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Abstract. The article shows how to learn models of dynamical systems
from data which are governed by an unknown variational PDE. Rather
than employing reduction techniques, we learn a discrete field theory
governed by a discrete Lagrangian density Ld that is modelled as a neu-
ral network. Careful regularisation of the loss function for training Ld is
necessary to obtain a field theory that is suitable for numerical computa-
tions: we derive a regularisation term which optimises the solvability of
the discrete Euler–Lagrange equations. Secondly, we develop a method to
find solutions to machine learned discrete field theories which constitute
travelling waves of the underlying continuous PDE.
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1 Introduction

In data-driven system identification, a model is fitted to observational data of
a dynamical system. The quality of the learned model can greatly be improved
when prior geometric knowledge about the dynamical system is taken into ac-
count such as conservation laws [16,14,5,9,2], symmetries [10,8,7], equilibrium
points [19], or asymptotic behaviour of its motions.

One of the most fundamental principles in physics is the variational prin-
ciple: it says that motions constitute stationary points of an action functional.
The presence of variational structure is related to many qualitative features of
the dynamics such as the validity of Noether’s theorem: symmetries of the ac-
tion functional are in correspondence with conservation laws. To guarantee that
these fundamental laws of physics hold true for learned models, Greydanus et al
propose to learn the action functional from observational data [5] (Lagrangian
neural network) and base prediction on numerical integrations of Euler–Lagrange
equations. Quin proposes to learn a discrete action instead [18]. An ansatz of
a discrete model has the advantage that it can be trained with position data
of motions only. In contrast, learning a continuous theory typically requires in-
formation about higher derivatives (corresponding to velocity, acceleration, mo-
menta, for instance) which are typically not observed but only approximated.
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Moreover, the discrete action functional (once it is learned) can naturally be
used to compute motions numerically.

However, in [14] the authors demonstrate that care needs to be taken when
learned action functionals are used to compute motions: even if the data-driven
action functional is perfectly consistent with the training data (i.e. the machine
learning part of the job is successfully completed), minimal errors in the ini-
tialisation process of numerical computations get amplified. As a remedy, the
authors develop Lagrangian Shadow Integrators which mitigate these amplified
numerical errors based on a technique called backward error analysis. Moreover,
using backward error analysis they relate the discrete quantities to their con-
tinuous analogues and show how to analyse qualitative aspects of the machine
learned model. Action functionals are not uniquely determined by the motions of
a dynamical system. Therefore, regularisation is needed to avoid learning degen-
erate theories. While in [14] the authors develop a regularisation strategy when
the action functional is modelled as a Gaussian Process, Lishkova et al develop
a corresponding regularisation technique for artificial neural networks in [10] in
the context of ordinary differential equations (ODEs).

In this article we show how to learn a discrete action functional from dis-
crete data which governs solutions to partial differential equations (PDEs) using
artificial neural networks extending the regularisation strategy which we have
developed in [10]. Our technique to learn (discrete) densities of action function-
als can be contrasted to approaches where a spatial discretisation of the problem
is considered first, followed by structure-preserving model reduction techniques
(data-driven or analytical) [3,4] and then a model for the reduced system of
ODEs is learned from data [20,12,1].

Travelling waves solutions of PDEs are of special interest due to their simple
structure. When a discrete field theory for a continuous process described by
a PDE is learned, they typically "get lost" because the mesh of the discrete
theory is incompatible with certain wave speeds. In this article, we introduce a
technique to find the solutions of data-driven discrete theories that correspond
to travelling waves in the underlying continuous dynamics (shadow travelling
waves). The article contains the following novelties:

– We transfer our Lagrangian ODE regularising strategy [10] to data-driven
discrete field theories in a PDE setting and provide a justification using
numerical analysis.

– The development of a technique to detect travelling waves in data-driven
discrete field theories.

The article proceeds with a review of variational principles (Section 2), an
introduction of our machine learning architecture and derivation of the regulari-
sation strategy (Section 3). In Section 4, we define the notion of shadow travelling
waves and show how to find them in data-driven models. The article concludes
with numerical examples relating to the wave equation (Section 5).
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2 Discrete and continuous variational principles

Continuous variational principles Many differential equations describing
physical phenomena such as waves, the state of a quantum system, or the evo-
lution of a relativistic fields are derived from a variational principle: solutions
are characterised as critical points of a (non-linear) functional S defined on a
suitable space of functions u : X → Rd and has the form

S(u) =

∫
X

L(x, u(x), ux0
(x), ux1

(x), . . . , uxn(x))dx, (1)

where x = (x0, x1, . . . , xn) ∈ X and uxj denote partial derivatives of u. This
variational principle can be referred to as a first-order field theory, since only
derivatives to the first order of u appear. In many applications the free variable
x0 corresponds to time and is denoted by x0 = t. The functional S is stationary
at u with respect to all variations δu : X → R vanishing at the boundary (or with
the correct asymptotic behaviour) if and only if the Euler–Lagrange equations

0 = EL(L) =
∂L

∂u
−
∑n

j=0

d

dxj

∂L

∂uxj
(2)

are fulfilled on X.

Example 1. The wave equation

utt(t, x)− uxx(t, x) +∇V (u(t, x)) = 0 (3)

is the Euler–Lagrange equation 0 = EL(L) to the Lagrangian

L(u, ut, ux) =
1

2
(u2t − u2x)− V (u). (4)

Here ∇V denotes the gradient of a potential V .

Remark 1. Lagrangians are not uniquely determined by the motions of a dy-
namical system: two first order Lagrangians L and L̃ yield equivalent Euler–
Lagrange equations if sL−L̃ (s ∈ R\{0}) is a total divergence ∇x ·F (x, u(x)) =
∂
∂x1

(F 1(x, u(x))) + . . .+ ∂
∂xn

Fn(x, u(x)) for F = (F 1, . . . , Fn) : X × Rd → Rn.

Discrete variational principle For simplicity, we consider the two dimen-
sional compact case: let X = [0, T ]× [0, l]/{0, l} with T, l > 0. Here [0, l]/{0, l} is
the real interval [0, l] with identified endpoints (periodic boundary conditions).
Consider a uniform, rectangular mesh X∆ on X with mesh widths ∆t = T

N and
∆x = l

M for N,M ∈ N. A discrete version of the action functional (1) is

Sd : (Rd)(N−1)×M → R, Sd(U) = ∆t∆x

N−1∑
i=1

M−1∑
j=0

Ld(u
i
j , u

i+1
j , uij+1)
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for a discrete Lagrangian density Ld : (Rd)3 → R together with temporal bound-
ary conditions for u0j ∈ Rd and uNj ∈ Rd for j = 0, . . . ,M − 1. Above U denotes
the values (uij)

i=1,...M−1
j=0,...N−1 on inner mesh points. We have uiM = ui0 by the period-

icity in space. Solutions of the variational principle are U ∈ (Rd)(N−1)×M such
that U is a critical point of Sd. This is equivalent to the condition that for all
i = 1, . . . , N − 1 and j = 0, . . . ,M − 1 the discrete Euler–Lagrange equations

∂

∂uij

(
Ld(u

i
j , u

i+1
j , uij+1) + Ld(u

i−1
j , uij , u

i−1
j+1) + Ld(u

i
j−1, u

i+1
j−1, u

i
j)
)
= 0 (5)

are fulfilled. The expression on the left of (5) is abbreviated as DEL(Ld)
i
j(U) in

the following.

Remark 2. Instead of periodic boundary conditions in space, Sd can be adapted
to other types of boundary conditions such as Dirichlet- or Neumann conditions.

Example 2. The discretised wave equation

(ui−1j − 2uij + ui+1
j )

∆t2
−

(uij−1 − 2uij + uij+1)

∆x2
+∇V (uij) = 0 (6)

is the discrete Euler–Lagrange equations to the discrete Lagrangian

Ld(u
i
j , u

i+1
j , uij+1) =

1

2

(
ui+1
j − uij
∆t2

)2

− 1

2

(
uij+1 − uij
∆x2

)2

− V (uij).

Remark 3. In analogy to Remark 1, notice that Ld and L̃d yield the same discrete
Euler–Lagrange equations (5) if

Ld(a, b, c)− sL̃d(a, b, c) = χ1(a)− χ1(b) + χ2(a)− χ2(c) + χ3(b)− χ3(c) (7)

for differentiable functions χ1, χ2, χ3 : X → R and s ∈ R \ {0}.

Remark 4. If DEL(Ld)
i
j(U) = 0 (see (5)) and if ∂2Ld

∂uij∂u
i+1
j

(uij , u
i+1
j , uij+1) is of full

rank, then (5) is solvable for ui+1
j as a function of uij , uij+1, u

i−1
j , ui−1j+1, u

i
j−1,

ui+1
j−1 by the implicit function theorem locally around a solution of (5). All of

these points correspond to mesh points that either lie to the left or below the
point with indices (i, j). If u1j is known for 0 ≤ j ≤ M − 1, then utilising the
boundary conditions u0j ∈ Rd and ui0 = uiM we can compute U by subsequently
solving (5). This corresponds to the computation of a time propagation.

The following Proposition analyses the convergence of Newton-Iterations
when solving (5) for ui+1

j , as is required to compute time propagations. It in-
troduces a quantity ρ∗ that relates to how well the iterations converge. We will
make use of this quantity in the design of our machine learning framework.
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Proposition 1. Let uij, u
i+1
j , uij+1, u

i−1
j , ui−1j+1, u

i
j−1, u

i+1
j−1 such that (5) holds.

Let O ⊂ Rd be a convex, neighbourhood of u∗ = ui+1
j , ‖·‖ a norm of Rd inducing

an operator norm on Rd×d. Define p(u) := ∂2Ld
∂uij∂u

(uij , u, u
i
j+1) and let θ and θ be

Lipschitz constants on O for p and for inv ◦ p, respectively, where inv denotes
matrix inversion. Let

ρ∗ := ‖inv(p(u∗))‖ =

∥∥∥∥∥∥
(

∂2Ld
∂uij∂u

∗ (u
i
j , u
∗, uij+1)

)−1∥∥∥∥∥∥ (8)

and let f(u(n)) denote the left hand side of (5) with ui+1
j replaced by u(n). If

‖u(0)−u∗‖ ≤ min
(
ρ∗

θ
, 1
2θρ∗

)
for u(0) ∈ O, then the Newton Iterations u(n+1) :=

u(n) − inv(p(u(n)))f(u(n)) converge quadratically against u∗, i.e.

‖u(n+1) − u∗‖ ≤ ρ∗θ‖u(n) − u∗‖2. (9)

Proof. The statement follows from an adaption of the standard estimates for
Newton’s method (see [6, §4], for instance) to the considered setting. A detailed
proof of the Proposition is contained in the Appendix (Preprint/ArXiv version
only).

Remark 5. The assumptions formulated in Proposition 1 are sufficient but not
sharp. The main purpose of the proposition is to identify quantities that are
related to the efficiency of our numerical solvers and to use this knowledge in
the design of machine learning architectures.

3 Machine learning architecture for discrete field theories

We model a discrete Lagrangian Ld as a neural network and fit its parameters

– such that the discrete Euler–Lagrange equations (5) for the learned Ld are
consistent with observed solutions U = (uij) of (5)

– and such that (5) is easily solvable for ui+1
j using iterative numerical meth-

ods, so that we can use the discrete field theory to predict solutions via
forward propagation of initial conditions (see Remark 4).

For given observations U (1), . . . , U (K) with U (k) = (uij
(k)

) on the interior
mesh X∆, we consider the loss function ` = `DEL + `reg consisting of a data
consistency term `DEL and a regularising term `reg. We have

`DEL =

K∑
k=1

N−1∑
i=1

M−1∑
j=0

DEL(Ld)
i
j(U

(k))2 (10)

with DEL(Ld)
i
j from (5). `DEL measures how well Ld fits to the training data.
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Since a discrete Lagrangian Ld is not uniquely determined by the system’s
motions by Remark 3 (indeed, Ld ≡ const is consistent with any observed dy-
namics), careful regularisation is required. Indeed, in [14] we demonstrate in an
ode setting that if care is not taken, then machine learned models for Ld can be
unsuitable for numerical purposes and amplify errors of numerical integration
schemes. In view of Proposition 1, we aim to minimize ρ∗ (see (8)) and define
the regularisation term

`reg =

K∑
k=1

N−1∑
i=1

M−1∑
j=0

∥∥∥∥∥∥
(

∂2

∂uij∂u
i+1
j

Ld

(
uij

(k)
, ui+1
j

(k)
, uij+1

(k)
))−1∥∥∥∥∥∥

2

. (11)

In our experiments, we use the spectral norm in (11), which is the operator
norm induced by the standard Eucledian vector norm on Rd. Let Ai,j,kreg :=

∂2

∂uij∂u
i+1
j

Ld

(
uij

(k)
, ui+1
j

(k)
, uij+1

(k)
)
, i.e. the summands of `reg are ‖(Ai,j,kreg )−1‖2 =

1
λ2
min

, where λmin is the singular value λmin of Ai,j,kreg with the smallest absolute
norm. If uij ∈ Rd with d = 1, then ‖(Ai,j,kreg )−1‖ can be evaluated without prob-
lems. Otherwise, λ2min is computed as the smallest eigenvalue of the symmetric
matrix (Ai,j,kreg )>Ai,j,kreg . The eigenvalue can be approximated by inverse matrix
vector iterations [6, §5] or computed exactly if the dimension d is small.

4 Periodic travelling waves

For simplicity, we continue within the two-dimensional space time domain X =
[0, T ] × [0, l]/{0, l} with periodic boundary conditions in space introduced in
Section 2. A periodic travelling wave (TW) of a pde onX is a solution of the form
u(t, x) = f(x−ct) for c ∈ R and with f : [0, l]/{0, l} → Rd defined on the periodic
spatial domain. Due to their simple structure, TWs are important solutions to
pdes. While the defining feature of a TW is its symmetry u(t+s, x+sc) = u(t, x)
for s ∈ R, evaluated on a mesh X∆, no such structure is evident unless the
quotient c∆t/∆x is rational and T sufficiently large. However, after a discrete
field theory is learned defined by its discrete Lagrangian Ld, it is of interest,
whether the underlying continuous PDE has TWs. As in [13] we define shadow
travelling waves (TWs) of (5) as solutions to the functional equation

0 =∂1Ld(f(ξ), f(ξ − c∆t), f(ξ +∆x))

+∂2Ld(f(ξ + c∆t), f(ξ), f(ξ + c∆t+∆x))

+∂3Ld(f(ξ −∆x), f(ξ − c∆t−∆x), f(ξ))
(12)

where ∂jLd denotes the partial derivative of Ld with respect to its jth slot.

Example 3. A Fourier series ansatz for f reveals that the discrete wave equation
(6) with potential V (u) = 1

2u
2 away from resonant cases TWs are u(t, x) =

f(x− cnt) with

f(ξ) = α sin(κnξ) + β cos(κnξ), κn =
2πn

l
, n ∈ Z, α, β ∈ R (13)
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and with wave speed cn a real solution of

cos(κncn∆t) = 1− ∆t2

2
+
∆t2

∆x2
(cos(κn∆x))− 1). (14)

A contour plot for n = 1 is shown to the left of Fig. 2.

Remark 6. The TW equation (12) inherits variational structure from the un-
derlying PDE: an application of Palais’ principle of criticality [17] of the action
of (R,+) on the Sobolev space H1(Xc,R) with Xc = [0, l/c] × [0, l] defined
by (s.u)(t, x) := u(t + s, x + cs) to the functional S(u) =

∫
Xc
Ld(u(t, x), u(t +

∆t, x), u(t, x+∆x))dt reveals that (12) is governed by a formal 1st order varia-
tional principle. This is investigated more closely in [13].

To identify TWs in a machine learned model of a discrete field theory, we
make an ansatz of a discrete Fourier series f(ξ) =

∑−M2
m=−M−1

2

f̂|m| exp(m
2πi
l ξ),

where bounds of the sum are rounded such that we haveM summands. To locate
a TW, the loss function `TW(c, f̂) + `regTW(c, f̂) is minimised with

`TW(c, f̂) =

N−1∑
i=1

M−1∑
j=0

‖DELij(U)‖2, U =
(
f(i∆t− cj∆x)

)0≤j≤M−1
0≤i≤N (15)

and regularisation `regTW = exp(−100‖U‖2l2) with discrete l2-norm ‖ · ‖l2 to avoid
trivial solutions. Here f̂ = (f̂m)m.

5 Experiment

Creation of training data We use the space-time domain X (Section 2)
with T = 0.5, l = 1, ∆x = 0.05, ∆t = 0.025. To obtain training data that
behaves like discretised smooth functions, we compute K = 80 solutions to the
discrete wave equation (Example 2) with potential V (u) = 1

2u
2 on the mesh X∆

from initial data u0 = (u0j )0≤j≤M−1 and u1 = (u1j )0≤j≤M−1. To obtain u0 we
sample r values from a standard normal distribution. Here r is the dimension of
the output of a real discrete Fourier transformation of anM -dimensional vector.
These are weighted by the function m 7→M exp(−2j4), where m = 0, . . . , r−1 is
the frequency number. The vector u0 is then obtained as the inverse real discrete
Fourier transform of the weighted frequencies. To obtain u1 an initial velocity
field v0 = (v0j )0≤j≤M−1 is sampled from a standard normal distribution. Then we
proceed as in a variational discretisation scheme [11] applied to the Lagrangian
density L of the continuous wave equation (Example 1): to compute conjugate
momenta we set LΣ(u,v) =

∑M−1
j=0 ∆xL(uj , vj) and compute p0 = ∂LΣ

∂v0 (u
0,v0).

Then p0 = −LΣ(u1, (u1 −u0)/∆t) is solved for u1. A plot of an element of the
training data set is displayed in Fig. 1. (TWs are not part of the training data.)
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Fig. 1. Left: Element of training data set. Centre: Predicted solution to unseen initial
values. Right: Continued solution from centre plot outside training domain

Training and Evaluation A discrete Lagrangian Ld : R×R×R→ R is mod-
elled as a three layer feed-forward neural network, where the interior layer has
10 nodes (160 parameters in total). It is trained on the aforementioned training
data set and loss function ` = `DEL + `reg using the optimiser adam. We per-
form 1320 epochs of batch training with batch size 10. For the trained model
we have `DEL ≈ 8.6 · 10−8 and `reg ≈ 1.4 · 10−7. To evaluate the performance of
the trained model for Ld, we compute solutions to initial data by forward prop-
agation (Remark 4) and compare with solutions to the discrete wave equation
(Example 2). For initial data u0, u1 not seen during training, the model recovers
the exact solution up to an absolute error ‖U − Uref‖∞ < 0.012 on X∆ and up
to ‖U − Uref‖∞ < 0.043 on an extended grid with Text = 2.5 (Fig. 1).

Fig. 2. Left: Reference TW. Centre and Right: Identified TW in learned model

We have maxi,j ‖DEL(Ld)i,j(U
TW
ref )‖ < 0.004, where UTW

ref is the TW from
Example 3 (n = 1). This shows that the exact TW is a solution of the learned
discrete field theory. This is remarkable since TWs are not part of the training
data. However, Remark 6 hints that the ansatz of an autonomous Ld favours
TWs as it contains the right symmetries. Using the method of Section 4, a
TW UTW and speed c can be found numerically: with (c1, U

TW
ref ) as an initial

guess with normally distributed random noise (σ = 0.5) added to the Fourier
coefficients of UTW

ref and to c1 , we find UTW and c for the learned Ld with errors
‖UTW−UTW

ref ‖∞ < 0.12 and |c−c1| < 0.001 (using 104 epochs of adam). (Fig. 2)
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6 Conclusion and future work

We present an approach to learn models of dynamical systems that are governed
by an (a priori unknown) variational PDE from data. This is done by learning
a neural-network model of a discrete Lagrangian such that the discrete Euler–
Lagrange equations (DELs) are fulfilled on the training data. As DELs are local,
the model can be efficiently trained and used in simulations. Even though the
underlying system is infinite dimensional, model order reduction is not required.
It would be interesting to relate the implicit locality assumption of our data-
driven model to the more widely used approach to fit a dynamical system on
a low-dimensional latent space that is identified using model order reduction
techniques [1,3,4,12,20].

Our approach fits in the context of physics-informed machine learning be-
cause the data-driven model has (discrete) variational structure by design. How-
ever, our model is numerical analysis-informed as well: since our model is discrete
by design, it can be used in simulations without an additional discretisation step.
Based on an analysis of Newton’s method when used to solve DELs, we develop
a regulariser that rewards numerical regularity of the model. The regulariser
is employed during the training phase. It plays a crucial role to obtain a non-
degenerate discrete Lagrangian.

Our work provides a proof of concept illustrated on the wave equation. It is
partly tailored to the hyperbolic character of the underlying PDE. It is future
work to adapt this approach to dynamical systems of fundamentally different
character (such as parabolic or elliptic behaviour) by employing discrete La-
grangians and regularisers that are adapted to the information flow within such
PDEs.

Finally, we clarify the notion of travelling waves (TWs) in discrete mod-
els and show how to locate TWs in data-driven models numerically. Indeed, in
our numerical experiment the data-driven model contains the correct TWs even
though the training data does not contain any TWs. In future work it would
be interesting to develop techniques to identify more general highly symmetric
solutions in data-driven models and use them to evaluate qualitative aspects of
learned models of dynamical systems.

Source Code https://github.com/Christian-Offen/LagrangianDensityML
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A Proofs

Proof (Proposition 1). We adapt the standard estimates for Newton’s method
(see [6, §4], for instance) to the considered setting. Let f : O → Rd with

f(u) =
∂

∂uij

(
Ld(u

i
j , u, u

i
j+1) + Ld(u

i−1
j , uij , u

i−1
j+1) + Ld(u

i
j−1, u

i+1
j−1, u

i
j)
)
.

With this definition, f(u∗) = 0, θ is a Lipschitz constant for Df : O → Rd×d,
u 7→ Df(u), θ is a Lipschitz constant for inv ◦ Df : O → Rd×d, u 7→ Df(u)−1,
and ρ∗ = ‖Df(u∗)−1‖. Here Df(u) denotes the Jacobian matrix of f at u ∈ O.

Assume that for n ∈ N an iterate u(n) ∈ O fulfils ‖u(n)−u∗‖ ≤ min
(
ρ∗

θ
, 1
2θρ∗

)
.

Then

‖Df(u(n))−1‖ = ‖Df(u(n))−1 −Df(u∗)−1 +Df(u∗)−1‖
≤ ‖Df(u(n))−1 −Df(u∗)−1‖+ ρ∗ ≤ θ‖u(n) − u∗‖︸ ︷︷ ︸

≤ρ∗

+ρ∗ ≤ 2ρ∗.

The next iterate u(n+1) = u(n) −Df(u(n))−1f(u(n)) can be bounded:

‖u(n+1) − u∗‖ = ‖u(n) − u∗ −Df(u(n))−1(f(u(n))− f(u∗)︸ ︷︷ ︸
=0

)‖

≤ ‖Df(u(n))−1‖︸ ︷︷ ︸
≤2ρ∗

∥∥∥ Df(u(n))(u(n) − u∗)︸ ︷︷ ︸
=
∫ 1
0
Df(u(n))(u(n)−u∗)dt

− (f(u(n))− f(u∗))︸ ︷︷ ︸∫ 1
0
Df(u(n)+t(u∗−u(n)))(u(n)−u∗)dt

∥∥∥
≤ 2ρ∗

∥∥∥∥∫ 1

0

(
Df(u(n))−Df(u(n) + t(u∗ − u(n)))

)
(u(n) − u∗)dt

∥∥∥∥
≤ 2ρ∗

∫ 1

0

∥∥∥Df(u(n))−Df(u(n) + t(u∗ − u(n)))
∥∥∥︸ ︷︷ ︸

≤θt‖u(n)−u∗‖

∥∥∥u(n) − u∗∥∥∥dt
≤ 2ρ∗θ

∥∥∥u(n) − u∗∥∥∥2 ∫ 1

0

tdt

= ρ∗θ
∥∥∥u(n) − u∗∥∥∥2

Moreover, since
∥∥u(n) − u∗∥∥ ≤ (2θρ∗)−1, we have ‖u(n+1)− u∗‖ ≤ 1

2‖u
(n)− u∗‖.

By induction, the Newton Iterations converge against u∗ and (9) holds true.
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