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Abstract: We present phase sensitive cavity field measurements on photonic crystal 
microcavities. The experiments have been performed as autocorrelation measurements with 
ps double pulse laser excitation for resonant and detuned conditions. Measured E-field 
autocorrelation functions reveal a very strong detuning dependence of the phase shift 
between laser and cavity field and of the autocorrelation amplitude of the cavity field. The 
fully resolved phase information allows for a precise frequency discrimination and hence for 
a precise measurement of the detuning between laser and cavity. The behavior of the 
autocorrelation amplitude and phase and their detuning dependence can be fully described by 
an analytic model. Furthermore, coherent control of the cavity field is demonstrated by 
tailored laser excitation with phase and amplitude controlled pulses. The experimental proof 
and verification of the above described phenomena became possible by an electric detection 
scheme, which employs planar photonic crystal microcavity photo diodes with metallic 
Schottky contacts in the defect region of the resonator. The applied photo current detection 
was shown to work also efficiently at room temperature, which make electrically contacted 
microcavities attractive for real world applications. 
©2016 Optical Society of America 
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1. Introduction 

Photonic crystal microcavities (PhCC) exhibit outstanding properties as for example very 
high Q-factors which allow to store the light up to several nanoseconds [1] or tiny mode 
volumes down to the range of λ3 [2,3]. Small mode volume and high Q-factor lead to a 
strongly enhanced light matter interaction [4], which makes PhCCs interesting for 
fundamental research as well as for applications [5,6]. In many cases also the dynamic 
control of cavity key properties is desired. Existing approaches employ for example the 
tuning of the resonance wavelength by temperature [7], the use of photochromic films on top 
of the samples [8] or coupled cavities with strain- [9] or electrostatic force-controlled [10,11] 
inter-cavity distance. A very promising technique for extremely fast dynamic control of the 
PhCC Q-factor by laser excitation and free carrier generation was demonstrated by 
McCutcheon et al. [12] and Upham et al. [13]. 

In the present work we have investigated the dynamics of the cavity field, performing 
phase sensitive measurements by two pulse excitation of a GaAs slab photonic crystal cavity. 
A proper adjustment of the pulse amplitudes and relative phase allows here for a detailed 
phase resolved analysis of the cavity excitation and for the coherent control of the cavity field 
on the time scale of the laser pulse duration. 

In order to measure the dynamical cavity field response on a ps-time scale, methods like 
non-linear frequency mixing [14], time-correlated single-photon counting [15] or pump-
probe experiments [12] have been used in the past. An alternative detection technique for the 
cavity field, which is used here, is the measurement of the autocorrelation function. For this 
we have developed PhCC Schottky photo diodes [16]. They allow for background free 
electric detection, which is a great advantage compared to established transmission or 
reflection measurements. 
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2. Investigated system 

2.1 Sample design 

The investigated sample is a GaAs slab based photonic crystal cavity with a narrow metallic 
Schottky contact located in the center of the defect (see Fig. 1(a)). The layer sequence of the 
180 nm thick membrane consists of 50 nm n+ doped GaAs followed by 40 nm of i-GaAs, an 
InGaAs wetting layer (WL) and 90 nm of i-GaAs (see Fig. 1(a)). Together with the metal 
strip it forms a local n-i-Schottky diode, which is used here for photo current (PC) 
measurements in the cavity. 

The PhCC is fabricated by e-beam lithography and reactive ion etching (see Ref [16]. for 
more details). The lattice constant of the PhCC is 250nma =  and the hole radius 

is 0.25r a≈ ⋅ . The cavity defect is formed by a line of 15 missing holes (L15 cavity). The use 
of such a long cavity results in decreased radiative and scattering losses compared to shorter 
cavities with metal strip [16]. The fabricated strip is 50 nm wide and 10 nm thick (5 nm 
Chromium and 5 nm Gold). An SEM image of the fabricated structure is shown in Fig. 1(a). 

2.2 Photocurrent spectroscopy 

The described cavity design allows for absorption measurements by PC spectroscopy. The 
cavity mode spectrum can be monitored by sweeping the wavelength of a narrow band laser 
and measuring the corresponding PC [16]. The field enhancement at the cavity resonance 
leads to a corresponding enhancement of the PC signal. In this manner we obtain direct 
access to the intensity of the cavity excitation. 

In the following we concentrate on the cavity mode with the highest Q-factor of around 
5000. Its resonance energy of 1.29 eV (960 nm) is far away from the center of the WL 
absorption at 1.39 eV (at 4.2 KT = ). As the cavity resonance is located only in the band tail 

of the WL, its Q-factor is not limited by WL absorption but by other losses like fabrication 
imperfections and light scattering by the metal strip. The selected cavity mode is strongly 
polarization dependent and can be best excited by linear polarized light, oriented parallel to 
the metal strip. 

2.3 ps-pulse excitation 

For ps excitation we use a Titanium-Sapphire (Ti:Sa) laser with a repetition rate of 72 MHz 
and a pulse duration of 3.5pspulset ≈ . The pulses have a sech2-envelope and are Fourier 

limited. 
The response of a micro-cavity, excited by a laser pulse depends on the pulse duration 

pulset , the cavity Q-factor and the detuning between laser and cavity resonance detuningω . The 

time evolution of a slightly detuned laser-cavity system is shown in Figs. 1(c)-1(f). In Fig. 
1(c) we show a schematic view of the laser field LE  and its envelope Lg . The excitation 

pulse is described as a harmonic oscillation (frequency Lω ), which is modulated by Lg . As 

an example, Fig. 1(d) shows a cavity response CE  and Cg  for a slightly detuned excitation 

pulse ( L Cω ω> ). The frequency of the cavity field is not constant over time. CE  starts to 

oscillate with the driving frequency of the excitation pulse Lω and changes slowly to the 

resonance frequency Cω  after the pulse duration. Due to this frequency chirp it is beneficial 

for further discussions to change the reference frame to the rotating reference frame of the 
laser. 
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Fig. 1. (a) SEM image and schematic view of the investigated GaAs PhCC free standing 
membrane with metallic Schottky contact (highlighted for better contrast), (b) which is excited 
by a near-resonant (or resonant) ps-laser pulse. The n-i-Schottky photo diode is used for PC 
detection via WL band tail absorption. (c) E-field and corresponding envelope of the laser 
excitation pulse and (d) the resulting cavity response. The change of the carrier frequency 
versus time is a result of the detuning between cavity and laser. (e) Numeric results for the 
cavity response in the rotating reference frame of the laser field and (f) for the phase evolution 
of the cavity field in the rotation frame of the laser field. 
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We have modeled the system numerically with results shown in Figs. 1(e) and 1(f). For 
this we assumed that the WL is always excited in the linear regime and the measured signal is 
proportional to the excitation intensity 2 2( ) | ( ) | | ( ) |C C LI E Eω ω ω∝ ∝ . The cavity mode is 

described as a dissipative oscillator with complex electric field amplitude ( )CE t , as ( )LE t  

considered in a rotating frame. ( )CE t  satisfies the differential equation [17,18] 

 ( ) ( ) ( ) ( )C detuning C C in LE t i E t E t E tω γ μ= − +   

The detuning is given by detuning C Lω ω ω= − , γ  is the cavity field ring-down constant and 

inμ  corresponds to the input coupling rate. An example for a cavity excited by a 3 ps pulse 

with detuning 700μeV ( 0.5 nm)detuningω = ≈  is shown in Fig. 1(d). The rotating frame 

representation nicely shows the changes of the cavity mode oscillation frequency. The 
corresponding envelope | ( ) |C Cg E t=  is not affected by the choice of the reference frame and 

is therefore equal to the envelope shown in Fig. 1(d). After the excitation pulse the regime of 
the exponential cavity ring down can be clearly seen (marked grey in Fig. 1(e)). 

In Fig. 1(f) we further show the phase C Lφ φ φ= −  between the cavity field CE  and laser 

field LE . It is obtained by calculating the argument of the complex valued ( )CE t : 

tan Im{ ( )} / Re{ ( )}C CE t E tφ = . Before the pulse arrives, the phase is equal to / 2π . It 

accelerates and finally, after the pulse duration, runs off with constant velocity. The constant 
slope of the phase function is equal to the detuning detuningω  between laser and cavity. 

In our experiments, neither the fast oscillations nor the phase can be instantly measured 
due to the extremely short time scale. To get access to the phase we use the technique of two 
pulse interference. 

3. Experimental method 

3.1 Experimental setup 

The train of pulses from the Ti:Sa laser was split in two equal parts and combined again by a 
Michelson interferometer. In order to achieve a variable time delay delayt  between the pulses 

one interferometer end mirror was mounted on a combined positioner, which allows for 
coarse adjustment and additional fine tuning via a closed loop nano-positioner. An 
interference between the (partly) overlapping pulses could be observed for delay times of 
about two times the pulse duration. This correspond to a length of 2 2 2 mmpulse pulsel c t= ⋅ ≈  , 

where c  is the speed of light in vacuum. The output signal of the interferometer was adjusted 
with respect to polarization and average power and was send through a polarization 
maintaining beam splitter. One part was used for the cavity excitation and another for a 
reference measurement of the laser interference by a power detector. The excitation light was 
focused on the sample by an objective lens (x100, 0.75NA = ) to a spot size of 1μm≈  . 

The experiments were performed at 4.2 K in a helium cryostat and at room temperature. 
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3.2 Measurement procedure 

 

Fig. 2. (a) PhCC excited by two equal pulses with phase control by variable time delay delayt  

yielding destructive (top) and constructive (bottom) interference. (b) Extracted envelope 
functions corresponding to constructive and destructive case for laser (red, the arrows from (a) 
indicate the link between E-field and envelope) and cavity response (black). (c) 
Experimentally obtained interference patterns for laser and cavity signal. (d) Detailed view of 
the measured time averaged signal for laser and cavity. The signals exhibit a phase shift φ . 

In the following we present our procedure for the measurement of the phase difference 

C Lφ φ φ= −  between the cavity field CE  and the laser field LE . A direct, time dependent 

observation like it is shown in Fig. 1(f) is not possible because of the fast field oscillations 
( 2 310 THzLω π≈ ⋅  ). However, the phase φ  can be extracted by comparing the interference 

signals obtained from the PhCC photo diode and from the bare laser pulses. Both signals 
depend on the time delay delayt  between the two pulses. The cases of destructive and 

constructive interference are shown schematically in Fig. 2(a). The corresponding time 
dependent envelope functions for laser Lg  and cavity signal Cg  are plotted in Fig. 2(b). The 

interfering laser pulses produce a symmetric signal Lg , which is enhanced for the 

constructive case and offers a central dip for the destructive case. The cavity signal Cg  is 

more complicated. It is asymmetric and shows in both cases a signature of the cavity ring-
down, even when the laser pulses have already vanished. It is important to state, that in 
general, the laser and cavity fields are out of phase (see Fig. 1(f)) and e.g. a constructive 
interference of laser pulses does not automatically result in a constructive interference of the 
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cavity field. The phase φ  and consequently the interference between the cavity field and the 

second excitation pulse depend on two values: The detuning detuningω  and the time delay delayt  

(see Fig. 1(f)). 

 

Fig. 3. (a) Experimentally measured interference amplitude and phase for different detunings 
at 4.2 KT =   and an excitation power of 430 nW . (b) Room temperature data for weak 

detuning at an excitation power of 9.5 nW . 

The response of our detectors, of both the laser power detector and the PhCC photo diode, 
is much slower than the oscillation frequency. Therefore, the measured signal is proportional 

to the time average of the squared envelopes 2
, ,| ( ) | dL C L CI g t t∝  . Sections of interference 

pattern (see Fig. 2(c)) recorded at equal delay steps of 0.75 ps and the zoom in of the 
experimental data (see Fig. 2(d)) are shown for a sample temperature of 4.2 K and an 
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excitation power of 430 nW after the objective lens. The detuning of 520μeVEΔ = −  was 

measured by a grating spectrometer with a spectral resolution of 80μeV± . The interference 

signal of the laser detector (red curve) as well as the PhCC photo diode PC (black curve) 
perform sinusoidal oscillations versus time delay (see Fig. 2(d)). The oscillation period is 

1
,2 3.2fsC LT πω−= ≈ . The signals of those time averaged measurements are maximal for 

constructive and minimal for destructive case. For the example shown in Fig. 2(d) the cavity 
oscillations are shifted in phase by C Lφ φ φ= −  with respect to the laser signal. 

Another important value is the amplitude of the PC oscillations CA , measured by the 

PhCC photo diode. The comparison of the interference patterns between the laser and the 
PhCC displayed in Fig. 2(c) shows distinct differences between the shapes of the signals. As 
the laser pattern envelope can be fitted by a sech2-function, the PC signal appears to be 
modulated and reveals two characteristic dips at 4 ps± . One can observe additional minima 

at 11ps±  , by extracting the PC amplitude CA  and plotting the data logarithmically (see top 

graph in Fig. 3(a)). By comparing CA  and the extracted phase function φ  (blue curve) it 

becomes apparent that the minima appear under conditions where the phase is equal to π± . 
The observed behavior is discussed in the following section. 

4. Experimental results and analytic model 

4.1 Autocorrelation 

An interferogram as shown in Fig. 2(c) can be modeled by calculating the autocorrelation 
function of the laser pulses or the resulting cavity field respectively. For the case of linear 
WL absorption we measure the E-field autocorrelation which is defined as 

2( ) | ( ) ( ) | ddelay delayt E t E t t t
∞

−∞
Χ = + − . By taking ( ) Re{ ( )exp( )}C LE t E t i tω=  with the 

complex valued cavity field ( )CE t  (slowly varying compared to the carrier frequency Lω ) 

one can show that 

 ( ) Re{exp( ) ( ) ( )d }delay L delay C C delayt C i t E t E t t tω
∞ ∗

−∞
Χ = + ⋅ − ,  

where C  is a constant offset. The whole phase and amplitude information of the 
autocorrelation function ( )delaytΧ  is contained in the remaining integral, which is equal to the 

autocorrelation of the rotating-frame cavity field ( )CE t . 

4.2 Analytic model 

The numerically obtained solution for the cavity response ( )a t  (see Figs. 1(e) and 1(f)) is a 

fairly complex function, which contains the detailed signature of the excitation pulse (here 
for example a sech2 function) and the exponential decay caused by cavity ring-down. A 
simple and more transparent analytic solution can be obtained, if we introduce the following 
approximation for the cavity response: 

 
1

2

, 0
( )

, 0detuning

t

C i tt

e t
E t

e e t

γ

ωγ

+

−

 ≤≈ 
≥

  

The envelope ( ) | ( ) |C Cg t E t=  (solid line) and real part Re{ ( )}a t  (dashed line) for this 

approach are shown in Fig. 4(a). Based on this, the autocorrelation function 

( ) ( ) ( )ddetuning C Ct E t E t t
∞ ∗

−∞
Χ =   can be calculated analytically. The autocorrelation function 

applied to a complex valued argument is as well complex and Hermitian [19]. It is an even 
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function with respect to the absolute value and an odd one with respect to the argument. 
Therefore, it is enough to calculate ( )detuningtΧ  for positive delay times and to expand the 

function towards negative delay times by using its symmetry properties. 

 

Fig. 4. (a) Cavity response approximated by a complex field amplitude function ( )CE t  

showing real part Re{ ( )}CE t  and envelope ( ) | ( ) |L Cg t E t=  of the cavity field. (b) 

Analytic solution for the autocorrelation amplitude and phase using the input parameters 
shown in Fig. 4(a). 

The result for 0delayt ≥  is 

 1 2

1 2( ) delay delay detuning delayt t i t

delayt c e c e eγ γ ω− −Χ = +   

with the constants 

 1 1
1,2 1,2 2 1(2 ) ( )detuningc iγ ω γ γ− −= ± − +   

( )delaytΧ  is a sum of two decaying oscillations (consider the rotating frame) with 

frequencies of the laser and the cavity resonance. The superposition of this oscillations leads 
to a beating signal (see Fig. 4(b)). 

By taking the absolute value or the argument of the complex autocorrelation function we 
get the amplitude autoA  or the phase autoφ  respectively. The amplitude function was fitted to 

the experimental data from the top graph in Fig. 3(a). The obtained fit parameters are 
1

1 2.9 0.3 psγ − = ±  , 1
2 4.1 0.2 psγ − = ±  and 620 20µeVFitEΔ = − ±  . The resulting functions for 

amplitude and phase are shown in Fig. 4(b). They agree almost perfectly with the measured 
curves shown in Fig. 3(a) (top), which is quite surprising in view of strongly simplified 
model. The calculated detuning is also very close to the measured value 
( 520 80 µeVEΔ = − ±  ). 
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The modulation of the amplitude function autoA  is caused by the beating between the 

carrier frequency of the laser and the cavity. Although the amplitude and the phase functions 
are not periodic, the distance between the side maxima (minima) of autoA  as well as the 

distance between the points where auto nφ π= ⋅  (or the inflexion points of autoφ ) is equal to 
12 detuningπω− . This allows for an experimental determination of the detuning between a 

reference given by the cavity resonance and unknown laser pulses (unknown frequency). 

4.3 Experimental results 

Figure 3(a) contains three experimental data sets of interference amplitude and phase for 
different detunings of ( 520 µeV; 120µeV; 420 µeV)EΔ = − − +     . Both functions ( CA  and φ ) 

are strongly influenced by the magnitude of the detuning. In addition to the observations for 
large detuning ( 520µeVEΔ = −  ), like modulated amplitude function with equidistant 

extrema, we measure a distinctly different behavior of CA  for smaller detuning detuningω . As 

shown in Fig. 3(a) for almost resonant excitation ( 120µeVEΔ = −  ) the amplitude function is 

completely smooth and a sech2-function can be applied to fit the amplitude shape. The 
resulting FWHM is two times larger as the width of the laser pulse interferogram. The 
oscillations of the PC versus time delay can be observed even if the laser signal is decayed. 
This behavior can be referred to the longer photon lifetime at the cavity resonance and can be 
further enlarged for higher Q-factors. The measured total PC is enhanced and more than three 
times higher as for 520 µeVEΔ = −   or 420 µeVEΔ =   (all curves shown in Fig. 3(a) have 

been recorded at the same excitation power of 430 nW). 
The detuning of 420µeVEΔ =   is located between the cases discussed above. The dips at 

the π±  transitions of the phase ( 7 psdelayt ≈ ± ) appear much less pronounced, but they are 

still characterized by slope changes of the CA  signal (in full agreement with our analytic 

theory). 
The presented examples show a strong detuning dependence of the amplitude shape. 

Nevertheless, all discussed cases can be described and fitted by our analytic model. The 
corresponding detunings obtained from fits are ( 120µeV) 200 60µeVFitEΔ − = ± ±   and 

( 420 µeV) 430 30µeVFitEΔ + = ± ±   (the amplitude function has a mirror symmetry and 

therefore does not include information about the sign of the detuning). In order to describe 
the rise and fall of the cavity field (see Fig. 4(a)) we have used an exponential model with 
constants 1γ  and 2γ . These constants depend predominantly on the duration of the excitation 

pulse pulset  and the Q-factor of the cavity, which remained unchanged for all three 

measurements. The corresponding fit parameters are also effectively equal: 
1

1 ( 120µeV) 2.4 0.4 psγ − − = ±  , 1
2 ( 120 µeV) 4.8 0.7 psγ − − = ±   and 

1
1 ( 420µeV) 2.6 0.3 psγ − + = ±  , 1

2 ( 420µeV) 4.1 0.4 psγ − + = ±  . The analytic description of the 

cavity response agrees amazingly well with our experimental data. This becomes apparent by 
comparing for example the experimental data shown in Fig. 3(a) for 520µeVEΔ = −   with the 

corresponding analytical fit curve shown in Fig. 4(b). 
Until now the discussion was concentrated on the amplitude function. The phase 

evolution for different detunings (see Fig. 3(a)) is more intuitive. An increased detuning leads 
to a steeper phase evolution and therefore to an increased number of π± -transitions. In 
addition to the magnitude of the detuning one can also distinguish between positive and 
negative detuning. The sign of the detuning corresponds to the sign of the phase slope (see 
Fig. 3(a)). 
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A very interesting behavior is observed for additional measurements at room temperature 
(see Fig. 3(b)). Amplitude and phase correlate in the same way with the detuning as for 

4.2 KT =  . The only difference is a much stronger PC response as compared to 4.2 KT =  . 
The data shown in Figs. 3(a) and 3(b) ( 120 µeVEΔ = −  ) have been measured at comparable 

detuning. The PC magnitude is as well comparable, but the measurements were done at 
different excitation power: 430 nW for 4.2 KT =  and 9.5 nW for 300 KT = . The sensitivity 
at 300 K is 45 times higher than at 4.2 K [16]. This enhancement can be explained by the 
following effects: (i) better spectral overlap between cavity mode and WL, (ii) thermally 
enhanced tunneling and thermionic emission [20,21] and (iii) enhanced exciton diffusion 
length [22,23]. 

The enhanced sensitivity at room temperature is very interesting for the application of 
PhCC photo diodes as narrow band photo detectors for cw excitation [16] and also for 
frequency or phase discrimination for pulsed excitation. 

5. Coherent control of the cavity field 

The coherent control of optical cavities is a promising goal, since it allows for the 
manipulation of cavity fields and resulting light-matter interactions on timescales below the 
cavity ring-down limit. An optical cavity excited by a single laser pulse stores the pulse 
energy for a certain amount of time, which is proportional to the Q-factor of the resonator. 
During the cavity ring-down the amount of the stored energy continuously decreases. For the 
case of excitation with two equal but delayed pulses, the remaining cavity excitation caused 
by the first pulse is always smaller as compared to the excitation by second one. To obtain for 
example an annihilation of the cavity field created by a first pulse, a suitable second pulse 
with predefined (reduced) amplitude and phase has to be applied (see Fig. 5(a)). 

As shown in Fig. 5(b) for the destructive case, the envelope of the cavity field Lg  

vanishes after the second laser pulse has passed. A ring-down behavior can only be observed 
for the constructive case. 

Experimental control of the pulse field strength was achieved by modification of the 
Michelson interferometer setup. One arm was equipped with a polarizer and an adjustable 

/ 2λ  plate. After the time delay was set to destructive interference of the cavity field, we 
have measured the PC response as a function of the pulse fields ratio 2 1/E E . On the left side 

of Fig. 5(c), a PC measurement for a constant delay of 9.2 psdelayt =  at 4.2 KT =   and zero 

detuning is presented. The PC curve exhibits a local minimum at a field ratio of 0.35. This 
minimum corresponds to a total cancelation of the cavity E-field. A weaker second pulse 
( 2 1/ 0.35E E < ) cannot completely switch off the ring down. For higher field ratios 

( 2 1/ 0.35E E > ) like e.g. equal pulses ( 2 1/ 1E E = ) the remaining field is overcompensated 

by the second pulse. Both cases lead to stronger field (envelope) average and thus to higher 
PC. 

The right graph of Fig. 5(c) shows PC data for a shorter delay time ( 7.3 psdelayt =  ). 

Coherent control (PC minimum) is achieved for a field ratio 2 1/ 0.5E E ≈ . This behavior is 

expected and can be explained by the shorter delay time, which leads to a higher remaining 
cavity field 1E . 

The presented coherent control of the cavity field can be extended to various cavity 
geometries and may be very interesting for cavity QED experiments on cavity-quantum dot 
systems. 
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Fig. 5. (a) PhCC excited by two destructively interfering delayed pulses. The second pulse is 
attenuated with respect to the first pulse. (b) Time dependent cavity field envelopes for 
constructive and destructive interference. The second pulse cancels the cavity ring down. (c) 
Experimental observation of coherent control of the cavity field for pulses delayed by 9.2 ps 
(left) and 7.3 ps (right). The PC minima correspond to the conditions of cavity ring-down 
cancellation. 

6. Conclusion 

We have presented a phase sensitive analysis of the cavity field in a PhCC by two pulse 
interference. The interference patterns can be explained and fitted by a simple, but accurate 
analytic model, which can also describe the E-field autocorrelation behavior for different 
detuning scenarios. The measured interference amplitude and phase shift between the cavity 
and laser field allows for an enhanced frequency discrimination, due to the availability of 
phase information. 

For the case of detuning, the cavity field starts to oscillate with the laser frequency. After 
the excitation pulse has vanished, the cavity enters the ring down regime, during which the 
frequency is given by the bare cavity frequency. This corresponds to a frequency chirp, 
which can be controlled in sign and magnitude by the adjustment of the detuning. This 
concept may be in particular interesting for the coherent state preparation in quantum dot – 
cavity systems. Advanced excitation schemes like the adiabatic passage [24–26] could be 
tailored by selecting specific conditions of detuning between cavity, quantum dot and laser. 
A positive chirp could be realized for example by a laser pulse with a frequency, which is 
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red-shifted with respect to the cavity mode frequency, with the quantum dot frequency in 
between laser and cavity. For such a configuration the quantum dot would be exposed to a 
cavity field, which sweeps from negative to positive detuning over the quantum dot 
resonance frequency. 

Double pulse excitation and the adjustment of the amplitude and phase of second laser 
pulse during cavity ring-down further allows for the coherent control of the cavity field. 

The experimental proof and verification of the above described phenomena became 
possible by an electric detection scheme, which employs planar photonic crystal microcavity 
photo diodes with metallic Schottky contacts in the defect region of the resonator. The 
applied photo current detection was shown to work also efficiently at room temperature, 
which makes electrically contacted microcavities attractive for real world applications. The 
general concept can also be applied to different cavity geometries or material systems. 

In summary we believe that the phase sensitive manipulation and analysis of cavity fields 
as presented here is important for the further development of ultrafast cavity physics and its 
applications both for real world room temperature devices and for photonic quantum 
technologies. 

Funding 

Deutsche Forschungsgemeinschaft (DFG) (Research Training Group 1464, SFB-TRR 142); 
German Federal Ministry of Education and Research (BMBF) (16KIS0109, 16KIS0114). 

 

                                                                                         Vol. 24, No. 18 | 5 Sep 2016 | OPTICS EXPRESS 20684 




