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The 3D implementation of a hybrid analytical/numerical variant of the coupled-mode theory is discussed.
Eigenmodes of the constituting dielectric channels are computed numerically. The frequency-domain
coupled-mode models then combine these into fully vectorial approximations for the optical electromagnetic
fields of the composite structure. Following a discretization of amplitude functions by 1D finite elements, pro-
cedures from the realm of finite-element numerics are applied to establish systems of linear equations for the then-
discrete modal amplitudes. Examples substantiate the functioning of the technique and allow for some numerical
assessment. The full 3D simulations are highly efficient in memory consumption, moderately demanding in com-
putational time, and, in regimes of low radiative losses, sufficiently accurate for practical design. Our results
include the perturbation of guided modes by changes of the refractive indices, the interaction of waves in parallel,
horizontally or vertically coupled straight waveguides, and a series of crossings of potentially overlapping channels
with fairly arbitrary relative positions and orientations. © 2017 Optical Society of America

OCIS codes: (130.0130) Integrated optics; (130.2790) Guided waves; (260.2110) Electromagnetic optics.
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1. INTRODUCTION

Frequently, the functioning of a composite integrated-optical
circuit can be understood in terms of the interaction of the mo-
dal waves supported by the constituting structures. Solvers for
the eigensolutions of these constituents (typically straight and
bent dielectric channels or optical cavities) are well established,
more or less. It then remains to predict the interplay of these
modes. Methods that implement this approach are typically
termed “coupled-mode theory” (CMT). We refer to the papers
[1,2], to a topical collection [3], and to the textbooks [4–7] for
overviews on the variety of existing techniques.

CMT is often seen to motivate mere parametric models,
where the coefficients in coupled-mode equations serve as fit
parameters, i.e., are not linked directly to the underlying basis
fields/to the relevant Maxwell equations. If implemented from
first principles, things are often restricted to two spatial dimen-
sions only. There are fewer instances where non-parametric CMT
formalisms have been actually applied in full 3D. Among these
are the examples of [8] (codirectional CMT, low-contrast wave-
guides), [9–11] (codirectional CMT, higher contrast and aniso-
tropic waveguides), [12,13] (interaction between optical fibers
and photonic crystal waveguides), and [14] (interaction between
straight and bent channels, ring resonator models).

Conventionally, when working in the frequency domain
(as opposed to “time-domain CMT,” see, e.g., [15]), the wave

interaction is determined as the solution of a set of ordinary
differential equations, the “coupled-mode equations,” for the
amplitudes of the basis modes, which are introduced as func-
tions of some spatial propagation coordinate. The viewpoint of
a single common propagation coordinate is decidedly unnatu-
ral, if not impracticable, for specific configurations. This con-
cerns, e.g., the coupling of waves between straight and strongly
curved channels or the crossings of waveguides for larger cross-
ing angles, as discussed in this paper.

A way out is found in omitting the common propagation
coordinate, and, consequently, in abandoning the notion of
coupled-mode equations. Instead, one resorts to numerical
means. The respective “hybrid” analytical/numerical CMT vari-
ant (HCMT) was introduced in [16], at first applied to circuits
with rectangular refractive index distributions, including the
crossings of perpendicular waveguide channels, waveguide
Bragg gratings and related filters, and systems of coupled square
microcavities [16,17]. References [18,19] report on HCMT
models of a series of micro-ring or -disk circuits. The most recent
overviews of the quite versatile technique are found in [20,21];
all examples so far, however, were restricted to 2D.

With this paper, we report on our first results on the ex-
tension to spatially three-dimensional configurations. The
modeling starts with a physically plausible expression for the
electromagnetic field in a composite 3D circuit. Suitable modes
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of its constituting channels (eigensolutions on 2D cross-
sectional domains) are computed numerically by means of a
commercial finite-element solver [22]. Then, the total
field is approximated as a superposition of these vectorial pro-
files, with amplitudes that are functions of their—potentially
different—“natural” propagation coordinates. Discretization
of these into 1D finite elements, followed by a Galerkin-type
projection, leads to small systems of linear equations. Their
solutions permit us to inspect the wave interaction in terms
of the variations of the amplitude functions and to assemble
approximations of the overall optical fields.

The paper outlines the theoretical background and briefly
discusses limitations and implementational details. Beyond
some consistency checks, our first results concern a series of
quite general crossings of rectangular straight channels.
Figure 1 lists the examples considered in this paper.

Our emphasis here is to show the applicability of the HCMT
method for 3D configurations and to provide some numerical
assessment. The waveguide crossings have been chosen as conven-
iently simple examples where conventional CMT approaches,
relying on systems of coupled differential equations, are not appli-
cable (for larger intersection angles). Still, there is interest in these
structures in their own right. Simulations of waveguide crossings
(2D or 3D, partly with optimized intersection regions, typically
for waveguides on the same level) are carried out usually by
numerical tools (most prominent: finite-difference time-domain
simulations) [23–27], but also by quasi-analytical methods (2D,
mode-matching type of techniques) [28,29]. Three-dimensional
crossings of low-contrast silica and/or polymer waveguides
[30–32] have been considered as vertical couplers; switchable
configurations have been simulated and realized, with small cross-
ing angles, i.e., with nearly parallel channels, and partly designed
by (“conventional”) 3D CMT [8] or by beam propagation [33].
Sections 3.D and 3.E demonstrate the relevance of our HCMT
models for the analysis of crossings in 3D for (nearly) the full
range of intersection angles between >0° and up to 90°.

2. HYBRID COUPLED-MODE THEORY IN 3D

This concerns models in the frequency domain. A time
dependence ∼ exp�iωt� is assumed for all fields, with the
angular frequency ω � kc � 2πc∕λ specified by the vacuum
wavenumber k or vacuum wavelength λ for the speed of
light c � 1∕ ffiffiffiffiffiffiffiffiffi

ϵ0μ0
p

, vacuum permittivity ϵ0, and permeability
μ0. We seek approximate solutions of the Maxwell curl
equations

∇ ×H − iωϵ0ϵE � 0; −∇ × E − iωμ0H � 0: (1)

Restricted to linear, non-magnetic, isotropic, and lossless
media, the structural properties are given by the spatially
dependent refractive index n or the relative permittivity
ϵ � n2.

A. Field Template and Discretization

The first step toward the HCMT model is to identify a physi-
cally plausible expression for the optical electromagnetic field.
Figure 2 gives a schematic representation, using the example of
a waveguide channel crossing. One assumes that the total
field can be approximated adequately as a superposition of
the guided modes supported by the “separated” channels. We
assume here that these modal functions are at hand, being made
available by suitable numerical procedures. Note that the process
of “separating” the channels can be ambiguous in certain
circumstances, e.g., if additional substrate or cover layers are
present. To minimize errors, the supporting permittivity func-
tions, for which the basis modes are calculated, should be as close
as possible to the true, total permittivity that describes the
composite structure. Depending on the phenomena that are
expected (guided-wave backreflections, multimode propagation,
polarization conversion), directional variants of modes of
different orders and/or polarizations need to be taken into
account.

Individually per channel, per mode, and per propagation
direction, if applicable, convenient local coordinates �x 0; y 0; z 0�
are introduced. In these coordinates, the respective mode with
profile �Ẽ 0; H̃ 0� and propagation constant β � kneff relates to
the electromagnetic field [34] as�

E 0

H 0

�
�x 0; y 0; z 0� �

�
Ẽ 0

H̃ 0

�
�x 0; y 0�e−iβz 0 : (2)

One expects that the interaction with other waves changes this
expression. Assuming that the original, unperturbed mode pro-
file remains a good approximation for (part of) the field in the
composite structure, an amplitude function a is introduced that
depends on the natural propagation coordinate z 0 of the mode.
This amounts to a contribution�

E 0

H 0

�
�x 0; y 0; z 0� � a�z 0�

�
Ẽ 0

H̃ 0

�
�x 0; y 0�e−iβz 0 (3)

to the overall field, with an at-present unknown function a�z 0�.
Here, we switch to numerics. An interval is identified, out-

side of which a can be assumed to be constant, due to the ab-
sence of any other interacting waves. Inside the interval, a is
being discretized with 1D finite elements, i.e., a is expressed
as a superposition

HCMT

Fig. 1. Here, hybrid CMT, shown schematically, for the interaction of guided waves supported by straight dielectric channels with a rectangular
cross section. Given the modal properties of an isolated channel (left), the functioning of the composite systems (right) is to be predicted. Shown are a
single channel with modified core permittivity, horizontally and vertically coupled parallel waveguides, a perpendicular crossing of coplanar wave-
guides, and intersections of channels at parallel planes with varying vertical positionings and orientations.
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a�z 0� �
X
j

ajαj�z 0� (4)

of element functions αj, with coefficients aj. Figure 2(e) gives
an impression; for the examples in this paper, we choose
elements of the first order on a regular mesh, with formally
half-infinite first and last elements. The contribution of this
particular mode then reads�

E 0

H 0

�
�x 0; y 0; z 0� �

X
j

aj

�
αj�z 0�

�
Ẽ 0

H̃ 0

�
�x 0; y 0�e−iβz 0

�

�
X
j

aj

� E 0
j

H 0
j

�
�x 0; y 0; z 0�; (5)

where the last equality defines the “modal elements” �E 0
j ;H 0

j�,
products of element functions, mode profile, and modal
exponential.

The backtransformation from local to global coordinates
�x 0; y 0; z 0� → �x; y; z� concerns the position arguments as well
as the orientations of the electric and magnetic field vectors. In
the case of the waveguide crossing, the parameters that specify
the relative horizontal and vertical positioning of the waveguide
cores and the crossing angle enter in this step. The total field is
then expressed as a sum over the respective contributions given
in Eq. (5) from the different modes that are considered for the
model, �

E
H

�
�x; y; z� �

X
k

ak

�
E k
H k

�
�x; y; z�: (6)

Here, all modal elements and coefficients have been merged into
uniform sets, where the formal index k covers the different chan-
nels, modes of different polarizations, orders, and propagation

directions, whatever is applicable. We are left with the task of
determining the coefficients ak.

B. Algebraic Procedure

Next, we apply a projection procedure of the Galerkin type, as
is common in the field of finite-element numerics. The relevant
Maxwell equations [Eq. (1)] are multiplied by trial fields F , G
and integrated. Requiring the resulting expression to vanish for
arbitrary trial fields, one arrives at the weak formZZZ

K�F ;G;E ;H �dxdydz � 0 for all F ;G (7)

of Eq. (1), with

K�F ;G;E ;H � � F � · �∇ ×H � − G� · �∇ × E�
− iωϵ0ϵF � · E − iωμ0G� ·H : (8)

By inserting the field template [Eq. (6)] and restricting Eq. (7)
to the set of modal elements �F ;G� ∈ f�E k;H k�g, we are led
to the linear system of equationsX

k

K lkak � 0; for all l ; (9)

with overlaps of modal elements

K lk �
ZZZ

K�E l ;H l ;E k;H k�dxdydz: (10)

One observes that some of the coefficients ak represent the am-
plitudes of incoming waves, i.e., these are given quantities. For
the example of the crossing, this concerns, for every channel,
mode, and propagation direction, the coefficients of elements
with index 0 [cf. the local description related to Fig. 2(e)].
For a model that includes the bidirectional propagation of
modes with both TE- and TM-like polarization along
both channels, there are 8 coefficients. Typically, for a single

(a) (b)

(d) (e) (f)

(c)

Fig. 2. Hybrid numerical-analytical coupled-mode model, shown schematically. (a) The configuration to be analyzed, described in global
Cartesian coordinates x, y, z. (b) Convenient local coordinates x 0, y 0, z 0 are introduced separately per channel and per (directional) mode. (c)
Basis fields are determined in local coordinates, including the vectorial electromagnetic mode profile, here dependent on x 0, y 0, and the exponential
dependence on the “natural” propagation coordinate, here z 0. (d) An interval is identified where, due to the interaction with other elements of the
composite structure, the local mode amplitude must be expected to change. (e) Along that interaction interval, the amplitude function is being
discretized by 1D finite elements: basis functions αj and an equidistant discretization with N � 1 mesh points over the interval �z0; zN � with
formally half-infinite first and last elements α0 and αN . (f ) Backtransformation to global coordinates and summation over respective contributions
from all interacting waves lead to the final template for the total electromagnetic field.
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incoming polarized mode at one end of one channel, the
respective single coefficient is set to one, and the other 7
are zero.

The coefficients ak are collected into a vector a � �u; g� and
ordered such that u represents the actual unknowns, while g
corresponds to the given excitation. With the matrix elements
[Eq. (10)] arranged accordingly, the system [Eq. (9)] can be
written as 

Kuu Kug

Kgu Kgg

!�
u

g

�
� 0; or Kuu � −Kgg ;

with Ku �
 
Kuu

Kgu

!
; Kg �

 
Kug

Kgg

!
: (11)

The matrix in the first system of Eq. (11) is square. We solve
the second, overdetermined system in a least-squares sense, i.e.,
the unknowns u are obtained as the solution of

K†
uKuu � −K†

uKgg : (12)

Here, the symbol † denotes the adjoint. Further algebraic
details and a formulation of an alternative, true variational
scheme, can be found in [16].

Frequently, those coefficients u that correspond to the
modal output amplitudes are already the most interesting
results. After inserting the coefficients u, g , the amplitude
functions [Eq. (4)] can give an impression of the interaction
of the coupled modes. By substituting the values of u, g for
the coefficients a in Eq. (6), one arrives at the HCMT approxi-
mation to the full field.

1. Evaluation of Modal Element Overlaps

Given the vectorial basis mode profiles and related eigenvalues,
a central part of the implementation of this scheme is the evalu-
ation of the integrals [Eq. (10)]. One notices that the integrand
[Eq. (8)] requires the electric and magnetic parts of fields E k,
H k of the modal elements, but also the curls of these modulated
modal fields. Here, the following observations have been
incorporated.

Keeping the directions of the local and global x, x 0-directions
identical, the local coordinates r 0 � �x 0; y 0; z 0� and the global
coordinates r � �x; y; z� are related by transformations of the
form r 0 � ρ�r − r0�, with a coordinate offset r0 and an orthogo-
nal matrix

ρ �
0
@ 1 0 0

0 cos α − sin α
0 sin α cos α

1
A; (13)

which specifies a rotation by an angle α. Accordingly, fields A, A 0

in the global and local coordinates transform as

A�r� � ρ⊤A 0�ρ�r − r0��: (14)

One then readily shows that the respective curls are related as

�∇ × A��r� � ρ⊤�∇ 0 × A 0��ρ�r − r0��: (15)

In the local coordinates, the basis mode fields (profiles and
exponential dependence on z 0) satisfy the curl equations

∇ 0×H 0− iωϵ0ϵ 0E 0 �0; −∇ 0×E 0− iωμ0H 0 �0 (16)

for the permittivity ϵ 0, which describes the underlying single
waveguide only. ϵ 0 usually differs from the permittivity ϵ of
the composite structure, even apart from coordinates.
Further, for a field modulated as in Eq. (5),

A 0�x 0; y 0; z 0� � a�z 0�Ā 0�x 0; y 0; z 0�; (17)

one computes

∇ 0 × A 0 � a∇ 0 × Ā� �∂z 0a��−Ā 0
y; Ā 0

x ; 0��⊤; (18)

such that the local curls of the modulated basis fields are [35]

∇ 0 × E 0 � −iωμ0aH 0 � �∂z 0a��−Ē 0
y; Ē 0

x ; 0��⊤;
∇ 0 ×H 0 � iωϵ0ϵ

0aE 0 � �∂z 0a��−H̄ 0
y; H̄ 0

x ; 0��⊤: (19)

Using Eqs. (15) and (19), it is possible to express the curls of
the modal element fields through the exported fields directly,
without resorting to numerical derivatives.

3. NUMERICAL EXPERIMENTS

The basis mode profiles for all models in this paper have been
generated by the eigenvalue solver that is part of the JCMwave
software suite [22]. The computations rely on finite-element
methods, with unstructured, adaptive meshing, and suitable
error control. Modal profiles are exported on a dense, regular
rectangular grid on the transverse computational window used
by the mode solver. The actual HCMT method has been
implemented in C++, to some degree adapting the previous
2D code. The programs invoke the external solver via automati-
cally generated scripts and system calls and import the
mode profiles for further processing. In that way, any other
suitable, script-driven mode solver could be supplied easily,
in principle.

The evaluation of the overlaps in Eq. (10) of the pairs of
modal elements constitutes clearly the heaviest burden, where
the computation time is concerned (parallelization should be
straightforward, though). Accurate calculation of the integrals
is required. Ten-point Gaussian quadrature [36] was applied
on discrete intervals of length ≤λ∕8 per dimension. The pro-
cedures assume smooth integrands; hence, they are deployed
piecewise within regions, where the local permittivity of at least
one modal element was constant. This is to avoid, as much as is
conveniently possible, larger errors due to discontinuous field
components or derivatives at dielectric interfaces. Further, the
numerical integrals are evaluated piecewise on (half of the) sup-
ports of the finite-element triangle functions involved. Note
that each modal element [cf. Eq. (5)] comes with its own
domain, given, in local coordinates, by the transverse window
of the mode profile, times (×) the domain of the element
function α. Hence, for each pair of fields, the integration
[Eq. (10)] can be restricted to the intersection of their “native”
domains; the definition of a global computational domain is
not necessary.

The memory requirements are mostly limited to the com-
putation of the basis fields. These are vectorial eigenvalue prob-
lems, but on 2D computational domains. Beyond what is
required for the storage of (a pair of ) mode profiles at a time,
the actual HCMT procedures do not require much more
memory. The final linear systems of equations to be solved
are of small to moderate sizes, with typical dimensions of a
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few hundred unknowns. While no numerical discretization of
the 3D field needs to be stored, after the assembly of the
amplitude functions, the (approximated) fully vectorial 3D electro-
magnetic field is available through the template given in Eq. (6).

With the present lossless contributions, the results of the
HCMT models are power conservative, as far as that can be
expected from a partly numerical scheme. For all the simula-
tions shown in Sections 3.B–3.E, the deviation of the relative
guided power output from unity is typically well below 10−3.

The examples given in Sections 3.B and 3.C permit bench-
marking through direct modal analysis of the composite struc-
ture. In those cases, the JCMwave eigensolver serves as the
reference. Assessment of the results in Sections 3.D and 3.E,
however, requires “brute-force” numerical calculations. Here,
we employed the 3D frequency-domain solver of the CST
“Microwave Studio” [37], relying on a finite integration tech-
nique. Due to hardware limitations (memory), full convergence
of the results, with respect to the mesh step sizes and do-
main extension, could not always be assured. This concerns
in particular some of the computationally large structures of
Section 3.E with shallow crossing angles. Still, the results
should provide a suitable reference for the present purposes.

To give some indication concerning the computational effort
required for a rigorous (“full Maxwell”) solution in relation to the
HCMT model, we carried out reference calculations with the

CST frequency-domain solver for the three crossing configura-
tions of Fig. 12, using computational parameters leading to con-
verged results with an anticipated accuracy of 	0.01 for the
predicted transmittance levels. Table 1 compares the respective
runtimes andmemory consumption with the computational effort
for the HCMT simulations that generated the data for Fig. 12.
Note that the values are highly dependent on the manifold com-
putational parameters; however, the vastly reduced computational
cost of the presented method is apparent in all tested scenarios.

A. Basis Modes

For all of the following simulations, we adopt parameters
as given in the caption of Fig. 3; these resemble values for
SiO2∕Si3N4 materials [38] at a typical telecommunication
wavelength. For the present structures with piecewise constant
permittivity, the CMT templates violate the continuity require-
ments of the electromagnetic fields at certain interfaces between
regions with constant permittivity. The respective errors can be
expected to be small, if either the contrast in refractive index
itself is small or if the local optical fields are small, where the
latter condition is typically realized for high-contrast wave-
guides with strong light confinement. Hence, in this sense,
the parameters of Fig. 3, with a substantial but not too high
refractive index contrast, represent a bad-case scenario for
any coupled-mode approach. We like to emphasize that the

Fig. 3. Electromagnetic profiles of the TE-like fundamental mode (top row) and the TM-like mode (bottom row) supported by the waveguide
channels assumed for all simulations in this paper; results of the JCMwave solver [22]. Contour lines are placed at	2% of the maximum levels of the
absolute electric and magnetic fields strengths, determined separately for each mode. These are waveguides with a core of width w � 1.0 μm, height
h � 0.4 μm, and a core refractive index ng � 1.99, surrounded by a background material with refractive index nb � 1.45 at a vacuum wavelength
λ � 1.55 μm.

Table 1. Computational Effort for HCMT Simulations and Full Wave Reference Calculationsa

Example: HCMT CST-FD

Fig. 12 Memory Runtime Comp. Interval Memory Runtime Comp. Volume

(a), α � 70° 150 MB 6 min z 0 ∈ �−1.3; 1.3� μm 9.4 GB 1 h, 10 min 728 μm3

(b), α � 18.5° 150 MB 18 min z 0 ∈ �−7.5; 7.5� μm 41 GB 12 h, 48 min 1928 μm3

(c), α � 11° 150 MB 28 min z 0 ∈ �−13; 13� μm 92 GB 50 h, 22 min 3157 μm3

aComputational effort spent on simulations of the three crossing configurations of Fig. 12 by the present 3D HCMT scheme and by the frequency-domain solver of
the CSTMicrowave Studio [37]. Observed data for peak memory use and total program runtime are compared; the extension of the computational intervals [HCMT,
cf. Fig. 2(e)] and the volume of the computational domain (CST) are listed. In both cases, machines with Intel 16-core Xeon CPUs (2.9 GHz) with 128 GB of memory
were used. The commercial CST software (MS Windows Server) ran in parallel on up to 8 cores, depending on the phase of the computations, while our HCMT code
(Linux, g++) occupied a single core only.
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applicability of the HCMT approach need not be limited to
“low-contrast” structures. Just as for the present examples of
intermediate contrast, for any “high-contrast” configurations,
one can expect regimes of structural parameters where the
HCMT models are adequate and others where large errors
are encountered. In all cases, the specified field template (cf.
Section 2.A) needs to cover the major features of the physical
fields as a prerequisite.

The embedded rectangular strip waveguides support guided
TE- and TM-like modes of the lowest order only. On a com-
putational window �x; y� ∈ �−2; 2� μm × �−2; 2� μm, enclosed
by boundary conditions of vanishing tangential electric field
components (“PEC-medium”), the eigensolver [22] predicts
effective indices neff ;TE � 1.63554 and neff ;TM � 1.56809.
Note that only part of that domain is shown in the plots of
Fig. 3. The vectorial profiles are normalized to unit power
and exported on a dense rectangular mesh (301 × 301 points)
for further processing. The field extension, quantifiable by the
2% contours shown, is slightly smaller for the fundamental TE-
like mode than for the less-well-confined TM mode. One thus
expects, for an equal geometry, a stronger interaction with other
elements for the TM- than for the TE-like mode.

B. Single Waveguide

A segment of the “native” waveguide of the basis modes serves
for the first consistency check. We use a template that includes
forward and backward variants of the modes of Section 3.A,
with amplitudes that can vary over an interval of 10 μm length,
discretized with a step size of Δz � 0.5 μm, leading to 21
coefficients per mode, i.e., to a system [Eq. (12)] of dimension
80 (4 given coefficients). The forward TE mode is launched
with unit initial amplitude. Figure 4(a) shows the evolution
of the amplitude functions.

As is to be expected, the amplitude of the forward TE mode
stays at 1� 0i, while all other amplitude functions (backward
TE, forward and backward TM) remain at zero. The formalism
predicts independent propagation of modes that are orthogonal
due to different direction of propagation or different polariza-
tion (note that these originate from an external numerical
scheme).

Next, we restrict the template to a single polarized forward
mode at a time, but now launch that mode in a segment of the
waveguide with a perturbed core refractive index (where the

transitions at z � 0, L are not considered). According to
Fig. 4(b), the amplitude no longer remains constant, but incurs
a phase shift. This can be understood as follows: the perturbed
waveguide supports a mode with a slightly different effective
index npeff , i.e., with a dependence ∼ exp�−iknpeff z� on the
propagation coordinate. The HCMT scheme accommodates
through a variation of the amplitude function a, times the
natural exponential dependence of the basis mode, with the
original effective index neff . This amounts to a z-dependence
∼a�z� exp�−ikneff z�. One therefore expects a variation a�z� ∼
exp�−ikΔneff z� for an effective index perturbation
Δneff � npeff − neff . Table 2 compares values read off from
the plots in Fig. 4(b) for different polarizations and levels of
perturbation, with reference values computed by direct mode
analysis for the perturbed waveguide. Apparently, for fields that
pass through regions with modified permittivity, the present
procedures generate the proper phase shifts; in this sense,
perturbation theory is “built into” the HCMT formalism.

C. Parallel Coupled Channels

The codirectional evanescent interaction between parallel
waveguides constitutes a “classical” CMT problem, in particu-
lar one where reliable benchmarking is straightforward. We
consider two of the channels from Section 3.A, with the cores
placed either side by side or on top of each other, separated by
some distance. Expecting neither reflections nor polarization
conversion, the couplers are modeled with forward modes of
the same polarization only. Figures 5 and 6 summarize the
results for gaps of 0.2 μm. The amplitudes of the modes are
discretized on an interval z ∈ �0; 60� μm with a step size of
0.5 μm, leading to systems [Eq. (12)] of dimension 240.

(a) (b)

Fig. 4. Single waveguide as in Fig. 3, modal amplitudes a, real and imaginary parts, as functions of the local propagation coordinate z. (a) The
template includes forward and backward variants (f, b) of both the TE and TM modes. The TE mode is launched into its native waveguide.
(b) A template that comprises the forward TE mode only, now launched into a segment with the core refractive index perturbed by Δn � 0.2.

Table 2. Phase Shifts Due to Waveguide Core
Perturbationsa

Δneff

Δn � 0.1 Δn � 0.2

TE TM TE TM

HCMT 0.075 0.049 0.154 0.100
JCMwave 0.078 0.051 0.162 0.110

aShifts Δneff , as predicted by HCMT simulations of a waveguide segment
with its core refractive index increased by Δn. Entries “JCMwave” (reference)
are computed by direct mode analysis [22] of the waveguide with the perturbed core.
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One observes the familiar beating process, with the optical
power switching periodically forth and back between the cores.
Table 3 (row HCMT) lists values for the respective half-beat
lengths Lc, extracted from the plots in Figs. 5 and 6, for differ-
ent gaps and polarizations. As anticipated in Section 3.A, one
observes a slightly stronger interaction, i.e., a shorter coupling
length, for the TM modes, due to the larger extent of
their mode profiles. Further, for the same core separation,

the interaction is much stronger for the vertically coupled set-
ting than for horizontal coupling, due to the larger relative
strengths of the basis fields at the position of the respective
“other” core.

Alternatively, for the purpose of benchmarking, the two-
core structure can be regarded as a single waveguide with a
composite cross section, and, as such, can be analyzed directly
by some mode solver. For each instance of gap and polarization,

(a)

(b) (c)

(d)

Fig. 6. Vertically coupled parallel channels. Parameters are those used in Fig. 3, with the cores at a distance s � 0.2 μm; the results are for TE-
polarized waves. (a) Amplitudes of fundamental waves associated with both waveguide cores as a function of the propagation distance; real (con-
tinuous) and imaginary parts (dashed) and absolute values are shown. (b, c) Total field (absolute value jH j of the magnetic field) at cross sections
located at the input (b) and at one half-beat length (c). (d) Field jH j on the vertical plane at the center of both cores.

(a) (b)

(c)

(d)

Fig. 5. Horizontally coupled parallel channels. Parameters are those used in Fig. 3, with the cores at a distance g � 0.2 μm; the results are for TE-
polarized waves. (a) Amplitudes of fundamental waves associated with both waveguide cores as a function of the propagation distance; real (con-
tinuous) and imaginary parts (dashed) and absolute values are shown. (b, c) Total field (absolute value jH j of the magnetic field) at cross sections
located at the input (b) and at one half-beat length (c). (d) Field jH j on the horizontal plane at the center of both cores.
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the solver returns two “supermodes” of opposite symmetries
with respect to the central plane that divides the individual
cores. The two propagation constants β0 and β1 can be trans-
lated into values Lc � π∕jβ0 − β1j for the coupling length.
Table 3 shows a reasonable agreement between these reference
values and the former HCMT results.

D. Perpendicular Crossing of In-Plane Waveguides

As an example that is not treatable by conventional, differential-
equations-based CMT, we next look at a coplanar perpendicular
intersection of two of our former waveguides. Reflections and
polarization conversion cannot be excluded a priori; hence,
the HCMT template includes bidirectional versions of TE
and TM modes of both channels. The modal amplitudes are

discretized on intervals z 0 ∈ �−2.2; 2.2� μm (local coordinates,
all symmetric) with a step size of Δz � 0.1 μm. For the 8 basis
modes, the system [Eq. (11)] is of the dimension 352. Figure 7
summarizes the results for TE-polarized excitation; we observed
quite similar findings (not given) for TM excitation, with the
roles of the TE and TMmodes reversed. Note that this is a struc-
ture with pronounced discontinuities, where scattering losses to
non-guided fields are to be expected; it is thus a little daring to
apply a model that is built strictly from guided fields.

One observes rather unexciting results. There is hardly any
interaction visible: no reflections, redirection of the power to
the traversing channel, or polarization conversion. The pres-
ence of the traversed channel becomes apparent mainly as some
phase change in the propagation of the mode sent in. The
modes of the lateral channel contribute slightly in the central
region, without any power carried away by these fields.

The numerical reference results [37] of Table 4 confirm the
findings of a small interaction between the guided modes.
About 10% power loss to non-guided, radiated fields are pre-
dicted. Obviously, the HCMT model cannot account for these
losses. Still, as far as that is possible, given the crude approxi-
mation of the negligible radiation, the HCMT simulation rea-
sonably captures the guided part of the optical field. These
findings agree well with the observations for a similar structure
in 2D [16].

E. Waveguide Crossings at Oblique Angles

The inset of Fig. 8 introduces schematically a quite general 3D
crossing of waveguides, aligned on parallel planes at different
vertical levels. Given the fixed properties of the channels of
Fig. 3, the positioning and orientation of the cores are specified
by the crossing angle α and the vertical distance s of the hori-
zontal center planes of the channels (here, the definition of s
differs from that given in Section 3.C).

First, we look at structures with a fixed intersection
angle, rather arbitrarily set to α � 9.44°. Assuming negligible
reflections, the HCMTmodel includes TE- and TM-like forward
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Fig. 7. Perpendicular crossing of channels at the same level; param-
eters are those used in Fig. 3. (a) Evolution of the amplitudes and real
(continuous) and imaginary parts (dashed) of the directional TE and
TM modes of both channels, as functions of the respective local co-
ordinates z 0. Arrows indicate propagation along (→ ), reversed (← ), or
perpendicular (↑; ↓) to the direction of the incoming TE mode. (b)
Total field jH j on the horizontal plane at the center of both cores.

Table 4. Perpendicular Waveguide Crossing, Transmittance and Reflectancea

(a) Input: TE (b) Input: TM

TE, → TE, ← TE, ↑, ↓ TM, → , ← , ↑, ↓ TM, → TM, ← TM, ↑, ↓ TE, → , ← , ↑, ↓

87% <0.1% <0.1% <10−6 92% <0.1% <0.1% <10−6

aFor the perpendicular waveguide crossing of Section 3.D: relative guided power transferred to the polarized modal outlet straight ahead (→ ), reflected (← ), and
directed toward the lateral outlets (↑; ↓), for TE- (a) and TM-polarized excitation (b). Reference calculations using the CST solver [37].

Table 3. Half-Beat Lengths of 3D Coupled Waveguidesa

Lc∕μm

(a)
g

(b) s

g � 0.2 μm g � 0.3 μm g � 0.4 μm s � 0.2 μm s � 0.4 μm s � 0.6 μm s � 0.8 μm

TE TM TE TM TE TM TE TM TE TM TE TM TE TM

HCMT 19.8 16.8 28.2 22.8 39.5 30.4 4.9 4.9 10.5 8.2 21.4 14.4 42.7 25.2
JCMwave 19.5 16.9 28.2 22.5 40.4 29.8 5.1 5.0 10.6 8.4 21.4 14.8 42.5 25.8

aCoupling lengths Lc for horizontally (a) and vertically (b) coupled waveguides with the same parameters as in Fig. 3, as determined by the HCMT formalism, and via
a direct supermode analysis with the JCMwave solver [22] (reference).
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modes in the template, such that the model covers polarization
conversion. The amplitudes of the 4 basis modes are discretized
on computational intervals z 0 ∈ �−15; 15� μm (local coordi-
nates), with a step size of Δz � 0.5 μm. Figure 8 summarizes
the results for the transmittances along the bar lightpath (power
remains in the excited channel) and cross lightpaths (power is
transferred to the intersecting channel) for varying vertical posi-
tions of the crossing waveguide and for polarized excitation.
Figures 9 and 10 show the evolution of the modal amplitudes
and illustrate the accompanying fields for select vertical distances.

The amplitude functions displayed in Figs. 9 and 10 relate
to superpositions of non-orthogonal basis fields. Rather, in the
case of small s, and at positions z 0 close to the center of the
crossing, these are quite similar, i.e., nearly linearly dependent.
There is no reason why the levels of a· at intermediate positions
should be restricted to ja·j2 ≤ 1. With power-normalized basis
fields and for the unit input power, the output amplitudes of the
four basis modes satisfy the power balance

P ja·j2�zN � � 1,
with an accuracy on the scale of the figures.

While the HCMT model is thus power conservative, the
physical structure must be suspected to show radiative losses.
In particular, for small vertical distances s with locally (partly,
or entirely, at s � 0) merged cores, and the present shallow
intersection angle, the crossing can be regarded as a combination
of two Y-junctions, concatenated at their stems. For single-side
excitation in one of the branches, this might lead to about 50%
power loss, as can be argued using reciprocity arguments [5].
Hence, one has to expect substantial radiation for these configu-
rations, even without pronounced discontinuities in the permit-
tivity (as they would be present for larger intersection angles).
Respective reference calculations (cf. Fig. 11) indicate that this
is indeed the case. All the results in Figs. 8–10 for s < 0.6 μm,
say, must thus be mistrusted, in this respect. We have never-
theless included the curves to show that the algorithm behaves
reasonably within the restrictions of the HCMT template (where
one should be aware that this can be a dangerous feature).

Due to the symmetry of the setting, most of the reciprocity
properties of the scattering matrix are trivially implemented.
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Fig. 9. For the waveguide crossings of Fig. 8 at angle α � 9.44°, with TE-like excitation in WG1. Evolution of the modal amplitudes a as
a function of the respective local coordinate z 0 and optical fields jH j at the center levels x � 0 of the lower and x � s of the upper waveguides
for vertical distances s that correspond to the labels �a�–�e� in Fig. 8(a).

(a) (b)

Fig. 8. Intersections of two waveguides with the parameters of Fig. 3 and with the waveguides at parallel planes, intersecting at an angle α.
Polarized transmittances T as functions of the vertical center-to-center distance s between the cores for α � 9.44°, for the bar (WG1) and cross
(WG2) paths, and for excitation by the TE-like (a) and the TM-like modes (b) in WG1. Upper labels �a�–�j� refer to the plots of Figs. 9 and 10.
Darker background shading indicates distances s, where the crossings potentially exhibit substantial radiative losses.
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Beyond the geometrical symmetry, however, reciprocity de-
mands equal transmittances for the bar and cross paths for
(orthogonal) modes of different polarizations. The matching
cross-polarization curves in Fig. 8(a) (dashed lines) and
Fig. 8(b) (continuous lines) indicate that the HCMT algorithm
implements reciprocity adequately in this case.

Polarization conversion apparently does not play a role for
larger vertical distances s, i.e., beyond the shaded region of
Fig. 8. Hence, for further exploration of parameters α and s,
we restrict to a template that includes unidirectional modes
of one polarization only. The respective transmittance curves
are shown in Fig. 11. While one might argue that for large
α, e.g., for α � 90°, the unidirectional model conflicts obvi-
ously with the symmetry, the fully bidirectional simulation
of Section 3.D for the configuration s � 0 with the potentially
strongest interaction shows that any lateral crosstalk should be
negligible at large angles and for larger vertical separations.

Figure 11 compares the HCMT results with the numerical
calculations carried out with the CST solver [37]. The slightly
irregular appearances of those curves are potentially caused by
the limited computational domain; we observed that the rip-
pling is reduced for larger distances between the waveguide
cores and the transparent domain boundaries. Using those
settings, however, particularly the configurations for small
intersection angles were not accessible with the resources
available (the required domain size depends on the intersection
angle and on the vertical distance between the waveguide
cores). We therefore resorted here to the not fully converged
curves.

As discussed above, the numerical reference predicts pro-
nounced losses for smaller distances s. Still, when looking at
larger separations, there is a regime with reasonable agreement

between the HCMT results and the numerical reference.
One observes a locally weaker interaction, but still strong
net effects, with large power-transfer ratios, i.e., the waveguides
are obviously not decoupled at all. Here the HCMT method is
most useful; with smaller radiation losses, this is fortunately also
the most interesting region for applications.
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Fig. 11. For the oblique waveguide crossings shown in Fig. 8.
Transmittances T as functions of the intersection angle α for varying ver-
tical distances s of the intersecting channels and for TE- (left) and TM-like
excitation (right). Results of a unidirectional, single-polarization HCMT
model (continuous lines) and numerical reference (CST solver [37]).
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Fig. 10. For the waveguide crossings of Fig. 8 at angle α � 9.44° with TM-like excitation in WG1. Evolution of the modal amplitudes a as a
function of the respective local coordinate z 0 and optical fields jH j at the center levels x � 0 of the lower and x � s of the upper waveguides for
vertical distances s that correspond to the labels �f �–�j� in Fig. 8(b).
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As an example, the HCMT results are reasonably close to
the numerical reference for s � 0.7 μm and TE excitation.
A strong interaction can be observed, with the power transfer
varying from nearly zero to complete, depending on the inter-
section angle. Figure 12 illustrates the field characteristics for
three selected crossing angles.

The findings of Fig. 12 tempt us to speculate on possibilities for
connecting guided waves at different levels in a 3D optical chip.
Waveguide circuitry based on the present SiO2∕Si3N4-channels
would be placed at levels with a vertical distance of s � 0.7 μm
between their center planes, operated in TE-like polarization at a
wavelength of 1.55 μm. Crossings of straight segments of a chan-
nel at the lower level and with one at the upper level could be
envisioned, where the intersection angle α determines the inter-
action. Hardly any crosstalk to the traversing channel would be
observed for nearly perpendicular crossings (angles ≥70°, say).
Crossings at an angle of 18.5° function as a 50% power splitter,
those at an angle of 11° act as vertical couplers. All splitting ratios
in between could be realized by selecting intermediate angles.
Provided that the relative orientation and the vertical distance
are observed, the transmittances are obviously independent from
the precise relative positioning of the masks that define wave-
guides at the two different levels (the phases depend on these
positions, though).

4. CONCLUDING REMARKS

The extension of the original 2D HCMT approach [16] to
fully vectorial computations for spatially 3D configurations
has been discussed. As in 2D, efficient, quantitative, and inter-
pretable models in the frequency domain are obtained that are
very close to common ways of reasoning in integrated optics.
To some degree, the formalism resembles a finite-element
method, but one with highly specialized, structure-adapted
basis functions. In the present 3D case, the basis modes are
generated numerically by an external solver. No issues related

to the necessarily limited accuracy, the discrete representation,
or the finite computational window of the basis modes were
encountered during the implementation.

For the examples, we adopted parameters with a substantial
but not too high refractive index contrast, leading to potentially
strong interactions of the basis fields. In the case of the
perturbed waveguides, and for horizontal and vertical evanes-
cent coupling, the HCMT predictions are consistent with the
numerical benchmark results. For the waveguide crossings,
radiation losses play a role the HCMT templates cannot
account for. Still, where those losses are small, i.e., for the
potentially most interesting configurations, we observed a good
agreement with the numerical reference calculations.

Regarding computational costs, the 3D implementation is
only moderately demanding in terms of both time and
memory. A major part of the computational time is spent
on the evaluation of modal element overlaps, where the present
code leaves some room for optimization. All HCMT results
shown in this paper have been generated using machines of
standard desktop scale. The method thus constitutes a
computationally cheap complement to much more (or, in
certain cases, prohibitively) expensive rigorous numerical
frequency- or time-domain calculations in 3D.

Funding. Deutsche Forschungsgemeinschaft (DFG)
(GRK1464, HA 7314/1-1, TRR 142).
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