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Introduction

The electromagnetic field in the vicinity of sharp edges needs a special treatment in
numeric calculation whenever accurate, fast converging results are necessary. One of
the fundamental works concerning field singularities has been proposed in 1972 [1]
and states that the electromagnetic energy density must be integrable over any finite
domain, even if this domain contains singularities. It is shown, that the magnetic
field �H(�, ϕ) and electric field �E(�, ϕ) are proportional to ∝ �(t−1) for �→ 0. The
variable � is the distance to the edge and t has to fulfill the integrability condition
and thus is restricted to 0 < t < 1. This result is often used to reduce the error
corresponding to the singularity without increasing the numerical effort [2 - 5]. For
this purpose, a correction factor K is estimated by inserting the proportionality
into the wave equation. It is shown, that this method improves the accuracy of
the result significantly, however the order of convergence is often not studied. In
[4] a method to modify the material parameters in order to use analytic results to
improve the numeric calculation is presented. In this contribution we will - inspired
by the scheme given in [4] - develop a new method to estimate a correction factor for
perfect conducting materials (PEC) and demonstrate the improvement of the results
compared to the standard edge correction. Therefore analytic results (comparable
to [1]) are consequently merged with the scheme in [4].
The main goal of this work is the calculation of the second harmonic generation
(SHG) in the wave response of so-called metamaterials [6]. Frequently these struc-
tures contain sharp metallic edges with field singularities at the interfaces which
have a strong impact on the SHG signals. Thus, an accurate simulation of singu-
larities is highly important. However, the following approach can also be applied to
many other setups, and one of them is shown in the example below.

1 Edge Correction

In order to derivate the correction factor, the setup shown in Fig. 1(a) is investigated.
The Laplacian differential equation ∇2Φ(�, ϕ) = 0 is solved by standard analytic
approaches in cylindrical coordinates. Using the gradient operator the electric field
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Figure 1: Setup for the analysis of edge singularities (a) and example FIT grid with

used nomenclatur (b). The grid flux
��
di is defined on the dual Grid G̃, the grid

voltage �e i corresponds to the primary grid G.

can be derived. Within these equations En depends only on the chosen parameters
of the setup (Φ0, a) and the variable n. Thus En is independent of � and ϕ. The
constant β is defined as 2π − α. It is obvious, that singular expressions only occur
when n = 0 and π/β < 1.
Following the idea of [4], a detailed look at the calculation scheme is necessary. For
the sake of compact notation, the notation of the finite integration technique (FIT
[7]) is used. The electric flux density �D is linked with the electric field strength
�E via the material parameters �D = ε �E. However, in FIT this is expressed by the
material matrix Mε

��
d = Mε

�e. (3)

Evaluating equation (3) for a certain grid-edge i in �ex direction that belongs to the
edge in Fig. 1(b) and linking the grid flux with the grid voltage leads to following
Matrix entry and equation:

Mεi =
ΔỹΔz̃

Δx
ε,

��
di =

ΔỹΔz̃

Δx
ε�e i. (4)

Here Δỹ and Δz̃ are the dual grid lengths in y and z direction, Δx is the primary
grid length in x direction.
Writing down the same expressions using the results from the analytic calculation
(index a) (where Ex and Dx are the results we derived from the analytic approach
transformed in cartesian coordinates):

�eai =

∫
Δx

Ex(x, y = 0)dx,
��
dai =

∫
Δỹ

∫
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2
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Since Dx = εEx is valid for the analytic approach, this leads to a permittivity entry
εai at the material matrix which is based on the analytic field information:

εai =

��
dai
�eai

= εΔz̃

∫
Δỹ Ex(x = Δx

2 , y)dy∫
ΔxEx(x, y = 0)dx

= MεiKi. (6)
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Figure 2: Setup - air
filled waveguide with PEC
implants. The dashed
lines mark the edges where
a correction factor is
performed.

Thus a factorKi is derived which can be multiplied by the material matrix entryMεi

giving us the possibility to use the analytic information about the field distribution
at an edge within the standard implementation. Due to the fact, that singular
expressions only occur for n = 0 one can reduce the sum within equation (1) and
equation (2) to the terms for n = 0 [2]. All constant expressions can be canceled
out and the correction factor is independent of all variables that are necessary to
set up the static boundary value problem. Since ϕ depends on x and y, the angular
dependence has to be considered when the integrals are solved numerically. This
distinguishs the formulas from former approaches where the angle has been chosen
constant as ϕ = π for the correction in �ex direction. Similar correction factors can
be derived for the �ey direction as well as for the �H and �B field.

2 Numerical Example
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Figure 3: (a) Reflection coefficient S11(10 lines/wavelength). (b) Relative deviation
to the reference result (resonance frequency).

First testings have been performed using a 2D static setup (step capacitor). As
expected, the resulting error can be decreased significantly - even compared to the
standard edge correction. The setup shown here is a full 3D calculation of a rectan-
gular waveguide - excited by a TE mode from the right side (see Fig. 2). Within this
waveguide, two PEC bricks are implanted in order to have a resonant structure and
metallic edges in the calculation domain. The parameters are chosen as l = 2.4 μm,
h = 0.4 μm, b = 0.8 μm, d = 0.32 μm, e = 0.24 μm, f = 0.4 μm and g = 1.0 μm.



The reflection coefficients are calculated and show a clear spike at the resonant point.
As reference result, a commercial FIT tool (CST Microwave Studio Suite 2009 [5])
with built-in edge correction and a very dense mesh is used. The frequency range is
chosen to be 200THz - 300THz and all advanced mesh properties beside the singu-
larity correction are switched off. The result curves in Fig. 3 show a second order
convergence and an improvement of the total error compared to a calculation using
the standard correction factor and a calculation without correction.

3 Conclusion

An edge correction has been developed providing a considerable enhancement of the
accuracy in electromagnetic field calculation. This edge correction is based on a
modification of the material parameters in the vicinity of the edge. For non equidis-
tant grids the integrals in equation (6) have to be calculated for each gridpoint
corresponding to the edge which requires a slightly increased effort in the prepro-
cessing. However, beside the modification of the material matrix, the calculation
algorithm has been retained unchanged. Thus the numerical effort for the time step
iteration loop stays the same. Further examples concerning linear and nonlinear
problems will be presented at the conference.
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