature definitions are possible as well, e.g. configurations with equal radii of the
inner and outer interfaces. But that definition leads, in certain circumstances, to strong resonant
effects with maximal reflection for specific incidence angles as shown in [19]. Such a behaviour
is not useful for the present context, it even gives detrimental results. Hence, we will focus on the
parametrization from Fig. 2. Here, the curved part, of constant thickness d, was already analysed
for guided modes in [20] and similarities in field pattern could be observed [19].
We assume that the structures only guide the fundamental modes, the TE0 and TM0 modes

with effective indices NTE0 and NTM0 . Furthermore the incoming wave is always the TE0
mode. All relevant fields have a harmonic time dependence ∼ eiωt with angular frequency
ω = k0c0 = 2πc0/λ0, for vacuum wavenumber k0, vacuum speed of light c0, and vacuum
wavelength λ0.

Considering the incoming oblique wave at first, a field dependence ∼ exp(−i(kx x + kz z))
applies to all field components. The wave is propagating in the x-z-plane (see Fig. 2) under
an incidence angle of ϕ with wavenumbers kz = k0NTE0sinϕ and kx = k0NTE0cosϕ, which
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(a) (b)

Fig. 2. Cross section of the bent corner (a) and bent step (b) configuration with refractive
index n f = 3.4 in the core and nc = 1.45 in the claddings, thickness d = 0.25µm and
vacuum wavelength λ0 = 1.55µm. Incidence angle ϕ, vertical step height h and curvature
radius r are variable parameters.

fulfil the relation k2
0 N2

TE0
= k2

x + k2
z as known from the planar slab waveguide [21, 22]. Because

of the homogeneity of the waveguide in z-direction, the wavenumber kz applies to the entire
electromagnetic field solution. So for the outgoing waves a dependence of ∼ exp(−i(kz z + kξξ))
describes the fields, where the wave is propagating in the ξ-z-plane with wavenumber kξ in some
direction ξ. Here, we have ξ = y for the transmitted waves, ξ = −x for the reflected waves and
for any scattering wave ξ is a suitable direction in the x-y-plane.
The relation k2

0 N2
out = k2

z + k2
ξ determines the wavenumber kξ for the outgoing waves with

effective refractive index Nout. Two cases have to be distinguished. Either Nout is sufficiently
large and fulfils k2

0 N2
out > k2

z , so the waves are propagating at an outgoing angle ϕout, which is
defined by a variant of Snell’s law Noutsinϕout = NTE0sinϕ, or Nout is small with k2

0 N2
out < k2

z

and the outgoing fields become evanescent. Referring to that, a critical angle can be defined
by sinϕcrit = Nout/NTE0 beyond which all power transfer to that particular outgoing wave is
suppressed. For the considered Si/SiO2 index contrast a critical angle ϕc = 30.45◦ can be
determined by the ratio sinϕc = nc/NTE0 , where all radiation losses are suppressed in the
claddings and everything is guided in the core. An additional angle ϕm = 51.14◦ is defined by
sinϕm = NTM0/NTE0 . Beyond that critical angle all the power is carried by TE0 modes, because
the TM0 mode has an effective mode index below NTE0 .

In a next step we will analyse these 2-D corner structures governed by the Maxwell’s equations
with the help of the finite element software COMSOL Multiphysics [18]. Here, port boundary
conditions and perfectly matched layer (PML) are the crucial boundary conditions used in this
work. Ports are able to excite and absorb plane waves of a known shape and direction and to
directly calculate S-parameters. With the help of a numerical ’Boundary Mode Analysis’ solver
the corresponding modes to excite the structures are calculated. PMLs are used to simulate
infinite space and open boundaries by absorbing all types of outgoing waves without reflections.
Furthermore the considered structures are analysed in a 2-D environment by defining an out-
of-plane wavenumber kz to simulate oblique incidence. To verify the program settings, 2-D
structures, already analysed with semi-analytical methods [12, 20, 23, 24], were investigated [19].
We observed an excellent agreement of our numerical solutions with the existing results.

2.1. Bent corners

First the bent corner structure from Fig. 2(a) is analysed. Figure 3 shows the numerical
transmittance and reflectance values, concerning the fundamental guided modes, for different
curvature radii r as a function of the incidence angle ϕ. The calculations were carried out for
refractive indices n f = 3.4 in the core and nc = 1.45 in the claddings, core thickness d = 0.25µm,
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Fig. 3. Transmittances TTE0 , TTM0 and reflectances RTE0 , RTM0 of the bent corner structure
depending on the incidence angle ϕ for different curvature radii r .

Fig. 4. Absolute electric field |E| for the bent corner structure for different radii and angles
of incidence with maximal TE transmittance (upper row) and maximal TM transmittance
(bottom row).

at a typical near-infrared wavelength λ0 = 1.55µm for incidence of the TE0 wave.
Referring to the defined critical angles radiation losses occur for incidence angles smaller

ϕc , meanwhile beyond that angle everything is guided by reflected or transmitted TE and TM
waves. As expected, for waves propagating at an incidence angle higher than ϕm no power is
carried by outgoing TM waves and only propagating TE waves leave the structure. In general, for
increasing curvature radius the reflectance of both, TE and TM polarized waves, tend to zero
and the transmittance enhances. The TE reflectance value only increases rapidly for grazing
incidence, at angles close to 90◦. Furthermore the transmittance levels of the TM polarized waves
decrease for an increasing radius, so the polarization conversion becomes less.
Figure 4 shows corresponding field plots of the absolute electric field |E| for angles with

maximal TE and TM transmittance. One notices less guided wave reflectance in the incoming
slab for increasing curvature radius in both rows. Already from these results it can be concluded
that a raised curvature radius leads to improved transmission properties.
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2.2. Bent steps

In a next step we combine two of the former bent corner structures. The bent step structure of
Fig. 2(b) consists of two horizontal waveguides and a connecting vertical segment, all of identical
thickness. This represents the actual structure of interest for power transfer between various
heights. A new variable parameter appears, the vertical distance between the parallel slabs h
according to Fig. 2(b).

The waveguide parameters are still the same as in Section 2.1 and therefore the critical angles
are also identical. Thus we will only focus on the lossless cases, which means incidence angles
higher than ϕc = 30.45◦. More precisely we analyse the step structure for variable vertical step
heights h, with curvature radius r and incidence angle ϕ fixed at the selected values from Fig. 4,
where the corner structure shows maximal TE and TM transmittance.

Fig. 5. Transmittances TTE0 , TTM0 and reflectances RTE0 , RTM0 of the bent step structure
depending on the vertical distance h for specified incidence angles ϕ and curvature radii
r from the corner structure in Section 2.1. Vertical lines indicate heights with maximal
transmittance that are selected for the plots of Figs. 6–7.

Fig. 6. Transmittances TTE0 , TTM0 and reflectances RTE0 , RTM0 of the bent step for different
incidence angles ϕ around the primary incidence angle ϕ0 for specific radii r and heights h.

Figure 5 shows the transmittance and reflectance depending on the step height h for fixed radius
and angle. Since the differences between r = 0.5µm and r = 0.75µm are not very significant we
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will only focus on radii up to 0.5µm in the following. Considering a small curvature radius of
r = 0.26µm and a large angle of ϕ = 59◦ (see config. (C2)), this means a structure where only TE
waves occur, one notices a strong periodic behaviour between reflected and transmitted TE waves.
Such an appearance was also discovered in [12,13] and is due to a resonant effect between the
two horizontal slabs, where upward and downward propagating waves are present in the vertical
segment. This effect can be compared to a Fabry-Perot interferometer, where the corners play the
role of the partial reflectors. By scanning over the vertical distance h full transmission appears
for certain equidistant heights. Next considering for equal curvature radius a smaller incidence
angle ϕ = 39◦ (see config. (C1)) the oscillating behaviour becomes less regular. This is because
both polarisations, TE and TM waves, mediate in the vertical waveguide segment. For larger
curvature radii, as can be seen for config. (C3)–(C6), the before observed periodic behaviour
becomes less pronounced with wider peaks. The modulation of transmittance levels reduces up
to almost full transmittance regardless of the vertical step height and occurring polarisation (C6).
Additionally Fig. 6 shows the transmittance and reflectance for varying incidence angle around
a primary angle ϕ0. An increase in bend radius is seen to reduce the angular dependence, the
transmittance maxima widen for lower curvature. In Section 3 this angular dependence becomes
relevant for the 3-D solutions.

Fig. 7. Absolute electric field |E| for bent step structures for different radii, heights and
angles of incidence with maximal TE transmittance from Fig. 5.

To illustrate the height dependence of the steps Fig. 7 shows the 2-D field plots of the absolute
electric field |E| for specific angles and radii from Fig. 5 and heights with high TE transmittance
as also marked in Fig. 5. As already stated, for small radii counter propagating waves interfere in
the vertical waveguide segment. For higher radii these interference pattern disappear.

3. Laterally guiding step configurations in 3-D

The previous quasi-2-D results concern oblique incoming semi-guided waves that are infinitely
extended along the z-direction. Now we want to consider more practially relevant true 3-D
solutions as well. We investigate laterally limited wave bundles as incoming waves in those
structures. Such limited modes can be excited by using rib waveguides [25,26] as seen in Fig. 8(a).
We assume a wide rib width l of thickness d with shallow etching depth of d ′ = 0.01µm to
guarantee lateral guidance and avoid to much spreading of the wave packets in the adjoining slab.
When connecting an incoming rib waveguide to a slab, as shown in Fig. 8(a), a wave that

is guided by the rib waveguide and limited in the lateral direction can be expected to remain
reasonably limited after entering the slab waveguide. Here, the junction is shown in rotated
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(a) (b)

Fig. 8. Connection of a rib and slab waveguide (a) of thickness d with refractive indices n f ,
nc in rotated coordinates (x′, y, z′). In (b) the view from above for incoming and outgoing
waves under primary incidence angle ϕ0 is shown. The ribs have a width of l and an etch
depth of d′ = 0.01µm; other parameters are as given for Fig. 2.

coordinates (x ′, y, z′), where the x ′-direction is parallel to the waveguide axis, i.e. parallel to the
propagation direction of the incoming mode under incidence angle ϕ0. So using this configuration
our structure of interest, the bent step, is excited by a laterally confined wave. A second identical
rib is placed at the end of the step structure (see Fig. 8(b)) to catch the transmitted power. The
displacement δ between the axes of the incoming and outgoing ribs is related to the vertical
propagation through the step (marked by the grey bar in the middle of Fig. 8(b)) and will be
selected depending on the vertical height. Similarly, the distance between the step and the rib
waveguide is reasonably adjusted depending on the rib width so that back reflections do not touch
the incoming rib.

The underlying theoretical approach to calculate 3-D solutions was introduced by the authors
in [12] for incoming Gaussian wave packets. However, exciting the structure by a rib waveguide
appears to be more realistic and is therefore considered in the following theoretical approach.
At the outset it should be noted that possible back reflections at the transitions between the rib
and the slab waveguides are neglected. Then a 3-D wave bundle for incoming primary incidence
angle ϕ0 is given by a superposition of weighted 2-D solutions for a range of wavenumbers kz (or
incidence angles ϕ) around the primary wavenumber kz0 (or primary incidence angle ϕ0) [12]
and is evaluated by(

E
H

)
(x, y, z) = A

∫ ∞

−∞
w(kz){Ψ0(kz, y)e−ikx (kz )(x−x0) + ρ}e−ikz (z−z0)dkz . (1)

Here, w(kz) is a weighting function determined by the incoming laterally guided mode of the rib
waveguide. The term in curly brackets depicts the former quasi-2-D solution in the x-y-plane
evaluated in COMSOL with the vectorial profile Ψ0 for incoming oblique TE0 incidence and
a remainder ρ. The last phase factor represents the individual harmonic z-dependences of the
elementary quasi-2-D solutions. Offsets x0, z0 have been introduced to normalize the global phase
of the bundle to the end facet of the incoming waveguide. Finally A is the amplitude of the fields.
To evaluate the unknown weight w(kz) the guided mode profile of the etched rib waveguide,

given in local coordinates (x ′, y, z′) and calculated in COMSOL with the ’Mode Analysis’ solver,
is transformed to the global coordinates (x, y, z). For simplicity the following calculations are
shown for normal incidence only, so (x, y, z) = (x ′, y, z′). To determine the unknown weight
w(kz) the mode profile Φ0 of the fundamental quasi-TE mode of the rib can be written as a
superposition of the complete set of normal modes Ψ j supported by the slab waveguide at the
junction plane where rib and slab waveguides meet,

Φ0(y, z) = A
∑
j

∫ ∞

−∞
wj(kz)Ψ j(kz, y)e−ikz (z−z0)dkz, (2)
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where j identifies mode orders. Using the complex product

(Ψ,Φ)y :=
1
4

∫ ∞

−∞
(E∗1yH2z − E∗1zH2y + H∗1zE2y − H∗1yE2z)dy (3)

defined for mode orthogonality with the transverse field components of two different modes
Φ = (E1,H1) and Ψ = (E2,H2) [27] and assuming that the modes are orthogonal and power
normalized the unknown weight is given by

w0(kz) =
1

2πA

∫ ∞

−∞
(Ψ0,Φ0)yeikz (z−z0)dz. (4)

By rotating the coordinates and fields by the appropriate angle, so transforming Ψ j(y) from the
global to the local coordinate system, the desired calculation can also be made analogously for
oblique incidence.

After passing the discontinuity we want to catch the TE0 mode back again in a rib with identical
width l, so the field profiles of incoming and outgoing wave are identical except for a pre-factor
u0 ∈ C that represents the transmission coefficient. The outgoing field profile Ψout(y, z) can again
be expressed as a superposition of all existing modes in the rib waveguide Φj(y, z), which leads to

Ψout(y, z) =
∑
j

u jΦj(y, z). (5)

Once again by applying the product for mode orthogonality [27], now for two transverse
coordinates, with Φ = (E1,H1) and Ψ = (E2,H2) given by

(Φ,Ψ)y,z :=
1
4

∫ ∞

−∞

∫ ∞

−∞
(E∗1yH2z − E∗1zH2y + H∗1zE2y − H∗1yE2z)dydz, (6)

and assuming mode orthogonality and power normalization, here for the modes of the rib
waveguide, Eq. (5) leads to the resulting complex transmission coefficient

u0 = (Φ0,Ψout)y,z . (7)

The integrals in Eqs. (1), (4), (7) required to calculate the 3-D solutions were evaluated using
numerical quadrature [28]. Here, the range of superimposed angles and the step size play an
important role for the accuracy of the results. Note that quadrature parameters required for
convergence depend on the spectral properties of the expanded fields, i.e. the rib width.

As for the structure with sharp edges [12], the beam width, here determined by the width l of
the rib, is very important to guarantee acceptable field properties. In general, for a small rib width,
a wide range of incidence angles has influence on the field properties and vice versa. At this point
we refer to Fig. 6 in order to clarify the angular dependence of these 3-D structures. For small
curvature radii slight changes in the incidence angle lead to larger changes in transmittance and
reflectance values (see config. (C1), (C2)). Thus, small, sharper bends require large widths to avoid
influence of unintended back reflections. However, the rib width can be reduced for increased bend
radius (config. (C3)–(C4)), because the angular dependence of the step transmittance becomes
less intense. So increasing the radius results in a decrease of the necessary rib width that leads to
acceptable field properties.

3.1. 3-D solutions

Some resulting 3-D fields are shown in Fig. 9 for incidence angles, curvature radii and vertical
distances as analysed for the 2-D case in Fig. 7.
The rib widths l were selected such that the wave bundles showed neither pronounced

additional reflections when compared to the 2-D situation, nor substantial spreading. For the
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(a)

(C1)

(b)

(C2)

(c)

(C3)

(d)

(C4)

(e)

(C5)

(f)

(C6)

Fig. 9. Electric field |E| for incidence of laterally guided modes for the bent step structure
for different radii r , primary angles ϕ0 and heights h as used before in Fig. 7 for rib widths
(a) l = 40µm, (b) l = 60µm, (c) l = 10µm, (d) l = 40µm (e) l = 10µm, (f) l = 10µm.
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present parameters used below, we observe hardly any divergence of the wave bundles excited
by the incoming rib mode. The small image on the upper left shows the field properties of the
cross section in the x-y-plane, the lower left image represents the field in the vertical segment
in the z-y-plane, and furthermore the middle and right images demonstrate the absolute field
value of the electric field in the horizontal plane for the incoming wave (middle) and transmitted
wave (right) in the x-z-plane with a view from above. Note that only the fields in the infinite slab
waveguide step are shown without the incoming rib.

As expected, small to no reflectance can be observed for large radii, while for small radii the
reflected waves are still present. Furthermore for increasing radius a much smaller rib width l
is required down to a comparably narrow width of 10µm for configuration (C6) (see Fig. 9(f)).
For the structures with sharp edges in [12] large beam widths up to 180µm were necessary to
avoid unintentional reflections. So the bent structures provide better field properties for narrow
incoming wave bundles.

3.2. Power transmittance

In a last step we look at the transmittance levels for the TE0 mode in the previous 3-D steps.
According to the formulas of Section 3, the TE transmittance (see Eq. (7)) is directly given by the
coefficient |u0 |2. Results for the structures of Section 3.1 are shown in Fig. 10. In addition to the
previously considered curved configurations (C1)–(C6), the calculations were also carried out
for steps with sharp edges (S1), (S2) from [12]. The rib widths for these structures are adopted
from the bent structures with smallest curvature radius (config. (C1) and (C2)), meanwhile the
incidence angles ϕ = 41◦ and ϕ = 68◦ are taken from the results in [12] and correspond to
maximal transmittance in 2-D.

Fig. 10. TE0 transmittances for the 3-D (blue line) bent step structure (config. (C1)–(C6))
and sharp step structure (config. (S1)–(S2)) from [12], for incoming and outgoing rib of
width l, depending on the height h for different incidence angles and radii. The red line refers
to the corresponding 2-D results from Section 2.1, with laterally unlimited incoming waves.

The continuous blue line in Fig. 10 shows the 3-D TE transmittance values for incoming
TE0 mode for specified rib widths l as used before in Section 3.1, whereas the dashed red line
illustrates the corresponding 2-D TE transmittances from Section 2.1. For the structure with
sharp edges the 2-D transmittances were also determined with COMSOL. The configurations for
the sharp structure, especially (S2), require a large rib width to achieve comparable results to the
2-D calculations. In [12], it was already shown that beam widths up to 180µm were necessary to
guarantee acceptable field behaviour for these 90◦ structures.

Referring to the bent structures there is no perfect agreement with the 2-D results, because the
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angular dependence has huge influence on the field properties, but the results show quite good
agreement. Therefore the excitation of 3-D bent step structures with the help of a rib waveguide
is a practical possibility and leads to excellent transmittance values.

4. Conclusion

With the help of the numerical finite element software COMSOL Multiphysics, bent corner and
step structures were investigated. Optical quasi-2-D and 3-D scattering problems in the frequency
domain were solved. By changing the incidence angle, the curvature radius and the vertical
step height, configurations with high transmittance values could be identified. The following
behaviour applies to these bent structures: For large radii the incoming wave is nearly completely
transmitted for arbitrary incidence angles and height, while for small radii substantial reflections
are observed. Here, only for specific heights and incidence angles full transmittance is reached. A
resonance effect, similar to a Fabry-Perot-Etalon, was observed, when scanning over the step
height.
Finally, laterally confined 3-D solutions were considered, where the structures were excited

by the fundamental mode of a wide, shallow rib waveguide. Solutions are calculated as a
superposition of 2-D solutions for a range of propagation angles. One obtains wave packets of a
specific width for a defined primary angle. With the help of a second outgoing rib waveguide,
transmittance values for the 3-D structure could be calculated. In general, for adjusted rib widths,
the results show good agreement with the transmittance values for the effective 2-D structures.
For low curvature radii a large rib width is necessary, because only wavevectors that fulfil the
resonant condition lead to correct field properties. By increasing the curvature radius also smaller
widths lead to high transmittance values, here the resonant effect has less influence. So for
practical interest such bent structures can yield a high level of transmission with comparably
small laterally widths.
Consequently, it was shown that energy transfer to different levels, in 3-D integrated optical

chips, by using bent slab waveguides might be a promising, practically relevant concept.
By increasing the curvature radius the transmittance levels become even almost completely
independent of the incidence angle or step height.
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