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Abstract

In automated machine learning (AutoML), the process of engineering machine learning
applications with respect to a specific problem is (partially) automated. Various AutoML
tools have already been introduced to provide out-of-the-box machine learning function-
ality. More specifically, by selecting machine learning algorithms and optimizing their
hyperparameters, these tools produce a machine learning pipeline tailored to the problem
at hand. Except for TPOT, all of these tools restrict the maximum number of processing
steps of such a pipeline. However, as TPOT follows an evolutionary approach, it suffers
from performance issues when dealing with larger datasets. In this paper, we present
an alternative approach leveraging a hierarchical planning to configure machine learning
pipelines that are unlimited in length. We evaluate our approach and find its performance
to be competitive with other AutoML tools, including TPOT.
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1. Introduction

The demand for machine learning functionality is increasing quite rapidly these days, not
least because of recent impressive successes in practical applications. Since users in different
application domains are normally not machine learning experts, a suitable support in terms
of tools that are easy to use is required. Ideally, (nearly) the whole process including
inducing models from data, data preprocessing, the choice of a model class, the training
and evaluation of a prediction, etc. would be automated (Lloyd et al., 2014). This has
triggered the field of automated machine learning (AutoML), which has developed into an
important branch of machine learning research in the last couple of years.

Various state-of-the-art AutoML tools (Thornton et al., 2013; Komer et al., 2014; Feurer
et al., 2015; Olson and Moore, 2016; de Sá et al., 2017) have shown impressive results
in selecting machine learning algorithms and optimizing their hyperparameters to form a
machine learning pipeline (ML pipeline). These approaches can be divided into two main
categories. First, the AutoML problem is designed as an optimization problem with a fixed
number of decision variables, which then is solved via standard (Bayesian) optimization tools
such as SMAC (Hutter et al., 2011). Typically, these approaches, such as auto-sklearn and
Auto-WEKA, have one variable for a pre-processing algorithm, one variable for the learning
algorithm, and one variable for each parameter of each algorithm. However, a relaxation of
the length restriction is not straight-forward. Approaches of the second category organize
the AutoML search space in terms of a formal grammar. The advantage of this formalism
is that it naturally allows for recursive structures, thereby supporting more flexible ML
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Figure 1: Possible workflow of an ML pipeline

pipelines. While de Sá et al. (2017) propose a grammar-based approach and allow for
multiple preprocessing steps, the maximum length of an ML pipeline is still fixed. To the
best of our knowledge, TPOT as originally introduced by Olson et al. (2016) is the only
AutoML tool with no upper bound on the length of a pipeline. However, while the more
flexible pipelines as composed by TPOT often perform particularly well, we also observed
severe scalability issues of TPOT for more complex datasets (e.g., large number of features
and/or instances).

In this paper, we present an alternative approach for composing ML pipelines that are
unlimited in length, using a grammar-based formalism. More specifically, we show how
ML-Plan (Mohr et al., 2018), an AutoML tool based on an AI planning technique called
hierarchical task networks, can be extended for this purpose. In our evaluation, we find that
our approach performs competitive to TPOT and furthermore improves on the scalability
issues.

2. AutoML and Hierarchical Planning

AutoML seeks to automatically compose and parametrize machine learning algorithms into
ML pipelines with the goal to optimize a given metric, e.g., predictive accuracy. Figure 1
shows an example of such a pipeline, which also illustrates that pipelines are by no means
only sequences of atomic algorithms but can have parallel flows and nested structures as
well. For example, StackingEstimator has a LinearSVC and AdaBoost uses RandomForest
as a base learner. Especially, when it comes to meta methods, such recursive definitions
of algorithms incorporating a base learner (and other components) constitute a very fre-
quent pattern. In general, complete pipelines can be viewed as a hierarchical composition
structure as in the example shown on the right-hand side of Figure 2. Furthermore, ma-
chine learning algorithms usually have hyperparameters that need to be chosen specifically
for this algorithm. Thus, a hierarchical view of a machine learning pipeline represents its
natural structure particularly well.

One interesting approach for creating such structure is hierarchical planning, a concept
from the field of AI planning (Ghallab et al., 2004). In essence, it is about iteratively break-
ing down an initially given complex task into new sub-tasks, which may also be complex or
simple (no further refinement required). Complex tasks are recursively decomposed until
only simple tasks remain. This procedure is comparable, for example, to deriving a sentence
from a context-free grammar. In that sense, complex tasks correspond to non-terminals and
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Figure 2: Excerpt of the search graph (left) listing the tasks of the planning problem at each
node and its hierarchical representation in the form of an ML pipeline (right).

simple tasks match terminal symbols. An example is shown on the left-hand side in Figure 2
where complex tasks are displayed in blue and simple tasks in green.

We are aware of four approaches to AutoML using hierarchical planning or related
techniques. The first approach is related to optimization within the RapidMiner framework
based on hierarchical task networks (HTN) (Nguyen et al., 2014; Kietz et al., 2012). They
conduct a beam search (hill-climbing in the most extreme case), where the beam is selected
based on a ranking of alternative choices obtained from a meta-learning module, which
compares the current dataset with previous ones and choices taken back then. The most
recent representative of this line of research is Meta-Miner (Nguyen et al., 2014). While
these approaches do not execute candidates during search to observe their performance,
approaches of extensive evaluation is presented in RECIPE (de Sá et al., 2017) and TPOT
(Olson and Moore, 2016). TPOT and RECIPE create pipelines using a grammar-based
genetic programming algorithm; the pipeline candidates are evaluated in the course of
computing their fitness. Last, ML-Plan (Mohr et al., 2018) recognizes the value of executing
pipelines during search, but also observes that the extensive evaluation conducted in TPOT
and RECIPE is infeasible for larger datasets. It reduces the number of evaluations by only
considering candidates obtained from completions of currently best candidates. Like Meta-
Learner, it is based on HTN planning.

Of course, other AutoML solutions such as Auto-WEKA or auto-sklearn can be extended
to multiple pre-processing steps. It is clear that one can flatten any hierarchical structure
into a vector as long as the allowed structures are bound in length. However, it is rather
unclear how to represent ML pipelines that are unlimited in length.

In this paper, we extend ML-Plan to deal with unlimited-length ML pipelines, which is
our approach for pipelines including a single preprocessor and a learner. In the following
section, we give a brief overview of ML-Plan and explain how it is extended.
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3. ML-Plan for Unlimited-Length ML Pipelines

3.1. ML-Plan

As briefly sketched above, ML-Plan is a hierarchical planner designed for AutoML problems
(Mohr et al., 2018). Standard hierarchical planners such as SHOP2 (Au et al., 2011) lack
some fundamental requirements of AutoML, e.g., to evaluate candidate solutions during
search, which was a main motivation for developing ML-Plan.

The search technique adopted by ML-Plan is a best-first graph search. Like other
planners, ML-Plan reduces the planning problem to the problem of finding a path to an
optimal goal node in a graph. The graph is represented by a distinguished root node, a
function for generating successors of a given node, and a function for testing whether a node
is a goal node. In a nutshell, the best-first search algorithm assumes that every node in the
explored part of the graph is associated with a score (in R), and, in each iteration of the
search, the leaf node with the lowest score is chosen for expansion. In contrast to A*, there
is no assumption that the node score can be computed from edge costs; instead, there is
just a function that returns the score without being related to the score of other nodes.

The node evaluation in ML-Plan is based on random path completion as also used in
Monte Carlo Tree Search (Browne et al., 2012). To obtain the evaluation of a node, this
strategy draws a fixed number of path completions, builds the corresponding pipelines and
evaluates them against a validation set. The score assigned to the node is the minimal score
that was observed over these validations in order to estimate the best solution that can be
obtained when following paths under the node.

Intuitively, ML-Plan formalizes the HTN problem in a way that the resulting search
graph is split into an algorithm selection region (upper region) and an algorithm configura-
tion region (lower region). The main motivation for this strategy lies in the node evaluation
we want to apply, which is based on random completions. Since algorithm selections usually
constitute a much more significant change to the performance of a pipeline than parameter
settings, we consider all solutions under a node that has all algorithms fixed as a kind of
neighborhood, and random samples drawn in that sub-region yield more reliable estimates.

With the idea of a two-phased search graph in mind, the HTN definition of ML-Plan
is as follows1. The initial task createClassifier can be broken down into a chain of the
three tasks createRawPP, setupClassifier, refinePP. The first task is meant to choose
the algorithms used for pre-processing without parametrizing them, the second task is meant
to choose and configure the multi-label classifier, and the third step parametrizes the previ-
ously chosen pre-processors. The second task setupClassifier can, for each classifier, be
decomposed into two sub-tasks. First, <classifier>:create is a simple task indicating the
creation of a new classifier of the respective class, e.g. RandomForestClassifier:create.
Second, <classifier>:configure is a complex task meant to configure the parameters of
the classifier.

As an additional remark, ML-Plan comes with a built-in strategy to prevent over-fitting.
This strategy apportions the assigned timeout for the whole search process among two
phases. The first phase covers the actual search in the space. The second phase takes a
collection of identified solutions and selects the one that minimizes the estimated general-

1. Since we have not formally introduced HTN planning, we describe the problem definition in a rather
intuitive way. The formal definition can be found in the implementation published with this paper
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ization error. Roughly speaking, the collection used for selection in phase 2 corresponds
to the k best candidates and k random candidates that are not significantly worse than
the best candidate. The time allocated at time step t for the second phase is flexible and
corresponds to the accumulated time that was required in phase 1 to evaluate the classifiers
that would be chosen at time step t for the selection process.

3.2. Extending ML-Plan for Unlimited-Length Pipelines

In order to compose ML pipelines with more complex pre-processing workflows, TPOT
allows for chaining pre-processing algorithms and to fuse datasets taking the union of
the respective features. Extending ML-Plan to operate on the same space of solution
candidates, we add two complex and one simple tasks. First, we add a complex task
createFeatureUnion, which may be resolved to the simple task FeatureUnion and two
complex tasks to create the preceding pre-processing steps. Second, we add a complex task
createFeaturePreprocessorChainItem, which may be resolved to one complex task for
selecting a concrete pre-processing algorithm (e.g., PCA, Polynomial Features, etc.) and
another complex task for creating any kind of pre-processing. In particular, the latter in-
cludes the building blocks for feature union and chaining pre-processing algorithms. We
refer to this extension as ML-Plan-UL.

4. Experimental Evaluation

In our experimental evaluation, we focus on comparing ML-Plan-UL to TPOT, which both
operate on the same solution space; besides, to the best of our knowledge, TPOT is the
only AutoML tool supporting ML pipelines of unlimited length. As additional references,
we also evaluate auto-sklearn and Auto-WEKA. All the tools are evaluated on a selection
of 20 data sets from the openml.org (Vanschoren et al., 2013) repository, all of which were
previously used to evaluate AutoML approaches (Thornton et al., 2013; Feurer et al., 2015).

The implementation of ML-Plan-UL, the evaluation code that produced the results
shown in this section, and the used datasets are publicly available to assure reproducibility2.

Results were obtained by carrying out 20 runs on each dataset with a timeout of one
day per run. The timeout for the internal evaluation of a single solution was set to 20m
for all the candidates. In each run, we used 70% of a stratified split of the data for the
respective AutoML tool and 30% for testing. Note that we used the same splits for all
tools. The computations were executed on 100 Linux machines in parallel, each of them
equipped with 8 cores (Intel Xeon E5-2670, 2.6Ghz) and 32GB memory; every experiment
used one machine at a time. The accumulated time of all experiments was over 300k CPU
hours (over 34 CPU years).

Runs that did not adhere to the time or resource limitations (plus a tolerance threshold)
were canceled without considering their results. That is, algorithms were canceled if they
did not terminate within 110% of the predefined timeout or if they consumed more resources
(memory or CPU) than allowed.

2. https://github.com/fmohr/ML-Plan
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ML-Plan-UL 0.65 15.55 49.5 3.36 6.71 5.51 0.02 13.61 33.17 38.94
TPOT 1.08 15.26 - - 6.50 6.06 0.01 13.1 32.66 38.75
auto-sklearn 0.74 14.7 43.49 ◦ 2.90 6.57 6.29 0.02 13.6 36.25 • 39.27
Auto-WEKA 4.02 • 20.34 • 74.3 • 5.39 • 6.60 8.42 • 0.13 • 13.05 33.58 39.8

Table 1: Mean 0/1-losses [in %] for a timeout of one day

As TPOT did not return even a single result for any of the datasets within the timeout,
we configured TPOT to log intermediate solutions and considered the most recent one of
these to compute the respective value in the results table.

The results of the experiments are summarized in Table 1, with best performances
highlighted in bold. To determine significance for differences in performance, we applied
a t-test with p = 0.05. A significant improvement of ML-Plan-UL over another tool is
indicated by • and a significant degradation is highlighted by ◦.

The overall image is that ML-Plan-UL performs competitive to TPOT as best per-
formances vary among the datasets and there are neither significant improvements nor
degradations. While ML-Plan-UL does not return any result for cifar10 only (due to
exceeding memory usage), TPOT does not manage to return anything (not even an in-
termediate solution) for nearly half of the datasets. Thus, despite the substantially larger
search space ML-Plan-UL manages to find feasible solutions even for larger datasets as
compared to TPOT. Furthermore, ML-Plan-UL also performs particularly well compared
to auto-sklearn and Auto-WEKA. In comparison to auto-sklearn, we observe 4 significant
improvements and 3 significant degradations. For the reference Auto-WEKA, we observe
13 significant improvements and only a single degradation.

5. Conclusion

We have presented ML-Plan-UL as an extension of ML-Plan to deal with ML pipelines
of unlimited length, i.e., allowing for more complex pre-processing worklflows. To this
end, we slightly adapted the search space description by additional tasks that allow for
sequential and tree-shaped pre-processing workflows. In our experimental evaluation, we
have shown that ML-Plan-UL performs competitive to TPOT and, in contrast to the latter,
even manages to return solutions for larger datasets.
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