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We show how to optically connect guiding layers at different
elevations in a 3-D integrated photonic circuit. Transfer of
optical power carried by planar, semi-guided waves is pos-
sible without reflections or radiation losses, and over large
vertical distances. This functionality is realized through sim-
ple step-like folds of high-contrast dielectric slab waveguides,
in combination with oblique wave incidence, and fulfilling a
resonance condition. Radiation losses vanish, and polariza-
tion conversion is suppressed for TE wave incidence beyond
certain critical angles. This can be understood by fundamen-
tal arguments resting on a version of Snell’s law. The two 90°
corners of a step act as identical partial reflectors in a Fabry–
Perot-like resonator setup. By selecting the step height, i.e.,
the distance between the reflectors, one realizes resonant
states with full transmission. Rigorous quasi-analytical sim-
ulations for typical silicon/silica parameters demonstrate the
functioning. Combinations of several step junctions can lead
to other types of optical on-chip connects, e.g., U-turn- or
bridge-like configurations. © 2015 Optical Society of America
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The field of silicon photonics [1,2] holds promise for 3-D
integration [3,4] with compact, high-contrast dielectric optical
waveguides at different levels of photonic chips. This might
concern small vertical distances, such that evanescent coupling
between overlapping components becomes possible, but also
concern optically well-separated waveguides at larger vertical
separations. The latter scenario raises the question of how
to transfer optical power between these distant layers.
Conventional evanescent wave coupling [5] leads to either a
device measured in centimeters, for vertical distances below
a few hundreds of nanometers [5], or to a shorter device,
but for a separation of not more than a few tens of nanometers
[6]. More involved concepts for vertical coupling include wave-
guides with specifically tapered cores [7,8], radiative power
transfer through grating couplers [9], and even resonant inter-
action through vertically stacked microrings [10].

Suppose that, given the task to connect guiding layers at
different distant levels in the context of 3-D silicon photonics,
and, being lured by the strong confinement properties of the
high-contrast waveguides, one comes up with what might be
perceived at first as a slightly “naive” approach of preparing a
step-like structure as shown in Fig. 1(a), consisting of two sharp
90° corners with a vertical slab segment between them. As in-
dicated in the schematic, the structure is assumed to be con-
stant along the y axis, with half-infinite slabs parallel to the y–z
plane. If operated in a standard 2-D setting with an incidence of
vertically (x-) and laterally (y-) nonguided plane waves propa-
gating in the positive z-direction normal to the interfaces, this
structure clearly fails in view of the aforementioned task. Our
simulation predicts a transmittance of merely T � 3% and a
reflectance of R � 11%. Most of the power is lost to radiation,
and, thus, must be suspected as a potential source of unwanted
crosstalk. Figure 1(b) shows the pronounced radiation losses.

Thus, it might come as a surprise to learn that the same
step structure transfers all of the incident optical power to the
upper level, if only the in-plane angle of incidence θ is set to
64°. A respective simulation predicts the profile of Fig. 1(c),
with all fields nicely confined around the cores, and numerically
perfect values of reflectance R < 1% and transmittance
T > 99%. It is the purpose of this Letter to highlight this effect
and to provide a basic physical explanation. We refer to a more
technical account [11] for details on the theoretical description
and related studies. For all simulations in this Letter, we
could rely on a rigorous, semi-analytical solver (vectorial quad-
ridirectional eigenmode propagation, vQUEP) [12–14] for the
vectorial 2-D problems. Figure 1 introduces parameters that are
typical for a silicon photonics platform [15].

For a clarification of the full transmission effect, it is instru-
mental to look at a single corner first, as in Fig. 2(a). One no-
tices that the structure is constant along the y axis. We assume
that the slabs are single mode, supporting the fundamental
guided TE0 and TM0 modes of both polarizations. For the
parameters of Fig. 1, these are slab modes with effective mode
indices N TE0 � 2.823 and N TM0 � 2.040.

The TE0 mode is being sent toward the corner at angle θ.
The incoming field thus exhibits an exponential dependence
∼ exp�−ikyy� with a given wavenumber ky � kN TE0 sin θ
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for the vacuum wavenumber k. Aiming at a solution of the
homogeneous Maxwell equations in the frequency domain,
we may restrict the y-dependence of all fields to this single spa-
tial Fourier component. Consequently, any outgoing mode,
with an effective index N out traveling at angle θout versus
the x–z-plane, also shares this y-dependence. This can be stated
in the form of Snell’s law:

N out sin θout � N TE0 sin θ: (1)

We look at outgoing TE0 waves with N out � N TE0 first. For
the reflected wave, Eq. (1) simply gives the law of reflection.
The transmitted wave travels upward in the x–y-plane, guided
by the vertical slab, at an angle θ. For outgoing TM0 waves with
N out � N TM0 < N TE0, one needs to distinguish between two
cases. Equation (1) defines an angle θout only if sin θ N TE0∕
N TM0 ≤ 1, i.e., for small angles of incidence θ ≤ θm below a
critical angle θm with sin θm � N TM0∕N TE0, here θm �
46.27°. Reflected and transmitted TM0 waves then leave the
corner region at angles θout given by Eq. (1).

For excitation at higher angles θ > θm, however, Eq. (1) does
not apply. Any TM wave excited in the vicinity of the corner has
to satisfy the local wave equation [16] with the externally en-
forced y-dependence. It does so by compensating for the too-
large wavenumber ky with an imaginary wavenumber in the di-
rection of the outward axis (−z for the reflected wave, x for the
transmitted wave), i.e., the wave becomes evanescent, which
concerns propagation in the x–z-plane. For θ > θm, one
observes only outgoing TE waves “far away” from the corner.

Apart from the two guided modes, a continuum of non-
guided modes with oscillatory behavior in the cladding region,
and, with effective mode indices N out ≤ nb below the upper
limit of the background refractive index nb (“cladding modes”),
can be associated with the horizontal and vertical slabs.
Applying the former arguments to the modes of this radiation
continuum, one finds that all of these modes become x–z-evan-
escent, if sin θ N TE0∕nb ≥ 1. Consequently, all radiation losses
vanish for θ > θb with sin θb � nb∕N TE0, here θb � 30.91°.
Note that the reasoning for the critical angles (see [11] for a
more formal and general account) depends on the properties
of the outgoing slab waveguides only, irrespective of, e.g., the
corner shape (rounding) or the corner angle.

Similar arguments apply for plane-wave scattering from
cylinders at oblique incidence [17,18], for slab waveguides with
straight discontinuities, typically end facets, with oblique inci-
dence of guided modes [16,19–21], and for slab waveguides
with periodic corrugations at oblique incidence [22,23]. So
far, however, we have not encountered this reasoning in the
case of noncoplanar slabs. When adapted to the present con-
figurations, the frequency-domain Maxwell equations coincide
formally with the equations that govern the modes of 3-D
channel waveguides, where the present wavenumber ky takes
the role of the propagation constant; the problems differ
with respect to boundary conditions [16]. The suppression of
radiation losses can then be understood in terms of an angle-
dependent, negative effective permittivity [11,16]. The same
effect enables the formation of guided modes in channel wave-
guides with 2-D confinement.

Figure 2(b) shows the power transmission properties of the
corner structure relating to the fundamental guided modes, as a
function of the angle of incidence. The critical angles θb and θm
are indicated. At normal incidence θ � 0, the otherwise vec-
torial equations split into the standard scalar 2-D Helmholtz
problems for TE and TM waves; thus, there is no polarization
conversion. The moderate transmittance and reflectance levels
of T TE � 14%, RTE � 13%, and T TM � RTM � 0 relate to
pronounced radiation losses, clearly evident in the field profile
in Fig. 2(c).

Radiation losses, and, thus, all fields outside the evanescent
tails around the slab cores, vanish for wave incidence at angles
beyond θb. Strong polarization conversion is observed, with
an extreme value of TM transmission at θ � 36.5°, with trans-
mittance and reflectance levels of T TE � 10%, RTE � 26%,
T TM � 63%, and RTM � 1%. The reflected guided waves
of both polarizations lead to a slightly irregular beating pattern
of the partly standing, partly traveling waves in the horizontal
slab [see Fig. 2(d)]. In the vertical slab, the strong TM contri-
bution manifests in the large electric fields immediately outside
the core. (The absolute value jE j of the electric field vector is
shown.) Upward traveling TE and TM waves, with unequal am-
plitudes, cause a weak beating pattern, barely visible in the figure.

The polarization conversion is suppressed at even higher
angles of incidence for θ > θm. The field profile in panel (e)
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Fig. 1. Oblique incidence of semi-guided waves on a step configuration at angle θ: (a) schematic, (b) cross-section views of the optical electric field
[absolute value jE j, contour at 10% of the maximum field; the color bar of Fig. 2(e) applies] for normal incidence, and (c) at angle θ � 64°.
Parameters: refractive indices, ng � 3.45 (slab cores) and nb � 1.45 (cladding); slab thickness, d � 220 nm; vertical slab distance,
h � 1.868 μm; incidence of TE polarized waves at vacuum wavelength, 1.55 μm.
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of Fig. 2, for incidence at θ � 64° with extreme levels
T TE � 32%, RTE � 68%, and T TM � RTM � 0, shows a
tight field confinement around the slab cores. Note that this
is still a vectorial problem in which TM waves play a role
in the solution; their contribution, however, remains restricted
to the immediate vicinity of the corner (here at the origin),
because of their x–z-evanescent behavior.

Having clarified some properties of the constituting corners,
we now resume the discussion of the step structure. With a
view to the aim of large power transfer, we select the angle
of incidence θ � 64° that leads to the TE transmission maxi-
mum of the separate corners. All former arguments on suppres-
sion of radiation losses, and on suppression of polarization
conversion, rely on the properties of the outgoing slabs only,
without any reference to the particular shape of the structure
that connects these outlets. Thus, we can expect that, at this
angle of incidence and for identical slab properties, neither
radiation losses nor conversion to TM occur when the step
is being excited by the TE0 wave.

Further, we assume that the intermediate vertical segment is
of sufficient height h, such that any x–z-evanescent fields (of
either TE or TM polarization) that are being excited at one of
the corner points, are negligible in the region around the other
respective corner. Then only the upward and downward
traveling TE0 waves remain that mediate between the cor-
ners. These waves and the incoming, reflected, and transmitted

TE0 waves in the horizontal slabs propagate at the same angle θ
with respect to the x–z-plane. They share the uniform har-
monic y-dependence, which can then be disregarded for the
discussion of the propagation along the slab cores.

Consequently, we may view the step as a system of two iden-
tical partial reflectors, the corners, with counterpropagating
waves of a single polarization in between, i.e., as a system akin
to a Fabry–Perot-interferometer [24]. Here, the step height h
plays the role of the distance between the two reflectors.
Accordingly, the scan over h in Fig. 3 reveals a regular series
of resonances. One of the extreme states with full transmission
has been selected for the example in Fig. 1(c).

For a sufficiently large h, e.g., h > 0.75 μm, the maxima in
T TE with unit transmittance appear regularly at distances of
Δh � λ∕�2N TE0 cos θ� � 626 nm. Here, kN TE0 cos θ is
the wavenumber component relevant for the propagation in
the �x direction. Originating from a resonance effect, these
states depend more or less critically on all parameters that enter.
Concerning the step height h, in Fig. 3 one observes levels
T TE > 99%j90%j75%j50% for intervals of full width
Δh � 8 nmj25 nmj44 nmj77 nm around the peak centers.
Considering the operation wavelength as a further example,
respective simulations show transmittance levels T TE > 99%j
90%j75%j50% for spectral intervals of widths Δλ � 4 nmj
13 nmj23 nmj40 nm, centered on the design wavelength
λ � 1.55 μm. The 50% transmittance window thus covers

z [μm]

x 
[ μ

m
]

|E|

θ = 64°
 

 

−2 −1 0 1

−1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

z [μm]

x 
[μ

m
]

|E|

θ = 36.5°

−2 −1 0 1

−1

0

1

2

z [μm]

x 
[μ

m
]

|E|

θ = 0°

−2 −1 0 1

−1

0

1

2

          
0

0.2
0.4
0.6
0.8

1

T
TE

R
TE

θ
b

θ
m

0  20  40  60  80  
0

0.2
0.4
0.6
0.8

1

P ou
t

θ/°

T
TM

R
TM

(b)

)e()d()c(

(a)

Fig. 2. Linear 90° waveguide corner at oblique incidence: (a) schematic, (b) modal reflectances RTE and RTM and transmittances T TE and T TM

versus the angle of incidence θ (TE0 and TM0 modes); and field profiles (absolute value jE j of the electric field, contour at 10% of the field
maximum) for angles of incidence (c) θ � 0°, (d) θ � 36.5°, and (e) θ � 64°. See the caption for Fig. 1 for parameters.
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the entire C-band of infrared optical communications. Note
that radiation losses and polarization conversion are suppressed
fully within the given intervals; the nontransmitted part of the
incident power is reflected as a semi-guided TE0 wave.

Beyond the selection of a corner configuration with high
transmission and the height scan in Fig. 3, no particular opti-
mization has been necessary to identify step configurations with
good performance. Within certain limits, this procedure can be
reversed into an approach of fixing a step height first, followed
by an angular scan. Nevertheless, there is plenty of room left
for further optimization, aiming, e.g., at lossless corner configu-
rations with higher transmittance. This should lead to steps
with less critical resonance conditions, i.e., with improved spec-
tral tolerances and generally relaxed tolerance requirements.
Further studies could also investigate the incidence of TM
waves, and, thus, the configurations in which both propagating
TE and TM waves connect the corners. While, so far, these are

evidently quasi-3-D concepts at best, the effect can be trans-
ferred to “real” 3-D by considering oblique incidence of laterally
wide semi-guided beams with narrow angular spectrum [11].

In conclusion, we have shown that semi-guided planar op-
tical waves can be made to climb steps without radiation losses,
polarization conversion, or reflections. This is achieved for
simple dielectric slabs with relatively modest means of oblique
incidence, combined with a Fabry–Perot-like resonance effect.
One might compare this with concepts relying on line defects
in photonic crystals, various types of (lossy) plasmonic wave
confinement, and specific corner geometries [25] in conven-
tional high-contrast dielectric waveguides.

Extension to other, perhaps more intriguing, examples is
obvious. For sufficient step height, one of the corners in a step
can be mirrored without affecting the transmission. Steps can
be concatenated with intermediate slab segments of arbitrary
length. Our simulations predict modal transmittance values
T TE > 99% for both structures in Fig. 4.

Funding. Deutsche Forschungsgemeinschaft (DFG)
(HA 7314/1-1, GRK 1464, TRR 142).
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Fig. 3. For the step configuration of Fig. 1(a): transmittance T TE

and reflectance RTE as a function of the step height h. The indicated
level h � 1.868 μm relates to Figs. 1(b) and 1(c).
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Fig. 4. (a) U-turn and (b) bridge configurations with full transmis-
sion of semi-guided TE waves at oblique incidence; absolute value jE j
of the optical electric field, contour at 10% of the maximum level; see
the color bar of Fig. 2(e). Parameters are as in Fig. 1(c), with a 3 μm
slab segment as the upper level of the bridge (b).
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